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Abstract

By applying the majorizing measure method, we obtain a new estimate
of the supremum of random trigonometric sums. We show that this estimate
is strictly stronger than the well-known Salem–Zygmund’s estimate, as well as
recent general formulations of it obtained by the author. This improvement
is obtained by considering the case when the characters are indexed on sub-
exponentially growing sequences of integers. Several remarkable examples are
studied.

1. Introduction

Let T = [0, 1[= R/Z be the torus endowed with the normalized Lebesgue
measure m. Let p = (pk)k≥1, θ = (θk)k≥1 be two sequences of reals; and denote by
p̃N = max{[2+ |pk|], 1 ≤ k ≤ N}, where [x] stands for the integer part of x. Let also
X = {X1, X2, . . .} and Y = {Y1, Y2, . . .} be two sequences of real random variables
defined on a common probability space (Ω,A,P). We will be mainly interested in
the cases when X and Y are sequences of centered, independent random variables.
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Consider for N = 1, 2 . . . the sequence of random trigonometric sums

ZN(ω, t) =
N∑
k=1

θk

{
Xk(ω) cos 2πpkt+ Yk(ω) sin 2πpkt

}
,

QN := sup
0≤t≤1

|ZN (t)| .
(1)

A fundamental problem consists in the search of good estimates for the supre-
mum QN . These sort of estimates are moreover particularly relevant in ergodic
theory, where by means of the spectral lemma, problems of evaluating norms are
reduced to Fourier analysis questions. The purpose of this paper is to investigate
this problem by developing an approach based on the majorizing measure method.
This method initiated by Garsia–Rodemich–Rumsey [GRR] has been since exten-
sively studied and developed under the main impulse of Talagrand. We refer for this
work to his fundamental paper [T]. As it will be seen, the application of this method
to these questions turns to be elementary, allowing to obtain bounds for QN that
are proved to be as good as the previous ones known, and strictly sharper when p
grows faster than polynomially. This case is a critical case, since (see Remark 3.-2))
the classical estimate of Salem–Zygmund as well as the general form of it showed in
[We] is trivial when p grows geometrically. This improvement obtained in Theorem 4
(Section 3) is the main contribution of the paper. To illustrate the strength of the
result we obtain, consider the following example in which p grows sub-exponentially.
Let X and Y be two mutually independent Rademacher sequences; let β ≥ 1 and
0 ≤ α < 1 and put

ζN (ω, t) =
N∑
k=1

1
kβ/2

{
Xk(ω) cos 2πek

1−α

t+ Yk(ω) sin 2πek
1−α

t
}
.

We consider in what follows the Orlicz space LG(P) with Orlicz norm ‖.‖G (see
Section 2) associated to the Young function G(t) = exp(t2) − 1. If β > 1, applying
Salem–Zygmund’s inequality (or the general form of it given in Theorem 1) provides∥∥∥∥sup

t∈T
|ζN (t)|

∥∥∥∥
G

≤ C(α, β)N
1−α

2 ,

whereas by Theorem 4 (Section 3), we get

∥∥∥∥sup
t∈T

|ζN (t)|
∥∥∥∥
G

=



O

(
N1−(β+α

2 )
)

if β + α < 2,

O (logN) if β + α = 2,

O (1) if β + α > 2.

If β = 1, Theorem 4 still provides better estimates (see Example 1 in Section 4).
Several important classes of examples are studied. Finally, an application to uniform
convergence of Rademacher random Fourier series in given. In view of further
discussions, comparing results, and also in order to introduce the necessary data
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to make these comparizons possible, we begin by recalling in the next section some
results in [We] and give a brief idea of proof.

2. Applying the metric entropy method

An approach based on the metric entropy method has been proposed in [We].
It is showed that the study amounts to applying the metric entropy method in
the simplest case: the real line provided with the usual distance. We obtained a
general estimate ([We], Theorem 1), which not only applies to the case where X ,
Y are iid sequences, but also when these are bounded martingales differences or
Gaussian stationary sequences with finite decoupling coefficients (see Examples 1,
2, 3 therein). As a particular case, we recovered the well-known estimate of Salem–
Zygmund [SZ : Theorem 7]. Also our proof presents an important difference: we do
not use Bernstein’s inequality for polynomials unlike in [SZ] or [K]. Although stated
here in a slightly more general form than initially, they are proved through exactly
the same line of reasoning than in the quoted paper. We will therefore only briefly
sketch the idea of proof. Put for s, t ∈ [0, 1]

dN (s, t) = 2

(
N∑
k=1

θ2k sin2 πpk(s− t)

)1/2

. (2)

When X and Y are independent random variables with EXk = EYk = 0 and
EX2

k = EY 2
k = 1, then it is easily seen by means of elementary computation that

dN (s, t) = ‖ZN(s) − ZN (t)‖2. Introduce now an assumption about the increments
of the process ZN . Let Φ : R → R+ be a Young function (convex, even and
Φ(0) = 0, limx→∞ Φ(x) = ∞) with associated Orlicz’s norm ‖f‖Φ = inf{α > 0 :
EΦ(|f |/α)≤ 1}, f ∈ L0(P). Let LΦ be the subspace of L0(P) consisting with
elements f verifying ‖f‖Φ < ∞; then LΦ endowed with norm ‖f‖Φ is a Banach
space. If Φ(t) = |t|p, LΦ is the usual Lp space.

We assume that for some constant B

∀N ≥ 1, ∀0 ≤ s, t ≤ 1,



‖ZN (s) − ZN(t)‖G ≤ BdN (s, t)

‖ZN (s)‖G ≤ B

(
N∑
k=1

θ2k

)1/2

.
(3)

These assumptions are satisfied when X and Y are independent Rademacher or
Gaussian random variables; but also in other interesting cases (see Examples 1-3
in [We]).

A standard but important result (see for instance [T] Theorem 1.2 p.2) from
the metric entropy method can be stated as follows: let (E, d) be a pseudo-metric
space; by pseudo-metric we mean that d satisfies the properties of a metric, except
for the implication: d(s, t) = 0 ⇒ s = t. For any real u > 0, the entropy number
N(E, d, u) is the smallest (possibly infinite) covering number of E by open d-balls
of radius u.
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Auxiliary result. Let E be a countable set provided with a pseudo-metric d,
and let X = {X(ω, t), ω ∈ Ω, t ∈ E} be a family of random variables indexed on E
and satisfying the following increment condition:

∀s, t ∈ E,
∥∥Xs −Xt

∥∥
Φ
≤ d(s, t). (4)

Assume that the integral

IΦ(E, d) =
∫ diam(E,d)

0

Φ−1
(
N(E, d, u)

)
du (5)

is convergent. Then X is almost surely d-continuous, and there exists a universal
constant C such that: ∥∥∥∥ sup

s,t∈E
|Xs −Xt |

∥∥∥∥
Φ

≤ C IΦ(E, d). (6)

Only (6) will be used – note that ZN is continuous – as follows: let S be a subdi-
vision of T (later we will choose S =

{
j

4p̃n
, j = 0, 1, . . . , 4p̃n

}
). One can compare

supt∈T |ZN (t)| with supt∈S |ZN(t)|, next control the error by estimating for each
s ∈ S, supt∈V (s) |ZN(t) − ZN(s)| where V (s) is some suitable neighbourhood of s.
This last point is carried out by means of the above mentionned result. This is
exactly the idea of proof of Theorem 1 in [We], which we slightly refine below.

Theorem 1. Under assumption (3), there exists a constant C (which is a
function of the constant B from (3) only) such that for any integer N ≥ 1,

‖QN‖G ≤ C (log p̃N )1/2
(

N∑
k=1

θ2k

)1/2

.

The following random exponential sums will be also considered in this work.
Let U = (Uk)∞k=1 be a sequence of independent, centered real random variables. Put

Z ′
N(ω, t) =

N∑
k=1

Uk(ω)e2iπpkt, Q′
N := sup

0≤t≤1
|Z ′
N (t)| . (1′)

By using a Gaussian randomization (see for instance Lemma 2.3 p. 269 in [PSW]),
we have

EQ′
N ≤ √

8πEQ∗
N , (7)

where Q∗
N = sup0≤t≤1 |Z∗

N(t)| and Z∗
N is defined by (1) with X , Y iid N (0, 1)

sequences, p = U , and X , Y, U mutually independent. The following corollary is
then easily deduced from Theorem 1.
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Corollary 2. Let U = (Uk)∞k=1 be a sequence of independent, centered real
random variables. Then

E sup
0≤t≤1

∣∣∣∣∣
N∑
k=1

Uke
2iπpkt

∣∣∣∣∣ ≤ Cmin


(log p̃N )1/2

(
N∑
k=1

EU2
k

)1/2

,
N∑
k=1

E|Uk|

 ,

where C is a universal constant.

Remarks 3. Some comments are necessary, the two first are already men-
tionned in [We], but are of interest in what follows.

1) First of all, the estimate of Theorem 1 is optimal. Indeed, assume that
Xn = ξ2n, Yn = ξ2n+1 where (ξn)n≥0 is a sequence of independent Rademacher
random variables. Assume also that θk = 1 and pk = k (k ≥ 1). It follows from
(50) and Fatou lemma that we have

∀N ≥ 1, E QN ≥ C (N logN)1/2 ,

where C is a universal constant.
2) Next, both estimates are only interesting when (pm)m≥1 grows at most

geometrically. Consider for instance Corollary 2 and observe indeed by means of
Cauchy–Schwarz’s inequality, that∣∣∑M

k=N+1 Uke
2iπpkt

∣∣(
log p̄M

∑M
k=N+1 U

2
k

)1/2
≤

∑M
k=N+1 |Uk|(

log p̄M
∑M
k=N+1 U

2
k

)1/2
≤ (M −N)1/2

(log p̄M )1/2
.

So that if p is λ-lacunary (λ > 1), that is pm+1 ≥ λpm for all m ≥ 1, the estimate
is trivial. This naturally raises the following question: when the sequence p grows
faster than polynomially, what is the correct order of ‖QN‖∞? We will see in this
paper that the rate of growth of the sequence p indeed plays a role and explain how
a better estimate can be obtained in that case.

3) One might think that the bound (log p̃N)1/2
(∑N

k=1 EU2
k

)1/2

in Corollary 2

is always better than the trivial bound
∑N

k=1 E|Uk|. This is however not the case.
Consider the following example. We assume that each random variable Uk takes
only two values as follows:

Uk =

{
1/k with probability 1 − εk,

−(1 − εk)/(kεk) with probability εk,

where 0 < εk < 1 and εk decreases to 0. Then EUk = 0, EU2
k = (1 − εk)/k2 +

(1 − εk)2/(k2εk). Assume that limk→∞ k2εk = 1. Then EU2
k ∼ 1 as k tends to

infinity. And so
(
log p̃N

∑N
k=1 EU2

k

)1/2

∼ (N log p̃N )1/2, as N tends to infinity.

But E|Uk| = 2(1 − εk)/k, so that
∑N

k=1 E|Uk| ∼ C logN , which provides a much
better bound.
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4) The same proof combined with a simple form of the Borell–Sudakov–
Tsirelson inequality (operating the same way as in [We] p. 451) also serves to es-
tablish a multidimensional version of Theorem 1. Let τ be some positive integer.
Let (pk)k≥1 be a sequence of elements of Rτ , and denote by p̃N = max

{ [
2 + pik

]
,

1 ≤ k ≤ N , 1 ≤ i ≤ τ
}
; here we have denoted pk = (p1

k, . . . ,p
τ
k). For t ∈ Tτ , define

analogously to (1)

ZτN (ω, t) =
N∑
k=1

θk

{
Xk(ω) cos 2π〈pk, t〉 + Yk(ω) sin 2π〈pk, t〉

}
,

QτN = sup
t∈Tτ

|ZτN (t)| .

The corresponding pseudo-metric to (3) is defined for s, t ∈ Tτ by

dN,τ (s, t) = 2

(
N∑
k=1

θ2k sin2 π〈pk, t − s〉
)1/2

, (2’)

When X and Y are independent random variables with EXk = EYk = 0 and
EX2

k = EY 2
k = 1, then E

(
ZτN (s) − ZτN (t)

)2 = d2
N,τ(s, t). Analogously, we assume

that for some constant B

∀N ≥ 1, ∀s, t ∈ Tτ ,



‖ZN (s) − ZN(t)‖G ≤ BdN,τ (s, t)

‖ZN (s)‖G ≤ B

(
N∑
k=1

θ2k

)1/2

.
(3’)

Then, under assumption (3’) there exists a constant C (which is a function of τ and
the constant B from (3’) only) such that for any integer N ≥ 1,

‖QτN‖G ≤ C (τ log p̃N )1/2
(

N∑
k=1

θ2k

)1/2

and also,

E sup
t∈Tτ

∣∣∣∣∣
N∑
k=1

Uke
2iπ〈pk,t〉

∣∣∣∣∣
≤ Cmin


(τ log p̃N )1/2

(
N∑
k=1

EU2
k

)1/2

,
N∑
k=1

E|Uk|

 ,

(8)

where C is a universal constant.
5) The fact that the sequence p takes values in R rather than in Z does

not represent at this stage such a substantial gain since periodicity is destroyed
for noninteger valued sequences p, and an estimation of the supremum over R

would be more suitable than over T in that case. However, the same argument
of proof allows to estimate the supremum over [−A,A], A arbitrary at the price



on a stronger form of salem–zygmund’s inequality. . . 79

of an extra factor A in the right hand side of Theorem 1 and Corollary 2: e.g.∥∥sup−A≤t≤A |Zn(t)|
∥∥
G

≤ C
(
log(Ap̃N ).

∑N
k=1 θ

2
k

)1/2

. See also Example 5 in Sec-
tion 4 where a problem of evaluating the sup-norm over R is reduced to a problem
of evaluating the sup-norm over Tν for suitable ν; and moreover an estimation of
the sup-norm over R is obtained under a diophantine type condition regarding the
sequence p.

Sketch of proof. From the trivial inequality | sinx| ≤ (|x| ∧ 1), we get

d2
N (s, t) ≤ 4π2|s − t|2 ∑N

k=1 θ
2
k

(
p2
k ∧ 1

π2|s−t|2
)
. Now divide T in sub-intervals:

IN,j =
[
j−1
4p̃N

, j
4p̃N

[
, j = 1, 2, . . . , 4p̃N , and observe for s, t ∈ IN,j that dN (s, t) ≤

2π|s− t|
(∑N

k=1 θ
2
kp

2
k

)1/2

. Put for j = 1, 2, . . . , 4p̃N and t ∈ IN,j,

YN (t) =
[
ZN (t) − ZN

(
j − 1
4p̃N

)] /
2π

(
N∑
k=1

θ2kp
2
k

)1/2

.

Then

QN ≤ sup
1≤j≤4p̃N

∣∣∣∣ZN
(
j − 1
4p̃N

)∣∣∣∣ + 2π

(
N∑
k=1

θ2kp
2
k

)1/2

sup
1≤j≤4p̃N

sup
t∈IN,j

|YN (t)| . (9)

Using the classical inequality (see for instance [GPW], inequality (3.5) p.62)):∥∥∥∥ sup
1≤j≤n

|fj |
∥∥∥∥
G

≤ ([2/ log 2] logn)1/2 sup
1≤j≤n

∥∥|fj |∥∥G,
we get

‖QN‖G
([2/ log 2] log 4p̃N)

1
2

≤ sup
1≤j≤4p̃N

∥∥∥∥ZN
(
j − 1
4p̃N

)∥∥∥∥
G

+ 2π

(
N∑
k=1

θ2kp
2
k

)1/2

. sup
1≤j≤4p̃N

∥∥∥∥∥ sup
t∈IN,j

|YN (t)|
∥∥∥∥∥
G

≤ B

(
N∑
k=1

θ2k

)1/2

+ 2π

(
N∑
k=1

θ2kp
2
k

)1/2

. sup
1≤j≤4p̃N

∥∥∥∥∥ sup
t∈IN,j

|YN (t)|
∥∥∥∥∥
G

As for 0 < u ≤ 1/4p̃N , N(IN,j , | . |, u) ≤ 1 +
[

1/4p̃N

2u

]
≤ 1 + 1/4p̃N

2u ≤ 1
2up̃N

, we also
have

I(IN,j , | . |) ≤
∫ 1/4p̃N

0

√
log(1/2up̃N) du ≤ C/p̃N . (10)
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In view of the auxiliary result and since Y
(
j−1
4p̃N

)
= 0, it follows that for any count-

able subset E of IN,j∥∥∥∥ sup
t∈E

|YN (t)|
∥∥∥∥
G

≤
∥∥∥∥ sup
s,t∈E

|YN (s) − YN (t)|
∥∥∥∥
G

≤ C/p̃N , (11)

where C depends on B only. By continuity of ZN(t, .), we have in fact∥∥∥ supt∈IN,j
|YN (t)|

∥∥∥
G
≤ C/p̃N . We thus obtain

‖QN‖G ≤ C (log 4p̃N)
1
2



(

N∑
k=1

θ2k

)1/2

+
1
p̃N

(
N∑
k=1

θ2kp
2
k

)1/2



≤ C

(
log p̃N

N∑
k=1

θ2k

)1/2

,

as required. �

It follows from the above proof that ‖QN‖G is controlled by two different
quantities:

aN =

(
N∑
k=1

θ2k

)1/2

, bN =
1
p̃N

(
N∑
k=1

θ2kp
2
k

)1/2

.

Obviously bN ≤ aN . But bN is not necessary of some order as aN ; we may have
bN = o(aN ). Indeed, if p increases very fast, say exponentially, and θ no more
than polynomially, then the right order of bN can be sup1≤k≤N |θk|, which is quite
different from aN . This is important to observe, in fact this was the starting point
of this work. So, the natural question to be drawn from it is: which from aN and
bN really reflects the right size’s order of ‖QN‖G? The answer turns to be a bit
subtle. This will be clarified in section 4.

3. Applying the majorizing measure method

From now on, we assume for simplicity that the sequence p is an increasing
sequence of positive reals greater than 1. By using the majorizing measure method,
another estimate for the supremum of ZN can be obtained. Put for r = 1, . . . , N

ε2r = p−2
r

r∑
k=1

θ2kp
2
k +

N∑
k=r+1

θ2k, (12)

and observe first that the sequence εr, r = 1, . . . N is decreasing. Indeed,

ε2r = p−2
r

r∑
k=1

θ2kp
2
k +

N∑
k=r+1

θ2k > p−2
r+1

r∑
k=1

θ2kp
2
k +

θ2r+1p
2
r+1

p2
r+1

+
N∑

k=r+2

θ2k = ε2r+1.
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Moreover ε21 =
∑N

k=1 θ
2
k = a2

N , whereas ε2N = p−2
N

∑N
k=1 θ

2
kp

2
k =

(
[2+pN ]
pN

)2

b2N .

Theorem 4. Under assumption (3), there exist constants Ci, i = 0, 1, 2
(which are functions of the constant B from (3) only) such that for any integer
N ≥ 1,

∥∥∥∥ sup
s,t∈T

|ZN (s) − ZN (t)|
∥∥∥∥
G

≤ C0

{
εN

√
log pN +

N∑
r=2

(εr−1 − εr)
√

log pr

}
,

and

∥∥∥∥sup
t∈T

|ZN (t)|
∥∥∥∥
G

≤ C1ε1 + C2

{
εN

√
log pN +

N∑
r=2

(εr−1 − εr)
√

log pr

}
.

The last inequality follows from the first and from assumption (3), by the tri-
angle inequality. The right-hand side being clearly bounded above by max(C1, C2) ·
ε1
√

log pN , it follows that Theorem 4 contains Theorem 1. Before giving the proof,
we are first going to establish a lemma. Let ψ(x) =

√
log(x+ 1), x ≥ 0.

Lemma 5. For any positive integer N ,

sup
α∈R

∫ 2ε1

0

ψ

(
1

m (BdN (α, ε))

)
dε ≤ CεNψ(πpN ) + 2

N∑
r=2

(
εr−1 − εr

)
ψ(πpr),

where BdN (α, ε) is the dN -ball of radius ε centered at point α, and C is an absolute
constant.

Proof. Let 1 ≤ r < N and let α, β ∈ R be such that 1
πpr+1

≤ |α− β| < 1
πpr

.
Then,

d2
N (α, β) ≤ 4

N∑
k=1

θ2k
(
(πpk|α− β|)2 ∧ 1

)

= 4

(
r∑

k=1

π2θ2kp
2
k

)
|α− β|2 + 4

N∑
k=r+1

θ2k

≤ 4p−2
r

r∑
k=1

θ2kp
2
k + 4

N∑
k=r+1

θ2k = 4ε2r.

(13)
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For r = N , ε2r = p−2
N

∑N
k=1 θ

2
kp

2
k. Now, if |α− β| < 1

πpN
then

d2
N (α, β) ≤ 4

N∑
k=1

θ2k
(
(πpk|α− β|)2 ∧ 1

)

= 4

(
N∑
k=1

π2θ2kp
2
k

)
|α− β|2 ≤ 4ε2N .

(14)

Let 1 ≤ r0 < N ; then the ball BdN (α, 2εr0) contains the interval
]
α − 1

πpr0
,

α+ 1
πpr0

[
. Hence, m

(
BdN (α, εr0)

) ≥ 1
πpr0

. Therefore

∫ 2ε1

2εN

ψ

(
1

m
(
BdN (α, ε)

)
)
dε =

N∑
r0=2

∫ 2εr0−1

2εr0

ψ

(
1

m
(
BdN (α, ε)

)
)
dε

≤ 2
N∑

r0=2

(
εr0−1 − εr0

)
ψ(πpr0).

(15)

Let now 0 < ε ≤ 2εN and 0 < τ ≤ 1. Let |α−β| < τ/πpN . Then, dN (α, β) < 2τεN .

The ball BdN (α, τεN ) contains the interval
]
α− τ

πpN
, α+ τ

πpN

[
. And,

∫ 2εN

0

ψ

(
1

m
(
BdN (α, ε)

)
)
dε = 2εN

∫ 1

0

ψ

(
1

m
(
BdN (α, τεN )

)
)
dτ

≤ 2εN
∫ 1

0

ψ
(πpN

τ

)
dτ ≤ CεNψ(πpN ),

(16)

since
√

(log(1 + πpN/τ)) ≤
√

(log[(1 + πpN )(1 + 1/τ)] ≤ √
(log(1 + πpN ) + 1/

√
τ .

Thus,∫ 2ε1

0

ψ

(
1

m
(
BdN (α, ε)

)
)
dε ≤ CεNψ(πpN ) + 2

N∑
r=2

(
εr−1 − εr

)
ψ(πpr). (17)

Since the bound in (17) is independent from α ∈ R, we have thus proved the Lemma.
�

Note that if ψ is another non decreasing function such that for u, v ≥ 1,
ψ(uv) ≤ Kψ(u)ψ(v) and

∫ 1

0
ψ(u−1)du <∞, we have also

sup
α∈R

∫ 2ε1

0

ψ

(
1

m
(
BdN (α, ε)

)
)
dε ≤ CψεNψ(πpN ) + 2

N∑
r=2

(
εr−1 − εr

)
ψ(πpr),

where Cψ depends on ψ only.
Now, recall some facts from majorizing measures. Let (T, d) be a compact

metric space and denote by D the diameter of T . For x ∈ T and ε > 0, let B(x, ε)
denote the open d-ball of T with center x and radius ε. Let X = {Xt, t ∈ T } be a
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stochastic process (namely a collection of random variables indexed by T ) defined on
some probability space (Ω,A,P). Let also Φ(x) =

∫ x
0
φ(t)dt, where φ : R+ → R+

is strictly increasing continuous, φ(0) = 0, be a Young function. Let Ψ be the
conjugate Young function of Φ: Ψ(x) =

∫ x
0 φ

−1(t)dt. We say that Ψ satisfies the
∆2-condition if for some constant C, and all x ≥ 1, we have Ψ(2x) ≤ CΨ(x).
Consider the increment condition

‖Xs −Xt‖Φ ≤ d(s, t) (s, t ∈ T ) (18)

Assume Ψ satisfies the ∆2-condition and that there exists a probability measure
(a majorizing measure) µ on T such that:

sup
x∈T

∫ D

0

Ψ
(

1
µ(B(x, ε))

)
dε = M. (19)

It follows from Theorem 4.6 p. 27 in [T], that each separable process satisfying the
increment condition (18), also satisfies∥∥∥∥ sup

s,t∈T
(Xs −Xt)

∥∥∥∥
Φ

≤ KΦM, (20)

where KΦ depends on Φ only. A stochastic process is separable (with respect to
the metric d), if there exists a countable d-dense subset T0 of T such that for each
t in T , Xt

a.s.= lims→t,s∈T0 Xs. In our case this last condition is trivially satisfied
since ZN is continuous everywhere, thus separable.

Proof of Theorem 4. By Lemma 5, m is a majorizing measure for (T, d)
and Φ = G, and so condition (19) is realized. Theorem 4 just follows from estimates
(20) and(3). �

Remark. If p′ is an increasing sequence of positive reals such that pk ≤ p′k
for all k, then

d2
N (α, β) ≤ 4

N∑
k=1

θ2k
(
(πpk|α− β|)2 ∧ 1

) ≤ 4
N∑
k=1

θ2k
(
(πp′k|α− β|)2 ∧ 1

)
,

= 4

(
r∑

k=1

π2θ2k(p
′
k)

2

)
|α− β|2 + 4

N∑
k=r+1

θ2k

≤ 4(p′r)
−2

r∑
k=1

θ2k(p
′
k)

2 + 4
N∑

k=r+1

θ2k := 4(ε′r)
2.

Consequently the bound in p, θ given in Theorem 4 is less than the same bound
expressed with p′, θ. We will use this trivial observation in the next Section as
follows: if pk = [p′k], where [x] stands for the integer part of x; in order to apply
Theorem 4, it is enough to calculate quantities related to θ and p′.
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4. Some examples and discussion

We begin with studying two examples, the first will show that Theorem 4 is
strictly better than Theorem 1. On the second example, both Theorems provide
the same estimate. However this example will give a hint for another reading of
estimate in Theorem 1, leading to exhibit large classes of sequences p, θ for which
more handable uniform estimates of the sup-norm are possible to obtain.

Example 1 (sub-exponential case). Consider two increasing differentiable
functions ψ, ϕ : R+ → [1,∞[. We define p and θ as follows: pk = [exp{k/2ψ(k)}],
θ2k = 1/ϕ(k). We assume that

xψ′(x)
ψ(x)

∼ c ∈ [0, 1[,
ψ(x)ϕ′(x)
ϕ(x)

= o(1), ψ′(x) = o(1) (x→ ∞). (21)

Note that (pr/pr−1) ∼ 1 if ψ(x) ↑ ∞ as x tends to infinity, and that in any case
(pr/pr−1) ≤ C <∞, C independent of r if the values of ψ(x) are bounded below by
some strictly positive constant. The Lemma below in which we put Φ(y) =

∫ y
1

du
ϕ(u)

is elementary.

Lemma 6. The following estimates in which C is an absolute constant, are
valid when N, r → ∞,



1) p−2
r

r∑
k=1

θ2kp
2
k ≤ C

ψ(r)
ϕ(r)

,

2) ε2r−1 − ε2r =
[
p−2
r−1 − p−2

r

] r−1∑
k=1

θ2kp
2
k ≤ C

1
ϕ(r)

,

3) ε2r ≥ Φ(N) − Φ(r + 1),

4)
N∑
k=2

(εk−1 − εk)
√

log pk ≤ C

N∑
k=2

(
k

ϕ(k)2ψ(k)[Φ(N) − Φ(k)]

)1/2

,

5)
N−2∑
k=2

(
k

ϕ(k)2ψ(k)[Φ(N) − Φ(k)]

)1/2

≤ C

∫ N−1

2

(
x

ϕ(x)2ψ(x)[Φ(N) − Φ(x)]

)1/2

dx,

6) εN
√

log pN ≤ C

[
N

ϕ(N)

]1/2

,

ε1
√

log pN ≤ C

[(
1

ϕ(1)
+ Φ(N)

)
r

ψ(r)

]1/2

.
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Proof. This follows from the asymptotics:

(exp{x/ψ(x)})′ ∼ (1 − c) exp{x/ψ(x)}/ψ(x)

and (
ψ(x)
ϕ(x)

exp{x/ψ(x)}
)′

∼ 1
ϕ(x)

exp{x/ψ(x)}
[
(1 − c) + ψ′(x) − ψ(x)ϕ′(x)

ϕ(x)

]

∼ (1 − c)
ϕ(x)

exp{x/ψ(x)},

as x→ ∞. �

Note that ε2N ∼ ψ(N)
ϕ(N) whereas ε21 ∼ 1

ϕ(1) + Φ(N), and therefore all the balls
BdN (t, εr) have a contribution in estimates (15) and (16). For the discussion, we
choose ψ(x) = xα, ϕ(x) = xβ with β ≥ 1, 0 ≤ α < 1. The set of conditions (21)
is fulfilled if 0 < α < 1 as well as in the limit case α = 0, corresponding to the
exponential case. First consider the case β > 1. Then∫ N−1

2

(
x

ϕ(x)2ψ(x)[Φ(N) − Φ(x)]

)1/2

dx =
∫ N−1

2

(
x1−2β−α

[x1−β −N1−β]

)1/2

(x = Nu) = N1−(β+α
2 )

∫ 1−1/N

2/N

[
u1−2β−α

|u1−β − 1|
]1/2

du.

But 


∫ 1

0

[
u1−2β−α

|u1−β − 1|
]1/2

du <∞ if β + α < 2,

∫ 1−1/N

2/N

[
u1−2β−α

|u1−β − 1|
]1/2

du = O(logN) if β + α = 2,

∫ 1−1/N

2/N

[
u1−2β−α

|u1−β − 1|
]1/2

du = O(N−1+( β+α
2 )) if β + α > 2.

The residual terms in Lemma 6, inequality (4): (εN−1 − εN)
√

log pN and (εN−2 −
εN−1)

√
log pN−1, have a contribution which is at most N (1−β)/2 ≤ N1−(β+α

2 ).
It follows that

N∑
r=2

(εr−1 − εr)
√

log pr =



O

(
N1−(β+α

2 )
)

if β + α < 2,

O(logN) if β + α = 2,

O(1) if β + α > 2.

From Lemma 6 we also have that

εN
√

log pN = O
(
N

1−β
2

)
, ε1

√
log pN = O

(
N

1−α
2

)
.
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Consider the case β + α < 2. By Theorem 4,

∥∥∥∥ sup
t∈T

|ZN (t)|
∥∥∥∥
G

≤ C(α, β)N1−( β+α
2 ). (22a)

whereas by Theorem 1

∥∥ sup
t∈T

|ZN (t)|∥∥
G
≤ C(α, β)N

1−α
2 . (22b)

As we assumed β > 1, it follows that 1 −
(
β+α

2

)
< 1−α

2 , therefore implying that
Theorem 4 is strictly stronger than Theorem 1. In the case β + α ≥ 2, this fact
is evident. Now to recover the estimates given in the Introduction, it suffices to
change the choice of ψ into ψ1 = 2ψ. Then ψ1 with ϕ still satisfy condition (21),
and as multiplying ψ by a constant does not affect the previous calculations, the
claimed estimates are thus deduced by these ones.

Now if β = 1, we find with Theorem 4 an estimate which is O(
N

1−α
2

)
, whereas

with Theorem 1 we get O(
(N1−α logN)1/2

)
. In particular, in the exponential case

α = 0, we find an order of type O(
N1/2

)
again strictly better than O(

(N logN)1/2
)
.

Finally, consider for M > N the increment

QN,M := sup
t∈T

|ZM (t) − ZN (t)|. (23)

This case is a bit more delicate and the corresponding sequence (εr) is given by

ε2r = p−2
r

r∑
k=N+1

θ2kp
2
k +

M∑
k=r+1

θ2k, r = N + 1, . . . ,M (24)

and ε2N+1 =
∑M
k=N+1 θ

2
k, ε

2
M = p−2

M

∑M
k=N+1 θ

2
kp

2
k. The previous calculations and

the use of the trivial bound
∑r

k=N+1 θ
2
kp

2
k ≤ ∑r

k=1 θ
2
kp

2
k show here that

M−1∑
k=N+2

(εk−1 − εk)
√

log pk ≤ C

∫ M−1

N+2

(
x

ϕ(x)2ψ(x)[Φ(M) − Φ(x)]

)1/2

dx,

εN+1

√
log pM ≤ C

(
[Φ(M) − Φ(N)]

M

ϕ(M)

)1/2

εM
√

log pM ≤ C

(∫ M

N

x

ψ(x)ϕ(x)
dx

)1/2

.

(25)
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For the last estimate, we used the fact that

εM
√

log pM =

(
p−2
M log pM

M∑
k=N+1

θ2kp
2
k

)1/2

≤
(

M∑
k=N+1

θ2k log pk

)1/2

=

(
M∑

k=N+1

k

ψ(k)ϕ(k)

)1/2

.

Choose again for the discussion ψ(x) = xα, ϕ(x) = xβ with β ≥ 1, 0 ≤ α < 1.
Assume first that β > 1, α+ β < 2 and for technical reason M ≥ N + 6. We shall
distinguish when η := M−N

M is small or not as M,N tend to infinity. With the
change of variables x = Mu, the integral in (25) is rewritten as

M1−(α+β
2 )

∫ 1−1/M

(N+2)/M

[
u1−2β−α

|u1−β − 1|
]1/2

du.

Since α+β < 2, the integral converges. The order is thus at most M1−(α+β
2 ). But if

η is small, since (N + 2)/M = 1− η+2/M , we see a contribution of the integration
near 1. Operating the change of variables u = 1 − h, we get

∫ 1−1/M

1−η+2/M

[
u1−2β−α

|u1−β − 1|
]1/2

du ≤ Cα,β

∫ η−2/M

1/M

dh√
h
≤ Cα,β

(
M −N

M

)1/2

,

where we used the fact that η − 3/M ≤ η/2, since η > 6/M . Consequently, we get

M−1∑
k=N+2

(εk−1 − εk)
√

log pk ≤ Cα,βM
1−(α+β

2 )
(
M −N

M

)1/2

. (26)

By (25) we have

εM
√

log pM ≤


Cα,β

(
M−N
Nα+β−1

)1/2 if M −N ≤ N,

Cα,β
(

1
Nα+β−2

)1/2 if M −N ≥ N.

Thus we get by Theorem 4∥∥QN,M∥∥
G

≤



Cα,β

{(
M−N
Nα+β−1

)1/2
+M1−(α+β

2 ) (M−N
M

)1/2
}

if M −N ≤ N,

Cα,β

{(
1

Nα+β−2

)1/2 +M1−(α+β
2 ) (M−N

M

)1/2
}

if M −N ≥ N.

(27a)
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Now using again (25), we deduce from Theorem 1∥∥QN,M∥∥
G
≤ Cα,β

([
N1−β −M1−β]M1−α)1/2

≤



Cα,β

(
(M−N)M1−α

Nβ

)1/2

, M −N ≤ N,

Cα,β
(
N1−βM1−α)1/2

, M −N ≥ N.

(27b)

Thus here again Theorem 4 provides better bounds than Theorem 1. If α+ β = 2,
we find by Theorem 4

∥∥QN,M∥∥
G
≤



Cα,β log

(
eMN

)
, M −N ≤ N,

Cα,β log
(
eMN

) (
M−N
M

)1/2
, M −N ≥ N.

whereas if α+ β > 2,

∥∥QN,M∥∥
G
≤



Cα,β log

(
eMN

)
, M −N ≤ N,

Cα,β log
(
eMN

) (
M−N
M

)1/2
, M −N ≥ N.

again better than those obtained via Theorem 1.

Example 2 (polynomial case). Consider another case: pk =
[
ks/2

]
, θ2k = 1

log k .
This corresponds to the choice ψ(x) = x/(s log x) and ϕ(x) = 1/ logx. In that case,
we will see that εr � ε1. This means that there is only one big ball at the origin.
Theorems 1 and 4 will produce similar estimates. As said before, this example is
also very instructive for the sequel. At first,

p−2
r

r∑
k=1

θ2kp
2
k ∼ r

(2s+ 1) log r
,

r∑
k=1

θ2k ∼ r

log r
, (r → ∞).

And ε2r = p−2
r

∑r
k=1 θ

2
kp

2
k+

∑N
k=r+1 θ

2
k ∼ r

(2s+1) log r +
∑N
k=r+1

1
log r . By distinguish-

ing the cases r ≤ N/2 and r ≥ N/2, we easily see that for N large

C1
N

logN
≤ ε2r ≤ C2

N

logN
1 ≤ r ≤ N

C1, C2, . . . being absolute constants, therefore showing that εr � ε1 [we don’t forget
that these numbers are defined once the value of N has been fixed].

Now as p−2
r−1 − p−2

r ∼ 2s/r2s+1, we get ε2r−1 − ε2r ∼ 2s/ log r, and combining
these estimates

εr−1 − εr � sC3

√
logN
N

1
log r

(r → ∞).

Consequently
N∑
r=2

(εr−1 − εr)
√

log pr ∼ s3/2C4

√
logN
N

N∑
r=2

1√
log r

∼ s3/2C5

√
N
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and εN
√

log pN ∼ √
N , ε1

√
log pN ∼ √

N . Then

εN
√

log pN +
N∑
r=2

(εr−1 − εr)
√

log pr ∼
√
N

when N tends to infinity. Hence by Theorems 1 or 4,∥∥∥∥ sup
t∈T

|ZN(t)|
∥∥∥∥
G

≤ C(s)
√
N. (28)

It is interesting to observe in this example that
N∑
r=2

(εr−1 − εr)
√

log pr �
∑N

r=1 θ
2
r

√
log pr(∑N

r=1 θ
2
r

)1/2
, (29a)

and by Cauchy–Schwarz inequality this is less than
(∑N

r=1 θ
2
r log pr

)1/2, which has
same order in

√
N . As one also always has

εN
√

log pN =

(
p−2
N log pN

N∑
k=1

θ2kp
2
k

)1/2

≤
(

N∑
k=1

θ2k log pk

)1/2

, (29b)

we have by Theorem 4 the following bound

∥∥∥∥ sup
t∈T

|ZN (t)|
∥∥∥∥
G

≤ C

(
N∑
k=1

θ2k log pk

)1/2

. (29c)

That expression is of course much more handable than
√

log pN
(∑N

r=1 θ
2
r

)1/2.
It is therefore interesting to search whether a set of conditions on p and θ guaran-
teeing the validity of (29c) is possible to define. This goes as follows.

We assume that there exists a sequence c = {ck, k ≥ 1} of reals and a real
0 < ∆ ≤ 1 such that

(C)




1) lim sup
r→∞

2r∑
k=1

θ2k/

2r∑
k=r

θ2k <∞,

2) lim sup
r→∞

[
p−2
r − p−2

r+1

]
c−2
r

r∑
k=1

θ2kp
2
k <∞,

3) lim sup
r→∞

r∑
k=1

c2k/

r∑
k=1

θ2k <∞,

4) p[r/2] ≥ ∆pr.

Observe at first that
[
p−2
r − p−2

r+1

]
behaves like

[∑r
k=1 p

2
k

]−1 if pk = ks, (s > 0) or
if pk = 2k, in which case it is also like p−2

r . Practically (C2) reads as follows:

lim sup
r→∞

∑r
k=1 θ

2
kp

2
k

c2r
(∑r

k=1 p
2
k

) <∞, (C2’)
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which is satisfied in many cases. Condition (C1) is satisfied once we have that∑r
k=1 θ

2
k � κ(r), where κ is some regularly varying function near infinity. The

requirement also implies that the series
∑∞

k=1 θ
2
k diverges.

Condition (C3) complements (C2) on comparing the growth of θ and c. Finally,
condition (C4) means that the sequence p grows at most polynomially.

Proposition 7. Under assumption (C), there exists a constant C such that
for all N large enough

∥∥∥∥ sup
t∈T

|ZN (t)|
∥∥∥∥
G

≤ C

(
N∑
r=1

θ2r log pr

)1/2

.

Proof. By assumption, for some suitable real 0 < c < 1 we have for all r
large enough 



1)
2r∑
r

θ2k ≥ c

2r∑
1

θ2k,

2) c
[
p−2
r − p−2

r+1

] r∑
k=1

θ2kp
2
k ≤ c2r,

3)
r∑

k=1

θ2k ≥ c

r∑
k=1

c2k.

Using (1) and (C3) we get

ε2r ≥ ε2N = p−2
N

N∑
k=1

θ2kp
2
k ≥ p−2

N p2
[N/2]

∑
N/2≤k≤N

θ2k

≥ c∆2
N∑
k=1

θ2k = c∆2ε21.

Now by (C2) and estimate 3) above

εr−1 − εr =
ε2r−1 − ε2r
εr−1 + εr

≤
[
p−2
r−1 − p−2

r

]∑r−1
k=1 p

2
kθ

2
k

∆
[
c
∑N
k=1 θ

2
k

]1/2
≤ c2r

∆c2
[∑N

k=1 c
2
k

]1/2
.

Therefore, by applying Cauchy-Schwarz’s inequality

N∑
r=2

(εr−1 − εr)
√

log pr ≤
N∑
r=2

c2r
√

log pr

∆c2
[∑N

k=1 c
2
k

]1/2
≤ 1

∆c2

(
N∑
r=2

c2r log pr

)1/2

.

One concludes by applying Theorem 4. �
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There is an interesting case where Proposition 7 applies. We assume that X
and Y are either independent iid Rademacher sequences or independent iid N (0, 1)
sequences. Let U = {Uk, k ≥ 1} be a sequence of independent random variables
defined on a joint probability space (Υ,F ,Θ).

Consider also a sequence c = {ck, k ≥ 1} of reals and choose in (1)

θk = ckUk k = 1, 2, . . . (30)

It is clear with the choice made for X and Y that condition (3) is satisfied, condi-
tionally to U (one can take B = 18

√
2, or B = 18

√
π in the Gaussian or Rademacher

case, see [We] p. 445, Example 1). We now impose on U to satisfy the two following
weighted strong laws of large numbers:

lim
N→∞

∑N
k=1 c

2
kU

2
k∑N

k=1 c
2
k

a.s.= a1, lim
N→∞

∑N
k=1 p

2
kc

2
kU

2
k∑N

k=1 p
2
kc

2
k

a.s.= a2, (31)

where 0 < a1, a2 < ∞. When the random variables Uk are moreover identically
distributed and a = EU2

1 < ∞, then according to Theorem 3, p. 42 of Jamison–
Orey–Pruitt in [JOP], the strong laws in (31) are respectively verified as soon as

lim sup
t→∞

1
t
�

{
r :

∑r
k=1 c

2
k

c2r
≤ t

}
<∞,

lim sup
t→∞

1
t
�

{
r :

∑r
k=1 p

2
kc

2
k

p2
rc

2
r

≤ t

}
<∞,

(32)

in which case a1 = a2 = a.
Condition (32) allows to catch a wide range of examples, for instance pk = ks

and ck = kβ with s ≥ 1 and β real are suitable. Put H(r) =
∑r

k=1 c
2
k, r ≥ 1. We do

assume that the sequence p is polynomially growing and that the extra assumption
linking both p and c holds as well: there exists C > 1 such that for any r large
enough

a) H(2r) ≥ CH(r)

b)
[
p−2
r − p−2

r+1

] r∑
k=1

c2kp
2
k ≤ Cc2r.

(33)

The requirement (33a), implying the divergence of the series
∑∞

k=1 c
2
k, is satisfied

for instance if H(r) � κ(r) where κ is a regularly varying function with positive
Karamata index, but not if κ is slowly varying. Let us look at the effect of assump-
tions (31), (33) on the control of the quantities appearing in conditions (C1), (C2)
and (C3). In the one hand, for any C > C′ > 1, by using (31) and (33a)

∑2r
k=1 c

2
kU

2
k∑r

k=1 c
2
kU

2
k

=

(∑2r
k=1 c

2
kU

2
k

H(2r)

) / (∑r
k=1 c

2
kU

2
k

H(r)

)(
H(2r)
H(r)

)
≥ C′,
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almost surely, for r large. So that
∑2r

k=r+1 c
2
kU

2
k ≥ (C′−1)

∑r
k=1 c

2
kU

2
k , r large, thus

implying that condition (C1) is checked. In the other hand, by (31) and (33b)

[
p−2
r − p−2

r+1

] r∑
k=1

c2kU
2
kp

2
k =

[
p−2
r − p−2

r+1

]( r∑
k=1

c2kp
2
k

) ∑r
k=1 c

2
kU

2
kp

2
k∑r

k=1 c
2
kp

2
k

≤ 2
[
p−2
r − p−2

r+1

] r∑
k=1

c2kp
2
k ≤ 2Cc2r,

almost surely, for r large. This implies that condition (C2) is satisfied. Finally,

concerning condition (C3), we observe by assumption (31) that limr→∞
∑ r

k=1 c
2
k∑ r

k=1 c
2
kU

2
k

=

(a1)−1, so that it is trivially satisfied. Consequently we can state:

Corollary 8. The sequences X and Y being fixed as before, let p be polyno-
mially growing. Let also U be a sequence of independent random variables defined
on a joint probability space (Υ,F ,Θ). Let c be a sequence of reals. We assume that
U , p and c satisfy conditions (31) and (33). If θ is defined by (30), for almost all υ
in Υ there exists Cυ <∞ such that for all N

∥∥∥∥ sup
t∈T

|ZN (t)|
∥∥∥∥
G

≤ Cυ

(
N∑
r=1

c2r log pr

)1/2

.

And specifying this for iid square integrable sequences, we get:

Corollary 9. The sequences X and Y being fixed as before, let p be polyno-
mially growing. Now let U be a sequence of iid square integrable random variables
defined on a joint probability space(Υ,F ,Θ). Let p and c be satisfying (32), (33).
With θ defined by (30), for almost all υ in Υ there exists Cυ < ∞ such that for
all N

∥∥∥∥ sup
t∈T

|ZN (t)|
∥∥∥∥
G

≤ Cυ

(
N∑
r=1

c2r log pr

)1/2

.

Example 3 (a median case). In the two preceding examples, both sequences
θ, p exhibited different type of growth in the sense that: θ−1

k = o(pk). Here, to the
contrary θ−1

k and pk will be of comparable order.

Assume first that θk = p−1
k . Plainly, ε2r−1 − ε2r =

(
p2r−p2r−1

p2rp
2
r−1

)
(r − 1) and

ε2r = p−2
r

∑r
k=1 θ

2
kp

2
k+

∑N
k=r+1 θ

2
k ≥ p−2

r r. It follows that εr−1−εr ≤
(
p2r−p2r−1
prp2r−1

)
r1/2.



on a stronger form of salem–zygmund’s inequality. . . 93

Moreover ε1 =
(∑N

k=1 1/p2
k

)1/2

εN =
√
N/pN . Thus,

εN (log pN )1/2 +
N∑
r=2

(
εr−1 − εr

)
(log pr)1/2

≤ (N log pN )1/2

pN
+

N∑
r=2

(
p2
r − p2

r−1

prp2
r−1

)
(r log pr)1/2.

If for instance pk = kR, R ≥ 1, this is uniformly bounded in N ; so that by The-
orem 4 we get

∥∥ supt∈T |ZN (t)|∥∥
G

= O(1), whereas by Theorem 1 we only get∥∥ supt∈T |ZN (t)|∥∥
G

= O (√
logN

)
.

Now assume that θk = p
−1/2
k and pk = kσ with σ > 1. Then, ε2r−1 − ε2r � r−σ

and ε2r � r1−σ . Thus

N∑
r=2

(εr−1 − εr)
√

log pr �
N∑
r=2

r−(1+σ)/2
√

log r = O(1).

As

εN
√

log pN � N (1−σ)/2
√

logN and ε1
√

log pN �
√

logN,

it follows from Theorem 4 that
∥∥ supt∈T |ZN(t)|∥∥

G
= O(1), whereas by Theorem 1

we only obtain a bound of order O (√
logN

)
.

If σ = 1, then εN � 1, ε1 � √
logN . Further ε2r−1 − ε2r � r−1 and ε2r �

max(1, log(N/r)), so that εN
√

log pN � √
logN and ε1

√
log pN � logN . Now

N−2∑
r=2

(εr−1 − εr)
√

log pr �
N−2∑
r=2

r−1

(
log r

max(1, log(N/r))

)1/2

�
∫ N−2

2

(
log x

max(1, log(N/x))

)1/2
dx

x
.

But
∫ N−2

N/2

(
log x

max(1,log(N/x))

)1/2
dx
x � √

logN and

∫ N/2

2

(
log x

log(N/x)

)1/2
dx

x
�

∫ log(N/2)

log 2

(
u

logN − u

)1/2

du

� (logN)
∫ log(N/2)

log N

log 2
log N

(
t

1 − t

)1/2

dt � logN,

so that Theorems 1 and 4 coincide on this case.

Example 4 (arithmetical weights). So far we have been concerned with reg-
ular (decreasing) weights, except for Corollaries 8 and 9, in which we considered
random independent weights. In this example we study one symptomatic case of
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weights arising from arithmetic number theory. Let d(n) = �{d : d | n} be the divi-
sor function and consider the case pk =

[
ks/2

]
, θk = d(k). In this case the weights

are very irregular, but their sums behave regularly. According to Eq. 18.2.1 p. 263
of [HW] and Eq. (B) p. 81 of [R] (see [Wi] for a proof) we recall, in effect, that

N∑
n=1

d(n) ∼ N logN,
N∑
n=1

d2(n) ∼
(
N

π2

)
log3N.

as N tends to infinity. It follows from Theorem 1 or 4 that

‖QN‖G ≤ C(s)N1/2(logN)2.

This case is also one example where the sums of the weights grows to infinity. It is
natural to also compare Theorems 1 and 4 when the weights are growing. We shall
perform this on the limit case: p2

k = Mk, where M > 1 is fixed. We assume that
there exists a non decreasing differentiable function � such that �(r) =

∑r
k=1 θ

2
k/r,

and x�′(x) ≤ c0�(x). Recall Abel summation:
∑r

k=1 ukyk =
∑r−1
j=1 Dj(yj − yj+1) +

Dryr, where Dj =
∑j
k=1 uk. Applying it with uk = 1, yk = Mk gives the relation

Mr+1−1
M−1 = M rr −∑r−1

j=1 jM
j(M − 1). Applying now with uk = θ2k arbitrary and

using the latter relation gives

r∑
k=1

θ2kp
2
k = �(r)rM r −

r−1∑
j=1

�(j)jM j(M − 1)

≥ �(r)


rM r −

r−1∑
j=1

jM j(M − 1)




= �(r)
M r+1 − 1
M − 1

.

Conversely as rM r = Mr+1−1
M−1 +

∑r−1
j=1 �(j)jM

j(M − 1),

r∑
k=1

θ2kp
2
k = �(r)rM r −

r−1∑
j=1

�(j)jM j(M − 1)

= �(r)
M r+1 − 1
M − 1

+
r−1∑
j=1

jM j(M − 1)[�(r) − �(j)].

But, as �(r) − �(j) ≤ (r − j)�′(j) and

r−1∑
j=1

jM j(M − 1)(r − j)�′(j) ≤ C

r−1∑
j=1

M j(M − 1)(r − j)�(j)

≤ C�(r)M r
r−1∑
k=1

M−k(M − 1)k,
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we get
∑r

k=1 θ
2
kp

2
k ≤ �(r)M r

{
M
M−1 + C

∑∞
k=1M

−k(M − 1)k
}
. Consequently, for

some constants C1, C2 depending onM and � only, one has C1�(r)M r≤∑r
k=1 θ

2
kp

2
k ≤

C2�(r)M r. And this now implies that

C′
1

N∑
r=2

�(r)
√
r√

D(N) −D(r)
≤

N∑
r=2

(εr−1 − εr)
√

log pr

≤ C′
2

N∑
r=2

�(r)
√
r√

D(N) −D(r)
.

Fix some α > 1 such that c0 log(1/α) < 1. Since �(x) ≤ �(xα) +
∫ x
xα �

′(u)du ≤
�(xα)+c0

∫ x
xα

(�(u)/u)du ≤ �(xα)+[c0 log(1/α)]�(x), it follows that �(x) ≤ cα�(xα).
Thus

N∑
r=2

(εr−1 − εr)
√

log pr ≥ C1

N∑
r=2

�(r)
√
r√

N�(N)

≥ C′
1

�(Nα)√
N�(N)

∑
N≥r≥Nα

√
r

≥ CαN�(N)1/2.

But in view of Theorem 1, ‖QN‖G ≤ CN�(N)1/2, so that in this case both theorems
produce equivalent estimates.

Example 5 (Dirichlet polynomials). On this interesting example, a problem
of evaluating the sup-norm over R is reduced to a problem of evaluating the sup-
norm over Tν for suitable ν, in the case where p, which is no longer integer valued,
enjoys some diophantine properties (linear independence over Q). Let U = (Uk)∞k=1

be a sequence of independent, centered real random variables. Let s = σ + it.
Consider the Dirichlet polynomial PN (s) =

∑N
n=1 Unn

−is. Let ρ1 < ρ2 < . . . denote
the prime numbers. We denote τ = π(N) the number of prime numbers less than
or equal to N . For n ≤ N , n = ρ

a1(n)
1 . . . ρ

aτ (n)
τ , denote pn = (a1(n), . . . , aτ (n)).

Consider also on Tτ the polynomial

ΠN (t) =
N∑
n=1

Unn
−σe2iπ〈pn,t〉, t = (t1, . . . , tτ ) ∈ Tτ .

According to Bohr’s observation (see [Q1], [Q2])

‖PN‖∞ := sup
t∈R

|PN (t)| = ‖ΠN‖∞ = sup
t∈Tτ

|ΠN (t)|.

This follows from Kronecker’s Theorem (see [HW], Theorem 442 p. 382). In view
of this Theorem, indeed, there are infinitely many values of j such that (j log 2, . . .,
j log ρτ ) is arbitrary close to any given element α = (α1, . . . , ατ ) of Tτ . With this
reduction, we are led to estimate the supremum of a polynomial of type given in
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Part 4) of Remark 3. From the elementary estimates for n ≤ N ,
∑τ

k=1 ak(n) ≤
logN/ log 2 and τ = O(N/ logN), follows from (7) and (8) that

E ‖PN‖∞ ≤ Cmin



(
N log logN

logN

)1/2( N∑
n=1

EU2
n

n2σ

)1/2

,
N∑
n=1

E|Un|
nσ


 ,

where C is a universal constant. This was observed by Queffélec ([Q1] p. 535)
when U is a Rademacher sequence and σ = 0, in which case one gets the bound

CN
√

log logN
logN . By another result of Bohr (see [Q2], Theorem 2.1 p. 46), also follows

that E ‖PN‖∞ ≥ C
∑′
ρ ρ

−σE|Uρ| where the summation
∑′

ρ is taken over the primes
ρ less than or equal to N . In the Rademacher case this produces a lower bound
of type N/ logN . In ([Q2] Theorem 4.1 p. 51) Queffélec gave a probabilistic proof

of Halász’s two-sided estimate cσ
(
N1−σ

logN

)
≤ E‖PN‖∞ ≤ Cσ

(
N1−σ

logN

)
, valid for 0 <

σ < 1/2 and N ≥ 2. If the summation in the definition of PN is not taken over the
interval of integers [2, N ], but over an arbitrary set of integers E, one may wonder
what could remain from the previous estimates in that case.

It is natural to ask whether Theorem 4 admits a version with sup-norm over
R for related polynomials. For, we introduce a condition on the sequence p, which
is in fact not exactly related to that one of Kronecker’s Theorem. Define

JN (p, ρ) =
{
j ∈ Z : ∀1 ≤ k ≤ N, ∃νk ∈ Z : |jpk − νk| < ρ

}
δN,T (p, ρ) =

1
T
�
{
JN (p, ρ) ∩ [−T/2, T/2]

}
, δN(p) = lim inf

T→∞
δN,T (p, p1/pN).

Thus δN (p) relates to the distribution of integers j for which there exist integers
ν1, . . . , νk such that |pk − νk

j | < p1
jpN

, 1 ≤ k ≤ N .

Proposition 10. Assume that δN (p) > 0. Then, there exists a constant C
which depends on the constant B of (3) only such that:

∥∥∥∥ sup
s,t∈R

|ZN (s) − ZN(t)|
∥∥∥∥
G

≤ CεNψ

(
2πpN
δN(p)

)
+ 4

N∑
r=2

(εr−1 − εr)ψ
(

2πpr
δN(p)

)
.

The study of the condition δN (p) > 0 requires some substantial extra work, and this
will be made elsewhere. A thorough study of the supremum of Dirichlet polynomials
indexed on arithmetical sets is undertaken in the joint work [LW].

Proof. Consider for T > 0 the interval [−T/2, T/2] equipped with the
normalized Haar measure mT (dt) = 1

T χ[−T/2,T/2](t)m(dt). Let j ∈ JN (p, p1/pN)
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and β = a+ τ + j with 1/(πpr+1) < τ ≤ 1/(πpr). Using (13) gives

d2
N (α, β) = 4

N∑
k=1

θ2k sin2 πpk(τ + j) = 4
N∑
k=1

θ2k sin2 π(pkτ + (pkj − νk))

≤ 4
N∑
k=1

θ2k

(
π2 (pkτ + (pkj − νk))

2 ∧ 1
)

≤ 16

(
r∑

k=1

θ2k
p2
k

p2
r

)
+ 4

N∑
k=r+1

θ2k ≤ 16ε2r.

And if |τ | < 1
πpN

, then d2
N (α, β) ≤ 16ε2N . For 1 ≤ r0 < N , the ball BdN (α, 2εr0)

thus contains
∑

j∈JN (p,p1/pN )

]
α− 1

πpr0
, α+ 1

πpr0

[
. Hence,

mT

(
BdN (α, εr0)

) ≥ 1
2πpr0

δN,T (p, p1/pN). Arguing now as in the proof of Lemma 5,
gives

∫ 4ε1

0

ψ

(
1

mT (BdN (α, ε))

)
dε

≤ CεNψ

(
2πpN

δN,T
(
p, p1/pN

)
)

+ 4
N∑
r=2

(εr−1 − εr)ψ

(
2πpr

δN,T
(
p, p1/pN

)
)
,

where the bound obtained is independent of α in [−T/2, T/2]. It follows from (20)
that∥∥∥∥∥ sup

s,t∈[−T/2,T/2]
|ZN (s) − ZN (t)|

∥∥∥∥∥
G

≤ CεNψ

(
2πpN

δN,T
(
p, p1/pN

)
)

+ 4
N∑
r=2

(εr−1 − εr)ψ

(
2πpr

δN,T
(
p, p1/pN

)
)
.

Consequently, by taking the limsup as T tends to infinity in both sides, gives∥∥∥∥ sup
s,t∈R

|ZN (s) − ZN(t)|
∥∥∥∥
G

≤ CεNψ

(
2πpN
δN

(
p
)
)

+ 4
N∑
r=2

(εr−1 − εr)ψ

(
2πpr
δN

(
p
)
)
,

(34)

which proves the result. �
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5. Uniform convergence of random Fourier series

Let C be the space of complex valued continuous functions on T equipped
with the sup-norm ‖f‖ = sup0≤t≤1 |f(t)|, f ∈ C. Let U = (Uk)∞k=1 be a sequence
of independent symmetric real random variables, and let p be a non-decreasing
sequence of positive integers. In [We] (Theorem 10) we showed that the following
condition:

there exist integers 0 := n0 < n1 < n2 < . . . such that the series

∞∑
i=0

√
log(pni+1)E

[
ni+1∑

k=ni+1

|Uk|2
]1/2

converges. (35)

is enough to ensure the uniform convergence of the random Fourier series (1’) for
almost all ω.

This result is deduced from a uniform estimate of the sup-norm of the incre-
ments of (ZN ) defined in (1) by combining Theorem 1 with the Borell-Sudakov-
Tsirelson isoperimetric inequality for Gaussian processes. In the light of the previ-
ous Section, however, it is clear that this condition is only efficient for polynomially
growing sequences p. In concrete cases, it is often enough to choose nk = 2k to
obtain a sharp sufficient condition on U and p. But there are examples (for instance
Rademacher Fourier series with p and θ defined by (39)) for which the correct choice

is nk = 22k

, which show that the appearance of the sequence (nk)k in the above
condition is meaningful.

In what follows, we would like to use the results from the previous Section to
investigate this question more specifically. We will restrict the scope of the study
to Rademacher random Fourier series. Let ε = {εk, k ≥ 1}, ε′ = {ε′k, k ≥ 1} be
two independent Rademacher sequences. We assume in (1) that X = ε, Y = ε′ and
define for integers M ≥ N :

ZN,M(ω, t) = ZM (ω, t) − ZN (ω, t)

=
M∑

k=N+1

θk

{
εk(ω) cos 2πpkt+ ε′k(ω) sin 2πpkt

}
.

(36)

We investigate the uniform convergence of the series
∑∞

k=1 θk
{
εk(ω) cos 2πpkt +

ε′k(ω) sin 2πpkt
}
. Consider first the polynomial case. We establish another type

of sufficient condition for uniform convergence in which we get rid of the sequence
(nk). We consider sequences p and θ linked by the conditions:

(i) ∀N ≥ 1,
1
p2
m

∑
k≤m

θ2kp
2
k = o(1),

(ii) ∃Γ <∞ :
[
p−2
m−1 − p−2

m

] ∑
k≤m

θ2kp
2
k ≤ Γθ2m.

(37)
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The examples studied in the previous section justify the introduction of the
following set.

D =
{
(p, θ) : condition (37) is fulfilled

}
. (38)

The pairs (p, θ) studied in Examples 1 and 2 belong to D, as well as for instance
the pair defined by

p2
k = elog

θ k, θ2k =
1

k logµ k
, (39)

where µ > 1 and θ > 0.

Theorem 11. Let (p, θ) ∈ D. Assume that

a)
∞∑
r=1

θ2r log pr <∞,

b) lim
N→∞

lim sup
M→∞

∑
N≤r≤M

θ2r−1

√
log pr(∑

r<k≤M θ2k

)1/2
= 0.

Then the random Fourier series
∑∞

k=1 θk
{
εk(ω) cos 2πpkt + ε′k(ω) sin 2πpkt

}
con-

verges in C(T) for almost all ω.

Proof of Theorem 11. Let 0 < γ < 1 be fixed. Using (37-i), we define
recursively the following sequence of integers

N1 = 1,

Nj = sup


m > Nj−1 :

1
p2
m

∑
Nj−1≤k≤m

θ2kp
2
k ≥ γ

∑
Nj−1≤k≤m

θ2k


 .

(40)

For Nj−1 < r ≤ Nj , we denote ε2r = 1
p2r

∑
Nj−1<k≤r θ

2
kp

2
k+

∑
r+1<k≤Nj

θ2k. It follows
that

ε2Nj−1+1 ≥ ε2Nj
≥ γ ε2Nj−1+1. (41)

Now, using (37-ii) and (41), we get

εr−1 − εr =
ε2r−1 − ε2r
εr−1 + εr

≤
(

Γ√
γ

)
θ2r−1(∑

Nj−1<k≤Nj
θ2k

)1/2
.

(42)
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It follows that

Nj∑
r=Nj−1+2

(εr−1 − εr)
√

log pr

≤
(

Γ√
γ

) Nj∑
r=Nj−1+2

θ2r−1

√
log pr(∑

Nj−1<k≤Nj
θ2k

)1/2

≤
(

Γ√
γ

) (∑Nj

r=Nj−1+2 θ
2
r−1

)1/2 (∑Nj

r=Nj−1+2 θ
2
r−1log pr

)1/2

(∑
Nj−1<k≤Nj

θ2k

)1/2

=
(

Γ√
γ

)
 Nj∑
r=Nj−1+2

θ2r−1log pr




1/2

.

(43)

Applying now Theorem 4, we get

∥∥∥∥ sup
t∈T

∣∣ZNj−1,Nj(t)
∣∣∥∥∥∥
G

≤ CΓ,γ


 Nj∑
r=Nj−1+2

θ2r−1log pr




1/2

. (44)

And by means of Levy’s inequality, which we recall for reader’s convenience (see
[LT] for a proof):

Let {ξk, k ≥ 1} be a sequence of independent and symmetric random variables
with values in a separable Banach space (B, ‖.‖). Denote Sn =

∑n
k=1 ξk for

all n ≥ 1. Then we have:

E sup
1≤j≤n

‖Sj‖p ≤ 2E‖Sn‖p,

for all 0 < p <∞ and all n ≥ 1,

we get

E sup
Nj−1<R≤Nj

sup
t∈T

∣∣ZNj−1,R(t)
∣∣2 ≤ 2C2

Γ,γ


 Nj∑
r=Nj−1+2

θ2r−1log pr


 . (45)

In view of (45) and assumption a) of the Theorem, we deduce that the sequence (Zn)
converges in C(T) almost surely, if and only if, the subsequence (ZNj ) converges in
C(T) almost surely. Let L < J be fixed. By Levy’s inequality

E sup
L≤l≤j≤J

sup
t∈T

∣∣ZNl,Nj(t)
∣∣2 ≤ 2E sup

t∈T

∣∣ZNL,NJ (t)
∣∣2.
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For NL < r ≤ NJ , we denote this time ε2r = 1
p2r

∑
NL<k≤r θ

2
kp

2
k +

∑
r+1<k≤NJ

θ2k.
Plainly ε2r ≥

∑
r+1<k≤NJ

θ2k, and by (37)

εr−1 − εr =
ε2r−1 − ε2r
εr−1 + εr

≤ Γ
θ2r−1(∑

r<k≤NJ
θ2k

)1/2
.

So that ∑
NL<r≤NJ

(εr−1 − εr)
√

log pr ≤ Γ
∑

NL<r≤NJ

θ2r−1

√
log pr(∑

r<k≤NJ
θ2k

)1/2
. (46)

We deduce from assumption b) of the Theorem that

lim
L→∞

lim sup
J→∞

E sup
L≤l≤j≤J

sup
t∈T

∣∣ZNl,Nj(t)
∣∣2 = 0, (47)

which clearly implies that the subsequence (ZNj ) converges in C(T) almost surely.
�

Now consider for the sub-exponential case again Example 1. Using estimates
(27a) with α+β > 2, one can prove that the random Fourier series arising from (1)
converges uniformly almost surely; which cannot be obtained from existing results
nor Theorem 11. Let indeed Nk = kR where R is chosen so that R(α+ β − 2) > 1.
Then, one has for j ≥ k∥∥QNk,Nk+1

∥∥
G
≤ Cα,βk

−1/2−R(2−α−β)/2

∥∥QNk,Nl

∥∥
G
≤ Cα,βk

−R[(α+β)/2−1].
(48)

Therefore by Levy’s inequality

E sup
Nk−1<R≤Nk

sup
t∈T

∣∣ZNk−1,R(t)
∣∣2 ≤ Cα,βk

−1/2−R(2−α−β)/2

E sup
L≤l≤j≤J

sup
t∈T

∣∣ZNl,Nj (t)
∣∣2 ≤ 2E sup

t∈T

∣∣ZNL,NJ (t)
∣∣2

≤ Cα,βk
−R[(α+β)/2−1].

(49)

Remark. One can show on example (39) that Theorem 4 is still stronger than
Theorem 1. We omit details of calculation. By Theorem 1, we indeed get an order
O(

(logN)θ/2
)

because µ > 1. But, calculating the sum
∑N
r=2(εr−1 − εr)

√
log pr in

Theorem 4 leads to the integral∫ N

1

(log x)θ/2−µdx

x
[
(log x)−µ+1 − (logN)−µ+1

]1/2 (x = eu)
=

∫ logN

0

uθ/2−µdu[
(u−µ+1 − (logN)−µ+1

]1/2
(u = (logN)v)

= (logN)
1+θ−µ

2

∫ 1

0

vθ/2−µdu[
v−µ+1 − 1

]1/2 .
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As

∫ N

1

(log x)θ/2−µdx

x
[
(log x)−µ+1 − (logN)−µ+1

]1/2 =



O

(
(logN)

1+θ−µ
2

)
if θ + 1 > µ,

O(log logN) if θ + 1 = µ,

O(1) if θ + 1 < µ,

we find the better order O
(
(logN)

1+θ−µ
2

)
, since the contribution of the residual

term εN
√

log pN is O (
(logN)−θ/2−µ+1

)
.

Concluding remarks

1) Let ε = {εk, k ≥ 1} be an independent Rademacher sequence and consider
the special case fn(t) =

∑n
k=1 εk cos kt. In [SZ], it is showed that with probability

one
1

2
√

6
≤ lim inf

n→∞
sup0≤t≤2π |fn(t)|√

n logn

≤ lim sup
n→∞

sup0≤t≤2π |fn(t)|√
n logn

≤ 1.

Hayman in [H2] (problem 4.17) asked whether there is a limit with probability one.
In [H1] (communicated to us by István Berkes), Halász answered the question in
the affirmative, and gave in addition the second order term in the approximation of
sup0≤t≤2π |fn(t)|:

√
n logn− 4

√
n

logn
log logn ≤ sup

0≤t≤2π
|fn(t)|

≤
√
n logn+ 3

√
n

logn
log logn.

It is natural to ask whether such a degree of precision can be reached when replacing
the sequence of naturals in the definition of fn(t) by any increasing sequence of
integers. In the light of Theorem 4 and Example 1, the case of subexponentially
growing sequences seems to be of particular interest.

2) If in (1′), U is a sequence of independent N (0, 1) random variables, then
in that case a two-sided estimate of ‖Q′

N‖G exists and is given by

C1IG(T, dN ) ≤ ‖Q′
N‖G ≤ C2IG(T, dN ), (50)

C1, C2 being absolute positive constants. Although theoretically difficult to apply
on concrete examples, more effort should be given in order to also derive lower
bounds for ‖Q′

N‖G.
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3) One may naturally wonder what kind of results the majorizing measure
method could produce when applied to non random polynomials. Such a question
might be surprising at first glance, since there is no random structure there. Not
quite in fact; consider indeed the polynomials XN (t) =

∑N
k=1 θke

2iπpkt, as well as
the shifted polynomials

XN
α (t) =

N∑
k=1

θke
2iπpk(α+t), (α ∈ T) (51)

The parameter t is then used as a random parameter, and our probability space
will be (T,m). Letting t− = −t mod(1), we note that sups∈T

∣∣XN (s) −XN (0)
∣∣ =

supα∈T

∣∣XN
α (t) −XN

t−(t)
∣∣. Thus

sup
s∈T

∣∣XN (s) −XN (0)
∣∣ ≤ sup

α,β∈T

∣∣XN
α (t) −XN

β (t)
∣∣

≤ 2 sup
s∈T

∣∣XN (s) −XN(0)
∣∣ . (52)

But ∥∥XN
α −XN

β

∥∥
2

= dN (α, β), (53)

because we assumed p to be an increasing sequence of integers. And we get from the
proof of Lemma 5 and the remark made right after that for any positive integer N ,

sup
α∈R

∫ 2ε1

0

1
m(BdN (α, ε))1/2

dε ≤ CεN
√
pN + 2

N∑
r=2

(
εr−1 − εr

)√
pr, (54)

C being some absolute constant. Then by (53), (54) conditions (18) and (19) are
fulfilled with the choice Φ(t) = t2. Applying (20) gives, in view of (52)

sup
s∈T

∣∣XN (s) −XN(0)
∣∣ ≤ C

(
εN

√
pN + 2

N∑
r=2

(εr−1 − εr)
√
pr

)
. (55)

C being some absolute constant. However when applied on examples, this does
not provide more than the trivial bound |XN

α (t) − ∑N
k=1 θk| ≤ 2

∑N
k=1 |θk|. The

fact is that the supremum of non random polynomials relies rather upon their L1-
norms than L2-norms, unlike the class of random polynomials studied here, which
is governed by assumption (3). Maybe possible refinements of the approach would
permit some improvements.
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