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Abstract

The quasilinearity of certain composite functionals associated to

Schwarz’s celebrated inequality for inner products is investigated. Applica-

tions for operators in Hilbert spaces are given as well.

1. Introduction

Let X be a linear space over the real or complex number field K and let us

denote by H (X) the class of all positive semi-definite Hermitian forms on X, or, for

simplicity, nonnegative forms on X, i.e., the mapping 〈·, ·〉 :X ×X → K belongs to

H (X) if it satisfies the following conditions:

(i) 〈x, x〉 ≥ 0 for all x ∈ X ;

(ii) 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉 for all x, y ∈ X and α, β ∈ K;

(iii) 〈y, x〉 = 〈x, y〉 for all x, y ∈ X.

If 〈·, ·〉 ∈ H (X) , then the functional ‖·‖ = 〈·, ·〉
1/2

is a semi-norm on X and

the following version of Schwarz’s inequality holds:

‖x‖
2
‖y‖

2
≥ |〈x, y〉|

2
(1.1)

for each x, y ∈ H .
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In addition, if 〈·, ·〉 is an inner product on X, i.e., satisfies the condition

(iv) 〈x, x〉 = 0 only if x = 0;

then the equality case holds in (1.1) if and only if the vectors x and y are linearly

dependent.

Now, let us observe that H (X) is a convex cone in the linear space of all

mappings defined on X2 with values in K. Also, we can introduce on H (X) the

following binary relation [5]:

〈·, ·〉2 ≥ 〈·, ·〉1 if and only if ‖x‖2 ≥ ‖x‖1 for any x ∈ H. (1.2)

This is an order relation on H (X) , see [5].

For some classical results related to Schwarz’s celebrated inequality, see [7],

[9], [11], [12] and [13].

For recent results, see [1], [2], [3], [4], [8], [10] and [14] and the references

therein.

2. Some functionals related to Schwarz’s inequality

Consider the following functional [5]:

δ:H (X)×X2 → R+, δ (〈·, ·〉 ;x, y) := ‖x‖2 ‖y‖2 − |〈x, y〉|2 ,

which is closely related to the Schwarz inequality in (1.1).

Theorem 1. ([5]) The functional δ (·;x, y) is nonnegative, superadditive,

monotone nondecreasing and quadratic positive homogeneous on H (X) .

The nonnegativity of δ (·;x, y) is in fact the Schwarz inequality (1.1). The

superadditivity property is translated in the fact that

δ (〈·, ·〉1 + 〈·, ·〉2 ;x, y) := (‖x‖21 + ‖x‖22)(‖y‖
2
1 + ‖y‖22)− |〈x, y〉1 + 〈x, y〉2|

2

≥ ‖x‖
2
1 ‖y‖

2
1 + ‖x‖

2
2 ‖y‖

2
2 − |〈x, y〉1|

2
− |〈x, y〉2|

2

= δ (〈·, ·〉1 ;x, y) + δ (〈·, ·〉2 ;x, y)

for any 〈·, ·〉1 , 〈·, ·〉2 ∈ H (X) and x, y ∈ X.

If 〈·, ·〉2 ≥ 〈·, ·〉1 in the sense specified in (1.2), then the monotonicity property

mentioned in Theorem 1 becomes the inequality

δ (〈·, ·〉2 ;x, y)= ‖x‖22 ‖y‖
2
2 − |〈x, y〉2|

2

≥ ‖x‖
2
1 ‖y‖

2
1 − |〈x, y〉1|

2
= δ (〈·, ·〉1 ;x, y)

for any x, y ∈ X. This inequality is of interest due to the fact that it creates the pos-

sibility to provide various refinements for the Schwarz inequality for inner products

as pointed out below.

The quadratic positive homogeneous property means that δ (α 〈·, ·〉 ;x, y) =

α2δ (〈·, ·〉 ;x, y) for any α ∈ R+.

As a natural corollary of the above we have the following result:
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Corollary 1. Let 〈·, ·〉1 , 〈·, ·〉2 ∈ H (X) be such that there exist constants

M > m > 0 with the property that

M ‖x‖1 ≥ ‖x‖2 ≥ m ‖x‖1 (2.1)

for any x ∈ X, meaning that the seminorms ‖·‖2 and ‖·‖1 are equivalent. Then we

have the inequalities

M4[‖x‖
2
1 ‖y‖

2
1 − |〈x, y〉1|

2
] ≥ ‖x‖

2
2 ‖y‖

2
2 − |〈x, y〉2|

2
≥ m4[‖x‖

2
1 ‖y‖

2
1 − |〈x, y〉1|

2
]

for any x, y ∈ X.

Another functional that can be associated with Schwarz’s inequality is the

following one:

β:H (X)×X2 → R+, β (〈·, ·〉 ;x, y) := (‖x‖2 ‖y‖2 − |〈x, y〉|2)1/2.

The properties of this functional have been established in 1994 by B. Mond and the

author:

Theorem 2. ([6]) The functional β (·;x, y) is nonnegative, superadditive,

monotone nondecreasing and positive homogeneous on H (X) .

One can realize that the superadditivity property of β (·;x, y) implies the same

property for δ (·;x, y) and therefore provides an alternative proof for Theorem 1.

A different functional associated with the order one version of Schwarz’s in-

equality, namely

‖x‖ ‖y‖ ≥ |〈x, y〉| ,

has been also considered in [5]. The definition of this functional is

σ:H (X)×X2 → R+, σ (〈·, ·〉 ;x, y) := ‖x‖ ‖y‖ − |〈x, y〉|

and its properties are incorporated in

Theorem 3. ([5]) The functional σ (·;x, y) is nonnegative, superadditive,

monotone nondecreasing and positive homogeneous on H (X) .

As a consequence of this result that may be useful for applications we have:
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Corollary 2. Let 〈·, ·〉1 , 〈·, ·〉2 ∈ H (X) be such that there exist constants

M > m > 0 with the property (2.1). Then we have the inequalities

M2 [‖x‖1 ‖y‖1 − |〈x, y〉1|] ≥ ‖x‖2 ‖y‖2 − |〈x, y〉2| ≥ m2 [‖x‖1 ‖y‖1 − |〈x, y〉1|]

for any x, y ∈ X.

Motivated by the above results, we investigate in the present paper some com-

posite functionals that are related to the above ones, establish their superadditivity

and monotonicity properties and apply them for bounded linear operators in Hilbert

spaces.

3. Some composite functionals and their properties

Now, assume that ψ:H (X) ×X2 → R+ is a nonnegative, superadditive and

r-positive homogeneous on H (X) , meaning that

ψ (α 〈·, ·〉 ;x, y) = αrψ (〈·, ·〉 ;x, y)

for any α ≥ 0.

For e, x, y ∈ X with e 	= 0 and p, q ≥ 1 we consider the composite functional

ξe,p,q (·;x, y) :H (X) → [0,∞) given by

ξe,p,q (〈·, ·〉 ;x, y) := ‖e‖
2(1− 1

p )q ψq (〈·, ·〉 ;x, y) , (3.1)

where ψ is as above.

The following result holds:

Theorem 4. Assume that ψ:H (X)×X2 → R+ is a nonnegative, superaddi-

tive and r-positive homogeneous on H (X) , then the functional ξe,p,q (·;x, y) defined

by (3.1) is superadditive, monotone nondecreasing and q(r + 1 − 1/p)-positive ho-

mogeneous on H (X) .

Proof. First of all we observe that the following elementary inequality holds:

(α+ β)
p
≥ (≤)αp + βp (3.2)

for any α, β ≥ 0 and p ≥ 1 (0 < p < 1) .

Indeed, if we consider the function fp: [0,∞) → R, fp (t) = (t+ 1)
p
− tp we

have f ′p (t) = p[(t + 1)p−1 − tp−1]. Observe that for p > 1 and t > 0 we have that

f ′p(t) > 0 showing that fp is strictly increasing on the interval [0,∞). Now for

t = α/β (β > 0, α ≥ 0) we have fp (t) > fp (0) giving that (αβ + 1)p − (α/β)p > 1,

i.e., the desired inequality (3.2).
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For p ∈ (0, 1) we have that fp is strictly decreasing on [0,∞) which proves

the second case in (3.2).

We will prove first the case q = 1.

Let x, y ∈ X. Since ψ (·;x, y) is superadditive and p ≥ 1, then we have by

(3.2) that

ψp (〈·, ·〉1 + 〈·, ·〉2 ;x, y) ≥ [ψ (〈·, ·〉1 ;x, y) + ψ (〈·, ·〉2 ;x, y)]
p

≥ ψp (〈·, ·〉1 ;x, y) + ψp (〈·, ·〉2 ;x, y)
(3.3)

for any 〈·, ·〉1 , 〈·, ·〉2 ∈ H (X) .

Let 〈·, ·〉1 , 〈·, ·〉2 ∈ H (X) . If e ∈ X, e 	= 0 is such that either 〈e, e〉1 = 0 or

〈e, e〉2 = 0, then the superadditivity property is trivially satisfied, so we can assume

further that 〈e, e〉1 	= 0 and 〈e, e〉2 	= 0. Therefore, by (3.3) we have that

ψp (〈·, ·〉1 + 〈·, ·〉2 ;x, y)

〈e, e〉1 + 〈e, e〉2
≥

ψp (〈·, ·〉1 ;x, y) + ψp (〈·, ·〉2 ;x, y)

〈e, e〉1 + 〈e, e〉2

=
〈e, e〉1 ·

ψp(〈·,·〉1;x,y)
〈e,e〉

1

+ 〈e, e〉2 ·
ψp(〈·,·〉2;x,y)

〈e,e〉
2

〈e, e〉1 + 〈e, e〉2

=

〈e, e〉1 ·

[
ψ(〈·,·〉1;x,y)
〈e,e〉

1/p
1

]p
+ 〈e, e〉2 ·

[
ψ(〈·,·〉2;x,y)
〈e,e〉

1/p
2

]p

〈e, e〉1 + 〈e, e〉2
.

(3.4)

Since for p ≥ 1 the power function is convex, then

〈e, e〉1 ·

[
ψ(〈·,·〉1;x,y)
〈e,e〉

1/p
1

]p
+ 〈e, e〉2 ·

[
ψ(〈·,·〉2;x,y)
〈e,e〉

1/p
2

]p

〈e, e〉1 + 〈e, e〉2

≥

⎡
⎢⎣
〈e, e〉1 ·

ψ(〈·,·〉1;x,y)
〈e,e〉

1/p
1

+ 〈e, e〉2 ·
ψ(〈·,·〉2;x,y)
〈e,e〉

1/p
2

〈e, e〉1 + 〈e, e〉2

⎤
⎥⎦
p

=

⎡
⎣ 〈e, e〉

1− 1

p

1 ψ (〈·, ·〉1 ;x, y) + 〈e, e〉
1− 1

p

2 ψ (〈·, ·〉2 ;x, y)

〈e, e〉1 + 〈e, e〉2

⎤
⎦
p

.

(3.5)

By combining (3.4) with (3.5) we get

ψp (〈·, ·〉1 + 〈·, ·〉2 ;x, y)

〈e, e〉1 + 〈e, e〉2
≥

⎡
⎣ 〈e, e〉

1− 1

p

1 ψ (〈·, ·〉1 ;x, y) + 〈e, e〉
1− 1

p

2 ψ (〈·, ·〉2 ;x, y)

〈e, e〉1 + 〈e, e〉2

⎤
⎦
p

,

which, by taking the power 1/p is equivalent with

ψ (〈·, ·〉1 + 〈·, ·〉2 ;x, y)

[〈e, e〉1 + 〈e, e〉2]
1/p

≥
〈e, e〉

1− 1

p

1 ψ (〈·, ·〉1 ;x, y) + 〈e, e〉
1− 1

p

2 ψ (〈·, ·〉2 ;x, y)

〈e, e〉1 + 〈e, e〉2
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showing that

δe,p,1 (〈·, ·〉1 + 〈·, ·〉2 ;x, y) ≥ δe,p,1 (〈·, ·〉1 ;x, y) + δe,p,2 (〈·, ·〉2 ;x, y)

for any 〈·, ·〉1 , 〈·, ·〉2 ∈ H (X).

Now, observe that

ξe,p,q (〈·, ·〉 ;x, y) = [ξe,p,1 (〈·, ·〉 ;x, y)]
q

for any q > 1 and by the elementary inequality (3.2) we have that

ξe,p,q (〈·, ·〉1 + 〈·, ·〉2 ;x, y)

= [ξe,p,1 (〈·, ·〉1 + 〈·, ·〉2 ;x, y)]
q
≥ [ξe,p,1 (〈·, ·〉1 ;x, y) + ξe,p,2 (〈·, ·〉2 ;x, y)]

q

≥ ξqe,p,1 (〈·, ·〉1 ;x, y) + ξqe,p,2 (〈·, ·〉2 ;x, y) = ξe,p,q (〈·, ·〉1 ;x, y) + ξe,p,q (〈·, ·〉2 ;x, y)

for any 〈·, ·〉1 , 〈·, ·〉2 ∈ H (X) and the superadditivity of the functional ξe,p,q (·;x, y)

is proven.

Further, assume that 〈·, ·〉2 ≥ 〈·, ·〉1 . Since 〈·, ·〉2,1 := 〈·, ·〉2 − 〈·, ·〉1 is in its

turn an Hermitian functional, then by superadditivity property of ξe,p,q (·;x, y) we

have
ξe,p,q (〈·, ·〉2 ;x, y)= ξe,p,q(〈·, ·〉1 + 〈·, ·〉2,1 ;x, y)

≥ ξe,p,q(〈·, ·〉1 ;x, y) + ξe,p,q(〈·, ·〉2,1 ;x, y)

which, obviously, implies that

ξe,p,q (〈·, ·〉2 ;x, y)− ξe,p,q (〈·, ·〉1 ;x, y) ≥ ξe,p,q(〈·, ·〉2,1 ;x, y) ≥ 0

giving the desired monotonicity result.

The q(r + 1− 1/p)-positive homogeneity of the functional is obvious by (3.1)

and the proof is complete.

Remark 1. If for q = p ≥ 1 we consider the functional

ξe,p (〈·, ·〉 ;x, y) := 〈e, e〉
p−1

ψp (〈·, ·〉 ;x, y) ,

then, by Theorem 4, we have that ξe,p (·;x, y) is superadditive, monotone nonde-

creasing and (p (r + 1)− 1)-positive homogeneous on H (X) .

The following result for equivalent seminorms is of interest for applications:
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Corollary 3. Assume that ψ:H (X)×X2 → R+ is nonnegative, superaddi-

tive and r-positive homogeneous on H (X) and 〈·, ·〉1 , 〈·, ·〉2 ∈ H (X) are such that

there exist constants M > m > 0 with the property that

M ‖x‖1 ≥ ‖x‖2 ≥ m ‖x‖1

for any x ∈ X. Then for p ≥ 1 and e ∈ X with ‖e‖1 > 0 we have the inequalities

M2q(r+1− 1

p)
(‖e‖1
‖e‖2

)2(1− 1

p)
ψ (〈·, ·〉1 ;x, y)

≥ ψ (〈·, ·〉2 ;x, y) ≥ m2q(r+1− 1

p )
(‖e‖1
‖e‖2

)2(1− 1

p)
ψ (〈·, ·〉1 ;x, y) .

Proof. Utilising the monotonicity and q(r + 1− 1
p )-positive homogeneity of

the functional ξe,p,q (·;x, y) we have

M2q(r+1− 1

p) ‖e‖
2q(1− 1

p )
1 ψq (〈·, ·〉1 ;x, y)

≥ ‖e‖
2(1− 1

p )q
2 ψq (〈·, ·〉2 ;x, y) ≥ m2q(r+1− 1

p ) ‖e‖
2q(1− 1

p )
1 ψq (〈·, ·〉1 ;x, y)

from which, by taking the power 1/q, we deduce the desired result.

Now, returning back to our functionals associated to Schwarz’s inequality, we

can state the following result:

Theorem 5. For e, x, y ∈ X with e 	= 0 and p, q ≥ 1 we consider the com-

posite functionals

δe,p,q (〈·, ·〉 ;x, y) : = ‖e‖
2(1− 1

p )q [‖x‖
2
‖y‖

2
− |〈x, y〉|

2
]q,

βe,p,q (〈·, ·〉 ;x, y) : = ‖e‖2(1−
1

p )q [‖x‖2 ‖y‖2 − |〈x, y〉|2]q/2

and

σe,p,q (〈·, ·〉 ;x, y) := ‖e‖2(1−
1

p )q [‖x‖ ‖y‖ − |〈x, y〉|]q .

Then these functionals are superadditive and monotone nondecreasing. The first

functional is q(3 − 1/p)-positive homogeneous while the second and the third are

q(2 − 1/p)-positive homogeneous on H (X) .

The proof follows from Theorem 4.

As applications in providing some refinements for Schwarz’s celebrated in-

equality we can state the following inequalities:
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Corollary 4. Let 〈·, ·〉1 , 〈·, ·〉2 ∈ H (X) be such that there exist constants

M > m > 0 with the property (2.1). If e ∈ X with ‖e‖1 > 0, then for p ≥ 1 we have

the inequalities

M2q(3− 1

p )
(‖e‖1
‖e‖2

)2(1− 1

p )
[‖x‖

2
1 ‖y‖

2
1 − |〈x, y〉1|

2
]

≥ ‖x‖
2
2 ‖y‖

2
2 − |〈x, y〉2|

2
≥ m2q(3− 1

p)
(‖e‖1
‖e‖2

)2(1− 1

p )
[‖x‖

2
1 ‖y‖

2
1 − |〈x, y〉1|

2
],

and

M2q(2− 1

p )
(‖e‖1
‖e‖2

)2(1− 1

p)
[‖x‖

2
1 ‖y‖

2
1 − |〈x, y〉1|

2
]
1

2

≥ [‖x‖22 ‖y‖
2
2 − |〈x, y〉2|

2]
1

2 ≥ m2q(2− 1

p )
(‖e‖1
‖e‖2

)2(1− 1

p)
[‖x‖21 ‖y‖

2
1 − |〈x, y〉1|

2]
1

2

and

M2q(2− 1

p )
(‖e‖1
‖e‖2

)2(1− 1

p )
[‖x‖1 ‖y‖1 − |〈x, y〉1|]

≥ ‖x‖2 ‖y‖2 − |〈x, y〉2| ≥ m2q(2− 1

p )
(‖e‖1
‖e‖2

)2(1− 1

p)
[‖x‖1 ‖y‖1 − |〈x, y〉1|]

respectively, where x, y ∈ X.

4. Applications for operators

Denote by B (H) the Banach algebra of bounded linear operators acting on

the Hilbert space H . We recall that a selfadjoint operator P ∈ B (H) is nonnegative

if 〈Px, x〉 ≥ 0 for any x ∈ H. P is called positive if it is nonnegative and 〈Px, x〉 = 0

implies that x = 0 and positive definite with the constant γ > 0 if 〈Px, x〉 ≥ γ ‖x‖
2

for any x ∈ H. We denote by P (H) the convex cone of all selfadjoint nonnegative

operators defined on H. If A,B are two selfadjoint operators on H we say that

A ≥ B in the operator order of B (H) if A−B ∈ P (H).

Now, if P ∈ P (H) then the functional 〈·, ·〉P :H ×H → C, 〈x, y〉P := 〈Px, y〉

is an Hermitian form on H. If A ≥ B ≥ 0, then the corresponding Hermitian forms

satisfy the property that 〈·, ·〉A ≥ 〈·, ·〉B in the sense of the definition from the

introduction.

We can consider the following functionals:

Δe,p,q (·;x, y) ,Θe,p,q (·;x, y) ,Σe,p,q (·;x, y) :P (H) → R+
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given by

Δe,p,q (P ;x, y) := 〈Pe, e〉(
1− 1

p)q [〈Px, x〉 〈Py, y〉 − |〈Px, y〉|
2
]q,

Θe,p,q (P ;x, y) := 〈Pe, e〉(
1− 1

p)q [〈Px, x〉 〈Py, y〉 − |〈Px, y〉|
2
]q/2

and

Σe,p,q (P ;x, y) := 〈Pe, e〉(
1− 1

p )q [〈Px, x〉
1/2

〈Py, y〉
1/2

− |〈Px, y〉|]q

respectively, where e, x, y ∈ H, e 	= 0 and p, q ≥ 1.

The following result holds:

Proposition 1. The functionals Δe,p,q (·;x, y) ,Θe,p,q (·;x, y) ,Σe,p,q (·;x, y)

are superadditive and monotone nondecreasing in the operator order of P (H) ,

meaning, for instance that, if A ≥ B ≥ 0, then

Δe,p,q (A;x, y) ≥ Δe,p,q (B;x, y)

where e, x, y ∈ H, e 	= 0 and p, q ≥ 1.

One of the important generalizations of the Schwarz inequality that holds for

nonnegative selfadjoint operators P :H → H is as follows:

〈Px, x〉 〈Py, y〉 ≥ |〈Px, y〉|2 (4.1)

for any x, y ∈ H.

Motivated by this result we provide in the following two corollaries, several

reverses and refinements of (4.1).

Corollary 5. If U is a selfadjoint operator with the property that 0 ≤ U ≤ I

and if we denote by Ū := I − U, then we have the inequalities

‖e‖2(1−
1

p )q [‖x‖2‖y‖2 − |〈x, y〉|2]q

≥ 〈Ue, e〉(1−
1

p )q[〈Ux, x〉〈Uy, y〉 − |〈Ux, y〉|2]q+

+〈Ūe, e〉(1−
1

p
)q[〈Ūx, x〉〈Ū y, y〉 − |〈Ūx, y〉|2]q,

and
‖e‖2(1−

1

p )q [‖x‖2‖y‖2 − |〈x, y〉|2]q/2

≥ 〈Ue, e〉(1−
1

p )q[〈Ux, x〉〈Uy, y〉 − |〈Ux, y〉|2]q/2+

+〈Ūe, e〉(1−
1

p )q[〈Ūx, x〉〈Ū y, y〉 − |〈Ūx, y〉|2]q/2

and
‖e‖2(1−

1

p )q [‖x‖‖y‖ − |〈x, y〉|]q

≥ 〈Ue, e〉(1−
1

p )q[〈Ux, x〉1/2〈Uy, y〉1/2 − |〈Ux, y〉|]q+

+〈Ūe, e〉(1−
1

p )q[〈Ūx, x〉1/2〈Ūy, y〉1/2 − |〈Ūx, y〉|]q

respectively, where e, x, y ∈ H, e 	= 0 and p, q ≥ 1.
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Corollary 6. Let V be a selfadjoint operator such that there exist positive

constants Φ and ϕ with the property that ΦI ≥ V ≥ ϕI in the operator order. Then

Φq(3− 1

p )
( ‖e‖2

〈V e, e〉

)(1− 1

p )

[‖x‖2‖y‖2 − |〈x, y〉|2]

≥ 〈V x, x〉〈V y, y〉 − |〈V x, y〉|2

≥ ϕq(3− 1

p )
( ‖e‖2

〈V e, e〉

)(1− 1

p )

[‖x‖2‖y‖2 − |〈x, y〉|2],

and

Φq(2− 1

p )
( ‖e‖2

〈V e, e〉

)(1− 1

p )

[‖x‖2‖y‖2 − |〈x, y〉|2]1/2

≥ [〈V x, x〉〈V y, y〉 − |〈V x, y〉|2]1/2

≥ ϕq(2− 1

p )
( ‖e‖2

〈V e, e〉

)(1− 1

p )

[‖x‖2‖y‖2 − |〈x, y〉|2]1/2

and

Φq(2− 1

p )
( ‖e‖2

〈V e, e〉

)(1− 1

p )

[‖x‖‖y‖ − |〈x, y〉|]

≥ 〈V x, x〉1/2〈V y, y〉1/2 − |〈V x, y〉|

≥ ϕq(2− 1

p )
( ‖e‖2

〈V e, e〉

)(1− 1

p )

[‖x‖‖y‖ − |〈x, y〉|]

respectively, where x, y, e ∈ H and e 	= 0.

For two bounded linear operators A and B, we write that A ≤̃B if ‖Ax‖ ≤

‖Bx‖ for any x ∈ H. This is obviously equivalent with A∗A ≤ B∗B in the operator

order of B (H) . For any bounded linear operator A on H we can consider the

Hermitian form

(x, y)A := 〈Ax,Ay〉 = 〈A∗Ax, y〉 = 〈x, y〉A∗A .

We observe that (·, ·)A ≤ (·, ·)B in the sense of the definition from the introduction

if and only if A≤̃B.

We denote by HB (H) the convex cone of all Hermitian forms generated by

the operators from B (H) as above. Consider the following functionals:

Δ̃e,p,q (·;x, y) , Θ̃e,p,q (·;x, y) , Σ̃e,p,q (·;x, y) :HB (H) → R+

given by

Δ̃e,p,q ((·, ·)T ;x, y) := (e, e)
(1− 1

p )q
T [(x, x)T (y, y)T − |(x, y)T |

2
]q

= ‖Te‖
2(1− 1

p )q [‖Tx‖
2
‖Ty‖

2
− |〈Tx, T y〉|

2
]q,

(4.2)
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Θ̃e,p,q ((·, ·)T ;x, y) = (e, e)
(1− 1

p )q
T [(x, x)T (y, y)T − |(x, y)T |

2
]q/2

= ‖Te‖
2(1− 1

p)q [‖Tx‖
2
‖Ty‖

2
− |〈Tx, T y〉|

2
]q/2

(4.3)

and

Σ̃e,p,q ((·, ·)T ;x, y) := (e, e)
(1− 1

p )q
T [(x, x)

1/2
T (y, y)

1/2
T − |(x, y)T |]

q

= ‖Te‖
2(1− 1

p )q [‖Tx‖ ‖Ty‖ − |〈Tx, T y〉|]q
(4.4)

respectively, where e, x, y ∈ H, e 	= 0 and p, q ≥ 1.

Utilising Theorem 4 we can state the following result concerning the properties

of the functionals introduced at (4.2)–(4.4):

Proposition 2. The functionals Δ̃e,p,q(·;x, y), Θ̃e,p,q(·;x, y) and

Σ̃e,p,q(·;x, y) are superadditive and monotone nondecreasing on HB(H).

In terms of operators, the superadditivity property for the functional

Δ̃e,p,q (·;x, y) can be translated as

(‖Te‖2+‖Ue‖2)(1−
1

p )q×

×[(‖Tx‖
2
+ ‖Ux‖

2
)(‖Ty‖

2
+ ‖Uy‖

2
)− |〈Tx, T y〉+ 〈Ux,Uy〉|

2
]q

≥‖Te‖
2(1− 1

p )q [‖Tx‖
2
‖Ty‖

2
− |〈Tx, T y〉|

2
]q+

+ ‖Ue‖
2(1− 1

p)q [‖Ux‖
2
‖Uy‖

2
− |〈Ux,Uy〉|

2
]q

for any T, U ∈ B (H) and x, y, e ∈ H.

The monotonicity is as follows: if T, U ∈ B (H) are so that ‖Tx‖ ≥ ‖Ux‖ for

any x ∈ H, then we have the inequality

‖Te‖2(1−
1

p )q [‖Tx‖2‖Ty‖2 − |〈Tx, T y〉|2]q

≥ ‖Ue‖2(1−
1

p )q[‖Ux‖2‖Uy‖2 − |〈Ux,Uy〉|2]q

for any x, y, e ∈ H, which, by taking the power 1/q is equivalent with

‖Te‖2(1−
1

p ) [‖Tx‖2‖Ty‖2 − |〈Tx, T y〉|2]

≥ ‖Ue‖2(1−
1

p )[‖Ux‖2‖Uy‖2 − |〈Ux,Uy〉|2]

for any x, y, e ∈ H.

If one uses the Schwarz inequality for the values Tx and Ty of a bounded

linear operator T :H → H with x, y ∈ H , that one gets the nonnegative quantity

‖Tx‖
2
‖Ty‖

2
− |〈Tx, T y〉|

2
and the question of how this quantity relates to the

nonnegative difference ‖x‖2 ‖y‖2 − |〈x, y〉|2 is a natural question to be investigated.

In the following two propositions we provide several inequalities connecting

the above quantities.
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Proposition 3. Let U, V be two bounded linear operators with the property

that U∗U + V ∗V = I. Then we have

‖e‖2(1−
1

p )q [‖x‖2‖y‖2 − |〈x, y〉|2]q

≥ ‖Ue‖2(1−
1

p )q[‖Ux‖2‖Uy‖2 − |〈Ux,Uy〉|2]q+

+‖V e‖2(1−
1

p )q[‖V x‖2‖V y‖2 − |〈V x, V y〉|2]q,

and
‖e‖2(1−

1

p )q [‖x‖2‖y‖2 − |〈x, y〉|2]q/2

≥ ‖Ue‖2(1−
1

p )q[‖Ux‖2‖Uy‖2 − |〈Ux,Uy〉|2]q/2+

+‖V e‖2(1−
1

p )q[‖V x‖2‖V y‖2 − |〈V x, V y〉|2]q/2

and
‖e‖2(1−

1

p )q [‖x‖‖y‖ − |〈x, y〉|]q

≥ ‖Ue‖2(1−
1

p )q[‖Ux‖‖Uy‖ − |〈Ux,Uy〉|]q+

+‖V e‖2(1−
1

p )q[‖V x‖‖V y‖ − |〈V x, V y〉|]q

respectively, for any e, x, y ∈ H.

Finally, the following result that holds for invertible bounded linear operators

is of interest as well:

Proposition 4. Let T be an invertible bounded linear operator on H. Then

we have

‖T ‖2(3−
1

p )
( ‖e‖

‖Te‖

)2(1− 1

p )

[‖x‖2‖y‖2 − |〈x, y〉|2]

≥ ‖Tx‖2‖Ty‖2 − |〈Tx, T y〉|2

≥ ‖T−1‖−2(3− 1

p )
( ‖e‖

‖Te‖

)2(1− 1

p )

[‖x‖2‖y‖2 − |〈x, y〉|2],

and

‖T ‖2(2−
1

p )
( ‖e‖

‖Te‖

)2(1− 1

p )

[‖x‖2‖y‖2 − |〈x, y〉|2]1/2

≥ [‖Tx‖2‖Ty‖2 − |〈Tx, T y〉|2]1/2

≥ ‖T−1‖−2(2− 1

p )
( ‖e‖

‖Te‖

)2(1− 1

p )

[‖x‖2‖y‖2 − |〈x, y〉|2]1/2

and

‖T ‖2(2−
1

p )
( ‖e‖

‖Te‖

)2(1− 1

p )

[‖x‖‖y‖ − |〈x, y〉|]

≥ ‖Tx‖‖Ty‖− |〈Tx, T y〉|

≥ ‖T−1‖−2(2− 1

p )
( ‖e‖

‖Te‖

)2(1− 1

p )

[‖x‖‖y‖ − |〈x, y〉|]

respectively, for any x, y, e ∈ H and e 	= 0.
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Proof. Since T is invertible, then we have

‖T ‖‖x‖ ≥ ‖Tx‖ ≥ ‖T−1‖−1‖x‖

for any x ∈ H.

Utilising the monotonicity property of the functional Δ̃e,p,q(·;x, y), we have

‖T ‖2(3−
1

p )q ‖e‖2(1−
1

p )q[‖x‖2‖y‖2 − |〈x, y〉|2]q

≥ ‖Te‖2(1−
1

p )q[‖Tx‖2‖Ty‖2 − |〈Tx, T y〉|2]q

≥ ‖T−1‖−2(3− 1

p )q‖e‖2(1−
1

p )q[‖x‖2‖y‖2 − |〈x, y〉|2]q

and by taking the power 1/q we deduce the desired inequality (4.4).

A similar approach for Θ̃e,p,q(·;x, y) and Σ̃e,p,q(·;x, y) will produce the other

two inequalities.
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