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Abstract

The Illumination Conjecture was raised independently by Boltyanski
and Hadwiger in 1960. According to this conjecture any d-dimensional con-
vex body can be illuminated by at most 2d light sources. This is an important
fundamental problem. The paper surveys the state of the art of the Illumi-
nation Conjecture.

1. The Illumination Conjecture

Let K be a convex body (i.e. a compact convex set with nonempty interior)
in the d-dimensional Euclidean space E

d, d ≥ 2. According to Hadwiger [22] an
exterior point p ∈ E

d \ K of K illuminates the boundary point q of K if the
half line emanating from p passing through q intersects the interior of K (at a
point not between p and q). Furthermore, a family of exterior points of K say,
p1,p2, . . . ,pn illuminates K if each boundary point of K is illuminated by at least
one of the point sources p1,p2, . . . ,pn. Finally, the smallest n for which there exist
n exterior points of K that illuminate K is called the illumination number of K
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denoted by I(K). In 1960, Hadwiger [22] raised the following amazingly elementary
but, very fundamental question. An equivalent but somewhat different looking
concept of illumination was introduced by Boltyanski in [13]. There he proposed
to use directions (i.e. unit vectors) instead of point sources for the illumination of
convex bodies. Based on these circumstances the following conjecture we call the
Boltyanski–Hadwiger Illumination Conjecture.

Conjecture 1.1. The illumination number I(K) of any convex body K in E
d,

d ≥ 3 is at most 2d and I(K) = 2d if and only if K is an affine d-cube.

It is quite easy to prove the Illumination Conjecture in the plane (see for ex-
ample [6]). Also, it has been noticed by several people that the illumination number
of any smooth convex body in E

d is exactly d + 1 ([6]). (A convex body of E
d is

called smooth if through each of its boundary points there exists a uniquelly defined
supporting hyperplane of E

d.) However, the illumination conjecture is widely open
for convex d-polytopes as well as for non-smooth convex bodies in E

d for all d ≥ 3.
In fact, a proof of the Illumination Conjecture for polytopes alone would not im-
mediately imply its correctness for convex bodies in general mainly, because of the
so-called upper semicontinuity of the illumination numbers of convex bodies. More
exactly, here we refer to the following statement ([18]).

Theorem 1.2. Let K be a convex body in E
d. Then for any convex body

K′ sufficiently close to K in the Hausdorff metric of the convex bodies in E
d the

inequality I(K′) ≤ I(K) holds (often with strict inequality).

In what follows we survey the major results known about the Illumination
Conjecture. For earlier and by now less updated accounts on the status of this
problem we refer the reader to the survey papers [6] and [28].

2. Equivalent formulations

There are two equivalent formulations of the Illumination Conjecture that
are often used in the literature (for more details see [28]). The first of these, was
raised by Gohberg and Markus [21]. (In fact, they came up with their problem
independently from Boltyanski and Hadwiger by studying some geometric properties
of normed spaces.) It is called the Gohberg–Markus Covering Conjecture.

Conjecture 2.1. Let K be an arbitrary convex body in E
d, d ≥ 3. Then K

can be covered by 2d smaller positively homothetic copies and 2d copies are needed
only if K is an affine d-cube.

Another equivalent formulation was found independently by P. Soltan and
V. Soltan [32] (who formulated it for the centrally symmetric case only) and by
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K. Bezdek [2] (see also [3]). In the formulation below of the K. Bezdek – P. Soltan
– V. Soltan Separation Conjecture a face of a convex body means the intersection
of the convex body with a supporting hyperplane.

Conjecture 2.2. Let K be an arbitrary convex body in E
d, d ≥ 3 and o an

arbitrary interior point of K. Then there exist 2d hyperplanes of E
d such that each

face of K can be strictly separated from o by at least one of the 2d hyperplanes.
Furthermore, 2d hyperplanes are needed only if K is the convex hull of d linearly
independent line segments which intersect at the common relative interior point o.

3. Estimates and the status of the Illumination Conjecture
in dimension three

The following theorem collects the best upper bounds for the illumination
numbers of convex bodies in dimensions greater than 3. The first upper bound
follows from the results of Erdős and Rogers [20] and Rogers and Shephard [30], the
second is due to Lassak [25] (see also [36]).

Theorem 3.1. If K is an arbitrary convex body in the d-dimensional Eu-
clidean space E

d, d ≥ 2, then

I(K) ≤ min
{(

2d

d

)
(d ln d + d ln ln d + 5d), (d + 1)dd−1 − (d − 1)(d − 2)d−1

}
.

The best upper bound known on the illumination numbers of convex bodies
in E

3 is due to I. Papadoperakis [29].

Theorem 3.2. The illumination number of any convex body in E
3 is at

most 16.

It is quite encouraging that the Illumination Conjecture is known to hold for
some “relatively large” classes of convex bodies in E

3 as well as in E
d, d ≥ 4. In

what follows, first we survey the 3-dimensional results.
K. Bezdek [2] succeded to prove the following theorem.

Theorem 3.3. If P is a convex polyhedron of E
3 with affine symmetry, i.e.,

if the affine symmetry group of P consists of the identity and at least one other
affinity of E

3, then the illumination number of P is at most 8.

On the other hand, also the following theorem holds. The first part of that
was proved by Lassak [24] (in fact, this paper was published before the publication
of Theorem 3.3) and the second part by Dekster [19] extending the above theorem
of K. Bezdek on polyhedra to convex bodies with center or plane symmetry.
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Theorem 3.4.
(i) If K is a centrally symmetric convex body in E

3, then I(K) ≤ 8.
(ii) If K is a convex body symmetric about a plane in E

3, then I(K) ≤ 8.

Lassak [26] and later also Weissbach [35] gave a proof of the following.

Theorem 3.5. The illumination number of any convex body of constant width
in E

3 is at most 6.

It is tempting to conjecture the following even stronger result. If true, then
it would give a new proof and insight of the well-known theorem, conjectured by
Borsuk long ago (see for example [1]), that any set of diameter 1 in E

3 can be
partitioned into (at most) four subsets of diameter smaller than 1. Before stating
that conjecture we quote the following theorem from [12], which is a slightly stronger
version of the previous theorem.

Theorem 3.6. Let X ⊂ E
3 be an arbitrary set of diameter at most 1 and let

B[X ] be the intersection of the closed 3-dimensional unit balls centered at the points
of X. Then B[X ] can be illuminated by 6 directions (i.e. unit vectors) forming
the vertices of a regular octahedron one pair of opposite vertices (i.e. one pair of
opposite generating unit vectors) of which one can choose in an arbitrary direction.

Perhaps, the following even stronger result holds.

Conjecture 3.7. The illumination number of B[X ] is exactly 4.

As a last remark we feel we have to mention the following. In [15] Boltyanski
announced a solution of the Illumination Conjecture in dimension 3. Unfortunately,
even today the proposed proof of this result remains incomplete. In other words, one
has to regard the Illumination Conjecture as a still open problem in dimension 3.

4. Proving the Illumination Conjecture
for special convex bodies in high dimensions

Schramm [31] has proved the Illumination Conjecture for any convex body of
constant width of dimension at least 16. In fact, his theorem can be extended in a
straighforward way to a somewhat larger class of convex bodies as follows.

Theorem 4.1. Let X ⊂ E
d, d ≥ 3 be an arbitrary set of diameter at most 1

and let B[X ] be the intersection of the closed d-dimensional unit balls centered at
the points of X. Then

I(B[X ]) < 5d
√

d(4 + ln d)
(

3
2

) d
2

.
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It seems that the Illumination Conjecture has not yet been proved for d-di-
mensional convex bodies of constant width for any 4 ≤ d ≤ 15.

Recall that a convex polytope is called a belt polytope if to each side of any
of its 2-faces there exists a parallel (opposite) side on the same 2-face. This class
of polytopes is wider than the class of zonotopes moreover, it is easy to see that
any convex body of E

d can be represented as a limit of a covergent sequence of belt
polytopes with respect to the Hausdorff metric in E

d. The following theorem on belt
polytopes was proved by Martini in [27]. The result that it extends to the class of
convex bodies called belt bodies (including zonoids) is due to Boltyanski [14]. (See
also [17] for a somewhat sharper result on the illumination numbers of belt bodies.)

Theorem 4.2. Let P be an arbitrary d-dimensional belt polytope (resp., belt
body) different from a parallelotope in E

d, d ≥ 2. Then

I(P) ≤ 3 · 2d−2.

Now, let K be an arbitrary convex body in E
d and let T (K) be the family of

all translates of K in E
d. The Helly dimension him(K) of K is the smallest integer h

such that for any finite family F ⊂ T (K) with cardF > h+1 the following assertion
holds: if every h + 1 members of F have a point in common, then all the members
of F have a point in common. As it is well-known 1 ≤ him(K) ≤ d. Using this
notion Boltyanski [16] gave a proof of the following theorem.

Theorem 4.3. Let K be a convex body with him(K) = 2 in E
d, d ≥ 3. Then

I(K) ≤ 2d − 2d−2.

In fact, in [16] Boltyanski concejtures the following more general inequality.

Conjecture 4.4. Let K be a convex body with him(K) = h > 2 in E
d, d ≥ 3.

Then

I(K) ≤ 2d − 2d−h.

K. Bezdek and Bisztriczky gave a proof of the Illumination Conjecture for
the class of dual cyclic polytopes in [10]. Their upper bound for the illumination
numbers of dual cyclic polytopes has been improved by Talata in [34]. So, we have
the following statement.

Theorem 4.5. The illumination number of any d-dimensional dual cyclic
polytope is at most (d+1)2

2 for all d ≥ 2.

In connection with the results of this section quite a number of questions
remain open including the following ones.
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Problem 4.6.
(i) What are the illumination numbers of cyclic polytopes?
(ii) Can one give a proof of the Separation Conjecture for zonotopes (resp., belt

polytopes)?
(iii) Is there a way to prove the Separation Conjecture for 0/1−polytopes?

5. The Generalized Illumination Conjecture on the successive
illumination numbers of convex bodies

Let K be a convex body in E
d, d ≥ 2. The following definitions were in-

troduced by K. Bezdek in [9] (see also [2] that introduced the concept of the first
definition below).

Let L ⊂ E
d \K be an affine subspace of dimension l, 0 ≤ l ≤ d−1. Then L il-

luminates the boundary point q of K if there exists a point p of L that illuminates q
on the boundary of K. Moreover, we say that the affine subspaces L1, L2, . . . , Ln of
dimension l with Li ⊂ E

d\K, 1 ≤ i ≤ n illuminate K if every boundary point of K is
illuminated by at least one of the affine subspaces L1, L2, . . . , Ln. Finally, let Il(K)
be the smallest positive integer n for which there exist n affine subspaces of dimen-
sion l say, L1, L2, . . . , Ln such that Li ⊂ E

d \K for all 1 ≤ i ≤ n and L1, L2, . . . , Ln

illuminate K. Il(K) is called the l-dimensional illumination number of K and the
sequence I0(K), I1(K), . . . , Id−2(K), Id−1(K) is called the successive illumination
numbers of K. Obviously, I0(K) ≥ I1(K) ≥ · · · ≥ Id−2(K) ≥ Id−1(K) = 2.

Let S
d−1 be the unit sphere centered at the origin of E

d. Let HSl ⊂ S
d−1 be

an l-dimensional open great-hemisphere of S
d−1, where 0 ≤ l ≤ d − 1. Then HSl

illuminates the boundary point q of K if there exists a unit vector v ∈ HSl that
illuminates q in other words, for which it is true that the half line emanating from
q and having direction vector v intersects the interior of K. Moreover, we say that
the l-dimensional open great-hemispheres HSl

1, HSl
2, . . . , HSl

n of S
d−1 illuminate

K if each boundary point of K is illuminated by at least one of the open great-
hemispheres HSl

1, HSl
2, . . . , HSl

n. Finally, let I ′l (K) be the smallest number of l-
dimensional open great-hemispheres of S

d−1 that illuminate K. Obviously, I ′0(K) ≥
I ′1(K) ≥ · · · ≥ I ′d−2(K) ≥ I ′d−1(K) = 2.

Let L ⊂ E
d be a linear subspace of dimension l, 0 ≤ l ≤ d− 1 in E

d. The l-th
order circumscribed cylinder of K generated by L is the union of translates of L that
have a nonempty intersection with K. Then let Cl(K) be the smallest number of
translates of the interiors of some l-th order circumscribed cylinders of K the union
of which contains K. Obviously, C0(K) ≥ C1(K) ≥ · · · ≥ Cd−2(K) ≥ Cd−1(K) = 2.

The following theorem, which was proved in [9], collects the basic information
known about the quantities just introduced. (The inequality (ii) was in fact, first
proved in [4] and reproved in a different way in [7].)

Theorem 5.1. Let K be an arbitrary convex body of E
d.

(i) Then Il(K) = I ′l (K) = Cl(K) for all 0 ≤ l ≤ d − 1;
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(ii)
⌈

d+1
l+1

⌉
≤ Il(K) for all 0 ≤ l ≤ d − 1 with equality for any smooth K;

(iii) Id−2(K) = 2 for all d ≥ 3.

The Generalized Illumination Conjecture was phraised by K. Bezdek in [9] as
follows.

Conjecture 5.2. Let K be an arbitrary convex body and C be a d-dimen-
sional affine cube in E

d. Then

Il(K) ≤ Il(C)

holds for all 0 ≤ l ≤ d − 1.

The above conjecture was proved for zonotopes and zonoids in [9]. The results
of part (i) and (ii) of the next theorem are taken from [9], where they were proved
for zonotopes (resp., zonoids). However, in the light of the more recent works in
[14] and [17] these results extend to the class of belt polytopes (resp., belt bodies)
in a rather straightforward way so, we present them in that form. The lower bound
of part (iii) was proved in [9] and the upper bound of part (iii) is the major result
of [23]. Finally, part (iv) was proved in [8].

Theorem 5.3. Let K′ be a belt polytope (resp., belt body) and C be a d-di-
mensional affine cube in E

d. Then

(i) Il(K′) ≤ Il(C) holds for all 0 ≤ l ≤ d − 1;
(ii) I� d

2 �(K
′) = · · · = Id−1(K′) = 2;

(iii) 2d∑ l
i=0 (d

i)
≤ Il(C) ≤ K(d, l), where K(d, l) denotes the minimum cardinality of

binary codes of length d with covering radius l, 0 ≤ l ≤ d − 1.
(iv) I1(C) = 2d

d+1 provided that d + 1 = 2m.

We close this section with a conjecture of Kiss ([23]) on the illumination
numbers of affine cubes and call the attention of the reader to the problem of proving
the Generalized Illumination Conjecture in a stronger form for convex bodies of
constant width in E

4.

Conjecture 5.4. Let C be a d-dimensional affine cube in E
d. Then Il(C) =

K(d, l), where K(d, l) denotes the minimum cardinality of binary codes of length d
with covering radius l, 0 ≤ l ≤ d − 1.

Conjecture 5.5. Let K′′ be a convex body of constant width in E
4. Then

I0(K′′) ≤ 8 (and so, I1(K′′) ≤ 4).
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6. Estimating the illumination parameter as well as
the vertex index of convex bodies

Let Ko be a convex body in E
d, d ≥ 2 symmetric about the origin o of E

d.
Then Ko defines the norm

‖x‖Ko
= inf{λ | x ∈ λKo}

of any x ∈ E
d (with respect to Ko).

The illumination parameter ill(Ko) of Ko was introduced by K. Bezdek in [5]
as follows.

ill(Ko) = inf

{∑
i

‖pi‖Ko

∣∣∣ {pi} illuminates Ko

}
.

Clearly this insures that far-away light sources are penalised. The following
theorem was proved in [5]. In the same paper the problem of finding the higher
dimensional analogue of that claim was raised as well.

Theorem 6.1. If Ko is a centrally symmetric convex domain of E
2, then

ill(Ko) ≤ 6 with equality for any affine regular convex hexagon.

Motivated by the notion of the illumination parameter Swanepoel [33] intro-
duced the covering parameter cov(Ko) of Ko in the following way.

cov(Ko) = inf

{∑
i

(1 − λi)−1
∣∣∣ Ko ⊂

⋃
i

(λiKo + ti), 0 < λi < 1, ti ∈ E
d

}
.

In this way homothets almost as large as Ko are penalised. Swanepoel [33]
proved the following fundamental inequalities.

Theorem 6.2. For any o-symmetric convex body Ko in E
d, d ≥ 2 we have

that

(i) ill(Ko) ≤ 2cov(Ko) ≤ O
(
2dd2 ln d

)
;

(ii) v(Ko) ≤ ill(Ko), where v(Ko) is the maximum possible degree of a vertex in
a Ko-Steiner minimal tree.

Based on the above theorems, it is natural to study the following rather ba-
sic question (the part of which on the upper bound was first asked by Swanepoel
[33]). This problem one can regard as the quantitative analogue of the Illumination
Conjecture.

Problem 6.3. Prove or disprove that the inequalities 2d ≤ ill(Ko) ≤ O
(
2d

)
hold for all o-symmetric convex bodies Ko of E

d.



the illumination conjecture and its extensions 67

The following very recent related concept was introduced by K. Bezdek and
Litvak in [11]. Let Ko be a convex body in E

d, d ≥ 2 symmetric about the origin o
of E

d. Now, we place Ko in a convex polytope, say P, with vertices p1,p2, . . . ,pn,
where n ≥ d+1. Then it is natural to measure the closeness of the vertex set of P to
the origin o by computing

∑
1≤i≤n ‖pi‖Ko

, where ‖x‖Ko
= inf{λ > 0 | x ∈ λKo}

denotes the norm of x ∈ E
d with respect to Ko. Finally, we look for the convex

polytope that contains Ko and whose vertex set has the smallest possible closeness
to o and introduce the vertex index, vein(Ko), of Ko as follows:

vein(Ko) = inf

{∑
i

‖pi‖Ko

∣∣∣ Ko ⊂ conv{pi}
}

.

We note that vein(Ko) is an affine invariant quantity assigned to Ko, i.e. if
A : E

d → E
d is an (invertible) linear map, then vein(Ko) = vein(A(Ko)). Moreover,

it is also clear that

vein(Ko) ≤ ill(Ko)

holds for any o-symmetric convex body Ko in E
d with equality for smooth convex

bodies.
The main results of [11] are lower and upper estimates on vein(Ko). This

question seems to raise a new fundamental problem that is connected to some im-
portant problems of analysis and geometry including the problem of estimating the
illumination parameters of convex bodies, the problem of covering a convex body
by another one and the problem of estimating the Banach–Mazur distances between
convex bodies. Next we summarize the major results of [11].

Theorem 6.4. For every d ≥ 2 one has

d3/2

√
2πe

≤ vein(Bd
2) ≤ 2d3/2,

where Bd
2 denotes the Euclidean unit ball in E

d. Moreover, if d = 2, 3 then
vein(Bd

2) = 2d3/2.

In connection with this result K. Bezdek and Litvak [11] conjecture the fol-
lowing.

Conjecture 6.5. For every d ≥ 2 one has

vein
(
Bd

2

)
= 2d3/2.

It is proved in [11] that the above conjecture implies the inequality 2d ≤
vein(Ko) for any o-symmetric convex body Ko in E

d with equality for d-dimensional
crosspolytopes.

We finish our survey paper with the following general result of K. Bezdek and
Litvak [11].
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Theorem 6.6. There are absolute constants c > 0, C > 0 such that for every
d ≥ 2 and every 0-symmetric convex body Ko in E

d one has

d3/2

√
2πe ovr(Ko)

≤ vein(Ko) ≤ C d3/2 ln(2d),

where ovr(Ko) = inf (vol(E)/ vol(Ko))1/d is the outer volume ratio of Ko with the
infimum taken over all ellipsoids E ⊃ Ko and with vol(·) denoting the volume.
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[20] P. Erdős and C. A. Rogers, The star number of covering a space with convex
bodies, Acta Arith. 9 (1964), 41–45.

[21] I. Gohberg and A. Markus, A problem on covering of convex figures by similar
figures, Izv. Mold. Fil. Akad. Nauk. SSSR 10 (1960), 87–90.
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