
Periodica Mathematica Hungarica Vol. 56 (2 ), 2008, pp. 169–181
DOI: 10.1007/s10998-008-6169-8

TRANSITIVE PARTIAL ACTIONS OF GROUPS

Keunbae Choi
1 and Yongdo Lim

2

[Communicated by Mária B. Szendrei]
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Abstract

J. Kellendonk and M. V. Lawson established that each partial action

of a group G on a set Y can be extended to a global action of G on a set

YG containing a copy of Y . In this paper we classify transitive partial group

actions. When G is a topological group acting on a topological space Y

partially and transitively we give a condition for having a Hausdorff topology

on YG such that the global group action of G on YG is continuous and the

injection Y into YG is an open dense equivariant embedding.

1. Introduction

Throughout this paper we shall always assume that G is a group with multi-

plication gh (g, h ∈ G). 1 denotes the identity of G and g−1 denotes the inverse of g

in G. Recall that an action of G on the set X is a function G×X → X, (g, x) �→ g ·x

such that 1 · x = x, g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ G, and that it

can also be defined by means of a homomorphism from G to the symmetric group

on X. Two G-actions on X and X ′ are said to be equivalent if there is a bijection

f :X → X ′ such that f(g · x) = g · f(x) for all g ∈ G and x ∈ X. Such a map f is

called an isomorphism between two G-actions.

An inverse semigroup S is a semigroup in which for every s ∈ S there exists

a unique element s−1, called the inverse of s, satisfying ss−1s = s, s−1ss−1 = s−1.

The Wagner–Preston representation theorem ([6], [9]) states that every inverse

monoid can be embedded in a symmetric inverse monoid I(X) on a set X: this
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170 K. CHOI and Y. LIM

consists of all partial bijections on the set X under the usual operation of composi-

tion of partial functions. Let ≤ be the natural partial order on the inverse monoid

I(X). Then for s, t ∈ I(X), s ≤ t if and only if the domain of t contains the domain

of s and the two partial maps s and t agree on the domain of s.

A partial action (this terminology was introduced by R. Exel, [7]) of G on a

non-empty set Y is a function θ:G→ I(Y ) satisfying the following three conditions:

(P1) θ(g−1) = θ(g)−1 for all g ∈ G;

(P2) θ(g)θ(h) ≤ θ(gh) for all g, h ∈ G;

(P3) θ(1) = 1Y , the identity on Y .

Notice that the essential difference between partial group actions and group

actions lies in condition (P2): θ(gh) is an extension of θ(g)θ(h) for all g, h ∈ G.

For an action of G on a set X, G ×X → X, (g, x) �→ g · x, and a non-empty

subset Y ⊂ X, each element of g ∈ G induces a partial bijection of Y whose domain

is given by {y ∈ Y : g · y ∈ Y }, and hence there is a natural partial action θ of G

on Y defined by

θ(g): dom(g) := {y ∈ Y : g · y ∈ Y } → Y, θ(g)(x) = g · x.

We say that this partial action arises by restricting the global action.

Two partial actions θ:G → I(Y ), θ′:G → I(Y ′) are said to be equivalent if

there exists a bijection f :Y → Y ′ such that for x ∈ Y, θ(g)(x) is defined if and only

if θ′(g)(f(x)) is defined, and in this case θ′(g)(f(x)) = f(θ(g)(x)). Such a map f is

called an isomorphism from θ to θ′.

In [10] J. Kellendonk and M. V. Lawson established that each partial group

action is the restriction of a global group action. In this paper, we are interested

in transitive partial group actions which are common in projective geometry (e.g.,

pseudogroups of conformal transformations). We first describe the partial action

of Möbius transformations on R and present some of its key properties in order to

illustrate our approach.

Let I(R) be the inverse monoid of all partial bijections on R. Let G :=

GL(2,R). Then the mapping defined by

θ:G→ I(R), θ(g)(x) :=
ax + b

cx + d
, g =

[
a b

c d

]
∈ GL(2,R)

is a partial action of G on R ([10]). This partial action is transitive in the sense that

for each pair of points x, y in R there is an element g ∈ G such that θ(g)(x) = y.

Note that the translation R � z �→ z + (y − x) ∈ R is an element of θ(G). The set

G0 of elements of G fixing 0 the origin (θ(g)(0) is defined and θ(g)(0) = 0) can be

represented by lower-triangular matrices and it forms a subgroup of G. Thus there

is a natural group action of G on the quotient set G/G0. Furthermore, the set G0 of

all elements of G such that θ(g)(0) is defined can be represented by elements of the
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form g =
[
a b

c d

]
∈ GL(2,R), d 	= 0. Then the partial action θ of G on R is equivalent

to the partial action arising by restricting the coset action to the set π(G0), where

π:G→ G/G0 denotes the natural projection.

However, the group G is a Lie group and G0 is a closed subgroup of G. It is

well-known that the coset space G/G0 is diffeomorphic to the Riemann sphere R∞.

The evaluation mapping ev0:G
0 → R, g �→ θ(g)(0) is continuous. Furthermore, the

set G0 is an open dense subset of G leading to the open dense equivariant embedding

of R into the coset space G/G0.

In Section 2, we prove that each transitive partial group action is the restric-

tion of a group coset action. In Section 3, we shall define a group bounded inverse

submonoid of a symmetric inverse monoid I(Y ) and shall show that there is a global

action of G on a set X such that each non-zero element of the semigroup can be

uniquely extended to a symmetry on X induced by the action. In Section 4, we

restrict our attention to transitive partial actions of topological groups. Mainly,

we study Hausdorff globalisation conditions with open dense equivalent embedding

([4]), and revisit the partial actions of conformal transformations and show how

these examples fit within our framework.

2. Transitive partial group actions

Let θ:G → I(Y ) be a partial action of G on Y. If θ(g)(x) is defined, then we

shall write θ(g)(x) = g · x. For convenience, we shall write ∃g · x to mean that g · x

is defined. The partial action θ of G on Y defines a partial function from G× Y to

Y which satisfies the following conditions:

(PA1) ∃g · x implies that ∃g−1 · (g · x) and g−1 · (g · x) = x;

(PA2) ∃g · (h · x) implies that ∃(gh) · x and g · (h · x) = (gh) · x;

(PA3) ∃1 · x for all x ∈ Y, and 1 · x = x.

Conversely, a partial function

G× Y → Y, (g, x) �→ g · x

which satisfies (PA1), (PA2), and (PA3) induces a partial action of G on Y, [10].

A globalisation of a partial action θ:G → I(Y ) is an action (G,X) together

with an injection ı:Y → X such that the partial action θ and the induced partial

action of G on ı(Y ) from the action (G,X) are equivalent. Let θ′:G → I(ı(Y )) be

the partial action induced by the action α:G × X → X, α(g, x) := g · x. Then

∃ θ(g)(x) if and only if ∃ θ′(g)(ı(x)) and θ′(g)(ı(x)) = g · ı(x) for g ∈ G and x ∈ Y.

A globalisation {(G,X), ı} of the partial action θ is said to be minimal if for

any globalisation {(G,X ′), ı′} of θ, there exists an injection λ:X → X ′ such that

λ(g · x) = g · λ(x) for all g ∈ G and x ∈ X.
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In [10] J. Kellendonk and M. V. Lawson has proved that every partial action

has a unique (up to equivalence) minimal globalisation: Let θ:G→ I(Y ) be a partial

action of the group G on Y. Define the relation ∼ on the set G×Y by (g, x) ∼ (h, y)

if and only if ∃(h−1g) ·x and (h−1g) ·x = y. The relation ∼ is an equivalence relation

on G×Y. If we denote the set of ∼-equivalence classes on G×Y by YG, and denote

the ∼-equivalence class containing the element (g, x) by [g, x], then the function

G× YG → YG, (h, [g, x]) �→ h · [g, x] = [hg, x]

is an action of G on YG and the function

ı:Y → YG, ı(x) = [1, x]

is injective, [10].

Lemma 2.1. Let g, h ∈ G and let x ∈ Y. If ∃h · x, then [g, h · x] = [gh, x].

Furthermore, ∃g · x if and only if ∃g · [1, x].

Proof. By (PA1), (h−1g−1g)·(h·x) = h−1 ·(h·x) = x. Thus [g, h·x] = [gh, x].

Suppose that g · x = y ∈ Y. Then g · [1, x] = [g, x] = [1, g · x] = [1, y] ∈ ı(Y ).

Conversely, suppose that g · [1, x] = [g, x] ∈ ı(Y ). Then [g, x] = [1, y] for some y ∈ Y.

By definition, ∃g · x and g · x = y.

Theorem 2.2. (Kellendonk and Lawson) Let θ:G → I(Y ) be a partial ac-

tion. Then {(G, YG), ı} is a unique minimal globalisation of θ up to equivalence.

Proof. Lemma 2.1 shows that {(G, YG), ı} is a globalisation of θ. Let

{(G,X), j} be any globalisation of θ. Define α:YG → X by α([g, x]) = g · j(x).

To show that α is well-defined, suppose that [g, x] = [h, y]. Then ∃ (h−1g) · x

and (h−1g) ·x = y. Thus we have that j(y) = j((h−1g) ·x) = (h−1g) · j(x), and hence

h · j(y) = g · j(x). It follows that α([g, x]) = g · j(x) = h · j(y) = α([h, y]).

We now show that α is injective. Suppose that α([g, x]) = α([h, y]). Then

g · j(x) = h · j(y), and hence we have j((h−1g) · x) = (h−1g) · j(x) = j(y). Thus

(h−1g) · x = y, and we have that [g, x] = [h, y]. Clearly, α(g · x) = g · α(x) for all

g ∈ G and x ∈ YG. Thus we have that {(G, YG), ı} is a minimal globalisation of θ.

Suppose that {(G,Z), j} is a minimal globalisation of θ. Then there are injec-

tions λ:YG → Z, β:Z → YG such that λ(g · x) = g · λ(x), β(h · z) = h · β(z) for all

x ∈ YG, z ∈ Z, g, h ∈ G. Notice that

β ◦ λ([g, y])= β ◦ λ(g · [1, y])

= β(g · λ([1, y])) = g · β(λ([1, y]))

= g · β(λ(ı(y))) = g · β(j(y)) = g · [1, y] = [g, y].

Thus we have that β ◦ λ = 1YG . Since β and λ are injective we get that the actions

(G, YG) and (G,Z) are equivalent.
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Proposition 2.3. Each isomorphism between two partial G-actions θ:G→

I(Y ) and θ′:G→ I(Y ′) extends an isomorphism between G-actions (G, YG, ıY ) and

(G, Y ′G, ıY ′) sending ıY (Y ) onto ıY ′(Y
′) and vice versa.

Proof. Let f :Y → Y ′ be an isomorphism from θ:G → I(Y ) to θ′:G →

I(Y ′). Define f :YG → Y ′G by f([g, x]) = [g, f(x)]. We will first prove that f is

well-defined and is injective. Suppose that [g, x] = [h, y] in YG. Then ∃h−1g · x and

h−1g · x = y. Since f is an isomorphism, ∃h−1g · f(x) and f(y) = f(h−1g · x) =

h−1g · f(x). This implies that [g, f(x)] = [h, f(y)]. Thus f is well-defined. By the

same argument, we have that f is injective. Obviously, f is surjective. Since

f(h · [g, x]) = f([hg, x]) = [hg, f(x)] = h · [g, f(x)] = h · f([g, x]),

f is an isomorphism from (G, YG, ıY ) to (G, Y ′G, ıY ′). Clearly, f(ıY (Y )) = ıY ′(Y
′)

and f is an extension of f.

Conversely, suppose that f :YG → Y ′G is an isomorphism such that f(ıY (Y )) =

ıY ′(Y
′). Let f := ı−1Y ′ ◦ f ◦ ıY :Y → Y ′. Then f is a bijection. It is easy to show that

f([1, x]) = [1, f(x)] for all x ∈ Y. Suppose that ∃g ·x. Then since g · [1, x] = [1, g ·x],

we have

g · [1, f(x)] = g · [1, x′] = g · f([1, x]) = f(g · [1, x]) = f([1, g · x]) ∈ ıY ′(Y
′),

and in this case f(g ·x) = g ·f(x). Since f
−1

is also an isomorphism from (G, Y ′G, ıY ′)

to (G, YG, ıY ), by the same argument, we conclude that ∃g ·x if and only if ∃g ·f(x),

and in this case f(g · x) = g · f(x). Therefore f is an isomorphism from θ to θ′.

A partial action θ:G→ I(Y ) is said to be transitive if for any x, y ∈ Y, there

is an element g ∈ G such that ∃g · x and y = g · x.

Proposition 2.4. Let θ:G → I(Y ) be a partial action. Then θ is transitive

if and only if the action of G on YG is transitive.

Proof. Suppose that θ is transitive. Let [g, x], [h, y] ∈ YG. Since the partial

action is transitive, x = k·y for some k ∈ G. Then by Lemma 2.1, (hk−1g−1)·[g, x] =

[hk−1, k · y] = [h, y].

Conversely, suppose that G acts transitively on YG. Let x, y ∈ Y. Then there

exists g ∈ G such that g · [1, x] = [1, y]. Since g · [1, x] = [g, x], we have that ∃g · x

and g · x = y. Therefore the partial action of G on Y is transitive.

Proposition 2.5. Let θ:G → I(Y ) be a partial action. Then for each

x ∈ Y,

Gx := {g ∈ G : ∃g · x and g · x = x}

is a subgroup of G. In particular, if θ is transitive then Gx and Gy are conjugate

for all x, y ∈ Y.
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Proof. Obviously, the identity 1 ∈ G is an element of Gx. Suppose that

g ∈ Gx. Then ∃g · x and g · x = x. By (PA1), g−1 ∈ Gx. Suppose that g, h ∈ Gx.

Then ∃g · (h ·x) and hence by (PA2), (gh) ·x = g · (h ·x) = g ·x = x. Thus gh ∈ Gx.

Therefore Gx is a subgroup of G.

Suppose that θ is transitive. Let x, y ∈ Y. Choose h ∈ G such that h · x = y.

Then g · y = y if and only if g · (h · x) = (gh) · x = h · x (by (PA2)) if and only if

h−1 ·((gh)·x) = x (by (PA1)) if and only if (h−1gh)·x = x if and only if h−1gh ∈ Gx.

Therefore, Gx and Gy are conjugate.

Theorem 2.6. Suppose that the partial action of G on Y is transitive. Then

the action (G, YG) is equivalent to the left coset action (G,G/Gx) for any x ∈ Y.

Proof. Let x0 be an element of Y. Define φ:G/Gx0 → YG, gGx0 �→ [g, x0].

We show first that φ is a well-defined bijection. Suppose that gGx0 = hGx0 . Then

h = gk for some k ∈ Gx0 . Since [g, x0] = [g, k ·x0] = [gk, x0] = [h, x0] by Lemma 2.1,

φ(gGx0) = φ(hGx0). Thus φ is a well-defined map. Suppose that φ(gG0) = φ(hG0).

Then [g, x0] = [h, x0]. By the definition of the equivalence relation, ∃(h−1g) · x0
and (h−1g) · x0 = x0. Thus h−1g ∈ Gx0 and gGx0 = hGx0 . Let [g, x] ∈ YG be any

element. Since G acts transitively on YG, there is h ∈ G such that [g, x] = h · [1, x0].

Since h · [1, x0] = [h, x0], we conclude that [g, x] = φ(hGx0). Therefore the map φ is

a bijection.

Finally, we show that (G,G/Gx0) and (G, YG) are equivalent via the map φ.

It follows that φ(ghGx0) = [gh, x0] = g · [h, x0] = g · φ(hGx0).

Let θ:G→ I(Y ) be a partial and transitive action. Fix x0 ∈ Y. We let

Gx0 := {g ∈ G : ∃g · x0}.

Let φ:G/Gx0 → YG, gGx0 �→ [g, x0], and let π:G → G/Gx0 , π(g) = gGx0 . Then it

is easy to see that φ−1(ı(Y )) = π(Gx0). Note that the map

ıπ:Y � y �→ gGx0 ∈ G/Gx0 , g · x0 = y

is a well-defined injection. By Theorem 2.2 and Theorem 2.6, we have

Corollary 2.7. For a transitive partial action θ:G→ I(Y ) and x0 ∈ Y,

{(G,G/Gx0), ıπ}

is the unique (up to equivalence) minimal globalisation of the partial action θ.

By the following decomposition of G

G = Gx0 ∪ (Gx0 \Gx0) ∪ (G \Gx0),

the next result is immediate.
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Proposition 2.8. Suppose that the partial action of G on Y is transitive.

Let x0 ∈ Y. Then

YG = {[1, x0]} ∪ {[g, x0] : g ∈ Gx0 \Gx0} ∪ {[g, x0] : g ∈ G \Gx0}.

Furthermore, we have

(i) [1, x0] 	= [g, x0] for all g ∈ G \Gx0 ;

(ii) [g, x0] 	= [h, x0] for all g ∈ Gx0 , h ∈ G \Gx0 ;

(iii) for g, h ∈ G, [g, x0] = [h, x0] if and only if h−1g ∈ Gx0 ;

(iv) {[1, y] : y ∈ Y \ {x0}} = {[g, x0] : g ∈ Gx0 \Gx0}, and hence

ı(Y ) = {[1, x0]} ∪ {[g, x0] : g ∈ Gx0 \Gx0}.

Proof. (i), (ii), and (iii): Straightforward.

(iv) Let y ∈ Y \{x0}. By the transitivity of the partial action of G on Y, there

exists g ∈ G such that ∃g · x0 and g · x0 = y(	= x0). It follows that g ∈ Gx0 \ Gx0 .

By Lemma 2.1, [g, x0] = [1, g · x0] = [1, y]. Conversely, if g ∈ Gx0 \Gx0 , then ∃g · x0
and g · x0 	= x0. Thus g · x0 ∈ Y \ {x0} and [g, x0] = [1, g · x0].

Example. Let G = SL(2,R), Y = R. Then G acts partially on Y via linear

fractional (Möbius) transformations

g · x =
ax + b

cx + d
, g =

[
a b

c d

]
∈ G.

Since tx :=
[
1 x

0 1

]
∈ G for each x ∈ R and since ty−x · x = y, the partial action is

transitive.

One computes that

G0=

{[
a 0

c 1/a

]
∈ G : a 	= 0

}
,

G0=

{[
a b

c d

]
∈ G : d 	= 0

}
= {tx : x ∈ R}G0,

G \G0=

{[
a b

−1/b 0

]
∈ G : b 	= 0

}
.

A particular property of this action is that if g, h ∈ G \ G0 then h−1g ∈ G0. Thus

the set {[g, 0] : g ∈ G \ G0} consists of a single element. Then by Proposition 2.8

we can identify RG with R∪{∞}, the set obtained from R by the adjunction of the

extra point ∞ (cf. [10]).
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3. Group bounded inverse monoids

Let G be a group acting effectively on a Hausdorff space X, G × X →

X, (g, x) �→ g · x. Suppose that X is a G-space. Then the map x �→ g · x is a

homeomorphism from X to itself for all g ∈ G. Let Y be an open dense subspace

of X, and let θ:G → I(Y ) be the partial action of G on Y induced by the action

of G on X. Since Y is open and dense, each element of the inverse submonoid S

generated by {θ(g) : g ∈ G} is non-zero and has an open dense domain. Let σ be

the minimum group congruence [9] on the inverse monoid S. It turns out ([4], [5])

that each σ-class contains a unique maximal element of the form θ(g), and hence

we have a natural semigroup homomorphism f :S → S/σ → G.

Let S be an inverse monoid with product s ◦ t. Let 1S be the identity element

of S. We denote by 0 the zero element of S if it has one. Let G be a group with

identity 1G. A partial homomorphism from S to G is a function f :S \{0} → G such

that f(s ◦ t) = f(s)f(t) whenever s ◦ t 	= 0. It is easy to see that if f is a partial

homomorphism then f maps all non-zero idempotents to the identity of G. We say

that an inverse monoid S is group bounded if there is a partial homomorphism f

from S \ {0} to a group G (called a bounding group) such that for each g ∈ G, there

exists a unique element sg ∈ f−1(g) satisfying for g, h ∈ G, sg ◦ sh 	= 0 and t ≤ sg
for all t ∈ f−1(g). We remark that f is always surjective.

Proposition 3.1. Let S be a group bounded inverse monoid. Then

(i) 1S = s1G and f−1(1G) is equal to the set of all non-zero idempotents of S.

(ii) If s ≤ t and s 	= 0 then f(s) = f(t). In particular,

f−1(g) = {s ∈ S \ {0} : s ≤ sg}.

(iii) The set {sg : g ∈ G} is equal to the set of all maximal elements of S.

(iv) s−1g = sg−1 , for any g ∈ G.

(v) sg ◦ sh ≤ sgh, for any g, h ∈ G.

Proof. (i) Clearly 1S is a maximal element of S and f(1S) = 1G. By the

definition of f , 1S ≤ s1G and hence 1S = s1G . Let s be an element of f−1(1G). Then

s ≤ s1G = 1S and hence s must be an idempotent. Therefore, f−1(1G) consists of

all non-zero idempotents of S.

(ii) Since s = t◦e for some non-zero idempotent e, f(s) = f(t◦e) = f(t)f(e) =

f(t)1G = f(t).

(iii) Suppose that sg ≤ t for some t ∈ S. Then by (ii), g = f(sg) = f(t) and

hence t ≤ sg. Therefore sg is a maximal element of S. Conversely, suppose that s is

a maximal element of S. Then s 	= 0 since 0 ≤ t for all t ∈ S. Thus s ≤ sf(s) and

hence s = sf(s) by maximality.
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(iv) Since sg is maximal, s−1g is a maximal element of S. Hence s−1g = sh for

some h ∈ G. Since sg ◦ sh 	= 0, we have 1G = f(sg ◦ sh) = f(sg)f(sh) = gh and

hence h = g−1.

(v) Since sg ◦ sh 	= 0, f(sg ◦ sh) = gh and hence sg ◦ sh ≤ sgh.

Remark 3.2. (i) By Proposition 3.1(i) and (ii), we have that every group

bounded inverse monoid is 0-E-unitary. Here, an inverse semigroup with zero is

said to be 0-E-unitary if 0 	= e ≤ s, where e is an idempotent, implies that s is an

idempotent.

(ii) Let S be a group bounded inverse monoid with a bounding group G.

Define a map θ:G→ S by θ(g) = sg for all g ∈ G. Then by Proposition 3.1(i), (iv),

(v) and Theorem 4 in [10], there exists a unique monoid homomorphism θ∗: G̃R → S

such that θ∗ ◦ i = θ, where G̃R is the Birget–Rhodes expansion of G ([5], [10]) and

i:G→ G̃R, i(g) = (1G, {1G, g}).

Corollary 3.3. The bounding group of a group bounded inverse monoid is

unique up to isomorphism.

Proof. Let f1:S\{0} → G1, f2:S\{0} → G2 be two group bounding partial

homomorphisms of S. Let g ∈ G1. Then sg is a maximal element of S and hence

sg = sf2(sg) (by Proposition 3.1(iii)). Define F :G1 → G2 by F (g) = f2(sg). One

may show that F is bijective. Since sg ◦ sh ≤ sgh, F (g)F (h) = f2(sg)f2(sh) =

f2(sg ◦ sh) = f2(sgh) = F (gh), F is a homomorphism.

We remark that for a group bounded inverse monoid S, if the inverse sub-

monoid SM generated by the maximal elements of S does not contain the zero

element then the bounding group is isomorphic to the group SM/σ, where σ is the

minimum group congruence on SM .

An inverse submonoid S of a symmetric inverse monoid I(Y ) is said to be

transitive if for every pair of points x and y in Y, there exists an element s ∈ S such

that s(x) is defined and s(x) = y.

Let G be a group acting on a set X, G×X → X, (g, x) �→ g ·x. Then the map

x �→ g · x is a bijection from X to itself for all g ∈ G, which is called a symmetry of

X induced by the action.

Theorem 3.4. Let G be a bounding group of an (respectively, transitive)

inverse submonoid S ⊂ I(Y ) with 1S = 1Y . Then there exists a set X such that the

group G acts on X (respectively, transitively) and each non-zero element of S can

be uniquely extended to a symmetry of X induced by the group action.
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Proof. By Proposition 3.1(iv) and (v), the map θ:G → S ⊂ I(Y ) defined

by θ(g) = sg is a partial action. By Theorem 2.2, we have a global action of G on

X := YG. Note that for each g ∈ G the partial bijection θ(g) = sg on Y can be

extended to the symmetry on X induced by g. Let s ∈ S \ {0}. Then s ≤ sg for

some g ∈ G, and hence s can be extended to a symmetry on X by g. If s can be

extended to an another symmetry induced by h ∈ G, then the partial symmetries

sg and sh bound the element s hence g = h by Proposition 3.1(ii).

Finally, let x, y ∈ Y. Then since S is transitive, s(x) = y for some non-zero

element s ∈ S. Let sg be the maximal element of S bounding s. Then θ(g)(x) =

sg(x) = y. Therefore the partial action of G on Y is transitive and hence the group

action on X = YG is transitive by Proposition 2.4.

4. Partial actions of topological groups

Throughout this section we assume that G is a topological group acting on a

set Y partially and transitively. Let X be a topological space. An action G×X → X

is called continuous if the map is continuous. Here we consider G×X as a topological

space with the product topology.

Proposition 4.1. The following statements are equivalent.

(i) There exists a Hausdorff topology on YG such that the action of G on YG is

continuous.

(ii) Gx0 is closed for some x0 ∈ Y.

(iii) Gx is closed for all x ∈ Y.

Proof. Since G is a topological group, each translation by an element of G

is a homeomorphism. Thus by Proposition 2.5, (ii) and (iii) are equivalent.

(i) =⇒ (ii): Suppose that there exists a Hausdorff topology on YG such that

the action α of G on YG is continuous. For fixed x0 ∈ Y, if we consider the following

maps,

G
f
→ G× YG

α
→ YG

g �→ (g, [1, x0]) �→ [g, x0]

then clearly φ ◦ π = α ◦ f, where φ:G/Gx0 → YG, gGx0 �→ [g, x0], π:G → G/Gx0

is the natural projection. Since f and α are continuous maps, the map φ ◦ π is

continuous, and so φ is continuous from the fact π is quotient. Thus φ is bijective

(by Theorem 2.6) and continuous, and hence G/Gx0 is a Hausdorff space. Therefore

Gx0 must be closed.

(ii) =⇒ (i): Suppose that Gx0 is a closed subgroup of G. Then the coset space

G/Gx0 is a Hausdorff space and the natural action G×G/Gx0 → G/Gx0 , g·(hGx0) =

(gh)Gx0 is continuous. Then the bijection map φ:G/Gx0 → YG, gGx0 �→ [g, x0]

peri562_169-181.pdf   10 5/30/2008   11:34:07 AM



TRANSITIVE PARTIAL ACTIONS 179

gives a topology on YG which is homeomorphic to G/Gx0 . Then the action (G, YG)

is continuous.

The abstract globalisation problem of [4] in general fails to have a Hausdorff

solution (see Example 4.12 of [13]). Here, for a Hausdorff globalisation, we consider

the space YG with the topology induced by the space G/Gx0 .

We remark that if Gx0 is a closed subgroup of G and if G and YG are locally

compact and second countable then the space YG must be homeomorphic to the

quotient space G/Gx0 (see Lemma 2.9.1 of [14]).

Theorem 4.2. Suppose that there exists x0 such that Gx0 is closed in G.

Consider the space YG with the topology induced by the space G/Gx0 . Then

(a) ı(Y ) is open (respectively, dense) in YG if and only if Gx0 is open (respectively,

dense) in G.

(b) If the set Y has a topology and Gx0 is open in G then the inclusion ı:Y → YG
is an open mapping if and only if the following evaluation mapping

evx0 :G
x0 � g �→ g · x0 ∈ Y

is continuous.

Proof. Let us consider the following maps:

G
π
→ G/Gx0

φ
→ YG

ı
← Y

g �→ gGx0 �→ [g, x0]
.

One computes easily that π−1(φ−1(ı(Y ))) = Gx0 .

(a) Since π is a quotient mapping, Gx0 is open if and only if φ−1(ı(Y )) is open

in G/Gx0 if and only if ı(Y ) is an open set of YG. Since π is an open and continuous

mapping, we have that Gx0 is dense in G if and only if φ−1(ı(Y )) is dense in G/Gx0

if and only if ı(Y ) is dense in YG.

(b) Suppose that Y is a topological space. Note that for a subset U of Y ,

π−1(φ−1(ı(U)) = ev−1x0 (U). Therefore, since Gx0 is open in G, ev−1x0 (U) is open in

Gx0 if and only if ev−1x0 (U) is open in G. Thus the injection ı:Y → YG is an open

mapping if and only if ev−1x0 (U) is open for all open set U in Y if and only if evx0 is

continuous.

Let G be a finite-dimensional Lie group and let H be a closed subgroup of G.

Then there exists exactly one analytic structure on G/H (the quotient manifold)

which converts it into an analytic manifold such that the natural action of G on

G/H is analytic [14]. Therefore we have
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Corollary 4.3. Let G be a finite-dimensional Lie group acting partially on

a manifold Y . Then there is an analytic structure on YG such that the action of G

on YG is analytic, transitive and the injection ı:Y → YG is an open dense embedding

if and only if there exists x ∈ Y such that Gx is closed, Gx is open, dense, and the

evaluation map at x is continuous.

Example. Let us consider the Möbius partial action of G = SL(2,R) on R.

Then it is a Lie group. Set

N+ :=

{[
1 x

0 1

]
: x ∈ R

}
,

N− :=

{[
1 0

x 1

]
: x ∈ R

}
,

H :=

{[
a 0

0 1/a

]
: a ∈ R \ {0}

}
.

Then N± and H are closed subgroups of G. One may see that G0 = HN−, G0 =

N+HN−. Using the continuous map G→ R,
[
a b

c d

]
�→ d, the set N+HN− is an open

dense subset of G (one may show that
[
a b

c d

]
∈ N+HN− if and only if d 	= 0), and the

triple decomposition is uniquely determined. The evaluation map ev0:N
+HN− →

R is just the N+-projection, and hence it is continuous. Thus the inclusion ı:R→

RG = G/G0 is an open dense embedding.

Example. (Pseudogroups of conformal transformations) We refer to the

book of S. Kobayashi [11] (respectively, [8], [1], [2], [3]) for the definition of a pseu-

dogroup of transformations on a differential manifold (respectively, for a basic theory

of Jordan algebras and conformal transformations on Jordan algebras).

Let V be a finite-dimensional semi-simple Jordan algebra having no ideals

isomorphic to R or C, and let H be the structure group of V. A conformal transfor-

mation of V is a locally defined diffeomorphism ϕ:V ⊃ U → W ⊂ V such that for

all x ∈ U, the differential Dϕ(x) of ϕ at x belongs to the linear group H. We assume

that the mapping defined on the empty set is a conformal transformation. Then

the set of all conformal transformations forms an inverse submonoid S with zero

element of the symmetric inverse monoid I(V ). For x ∈ V, tx:V → V, tx(y) = x+ y

is a conformal transformation. Set V −1 := {x ∈ V : x is invertible}. Then V −1 is

an open dense subset of V, and the Jordan inverse j:V −1 → V −1 is a conformal

transformation [8]. Furthermore, each element of H is a conformal mapping on V.

Let Co(V ) be the subgroup of the group of all birational maps [12] on V

generated by the following birational maps on V ; tx, x ∈ V, j and elements of H.

The group G := Co(V ) is called a conformal or Kantor–Koecher–Tits group of

V. A remarkable fact about Co(V ) is that it is a Lie group ([12], [1], [2]). Let

θ:G→ I(V ) be the specialization of the group of birationals to partial bijections on
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V. Then θ is a partial action of G on V. We note that θ(G) does not form a group

under the usual composition of partial mappings. By [1], it turns out that each

non-zero conformal transformation on V can be uniquely extended to a member

of θ(G). Therefore θ(g) is a maximal element of S for g ∈ G. Furthermore the

domain of θ(g) is an open dense subset of V for all g ∈ G. Hence we have a map

f :S \ {0} → G that makes S a group bounded inverse monoid. Clearly, the partial

action θ is transitive because of the group N+ of translations. It is known that if

x0 is the zero vector of V then Gx0 = HN−, where N− = j ◦ N+ ◦ j is a closed

subgroup. Furthermore, Gx0 = N+HN− is an open dense subset of Co(V ). The

triple decomposition N+HN− is uniquely determined. Hence the evaluation map

Gx0 � g → g(x0) ∈ V is continuous because it is the composition of the N+-

projection and the natural identification map N+ � tx → x. Hence we have an open

dense embedding of V into G/Gx0 , which is known as the conformal compactification

of V.
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