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Abstract A hyperconvex disc of radius r is a planar set with nonempty interior that is the
intersection of closed circular discs of radius r. A convex disc-polygon of radius r is a set
with nonempty interior that is the intersection of a finite number of closed circular discs of
radius r. We prove that the maximum area and perimeter of convex disc-n-gons of radius r
contained in a hyperconvex disc of radius r are concave functions of n, and the minimum area
and perimeter of disc-n-gons of radius r containing a hyperconvex disc of radius r are convex
functions of n. We also consider hyperbolic and spherical versions of these statements.
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1 Introduction and results

Let K denote a convex disc, that is, a compact convex set with non-empty interior in the
Euclidean plane E

2. Confirming a conjecture of Kershner, Dowker [9] proved that the max-
imum area of n-gons inscribed in K is a concave function of n, while the minimum area of
n-gons circumscribed about K is a convex function of n. Dowker observed that the argument
of his proof also shows that if K is centrally symmetric, then among the 2n-gons of maximum
area inscribed in K, as well as among the 2n-gons of minimum area circumscribed about K,
there is one that is centrally symmetric with the same centre as K.
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132 G. Fejes Tóth, F. Fodor

Dowker’s theorems play an important role in the theory of packing and covering in the
Euclidean plane. For example, they are essential to L. Fejes Tóth’s proof about the packing
density of convex discs in a convex hexagon, cf. [12]. L. Fejes Tóth [13], Molnár [20], and
Eggleston [10] observed independently of each other that Dowker’s results remain true if
the word “area” is replaced by “perimeter”. The results about centrally symmetric discs was
generalized in [11] for kn-gons inscribed in and circumscribed about a convex disc with
k-fold rotational symmetry.

Convex discs in the plane are intersections of half-planes. As a natural strengthening of
convexity we study sets that are the intersection of discs of radius r . Properties of such sets
were studied in several papers and different authors used different names for them. It appears
that it was Mayer [19] who first investigated such sets. He studied them in the more general
setting of Minkowski geometry and called them “überkonvex”. He characterized such sets
with the property that together with any two points of them the shorter arcs of both circles of
radius r connecting the two points belong to the set. Mayer’s paper inspired further research
in the 1930s and the 1940s (cf. for example Blanc [5], Buter [6], Pasqualini [21], Santaló [22],
van der Corput [23], Vincensini [24], see also the survey paper by Danzer, Grünbaum, and
Klee [8]). More than seven decades after Mayer, Bezdek et al. [4] and Kupitz et al. [17,18]
made a detailed investigation of such sets in E

n (for more information see also [1] and [2]).
Bezdek et al. [4] and Kupitz et al. [17,18] call such sets spindle convex, while L. Fejes Tóth
[15,16], who proved packing and covering theorems for them, used the term r -convex. We
use the English translation of Mayer’s phrase. A planar set is hyperconvex with radius r if
it is the intersection of circular discs of radius r . Note that if we consider half-planes as
circles of infinite radius, then we obtain the family of linearly convex sets for r = ∞. A
hyperconvex disc of radius r is a compact hyperconvex set with radius r and with nonempty
interior. A disc-polygon of radius r < ∞ is the intersection of a finite number of discs of
radius r in such a way that the interior of the set is nonempty. We shall assume that whenever
a disc-polygon is represented as the intersection of some discs, each disc is essential, that is,
if discarded, then the intersection changes. Thus, the boundary of a disc-polygon of radius
r consists of a finite number of radius r circular arcs of positive length, called sides, each
of which is part of the boundary of a unique generating disc. The sides follow in a natural
cyclic order on the boundary of the disc-polygon. Two consecutive sides in this order meet
in a vertex, except in the case of disc-2-gons in which two consecutive sides intersect in a
pair of vertices. Therefore, if a disc-polygon of radius r is the intersection of n > 1 essential
discs, then it has exactly n sides and n vertices. We will call such sets disc-n-gons of radius
r.

In this article we extend Dowker’s theorem for the case when K is a hyperconvex disc
of radius r and the approximating objects are disc-polygons of radius r. Since the value of
r is fixed throughout the article, we suppress its notation unless this omission may cause
confusion.

Let ai (n) and pi (n) denote the maximum area and maximum perimeter of convex disc-
polygons with at most n vertices contained in K. Let ac(n) and pc(n) denote the minimum
area and minimum perimeter of convex disc-polygons with at most n vertices containing K.
It is easily seen that ai (n) and pi (n) are realized by disc-polygons that are inscribed in K in
the sense that their vertices are on the boundary of K. Similarly, ac(n) and pc(n) are realized
by disc-polygons that are circumscribed about K meaning that their sides are tangential to
the boundary of K.

Theorem 1.1 We have, for n ≥ 4,

(i) ac(n − 1) + ac(n + 1) ≥ 2ac(n),
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Dowker-type theorems 133

(ii) pc(n − 1) + pc(n + 1) ≥ 2pc(n),
(iii) ai (n − 1) + ai (n + 1) ≤ 2ai (n),
(iv) pi (n − 1) + pi (n + 1) ≤ 2pi (n).

Theorem 1.2 If K has k-fold rotational symmetry, then there are disc-polygons Pca and Pcp
with at most kn vertices circumscribed about K , as well as disc-polygons Pia and Pip with
at most kn vertices inscribed in K such that all of them have k-fold rotational symmetry with
the same centre as K and area (Pca) = ac(kn), per(Pcp) = pc(kn), area (Pia) = ai (kn),
and per(Pip) = pi (kn).

We note that the above theorems were proved by Bezdek et al. in [4] for the special case
when K is a closed circular disc of radius r < 1. We stated Theorem 1.1 for n ≥ 4, so that
it includes the case r = ∞, as well. If r < ∞, then also digons can occur and Theorem 1.1
holds for n ≥ 3.

2 Proofs

Since the case r = ∞ of our theorems is well-known, we shall restrict our attention to
the case when r is finite. We will use circle-polygons of radius r . Following Bezdek et al.
(cf. [4], page 224) we define such circle-polygons as described below. Let v1, . . . , vn be a
sequence of points such that d(vi , vi+1) ≤ 2r for i = 1, . . . , n and with the convention that
vn+1 = v1. Let vivi+1 denote one of the shorter circular arcs of radius r incident with vi
and vi+1. The union of the arcs v1v2, . . . , vnv1 is called a circle-polygon of radius r , which
we denote by C . We call the points vi the vertices and the circular arcs vivi+1 the sides of
C . Note that a circle-polygon of radius r does not necessarily bound a convex domain and it
may be self-intersecting. The boundary of a convex disc-polygon of radius r is an example
of circle-polygons of radius r . Since r is fixed, henceforth we omit it from our notation.

We fix an orientation of the plane which induces a natural orientation of any circular arc.
Thus, a circular arc has a well-defined initial and terminal point. We say that a circle-polygon
is orientable (or proper) if the induced orientation of its sides determines an orientation of the
entire circle-polygon. Disc-polygons are obviously orientable. In this paper we only consider
orientable circle-polygons. Subsequently, we will omit the word “orientable”.

Let P = {C1, . . . ,Cn} be a finite collection of closed circle-polygons. We call such a
collection a multiple circle-polygon. It encloses a signed multiset in which the multiplicity
of a point p is defined as

∑n
i=1 χi (p), where χi (p) is the winding number of Ci around p

while going around Ci in the positive direction. The area and the perimeter of P are defined
as

area (P) =
∑

k∈Z
k · area ({p : χ(p) = k}),

and

per(P) =
n∑

i=1

per(Ci ),

respectively. The intersection of the discs corresponding to the sides of the circle-polygons
C1, . . . ,Cn is the core of P . In the proofs of Theorem 1.1 and 1.2 double circle-polygons
play a crucial role. These are those multiple circle-polygons for which the core is not empty
and the points of the core have multiplicity 2.
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134 G. Fejes Tóth, F. Fodor

Following Bezdek, Csikós, and Connelly (cf. [3], p. 55) and Bezdek et al. (cf. [4], p. 203),
we introduce the arc-distance of radius r of two points. More precisely, let x, y ∈ E

2 such
that d(x, y) ≤ 2r . Then their arc-distance of radius r , denoted by �r (x, y), is defined as the
length of the shorter circular arc of radius r connecting x and y. It is noted in [3] that the
arc-distance is not a metric. In fact, its behaviour is described in the following two statements
from [3], which we cite in slightly modified forms.

Proposition 2.1 (Bezdek, Csikós, and Connelly [3], Lemma 1) Let r > 0 and x, y, z ∈ E
2

such that d(x, y) ≤ 2r , d(x, z) ≤ 2r , and d(y, z) ≤ 2r . Let I denote the intersection of the
two discs of radius r whose boundary contains x and z. Then �r (x, y)+�r (y, z) > �r (x, z),
�r (x, y) + �r (y, z) = �r (x, z) or �r (x, y) + �r (y, z) < �r (x, z) according as y /∈ I ,
y ∈ bd I or y ∈ int I .

Proposition 2.2 (Bezdek,Csikós, andConnelly [3], Lemma2)Let r > 0 and x, y, z, w ∈ E
2

be the vertices of a disc-quadrilateral of radius r , listed in a cyclic order. Then

�r (x, y) + �r (z, w) < �r (x, z) + �r (y, w),

that is, the sum of the arc-lengths of the diagonals is larger than the sum of the arc-lengths
of any two nonadjacent sides.

We begin with the proofs of (i) and (ii) of Theorem 1.1 and the corresponding cases of
Theorem 1.2.

Let K be a hyperconvex disc and P a double circle-polygon circumscribed about K .
Let s1, . . . , sn be the sides of P . We choose the notation so that si−1 and si are neighbours
meeting in a vertex vi . If P is a single circle-polygon winding twice around the core of P ,
this can be achieved by the convention sn = s0 and sn+1 = s1. On the other hand, if P is the
union of two circle-polygons, with l and m sides, say, then we label the sides of the l-gon by
s1 = sl+1, s2, . . . , sl = s0 and the sides of them-gon by sl+3 = sl+m+3, sl+4, . . . , sl+m+2 =
sl+2. Let Ci denote the circle containing the side si , oi its centre and Di the disc bounded by
Ci . To each side of P we assign a point ti ∈ si ∩ bd K . If si ∩ bd K is not a single point, then
we can choose ti arbitrarily with the restriction that if Ci = C j then ti = t j .

We note that to any permutation of the points ti corresponds a double circle-polygon in
which the side associatedwith ti is the arc ofCi lying in the intersection of the discs associated
with the points preceding and following ti in the permutation. Arrange the points ti in the
order as they follow on bd K while going around in the positive direction. As there might
be coincident points among the ti ’s, we have to specify the order of such points. If ti = t j
and Ci = C j , then the order of ti and t j can be chosen arbitrarily. Suppose that ti = t j but
Ci �= C j . If the arc vi−1ti is contained in Dj then ti precedes t j , and if the arc v j−1t j is
contained in Di then t j precedes ti .

Enumerate the points ti by taking every second from the above natural order and let P∗
be the double circle-polygon corresponding to this order. The statements of our theorems for
circumscribed disc-polygons are immediate corollaries of the following.

Lemma 2.1 We have

area (P) ≥ area (P∗) and per(P) ≥ per(P∗).

Note that if K is a disc-polygon with at most n sides, then inequalities i) and ii) of
Theorem 1.1 are obvious. Thus, we may assume that K is not a disc-polygon with at most n
sides. Then there are disc-l-gons circumscribed about K for all l ≤ n + 1. Now, if P is the
union of two simple circle-polygons Q and R circumscribed about K with n − 1 and n + 1
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Dowker-type theorems 135

sides, respectively, then P∗ consists of two simple circle-polygons Q′ and R′ with n sides.
Thus

area (Q) + area (R) = area (P) ≥ area (P∗) = area (Q′) + area (R′)
≥ 2min{area (Q′), area (R′)},

and

per(Q) + per(R) = per(P) ≥ per(P∗) = per(Q′) + per(R′)
≥ 2min{per(Q′), per(R′)}.

Suppose now that K has k-fold rotational symmetry. Again, we may assume that K is
not a disc-polygon with at most kn vertices, as otherwise the statement of Theorem 1.2 is
obvious. Consider a disc-polygon Q0 with nk vertices circumscribed about K . The rotations
through 2π/j , j = 1, . . . , k − 1 carrying K onto itself transform Q0 into Q1, . . . , Qk−1.
As above, we associate with each side of these disc-polygons a point of tangency with bd K .
Any pair Qi , Q j , 0 ≤ i < j ≤ k − 1, forms a double circle-polygon P . If P does not
coincide with the corresponding P∗, then we replace Qi and Q j by the two disc-polygons
forming P∗. Obviously, the new polygons have nk vertices. By this replacement neither the
total area nor the total perimeter of the disc-polygons Q0, . . . , Qk−1 increases. We repeat
this process until all double circle-polygons P formed by a pair Qi , Q j coincide with the
corresponding P∗.

Let T be the union of the selected points of tangency of all sides of Q0, . . . , Qk−1. Let
us order the elements of T cyclically on bd K . T has k2n elements, and by construction,
it has k-fold rotational symmetry. Therefore a rotation around the centre of K by an angle
of 2π/k carries each element of T in the kn-th element following it in the cyclic order.
The disc-polygons resulting from the above procedure have the property that between any
two tangency points of consecutive sides there are exactly k − 1 tangency points of sides
of other Qi ’s. Thus any of these disc-polygons arises by taking the intersection of the discs
corresponding to every k-th tangency point. Therefore all of them have k-fold rotational
symmetry.

Proof of Lemma 2.1 With each vertex vi of P we associate the arc ai = t̂i−1ti of bd K
between ti−1 and ti . If P = P∗, then the statement of Lemma 2.1 is obvious. If P �= P∗,
then for some i and j we have a j ⊂ ai . Let C j−1 intersect si in v′

j and let C j intersect si−1

in v′
i . We obtain a new double circle-polygon P ′ by replacing the sides si−1, si , s j−1, and

s j by the arcs vi−1v
′
i , v′

jvi+1, v j−1v
′
j , and v′

iv j+1, respectively, so that the cyclic order of
the vertices of P ′ is . . . vi−2vi−1v

′
iv j+1 . . . v j−1v

′
jvi+1vi+2 . . . vi−2 . Let t denote the area

of the region R enclosed by the arcs viv
′
j , v′

jv j , v jv
′
i , and v′

ivi , where we allow that R is
degenerate and its area is zero (see Fig. 1).

Then

area (P) = area (P ′) + t ≥ area (P ′).

We show that also

per(P) ≥ per(P ′).

We have

per(P ′) = per(P) + �r (v
′
j , v j ) + �r (v j , v

′
i ) − �r (v

′
i , vi ) − �r (vi , v

′
j ),

thus we have to show that
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Fig. 1 The case of perimeter for circumscribed disc-n-gons

�r (v
′
i , vi ) + �r (vi , v

′
j ) ≥ �r (v

′
j , v j ) + �r (v j , v

′
i ).

Let p be the point of intersection of Ci−1 and Ci different from vi . Let C and C ′ be the
circles of radius r passing through the points v j and p. Denote their centres with o and o′,
respectively. Since p ∈ Dj−1 ∩ Dj , one of these circles, say C intersects the arc v′

ivi , while
C ′ intersects the arc viv

′
j . Write v′′

i = C ∩ v′
ivi and v′′

j = C ′ ∩ viv
′
j .

Observe that �poivi = π −�oi−1 poi , �poiv′′
j = π −�oi po′, �pov′′

i = π −�oi−1 po,
and �pov j = π − �opo′. Hence

�vi oiv
′′
j = �poivi − �poiv

′′
j = �oi po′ − �oi−1 poi = �oi−1 po

′ (1)

and

�v′′
i ov j = �pov′′

i − �pov j = �o′ po − �oi−1 po = �oi−1 po
′. (2)

It follows that �r (vi , v′′
j ) = �r (v

′′
i , v j ). In the same way we see that �r (vi , v′′

i ) = �r (v
′′
j , v j ).

Obviously, v′′
i is not contained in the interior of the intersection of the two circles of radius

r passing through vi and v′
i . It follows by Proposition 2.1 that �r (v j , v

′
i ) ≤ �r (v j , v

′′
i ) +

�r (v
′
i , v

′′
i ). Similarly we have �r (v j , v

′
j ) ≤ �r (v j , v

′′
j ) + �r (v

′
j , v

′′
j ). Therefore

�r (v
′
i , vi ) + �r (vi , v

′
j ) = �r (v

′
i , v

′′
i ) + �r (v

′′
i , vi ) + �r (v

′
j , v

′′
j ) + �r (v

′′
j , vi )

= �r (v
′
i , v

′′
i ) + �r (v j , v

′′
i ) + �r (v

′
j , v

′′
j ) + �r (v j , v

′′
j )

≥ �r (v
′
j , v j ) + �r (v j , v

′
i ),

as claimed.
We obtain a sequence of double circle-polygons with non-increasing areas and perimeters

by iterating this construction until there are no vertices with the property that the arc of bd K
assigned to one contains the arc assigned to the other. Thus the result of this process is P∗. ��

Now we turn to the proof of the statements of our theorems dealing with inscribed disc-
polygons. Let P be a double circle-polygon inscribed in K with sides s1, . . . , sn . Again,
we assume that si−1 and si are neighbours meeting in the vertex vi and we index the sides
of P in the same way as described before Lemma 2.1. Our goal is to find a new double
circle-polygon inscribed in K whose area and perimeter is not less than that of P . We do not
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Dowker-type theorems 137

consider cases when the area and perimeter of P can be increased in an obvious way. We
assume that the vertices of P are not all on an open arc of the boundary of K lying between
points of tangency of two parallel supporting lines.

Arrange the vertices of P in the order as they follow on the boundary of K. If two vertices
coincide, then we may order them arbitrarily. Observe that for two points that are second
neighbours in this cyclic order one of the circles passing through the two points contains
the core of P . By taking every second vertex and connecting them by the shorter arc of the
respective circle we obtain a new double circle-polygon P∗ inscribed in K.

Lemma 2.2 We have

area (P) ≤ area (P∗) and per(P) ≤ per(P∗).

FromLemma2.2 the statements of our theorems for the inscribed case followbyessentially
the same arguments as above. There is one important difference. The union of two simple
circle-polygons circumscribed about K is always a double circle-polygon. For inscribed
circle-polygons this is not the case. In order to ensure that we get a double circle-polygon we
have to start with circle-polygons which have maximum area or maximum perimeter for the
given number of sides. Then the vertices of such a circle-polygon cannot all be on an open arc
of the boundary of K lying between points of tangency of two parallel supporting lines. This
guarantees that the core of the multiple circle-polygon formed by two such circle-polygons
is not empty.

Proof of Lemma 2.2 With each side si = vi−1vi of P , we associate the arc ai = v̂i−1vi
of bd K between vi−1 and vi . If P = P∗, then the statement of Lemma 2.2 is obvious. If
P �= P∗, then a j ⊂ ai for some i and j . Let P ′ denote the double circle-polygon inscribed
in K whose vertices, listed in positive cyclic order, are the following:

. . . v j−2v j−1vivi+1 . . . vi−1v jv j+1 . . . .

Applying Proposition 2.2 to the circle-quadrangle vi−1v j−1v jvi (which may degenerate into
a circle-triangle), we obtain that

per(P ′) ≥ per(P).

We need to show that

area (P ′) ≥ area (P)

as well.
We begin the proof of this inequality with a technical statement. Consider three parallel

lines L1, L2 and M such that the distance between L1 and L2 is less than 2r and M is at
equal distance from L1 and L2. Let C be a circle of radius r intersecting both L1 and L2.
We choose a coordinate system with origin in M so that the points of intersection of L1 and
C are u = (−x0,−y0) and v = (x0,−y0). For a point w = (x, y0) inside C we define the
region T = T (x) bounded by the circular arcs of radius r connecting the points u and v, v
and w and w and u, respectively, so that the arc between u and v and the arc between v and
w are outside the triangle � = uvw, while the arc between u and w is on the same side of
the line uw as � (see Fig. 2).

We are going to show that

area (T (x)) is a monotonically decreasing function of x. (*)
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u v
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Fig. 2 The region T (x)

Let S(u, v), S(v,w) and S(w, v)denote the circular segments determinedbyT (x), respec-
tively, as shown on Fig. 2. Then

area (T (x)) = area (�) + area (S(u, v)) + area (S(v,w)) − area (S(u, w)).

Clearly, area (�) and area (S(u, v)) are independent of x , so we have to show the monotonic-
ity of area (S(v,w))−area (S(u, w)). This is obvious in the case when x ∈ [−x0, x0] since in
this interval area (S(u, w)) is monotonically increasing and area (S(v,w)) is monotonically
decreasing. Observe that

area (T (x)) + area (T (−x)) = 2 area (�) + 2 area (S(u, v)) = constant.

Thus we may assume that x ≥ x0.
Let s(l) denote the area of a circular segment cut off from a circle of radius r by a

chord of length l. Further define the function l(z) for z ≥ 0 as the distance from the point
(x,−y0) to (x + z, y0). It is easily seen that both s(l) and l(z) are monotonically increasing
convex functions. It follows that the compound function f (z) = s(l(z)) is alsomonotonically
increasing and convex on its domain. We have

area (S(v,w)) − area (S(u, w)) = f (x + x0) − f (x − x0).

Now the statement in (∗) follows by observing that the right hand side increases by the
convexity of f .

Let v∗ be the intersection point of the circular arcs v j−1vi and vi−1v j as shown on Fig. 3.
In order to prove the inequality area (P ′) ≥ area (P) we have to show that the area of the
region bounded by the arcs vivi−1, vi−1v

∗ and v∗vi is not smaller than the area of the region
bounded by the arcs v jv j−1, v j−1v

∗ and v∗v j . Equivalently, we can compare the area of the
region R1 bounded by the arcs vi−1v j−1, v j−1vi and vivi−1 to that of R2 bounded by the
arcs vi−1v j−1, v j−1v j and v jvi−1. Let L be the line through v j that is parallel to the line
incident with vi−1 and v j−1. It follows by the assumption that the vertices of P are not all on
an open arc of the boundary of K lying between points of tangency of two parallel supporting
lines that L intersects the circular arc v j−1vi in a point v′

i . Let R
′
1 denote the region bounded

by the arcs vi−1v j−1, v j−1v
′
i and v′

ivi−1. It is clear that area (R1) ≥ area (R′
1), and by the

auxiliary statement proved above area (R′
1) ≥ area (R2).

We obtain a sequence of double circle-polygons with non-decreasing areas and perimeters
by iterating this construction until there are no sides with the property that the arc of the
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vj−1
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vi

vi
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K

L

Fig. 3 The case of area for inscribed disc-n-gons

boundary of K assigned to one contains the arc assigned to the other. Thus, this process
results in P∗ in a finite number of steps. ��

3 Concluding remarks

The theorems of Dowker and their extensions for the perimeter hold also on the sphere and
in the hyperbolic plane. This was shown by Molnár [20] with the exception of the case con-
cerning the perimeter of circumscribed polygons on the sphere. This last case was settled by
L. Fejes Tóth [14] who observed that on the sphere the statements for the perimeter of circum-
scribed polygons and for the area of inscribed polygons are equivalent by spherical polarity.

With the exception of the case concerning the perimeter of circumscribed disc-polygons
on the sphere the proofs of our theorems can be carried over to the sphere (for r ≤ π/2) and
the hyperbolic plane. The arguments deducing the theorems fromLemma 2.1 and Lemma 2.2
do not use the special structure of the geometry. The proofs of the case of area in Lemma 2.1
and the case of perimeter in Lemma 2.2 carry over to the hyperbolic plane and the sphere
without change. We outline the changes needed in the proofs of the case of perimeter of
Lemma 2.1 in the hyperbolic plane and the case of area of Lemma 2.2 in the hyperbolic plane
and on the sphere.

Proof of the case of perimeter in Lemma 2.1 in the hyperbolic plane. In this argu-
ment we use the same notations as on Fig. 1. On the hyperbolic plane we have
�poivi=2 arccot cosh r tan( 12�oi−1 poi ), �poiv′′

j=2 arccot cosh r tan( 12�oi po′), �pov′′
i =

2 arccot cosh r tan( 12�oi−1 po), and �pov j=2 arccot cosh r tan( 12�opo′). Hence
�vi oiv

′′
j = �poivi − �poiv

′′
j (1*)

= 2 arccot cosh r tan(�oi−1 poi/2) − 2 arccot cosh r tan(�oi po′/2)

and

�v′′
i ov j = �pov′′

i − �pov j (2*)

= 2 arccot cosh r tan(�oi−1 po/2) − 2 arccot cosh r tan(�opo′/2).
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It is easily seen that the function y = arccot(cosh r tan x) is increasing and convex. We
have

�oi−1 poi/2 − �oi po′/2 = −�oi−1 po
′/2 = �oi−1 po/2 − �opo′/2

and

�oi−1 po ≥ �oi−1 poi .

It follows that

�vi oiv
′′
j ≥ �v′′

i ov j ,

and similarly

�vi oiv
′′
j ≥ �v′′

i ov j .

From here the proof of the inequality

�r (v
′
i , vi ) + �r (vi , v

′
j ) ≥ �r (v

′
i , v j ) + �r (v j , v

′
j )

follows in the same way as for the Euclidean plane.
Proof of the case of area in Lemma 2.2 on the sphere and on the hyperbolic plane. The

main tool in the Euclidean argument is the technical statement (∗). We will show how direct
analogues of (∗) can be proved on the sphere and on the hyperbolic plane.

The locus of the pointsw′ for which the triangles uvw and uvw′ have the same orientation
and area (uvw′) = area (uvw) is a constant distance curve for the line M throughw, that is, a
hypercycle on the hyperbolic plane and the so called Lexell circle on the sphere. Thus the role
of the lines L1 an L2 are played by hypercycles and small circles, respectively. We introduce
coordinates so that the origin is the intersection of M and the perpendicular bisector of the
segment uv, the y coordinate of a point p is the signed distance from p to the orthogonal
projection pM of p on M , and the x coordinate of p is the signed distance from pM to the
origin. Let α denote the central angle of a circular segment of radius r cut off by a chord of
length l. Then we have

s(l) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π − α cos r − 2 arccot
(

cos r
cot α

2

)
, α = 2 arcsin

(
sin l

2
sin r

)

on the sphere,

α cosh r + 2 arccot
(
cosh r
cot α

2

)
− π, α = 2 arcsin

(
sinh l

2
sinh r

)

on the hyperbolic plane,

and

l(z) =
{
2 arccos

(
cos z

2 cos y0
)

on the sphere,
2 arcosh

(
cosh z

2 cosh y0
)
on the hyperbolic plane.

It can be checked by direct calculation, which is straightforward but tedious, that both s(l)
and l(z) are strictlymonotonically increasing and convex in both geometries. The anonymous
referee suggested the following alternate argument to verify the monotonicity and convexity
of s(l) and l(z).

The function l(z) is twice the length of the hypotenuse of a right triangle whose catheti
have lengths y0 and z/2, and where y0 is fixed. If we draw two such right triangles in a way
that they share the right angle and the leg of length y0, cf. Fig. 4, then the monotonicity of l is
clear from the fact that in a triangle the larger side is opposite to the larger angle. Convexity
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y0

z1
2

z2
2

l(z2)
2

z1+z2
4

l(z1)
2

l(z1+z2)
2

Fig. 4 The function l(z)

of l is a consequence of the theorem that the length of a median of a triangle is less than the
mean of the sides sharing a vertex with it. (This follows easily from the triangle inequality
applying a central reflection in the midpoint of the third side of the triangle).

The convexity of s(l) can be proved as follows. If K = ±1 is the sectional curvature of
the plane, then the sides a, b, c of a right triangle, where c (≤ π/2 in the spherical case) is
the hypothenuse, are related to one another by the formula

cos(
√
Ka) cos(

√
Kb) = cos(

√
Kc).

If we fix the hypotenuse c and express b as a function b = fc(a) of a ∈ [0, c], then by
differentiating the equation

cos(
√
Ka) cos(

√
K fc(a)) = cos(

√
Kc)

with respect to a, we obtain that

f ′
c(a) = − tan(

√
Ka)

tan(
√
K fc(a))

. (3)

This yields that f ′
c(a) is negative for all a ∈ [0, c], and hence, fc is strictly decreasing on

[0, c]. By differentiating (3) one more time with respect to a and using the monotonicity of
the tangent and hyperbolic tangent functions, we obtain that f ′

c is also strictly monotonically
decreasing on [0, c], which yields that fc is concave.

Denote by p(r) = 2π sin(
√
Kr)√
K

the perimeter of a circle of radius r and by ar (l) the length
of the shorter arc of this circle cut off by a chord of length l. Consider a circle of perimeter
p(r) in the Euclidean plane and denote by Wr (l) the length of the chord of this circle that
cuts off an arc of length ar (l).

The area s(l) is half the area of the intersection of two discs of radius r that share a chord
of length l. Thus, using Theorem 5.1 of Csikós [7], we obtain that

s′(l) = − f ′
r (l/2)Wr (l).
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Since Wr is positive and strictly increasing and f ′
r is negative and decreasing, it follows

that s′ is positive and increasing, which, in turn, yields that s is increasing and convex.
Now we can finish the proof in the same way as in the Euclidean case with the only

difference that the role of the line L is played by the constant distance curve for the line
vi−1v j−1 through v j .

For two convex discs K1 and K2 let their area deviation δa(K1, K2) and perimeter devi-
ation δp(K1, K2) be defined as

δa(K1, K2) = area (K1 ∪ K2) − area (K1 ∩ K2)

and

δp(K1, K2) = per(K1 ∪ K2) − per(K1 ∩ K2).

For a convex disc K let da(n) and dp(n) denote theminimum area deviation and theminimum
perimeter deviation of an n-gon from K , respectively. Eggleston [10] proved that both da(n)

and dp(n) are convex functions of n. It is an interesting question whether the minimum
area deviation and the minimum perimeter deviation of a disc-n-gon of radius r from a
hyperconvex disc K are also convex functions of n. To answer this question seems to be
difficult. As one source of the difficulty in the case of the perimeter deviation we mention
the following. Eggleston [10] proved that for a convex disc K among all convex n-gons the
one closest to K in the sense of perimeter deviation is always inscribed in K . The following
example shows that if K is a hyperconvex disc, then its best approximating disc-n-gon in the
sense of perimeter deviation may neither be inscribed in nor circumscribed about K . Let K
be the closed circular disc of radius 0.9 centred at the origin o. Let p1 be an arbitrary point
with d(p1, o) = h for some arbitrary fixed 0 < h < 1. Then there exists a unique regular
disc-pentagon P5(h) of radius 1 centred at o with one of its vertices equal to p1. Note that
the disc-pentagon P5(0.9) is inscribed in K . Let h1 be the value of h for which P5(h1) is
circumscribed about K .

Theorem 1.2 implies, on one hand, that pi (5) = per(P5(0.9)) = 5.565 . . ., on the other
hand, that pc(5) = per(P5(h1)) = 5.690 . . .. Hence δp(P5(0.9), K ) = 1.8π − 5.565 . . . =
0.080 . . ., δp(P5(h1), K ) = 5.690 . . . − 1.8π = 0.04 . . .. Thus, P5(h1) is closer to K than
P5(0.9) in the sense of perimeter deviation. Now, we will examine the case when h ∈
(0.9, h1). Let the vertices of P5(h) be labeled in the positive direction and let p′

1 and p′
2

be the intersection points of the unit radius arc p1 p2 and bd K as shown on Fig. 5. Let
α = �oo′ p1, β = �oo′ p′

1, and γ = π − �p′
1oo

′, cf. Fig. 5. It is clear that

0.9

1

h

o

o

p1p2
p1p2

K

Fig. 5 The side p1 p2 of P5(h)
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Fig. 6 The graph was drawn by Maple 13.0

δp(P5(h), K ) = per(P5(h) ∪ K ) − per(P5(h) ∩ K )

= (10(α − β) + 9 · γ ) − (10β + (2π − 10γ ) · 0.9). (4)

The right hand side of (4) can be expressed explicitly in terms of h using basic trigonometry;
we leave the detailed calculations to the reader. The graph of (4) is shown on Fig. 6.

It is apparent from Fig. 6 that there is a whole subinterval of positive length of (0.9, h1) in
which P5(h) approximates K better than both P5(0.9) and P5(h1) in the sense of perimeter
deviation. Thus the best approximating disc-pentagon of unit radius of K is neither inscribed
in nor circumscribed about K.
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