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Abstract We consider the Diophantine equation Pn(x) = g(y) in x, y where Pn(x), g(x) ∈
Q[x], deg g(x) ≥ 3 and {Pn(x)}n≥0 is an Appell sequence. Under some reasonable assump-
tions on Pn(x) we prove an ineffective finiteness result on the above equation.
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1 Introduction

For n ∈ N∪{0}, let Pn(x) be a polynomial with rational coefficients and with deg Pn(x) = n.
Further, let P0(x) be a non-zero constant. The sequence {Pn(x)}n≥0 is called an Appell
sequence (and Pn(x) is called an Appell polynomial) if

P ′
n(x) = n Pn−1(x) for all n ∈ N. (1.1)

The history of such polynomials goes back to Appell’s work [2] in 1880. There are several
well-known examples of Appell sequences, such as the Bernoulli polynomials Bn(x), the
Euler polynomials En(x), and the Hermite polynomials Hn(x), respectively defined by the
following generating series (see e.g. [12])

t exp(t x)

exp(t) − 1
=

∞∑

n=0

Bn(x)
tn

n! ;
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2 exp(xt)

exp(t) + 1
=

∞∑

n=0

En(x)
tn

n! (|t | < π);

exp(t x)

exp(t2/2)
=

∞∑

n=0

Hn(x)
tn

n! .

The above defined Hermite polynomials Hn(x) are sometimes denoted by Hen(x), e.g. in
Abramowitz and Stegun [1].

The following properties of Appell polynomials will often be used in the text, sometimes
without special reference.

We recall the so-called Appell Identity:

Pn(x + y) =
n∑

k=0

(
n

k

)
Pk(x)yn−k =

n∑

k=0

(
n

k

)
Pk(y)xn−k, (1.2)

which, by setting y = 0, implies that there exists a sequence of rational numbers {cn}n≥0
with c0 �= 0 such that

Pn(x) =
n∑

k=0

(
n

k

)
ck xn−k, where ck := Pk(0) (k ≥ 0). (1.3)

For the proofs of (1.2) and (1.3) see, for instance Roman [12].
Let K be an arbitrary field. We denote by K[x] the ring of polynomials in the variable x

with coefficients from K. A decomposition of a polynomial F(x) over K is an equality of the
following form

F(x) = G1(G2(x)) (G1(x), G2(x) ∈ K[x]),
which is nontrivial if

deg G1(x) > 1 and deg G2(x) > 1.

Two decompositions F(x) = G1(G2(x)) and F(x) = H1(H2(x)) are said to be equivalent
if there exists a linear polynomial �(x) ∈ K[x] such that G1(x) = H1(�(x)) and H2(x) =
�(G2(x)). The polynomial F(x) is called decomposable over K if it has at least one nontrivial
decomposition over K; otherwise it is said to be indecomposable.

The decomposition of Bernoulli polynomials has been described by Bilu et al. in [6].
Decomposition properties of Euler polynomials were recently investigated by Rakaczki and
Kreso [11]. These results can both be summarized as follows: the corresponding polynomial
(Bn(x) or En(x)) is indecomposable over C for all odd n, while, if n is even, then any
nontrivial decomposition of the polynomial under consideration over C is equivalent to one
of the form

P̂n/2

((
x − 1

2

)2
)

,

where P̂n/2(x) is a polynomial of degree n/2 which is indecomposable for every n. These
results from [6] and [11] suggest the following notion. We say that an Appell sequence
{Pn(x)}n≥0 is of special type if Pn(x) is indecomposable over C for all odd n, and, for even
n, every nontrivial decomposition of Pn(x) is equivalent to a decomposition of the form

Pn(x) = P̂n/2

((
x − 1

2

)2
)

, (1.4)
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224 A. Bazsó, I. Pink

with an indecomposable polynomial P̂n/2(x) over C of degree n/2. Clearly, the polynomials
{Bn(x)}n≥0 and {En(x)}n≥0 are of special type.

The theory of polynomial decomposition is strongly connected to the theory of separable
Diophantine equations since, in 2000, Bilu and Tichy [5] established their general ineffective
finiteness criterion on equations of the form f (x) = g(y). (See Proposition 2.1 below.)

In this paper we study the Diophantine equation

Pn(x) = g(y) in integers x, y, (1.5)

where Pn(x) is from an Appell sequence of special type and g(x) ∈ Q[x], deg g(x) ≥ 3. For
technical reasons, we restrict ourselves to Appell sequences {Pn(x)}n≥0 for which

3P2(−c1/c0)
2 − 2c0 P4(−c1/c0)

3P2(−c1/c0)2 − c0 P4(−c1/c0)
is not a positive integer. (1.6)

Remark In the following table, we give the value of the constant from (1.6) for the case when
Pn(x) is a Bernoulli, Euler or an Hermite polynomial, respectively.

Bn(x) En(x) Hn(x)

9/2 7/2 undefined

For Pn(x) = Bn(x), Rakaczki [10], and independently Kulkarni and Sury [9] characterized
those pairs (n, g(y)) for which equation (1.5) has infinitely many integer solutions. Recently,
Rakaczki and Kreso [11] proved an analogous result for the case when Pn(x) = (En(0) ±
En(x))/2 (which is not an Appell polynomial anymore). For further related results we refer
to [7,8].

We prove the following.

Theorem 1.1 Let g(x) ∈ Q[x] with deg g(x) ≥ 3, and suppose that {Pn(x)}n≥0 is an Appell
sequence of special type with property (1.6). Then for n ≥ 7, equation (1.5) has only finitely
many integer solutions x, y, apart from the following cases:

(i) g(x) = Pn(h(x)), where h(x) is a polynomial over Q.
(ii) g(x) = γ (δ(x)m), where m is a positive integer.

(iii) n is even and g(x) = P̂n/2(q(x)2)

(iv) n is even and g(x) = P̂n/2(δ(x)q(x)2)

(v) n is even and g(x) = P̂n/2(cδ(x)t ), where t ≥ 3 is an odd integer
(vi) n is even and g(x) = P̂n/2((aδ(x)2 + b)q(x)2)

Here a, b, c ∈ Q \ {0}, γ (x), δ(x) ∈ Q[x] are linear polynomials and q(x) ∈ Q[x] is a
non-zero polynomial.

We prove the above theorem by applying among other things the general finiteness criterion
of Bilu and Tichy [5] for equation (1.5). Hence our finiteness result is ineffective.

Remark For n ≥ 7, our main result is a common generalization of the aforementioned results
of Rakaczki [10], Kulkarni and Sury [9] and Rakaczki and Kreso [11]. In the special cases
Pn(x) ∈ {Bn(x), En(x)}, one can exclude the exceptional case (ii) by making use of some
specific properties of the Bernoulli or Euler polynomials, respectively. (See [9–11])
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2 Auxiliary results

Before proving Theorem 1.1, we collect the results that will be applied in the proof. First, we
recall the finiteness criterion of Bilu and Tichy [5]. To do this, we need to define five kinds
of so-called standard pairs of polynomials.

Let α, β be nonzero rational numbers, μ, ν, q > 0 and r ≥ 0 be integers, and let v(x) ∈
Q[x] be a nonzero polynomial (which may be constant). Denote by Dμ(x, δ) the μ-th Dickson
polynomial, defined by the functional equation Dμ(z+δ/z, δ) = zμ+(δ/z)μ or by the explicit
formula

Dμ(x, δ) =
�μ/2	∑

i=0

dμ,i xμ−2i with dμ,i = μ

μ − i

(
μ − i

i

)
(−δ)i .

Two polynomials f1(x) and g1(x) are said to form a standard pair over Q if one of the
ordered pairs ( f1(x), g1(x)) or (g1(x), f1(x)) belongs to the list below. The five kinds of
standard pairs are then listed in the following table.

Kind Explicit form of { f1(x), g1(x)} Parameter restrictions

First (xq , αxr v(x)q ) 0 ≤ r < q, (r, q) = 1, r + deg v(x) > 0
Second (x2, (αx2 + β)v(x)2) –
Third (Dμ(x, αν), Dν(x, αμ)) (μ, ν) = 1

Fourth (α
−μ
2 Dμ(x, α), −β

−ν
2 Dν(x, β)) (μ, ν) = 2

Fifth ((αx2 − 1)3, 3x4 − 4x3) –

The following proposition is a special case of the main result of [5].

Proposition 2.1 Let f (x), g(x) ∈ Q[x] be nonconstant polynomials such that the equation
f (x) = g(y) has infinitely many solutions in rational integers x, y. Then f = ϕ ◦ f1 ◦ λ

and g = ϕ ◦ g1 ◦ μ, where λ(x), μ(x) ∈ Q[x] are linear polynomials, ϕ(x) ∈ Q[x], and
( f1(x), g1(x)) is a standard pair over Q.

For P(x) ∈ C[x], a complex number c is said to be an extremum if P(x) − c has multiple
roots. The P-type of c is defined to be the tuple (α1, . . . , αs) of the multiplicities of the distinct
roots of P(x) − c in an increasing order. Obviously, s < deg P(x) and α1 + . . . + αs =
deg P(x).

Proposition 2.2 For a �= 0 and k ≥ 3, Dμ(x, α) has exactly two extrema ±2α
μ
2 . If μ is odd,

then both are of P-type (1, 2, 2, . . . , 2). If μ is even, then 2α
μ
2 is of P-type (1, 1, 2, . . . , 2)

and −2α
μ
2 is of P-type (2, 2, . . . , 2).

Proof See, for instance [4, Proposition 3.3]. �

We end this section with two technical results. Let d1, e1 ∈ Q∗ and d0, e0 ∈ Q

Proposition 2.3 Suppose that {Pn(x)}n≥0 is an Appell sequence of special type. Then the
polynomial Pn(d1x + d0) is not of the form e1xq + e0, with q ≥ 7.
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226 A. Bazsó, I. Pink

Proof We assume the contrary, i.e., that we have

Pn(d1x + d0) = e1xq + e0 (2.1)

with q ≥ 7. Obviously, we then have n = q .
We observe from (1.2) and (2.1) that

P1(d0) = P2(d0) = . . . = Pn−1(d0) = 0. (2.2)

Since, by (1.3), P1(d0) = c0d0 + c1, we get

d0 = −c1

c0
. (2.3)

Further, since, by (1.1),

Pk(x) = k!
(n − 1)! P(n−1−k)

n−1 (x), k = 1, . . . , n − 1, (2.4)

we infer that d0 is a root of Pn−1(x) of multiplicity (n − 1). Thus, in view of (2.3), we have
Pn−1(x) = c0 (x + c1/c0)

n−1, which implies

Pn(x) = c0

(
x + c1

c0

)n

+ C with C = Pn

(
−c1

c0

)
. (2.5)

First, if n ≥ 7 is even , then, by (2.5), one can easily find the nontrivial decomposition
Pn(x) = Q(R(x)) with

Q(x) = c0x2 + C, and R(x) =
(

x + c1

c0

)n/2

. (2.6)

Since n ≥ 7, this nontrivial decomposition is obviously not equivalent to the one in (1.4),
contradicting that {Pn(x)}n≥0 is of special type.

Now, let n ≥ 7 be an odd positive integer. If n is composite, then any divisor v of n with
1 < v < n leads to a nontrivial decomposition

Pn(x) = c0

((
x + c1

c0

)v)n/v

+ C, (2.7)

which again contradicts that {Pn(x)}n≥0 is of special type (and in this case Pn(x) is inde-
composable). If n is a prime, then derivating both sides of (2.5) we obtain

Pn−1(x) = c0

(
x − 1

2

)n−1

, (2.8)

where of course the exponent n − 1 is even. Similarly as above, this leads to a nontrivial
decomposition not equivalent to (1.4) and thus to a contradiction. �
Proposition 2.4 Suppose that {Pn(x)}n≥0 is an Appell sequence which satisfies (1.6). Then
the polynomial Pn(d1x + d0) is not of the form e1 Dμ(x, δ) + e0, where Dμ(x, δ) the μ-th
Dickson polynomial with μ > 4, δ ∈ Q∗.

Proof Suppose that the Appell sequence {Pn(x)}n≥0 satisfies (1.6), and that we have

Pn(d1x + d0) = e1 Dμ(x, δ) + e0. (2.9)

Clearly, n = μ. Comparing the leading coefficients of both sides we get

dn
1 c0 = e1, (2.10)
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where the numbers ck (k ≥ 0) are defined in (1.3). Similarly, from (1.2) and the equality of
the coefficients of xn−1 on both sides we obtain

ndn−1
1 P1(d0) = 0, (2.11)

which implies

d0 = −c1

c0
. (2.12)

Again, by (1.2), comparing the coefficients of xn−2 gives
(

n

2

)
dn−2

1 P2(d0) = −e1nδ, (2.13)

whence, together with (2.10) it follows that

d2
1 = − (n − 1)P2(d0)

2c0δ
(2.14)

Now we compare the coefficients of xn−4 on both sides of (2.9) and we obtain
(

n

4

)
dn−4

1 P4(d0) = e1n(n − 3)δ2

2
, (2.15)

which along with (2.10) leads to

d4
1 = (n − 1)(n − 2)P4(d0)

12c0δ2 . (2.16)

After substituting (2.14) into (2.16), we obtain

3(n − 1)P2(d0)
2 = (n − 2)c0 P4(d0), (2.17)

whence, together with (2.12) it follows that

n = 3P2(−c1/c0)
2 − 2c0 P4(−c1/c0)

3P2(−c1/c0)2 − c0 P4(−c1/c0)
. (2.18)

This is a contradiction by (1.6). �
We note that Proposition 2.4 is a common generalization of Lemma 5.3 in [6], Lemma

2.4 in [3], and of the second statement of Lemma 12 in [11].

3 Proof of Theorem 1.1

Let g(x) ∈ Q[x] with deg g(x) ≥ 3. Suppose that equation (1.5) has infinitely many inte-
ger solutions x, y with an Appell sequence {Pn(x)}n≥0 of special type satisfying (1.6) and
with n ≥ 7. Then by Proposition 2.1 it follows that there exist λ(x), μ(x), ϕ(x) ∈ Q[x],
deg λ(x) = deg μ(x) = 1 such that

Pn(x) = ϕ( f1(λ(x))) and g(x) = ϕ(g1(μ(x))), (3.1)

where ( f1(x), g1(x)) is a standard pair over Q.
Let λ−1(x) = a1x + a0, μ

−1(x) = b1x + b0, where a0, a1, b0, b1 ∈ Q with a1b1 �= 0.
Then we can rewrite (3.1) as

Pn(a1x + a0) = ϕ( f1(x)) and g(b1x + b0) = ϕ(g1(x)), (3.2)
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228 A. Bazsó, I. Pink

Since Pn(x) is of special type and deg Pn(x) = n, we obtain that

deg ϕ(x) ∈
{

1,
n

2
, n

}
.

3.1 The case deg ϕ(x) = n

If we assume that deg ϕ(x) = n, then by (3.1), we have deg f1(x) = 1. Thus Pn(x) = ϕ(t (x)),
where t (x) ∈ Q[x] is a linear polynomial. Clearly, t−1(x) ∈ Q[x] is also linear. By (3.1), we
obtain Pn(t−1(x)) = ϕ(t (t−1(x))) = ϕ(x). Hence

g(x) = ϕ(g1(μ(x))) = Pn(t−1(g1(μ(x)))) = Pn(q(x)), (3.3)

where q(x) = t−1(g1(μ(x))). So, if, in our case, equation (1.5) has infinitely many solutions,
then g(x) is of the form as in Theorem 1.1 (i).

3.2 The case deg ϕ(x) = 1

Let ϕ(x) = ϕ1x +ϕ0, where ϕ1, ϕ0 ∈ Q and ϕ1 �= 0. We now study the five kinds of standard
pairs.

In view of our assumptions on n and deg g(x), it follows that the standard pair
( f1(x), g1(x)) cannot be of the second or fifth kind.

If it is of the third or fourth kind, we then have Pn(a1x + a0) = e1 Dμ(x, δ) + e0 with
e0 ∈ Q, e1, δ ∈ Q∗. This contradicts Proposition 2.4.

If ( f1(x), g1(x)) is a standard pair of the first kind, then we have either

(I) Pn(a1x + a0) = ϕ1xq + ϕ0, or
(II) Pn(a1x+a0) = ϕ1αx pν(x)q +ϕ0, where 0 ≤ p < q, (p, q) = 1 and p+deg ν(x) > 0.

The first case (I) is impossible by Proposition 2.3 since n ≥ 7 by assumption.
Let us now consider the second case (II). Then we have g(x) = ϕ1μ(x)q +ϕ0 = ϕ(μ(x)q),

where q ≥ 3 and μ(x) ∈ Q[x] is linear, which is case (ii) of Theorem 1.1.

3.3 The case deg ϕ(x) = n/2

Clearly, n is then even, and from (3.1) we observe that deg f1(x) = 2. Hence it follows
that, in (3.1), ( f1(x), g1(x)) cannot be a standart pair of the fifth kind. Further, we obtain a
nontrivial decomposition of Pn(x), which, since Pn(x) is of special type, implies that there
exists a linear polynomial �(x) = �1x + �0 over Q such that

ϕ(x) = P̂n/2(�(x)) and �( f1(λ(x))) =
(

x − 1

2

)2

. (3.4)

Again, we study the remaining kinds of standard pairs.
First, we consider the case when, in (3.1), ( f1(x), g1(x))is a standard pair of the first kind.

If f1(x) = xt , then by deg f1(x) = 2, we have ( f1(x), g1(x)) = (x2, αxp(x)2). Putting
λ(x) = λ1x + λ0, (3.4) takes the form �((λ1x + λ0)

2) = (x − 1/2)2, whence an easy
calculation gives �(x) = x/λ2

1. Substituting this into (3.1), we obtain

g(x) = P̂n/2(�(g1(μ(x)))) = P̂n/2

(
αμ(x)p(μ(x))2

λ2
1

)
(3.5)

So g(x) is of the form (iv) with δ(x) = αμ(x)/λ2
1 and q(x) = p(μ(x)).
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In the switched case ( f1(x), g1(x)) = (αxr p(x)t , xt ), where 0 ≤ r < t, (r, t) = 1 and
r + deg p(x) > 0, deg f1(x) = 2 implies that one of the following cases occurs:

(A) r = 0, t = 1 and deg p(x) = 2, or
(B) r = 2, t > 2 is odd and p(x) is a constant polynomial.

In case (A) we have g1(x) = x , whence from (3.1) and (3.4) we obtain

g(x) = P̂n/2(�(g1(μ(x)))) = P̂n/2(�(μ(x))) = P̂n/2(δ(x)q(x)2), (3.6)

where δ(x) = �(μ(x)) and q(x) ≡ 1. Thus g(x) is again of the form (iv).
In the second case (B), we can write f1(x) = βx2, with β = αp(x)t ∈ Q\{0}. Substituting

this into (3.4), we deduce that �(x) = x/(βλ2
1), whence, by (3.1), we get

g(x) = P̂n/2(�(g1(μ(x)))) = P̂n/2

(
μ(x)t

βλ2
1

)
= P̂n/2(cδ(x)t ), (3.7)

where c = 1/(βλ2
1), δ(x) = μ(x) and t > 2 is odd. This is option (v) in Theorem 1.1.

Next let ( f1(x), g1(x)), in (3.1), be a standard pair of the second kind. If ( f1(x), g1(x)) =
(x2, (αx2 + β)v(x)2), then a calculation from (3.4) yields �(x) = x/λ2

1, and by (3.1) we
have

g(x) = P̂n/2(�(g1(μ(x)))) =

= P̂n/2

(
(αμ(x)2 + β)v(μ(x))2

λ2
1

)
= P̂n/2((αδ(x)2 + β)q(x)2), (3.8)

where δ(x) = μ(x) and q(x) = v(μ(x))/λ1. So we are led to option (vi) of our theorem.
In the switched case ( f1(x), g1(x)) = ((αx2 + β)v(x)2, x2), since deg f1(x) = 2, v(x)

is a constant polynomial and

g(x) = P̂n/2(�(g1(μ(x)))) = P̂n/2((�1μ(x)2 + �0)q(x)2), (3.9)

where q(x) ≡ 1. Thus, we arrived again at option (vi) with δ(x) = μ(x) and a = �1, b = �0.
Now, if the standard pair ( f1(x), g1(x)) is of the third kind over Q, then ( f1(x), g1(x)) =

(D2(x, αt ), Dt (x, α2)) with t being odd. Let us substitute f1(x) = x2 − 2αt into (3.4) to
deduce that �(x) = (x + 2αt )/λ2

1, whence

g(x) = P̂n/2(�(g1(μ(x)))) = P̂n/2

(
Dt (μ(x), α2) + 2αt

λ2
1

)
. (3.10)

It follows from Proposition 2.2 that −2αt/λ2
1 is an extremum of the polynomial Dt (μ(x),

α2)/λ2
1, which is of P-type (1, 2, . . . , 2) as t is odd. Hence (Dt (μ(x), α2) + 2αt )/λ2

1 =
δ(x)q(x)2 for some δ(x), q(x) ∈ Q[x] with deg δ(x) = 1. We deduce, that g(x) is of the
form (iv).

Finally, consider the case when ( f1(x), g1(x)) is a standard pair of the fourth kind over
Q. Then

( f1(x), g1(x)) =
(

D2(x, α)

α
,

Dt (x, β)

β(t/2)

)
,

with an even t . Substituting this into (3.4), an easy calculation yields �(x) = (αx + 2α)/λ2
1,

whence, by (3.1), we obtain

g(x) = P̂n/2(�(g1(μ(x)))) = P̂n/2

(
αβ−t/2 Dt (μ(x), β) + 2α

λ2
1

)
. (3.11)
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Now from Proposition 2.2 we infer that

−2β t/2αβ−t/2

λ2
1

= −2α

λ2
1

is one of the two extrema of the polynomial αβ−t/2 Dt (μ(x), β)/(λ2
1) and it is of P-type

(2, 2, . . . , 2), as t is even. Therefore we have

αβ−t/2 Dt (μ(x), β) + 2α

λ2
1

= q(x)2

for some q(x) ∈ Q[x]. Thus g(x) is of the form (iii), which completes the proof.
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