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Abstract

We use the moving average ergodic theorem of A. Bellow, R. Jones

and J. Rosenblatt to derive various results in metric number theory primar-

ily concerning moving averages of various sequences attached to the optimal

continued fraction expansion of a real number.

1. Introduction

We begin by introducing some notation. Let Z be a collection of points in

Z×N and let

Zh = {(n, k) : (n, k) ∈ Z and k ≥ h},
Zh
α = {(z, s) ∈ Z2 : |z − y| < α(s− r) for some (y, r) ∈ Zh}

and

Zh
α(λ) = {n : (n, λ) ∈ Zh

α}. (λ ∈ N)

Geometrically we can think of Z1
α as the lattice points contained in the union of all

solid cones with aperture α and vertex contained in Z1 = Z. We say a sequence of

pairs of natural numbers (nl, kl)
∞
l=1 is Stoltz if there exists a collection of points Z in

Z×N, and a function h = h(t) tending to infinity with t such that (nl, kl)
∞
l=t ∈ Zh(t)

and there exist h0, α0 and A > 0 such that for all integers λ > 0 we have |Zh0
α0
(λ)| ≤

Aλ. This technical condition is interesting because of the following theorem [BJR].
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Theorem 1. Let (X, β, μ, T ) denote a dynamical system, with set X, a σ-

algebra of its subsets β, a measure μ defined on the measurable space (X, β) such that

μ(X) = 1 and a measurable, measure preserving map T from X to itself. Suppose

f is in L1(X, β, μ) and that the sequence of pairs on natural numbers (nl, kl)
∞
l=1 is

Stoltz then if (X, β, μ, T ) is ergodic,

mf (x) = lim
l→∞

1

kl

kl∑
i=1

f(T nl+ix),

exists almost everywhere with respect to Lebesgue measure.

Note that if ml,f (x) =
1
kl

∑kl

i=1 f(T
nl+ix) then

ml,f (Tx)−ml,f (x) = k−1
l (f(T nl+kl+1)− f(T nl+1x)).

This means that mf (Tx) = mf (x) μ-almost everywhere. A dynamical system

(X, β, μ, T ) is called ergodic if given any A ∈ β the relation T−1A := {x ∈ X :

Tx ∈ A} = A implies that A has either full or null measure. A standard fact

in ergodic theory is that if (X, β, μ, T ) is ergodic and mf (Tx) = mf (x) almost

everywhere, then mf(x) =
∫
X
fdμ μ almost everywhere [CFS]. The term Stoltz is

used here because the condition on (kl, nl)
∞
l=1 is analogous to the condition required

in the classical non-radial limit theorem for harmonic functions also called a Stoltz

condition. See [BJR]. Averages where kl = 1 for all l will be called non-moving.

Moving averages satisfying the above hypothesis can be constructed by taking for

instance nl = 22
l

and kl = 22
l−1

.

We next introduce the notion of a semi-regular continued fraction expansion.

For a continued fraction expansion of a real number x there are two standard nota-

tions which we can write in the form

x = [c0; ε1c1, ε2c2, · · ·] = c0 +
ε1

c1 +
ε2

c2+...

,

where (ci)
∞
i=1 is a sequence of integers and εi ∈ {−1, 1}. The numbers ci (i =

1, 2, . . .) are called the partial quotients of the expansion and for each natural number

k the truncates
pk
qk

= [c0; ε1c1, · · · , εkck] = c0 +
ε1

c1+...+
εk
ck

,

are called the convergents of the expansion. The expansion is called semi-regular if

(i) ci is a natural number, for positive i, (ii) εi+1+ ci+1 ≥ 1 and (iii) εi+1+ ci+1 ≥ 2

for infinitely many i if the expansion is itself infinite. Central to the class of semi-

regular continued fraction expansions is the regular continued fraction expansion
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which is also the most familiar and obtained when ci is a natural number and εi = 1

for all i. Here and henceforth for a real number y let �y� denote the greatest integer
less than y and let {y} denote its fractional part, that is y − �y�. Notice that for

the regular continued fraction expansion c0 = �x�. It is thus convenient and no real

restriction to assume x is in [0, 1). If this is done we define the Gauss map

Tx =
{ 1

x

}
, x �= 0; T 0 = 0

on [0, 1). We see that ci(x) = c1(T
i−1x) (i = 1, 2, . . .).

Each regular convergent Pn

Qn

(n ≥ 1) to x is always a best approximation to x in

the sense that there do not exist better approximations with smaller denominators.

That is, for all integers r and s such that 0 < s ≤ Qn, if for some rational r
s
we

have ∣∣∣x− r

s

∣∣∣ ≤ ∣∣∣x− Pn

Qn

∣∣∣
then r

s
= Pn

Qn
. The converse does not hold [Pe §16]. It is nonetheless possible to

find best approximants to x by looking at convergents arising from other continued

fraction expansions in the semi-regular class, while at the same time requiring that

these be as sparse as possible and at the same time remain members of the sequence

( Pn

Qn

)∞n=1 . We now explain how this is done.

As a form of Dirchlet’s theorem on diophantine approximation [HW] recall

the inequality ∣∣∣x− Pn

Qn

∣∣∣ ≤ 1

Q2
n

,

satisfied by the convergents of the regular continued fraction expansion. Clearly if

for each natural number n we set

Ψn(x) = Q2
n

∣∣∣x− Pn

Qn

∣∣∣, (2.1)

then for each x the sequence (Ψn(x))
∞
n=1 lies in the interval [0, 1]. Analogously, if

(pk

qk
)∞k=1 are the convergents to x for a semi-regular continued fraction expansion

and (k ≥ 1), we can set

ψk(x) = q2k

∣∣∣x− pk
qk

∣∣∣.
It was observed by H. Minkowski [Mink], [Pe] that the regular convergents

(
Pn(k)

Qn(k)
)∞k=1 for which Ψn(k)(x) < 1/2 are the convergents (pk

qk
)∞k=1 of a semi-regular

continued fraction expansion. That is
Pn(k)

Qn(k)
= pk

qk
(k ≥ 1). In addition, a theorem of

Legendre tells us that if Q|Qx− P | < 1/2 then P/Q is a regular convergent [HW].

We will therefore confine attention from now on to expansions for which ψk(x) < 1/2

holds for all natural numbers k. More particularly, among semi-regular continuous
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fractions such that ψk(x) < 1/2 (k ≥ 1) we are interested in the ones with con-

vergents (pk

qk
)∞k=1 that are as sparse as possible in ( Pn

Qn

)∞n=1. There is a restriction

on how sparse the sequence (pk

qk
)∞k=1 can be however. This is because to remain

the convergents of a semi-regular expansion, one of any two consequtive terms of

(pk

qk
)∞k=1 must remain in ( Pn

Qn
)∞n=1.

A semi-regular continued fraction expansion is called closest if the first re-

quirement, namely that ψk(x) < 1/2, is true for all natural numbers k and is called

fastest if (pk

qk
)∞k=1 skips the maximal number of regular convergents ( Pn

Qn
)∞n=1. In

particular you can seek to find best approximants (pk

qk
)∞k=1 to x that are also closest

and fastest. The optimal continued fraction expansion introduced in [Bo] is the

unique semi-regular continued fraction expansion that is both closest and fastest.

The purpose of this paper is to study the metrical theory of the optimal continued

fraction expansion using Theorem 1. An analogous study of the regular continued

fraction transformation appears in [KN]. Results analogous to ours in the case of

non-moving averages appear in [BK]. In the next section we introduce and describe

the optimal continued fraction expansion. We then obtain new results on the distri-

bution of the sequence (ψn(x))
∞
n=1 for almost all x with respect to Lebesgue measure

in the case of the optimal continued fraction expansion.

2. Applying the ergodic theorem
to the optimal continued fraction expansion

Let x be an irrational real number and suppose it lies in the interval (c0 −
1
2 , c0 +

1
2 ) for some integer c0 and put t0 = x− c0, ε1(x) = sgn(t0) and

p1 = 1, p0 = c0, q1 = 0, q0 = 1, (2.2)

and v0 = 0. Suppose ti, pi, qi, ci, vi and εi+1 have been defined for i ≤ k and some

positive integer k. Then define tk+1, pk+1, qk+1, ck+1, vk+1 and εk+2 are defined

inductively as follows. Let

ck+1 =
[
|tk|−1 +

[|tk|−1] + εk+1vk
2([|tk|−1] + εk+1vk+1) + 1

]
,

tk+1 = |tk|−1 − ck+1, fεk+2 = sgn(tk+1),

for k ≥ 1 let

pk+1 = ck+1pk + εk+1pk−1 ; qk+1 = ck+1qk + εk+1qk−1 (2.3)

and let vk+1 = qk
qk+1

. Now the optimal continued fraction expansion of x is

x = [c0; ε1c1, ε2c2, . . .].
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One straightforwardly verifies that

tk = [0; εk+1ck+1, εk+2ck+2, . . .], (2.4)

and

vk = [0; ck, εkck−1, . . . , ε2c1]. (2.5)

The sequence (pk

qk
)∞k=1 are the convergents and as we said in the introduction are

a subsequence of the sequence of regular convergents ( Pn

Qn
)∞n=1 and if we define the

function n:N→ N by pk

qk
=

Pn(k)

Qn(k)
then n(k + 1) = n(k) + 1 if and only if εk+2 = 1

and n(k+1) = n(k)+2 otherwise, once we have set n(0) = 0 for x > 0 and n(0) = 1

otherwise. Define Γ ⊂ Ω = ([0, 1) \Q)× [0, 1] by

Γ =
{
(T, V ) ∈ Ω : V < min

(
T,

2T − 1

1− T

)}

and put H = Ω \ Γ. We have the following lemma [BK]. Also on Ω define the map

T (x, y) =
(
Tx,

1

[ 1
x
] + y

)
.

.

Lemma 2.1. If x is irrational and n is a natural number, the following are

equivalent:

(i) the regular continued fraction convergent Pn

Qn

is not an optimal continued frac-

tion convergent;

(ii) cn+1 = 1, ψn−1 < ψn and ψn > ψn+1;

(iii) T n(x, 0) = (Tn, Vn) is in Γ.

We now define the map U :H → H , by

U(T, V ) =

{
T (T, V ) if T (T, V ) ∈ H ;

T 2(T, V ) if T (T, V ) /∈ H .

It is convenient to write g = (1 −
√
5)/2 and G = 1

2 (1 +
√
5)/2 henceforth. Let βH

denote the σ-algebra of Borel subsets of H and μH the probability measure on H

with density (logG)−1(1 + xy)−2. The dynamical system (H, βH , μH , U), which is

in fact the system induced on H by T , is ergodic, because ergodicity is preserved by

inducing on positive measure subsets [CSF]. It is possible to describe a dynamical

system explicitly which is isomorphic to (H, βH , μH , U) and which is not described

indirectly as an induced system. We do this as follows. Let Δ ⊂ (−1, 1)× (−1, 1)
be defined by

Δ =
{
(t, v) ∈ (−1, 1)× (−1, 1) : v ≤ min

(2t+ 1

t+ 1
,
t+ 1

t+ 2

)
; v ≥ max

(
0,

2t− 1

1− t

)}
.
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Define a map W from Δ to itself by

W (t, v) =
(
|t|−1 − β(t, v),

1

β(t, v) + sgn(t)v

)
,

where

β(t, v) =
[
|t|−1 +

[|tk|−1] + sgn(t)v

2([|tk|−1] + sgn(t)v) + 1

]
.

Also define a measure μΔ on Δ by setting its Radon–Nikodym derivative relative to

two-dimensional Lebesgue measure to be (logG)−1(1+xy)−2. Finally note that if x

is in (−1/2, 1/2) then W k(x, 0) = (tk, vk) for all positive integers k. The dynamical

system (Δ, βΔ, μΔ,W ), where βΔ is the σ-algebra of Borel sets on Δ, is exact [Kr]

and hence ergodic.

We have the following theorem from which all the other results of this paper

may be derived.

Theorem 2.2. Suppose (tk, vk)
∞
k=1 is as defined by (2.4) and (2.5). Then if

the sequence of pairs of natural numbers (nl, kl)
∞
l=1 is Stoltz, for each element A of

βH we have

lim
l→∞

1

kl

kl∑
i=1

χA(tnl+i, vnl+i) =
1

logG

∫
A

dtdv

(1 + tv)2
,

almost everywhere with respect to Lebesgue measure.

Proof. Note that for all y such that (x, y) is in Δ we have

lim
n→∞

(Wn(x, y)− (Wn(x, 0)) = 0,

and that Wn(x, 0) = (tn, vn). Then Theorem 2.2 is an immediate consequence of

Theorem 1.

We now consider applications of this theorem. Let

Π = {(w, z) ∈ R ×R : w > 0, z > 0, 4w2 + z2 < 1, w2 + 4z2 < 1}.

Theorem 2.3. If A is a Borel subset of the set Π and the sequence of pairs

of natural numbers (nl, kl)
∞
l=1 is Stoltz, then we have

lim
l→∞

1

kl

kl∑
i=1

χA(ψnl+i−1(x), ψnl+i(x)) =

∫
A∩Π

( 1√
1− 4wt

+
1√

1 + 4wt

)
dwdz

almost everywhere with respect to Lebesgue measure.
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Proof. Let ψ denote the two-to-one map from Δ to Π defined by

Ψ(t, v) =
( v

1 + tv
,
ε(t)t

1 + tv

)
,

where ε(t) denotes the sign of t. We note that Ψ(tk, vk) = (ψk−1, ψk) for each

natural number k. To see this note that from a standard fact from the elementary

theory of continued fractions we have

x =
pk + tkpk−1

qk + tkqk−1
(2.6)

and so

ψk =
εk−1tk
1 + tkvk

. (2.7)

Set

Δ−1 = {(t, v) ∈ Δ : ε(t) = −1} and Δ1 = {(t, v) ∈ Δ : ε(t) = 1}.

Also let Ψ−1 = Ψ|Δ
−1

and Ψ1 = Ψ|Δ1
. These maps are then continuously differ-

entiable bijective maps from Δ−1 (resp. Δ1) to Π. Using the coordinate change

formula for measures, the image measure corresponding to

μ(A) =
1

logG

∫ ∫
A∩Π

dtdw

(1 + tv)2

under both maps Ψ−1 and Ψ−1 is given by

(Ψ−1μ)(B) = (Ψ1μ)(B) =
1

logG

∫ ∫
B∩Π

(1 + xy

1− xy

)
dxdy.

Now by (2.6) and (2.7) if ε(tk) = εk+1 = 1 then(1− tkvk
1 + tkvk

)2

= 1− 4ψk−1ψk

and if ε(tk) = εk+1 = −1 then(1− tkvk
1 + tkvk

)2

= 1 + 4ψk−1ψk.

Hence the image of μ under ψ is given by

(Ψμ)(A) =

∫ ∫
A∩Π

( 1√
1− 4wt

+
1√

1 + 4wt

)
dwdt.

The result now follows from Theorem 2.2.

In [BK] it is shown that for each irrational x we have 0 < ψk−1 +ψk < 2/
√
5.

Let

h(z)=

⎧⎨
⎩

1
logG

(log
√
1 + z − log

√
1− z + arctan z), if z ∈ [0, 1/2],

1
2 logG

(
log

(
5
√
5−4z2−5z√
5−4z2+z

)
+ 2 arctan

(
2
√
5−4z2−3z
5
√
1+z2

))
, if z ∈ [1/2, 2/

√
5].
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Theorem 2.4. Let h be as above. Then if the sequence of pairs of natural

numbers (nl, kl)
∞
l=1 is Stoltz, then

lim
l→∞

1

kl
|{1 ≤ i ≤ kl : ψnl+i−1(x) + ψnl+i(x) < a}| =

∫ a

0

h(t)dt

almost everywhere with respect to Lebesgue measure.

Proof. The result follows immediately by applying Theorem 2.3 to the func-

tion w + t = const.

In [BK] it is shown that for each irrational x we have 0 ≤ |ψn−1 − ψn| ≤ 1/2

for each natural number k. Let

j(z) =
1

logG

(
log

(5√5− 4z2 − 5z

1 + z

)
− arctan z + arcsin

(2√5− 4z2 − 3z√
1 + z2

))
.

We have the following theorem.

Theorem 2.5. Let j be as defined above. Then if the sequence of natural

numbers (nl, kl)
∞
l=1 is Stoltz and a is in [0, 1/2), then we have

lim
l→∞

1

kl
|{1 ≤ i ≤ kl : |ψnl+i−1(x)− ψnl+i(x)| < a}| =

∫ a

0

j(t)dt

almost everywhere with respect to Lebesgue measure.

Proof. The proof of this result is an immediate consequence of Theorem 2.3

and the appropriate choice of A.

In [BK] it is shown that for irrational x, ψk(x) is in (0, 12 ). Let

k(z) =

{
1

logG
, if z ∈ (0, 1/

√
5),

1
logG

√
1−4z2

z
, if z ∈ [1/

√
5, 1/2).

We have the following result:

Theorem 2.6. Suppose k is defined as just above. Then if the sequence of

pairs of natural numbers (nl, kn)
∞
l=1 is Stoltz and a is in [0, 1/2), then we have

lim
l→∞

1

kl

N∑
i=1

χA(ψnl+i(x)) =

∫
A∩(0, 12 )

k(z)dz

almost everywhere with respect to Lebesgue measure.
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Proof. Apply Theorem 2.4 with w < z.

Also calculating the first moment of k we have

Theorem 2.7. If the sequence of pairs natural numbers (nl, kl)
∞
l=1 is Stoltz

then

lim
l→∞

1

kl

kl∑
l=1

ψnl+i(x) =
1

4 logG
arctan

1

2

almost everywhere with respect to Lebesgue measure.
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Berlin, Leipzig, 1913.


