

Pre-pregnancy Obesity as a Modifier of Gestational Diabetes and Birth Defects Associations: A Systematic Review

Aimee S. Parnell^{1,2} · Adolfo Correa^{1,3} · E. Albert Reece⁴

Published online: 24 January 2017 © Springer Science+Business Media New York 2017

Abstract Objective Inconsistent findings of associations between gestational diabetes mellitus (GDM) and birth defects suggest unaccounted confounders may underlie the actual basis for such associations. We conducted a systematic review to assess observed associations between GDM and birth defects and the extent to which these could be explained by pre-pregnancy obesity. Methods Using a combination of search terms for GDM and birth defects, we searched PubMed, Scopus, CINAHL, and ClinicalTrials. gov for human-based studies published through September 2013. Studies were eligible for inclusion if they included information on maternal diabetes status, method of diagnosis of GDM, and assessment of birth defects. Twenty-four of 768 potential articles were included. We collected information on study design, location and period, method of determination of diabetes status, types of birth defects, and measures of association reported. Results There was no evidence for consistent association of GDM with birth defects, with the exception of a weak association between GDM and congenital heart defects. When stratified by maternal pre-pregnancy BMI, an association between GDM and

Aimee S. Parnell aparnell@umc.edu

- ¹ Department of Pediatrics, University of Mississippi School of Medicine, 2500 North State Street, Jackson, MS 39216, USA
- ² Children's of Mississippi, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
- ³ Department of Medicine, University of Mississippi School of Medicine, 2500 North State Street, Jackson, MS 39216, USA
- ⁴ University of Maryland School of Medicine, 655 W. Baltimore Street, Room 14-029, Baltimore, MD 21201-1559, USA

congenital heart defects and between GDM and neural tube defects was evident only in women with both GDM and pre-pregnancy obesity. *Conclusions for Practice* Our findings suggest reported associations between GDM and birth defects may be due, in part, to undiagnosed metabolic disorders associated with obesity, such as pregestational diabetes mellitus, rather than GDM. These findings highlight the need for increased efforts for pre-pregnancy screening for undiagnosed diabetes and awareness of the importance of weight management among women of childbearing age with obesity.

Keywords Birth defects · Congenital anomalies · Congenital malformations · Gestational diabetes mellitus · Maternal obesity

Significance

An increasing number of recent studies have reported possible associations between gestational diabetes mellitus (GDM) and birth defects. Inconsistent findings suggest unaccounted confounders may underlie the actual basis for such associations. Our findings suggest that reported associations between GDM and birth defects may be due, in part, to undiagnosed metabolic disorders associated with obesity, such as pregestational diabetes, rather than GDM. Given the increasing prevalence of obesity and high number of unplanned pregnancies, these findings highlight the need for increased pre-pregnancy screening for undiagnosed diabetes and awareness of the importance of weight management among women of childbearing age with obesity.

Introduction

Pregestational diabetes mellitus (PGDM) is known to be associated with an increased risk for birth defects among offspring (Correa et al. 2008; Inkster et al. 2006; Sheffield 2002). Unlike most teratogens that have some organ specificity, PGDM is associated with defects spanning multiple organ systems, including the central nervous system (CNS), cardiovascular, renal, gastrointestinal, and skeletal systems, among others. Although mechanisms underlying these associations have not been elucidated, these observations suggest that metabolic disorders associated with hyperglycemia lead to disturbances in morphogenetic processes of embryogenesis, as noted in animal models of diabetic pregnancy (Reece et al. 2002, 2005).

In recent years, an increasing number of studies have examined possible associations between gestational diabetes mellitus (GDM)—glucose intolerance that begins during pregnancy—and birth defects but have produced inconsistent findings. Given that GDM occurs and is diagnosed after the development of most structural malformations, it is unclear whether studies reporting associations of GDM with birth defects are, in fact, reporting effects of uncontrolled confounders such as undiagnosed PGDM and/or pre-pregnancy obesity.

Obesity, a known risk factor for type 2 diabetes mellitus, has been reported to be associated with some birth defects. For instance, consistent associations have been observed between obesity and neural tube defects or selected cardiac defects (Correa and Marcinkevage 2013; Stothard et al. 2009); however, findings for other birth defects have been less consistent. Possible reasons for such inconsistencies include differences in case ascertainment and classification, obesity classification methods, prevalence of pre-pregnancy obesity phenotypes that may be associated with birth defects, and prevalence of undiagnosed PGDM.

Objective

The purpose of this study was to conduct a systematic review of the literature on possible associations between GDM and birth defects, and to assess the extent to which any associations observed might be explained by maternal pre-pregnancy obesity.

Methods

Information Sources and Search Strategy

We followed the guidelines in the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement" (Moher 2009) for development, implementation, and reporting of results. We conducted a comprehensive search of the PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Scopus, and ClinicalTrials.gov databases in September 2013 for published studies in humans without language or time restrictions. Studies without an English translation were translated at the time of review. Combinations of search terms for "GDM" and "birth defects" were used to identify eligible articles. The full list of search terms is shown in Table 1. Reference lists of screened articles were reviewed to identify additional potential articles.

Eligibility Criteria and Study Selection

Articles were included if study participants were pregnant women, diabetes status of the women was reported and information on the presence of birth defects in the offspring was available. Articles were excluded if there was no differentiation in diabetes status (gestational vs pre-gestational), if no information was available on the methods of determination of diabetes status, or if the ascertainment

Gestational diabetes	Congenital cataracts	Neonatal glaucoma
Preconception diabetes	Congenital heart defect	Neural tube defect
Peri-conception diabetes	Conotruncal	Obstructive heart defect
Prepregnancy diabetes	Craniosynostosis	Omphalocele
Amniotic band	Dandy Walker	Agenesis
Scimitar	Diaphragmatic hernia	Septal heart defect
Anopthalmia	Down syndrome	Single ventricle
Anotia	Epstein malformation	Spina bifida
Atresia	Encephalocele	Tracheoesophageal fistula
Exstrophy	Gastroschisis	Trisomy
Caudal regression	Limb deficiency	Birth defect
Cleft	Microopthalmia	Anomaly
Cloacal exstrophy	Microtia	Congenital anomaly

Table 1	List of	search	terms	
---------	---------	--------	-------	--

and classification of birth defects was not reported. Articles using data from the same source were excluded if there was significant overlap in data period and birth defect type.

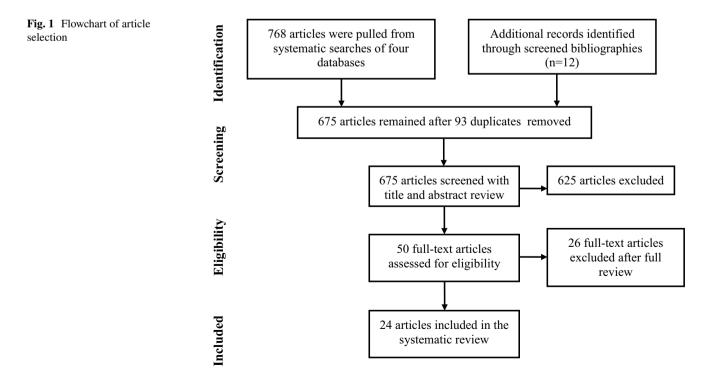
Search results from four separate databases returned a total of 768 potential articles for inclusion, 93 of which were duplicate articles, leaving 675 articles for review. After title and abstract review, 625 articles were excluded. The remaining 50 articles were reviewed in their entirety, 26 of which were excluded after full review, leaving 24 articles for inclusion. Reference lists of screened articles revealed 12 additional potential articles, all of which were excluded after review.

Data Extraction

Article review and selection was performed by two reviewers who agreed fully on the final 24 articles selected for inclusion. A single reviewer performed data extraction using a data extraction form to obtain information on study design and characteristics, data source, method of determination of diabetes status, and type and method of identification of birth defects. For a single article written in Spanish and requiring translation, a second reviewer/co-author fluent in Spanish performed data extraction.

Information on BMI Collection

Of the 24 studies included, 14 included information on BMI of participants. The method of BMI determination was not specified in one study and was measured directly in one study. In 4 studies, BMI values were obtained from medical records. In the remaining eight studies, BMI information was obtained through maternal self-reports.


Results

Study Selection and Characteristics

Twenty-four articles met inclusion criteria for the systematic review. Figure 1 displays the steps involved in selection of studies for review. Of 24 studies that met inclusion criteria, 10 were case-control and 14 were cohort studies.

Of the ten case-control studies, two were published before the year 2000, four between 2005 and 2008, and four between 2010 and 2013 (Table 2). Eight studies were performed in the United States and two in Spain. Maternal self-report was the most common method of assessment of diabetes status, followed by birth certificates and birth registries. Six studies included only live births, while four included live births, stillbirths, and elective terminations. Four studies grouped together all offspring with any type of birth defect, while six focused on specific types of defects. Two studies excluded offspring with defects recognized to have known associations with a chromosomal anomaly or genetic syndrome, and one excluded defects unlikely to be secondary to a neural tube defect.

Fourteen cohort studies were included in the review (Table 3). Two were published before the year 2000, six between 2000 and 2009, and six between 2010 and

First author	Year published	Location	Study period	Controls, n	Cases (n, type)	Case ascertain- ment	GDM status assessment
Ferencz	1990	USA (3 States)	1981–1987	2801	2259 Multiple defects	Live births Dx of car- diovascular malformations confirmed by cath, echo, surgery, or autopsy Period of ascer- tainment: up to one year Exclusions: disorders of the endomyo- cardium	Maternal self- report
Ramos-Arroyo	1992	Spain	1976–1985	9994	10,087 Multiple defects	Live births cases diagnosed by pediatri- cian with experience in birth defects Period of ascer- tainment: up to day 3 of life	Maternal self- report
Martinez-Frias	2005	Spain	1976–2001	29,291	29,971 Multiple defects	Live births Period of ascer- tainment: first 3 days of life. Exclusion: pregestational diabetes	Standardized questionnaire Administered by physician within first 3 days after delivery
Anderson	2005	Texas	1997–2001	497	477 Central Nerv- ous System Defects Anencephaly Spina bifida Holoprosen- cephaly Hydrocephaly	Live births, late fetal deaths, elective termi- nations ICD9 diagnosis codes Exclusions: chromosomal abnormalities and syn- dromes of known etiol- ogy	Maternal self-report (telephone questionnaire)
Porter	2005	Washington State	1987–1997	10,775	2155 Hypospadias	Live births ICD9 codes from birth hospitaliza- tion in male singleton infants	Birth certificate (check boxes) ICD9 codes from maternal hos- pital discharge data

Table 2 Characteristics of case-control studies examining gestational diabetes mellitus (GDM) and birth defects

Matern Child Health J (2017) 21:1105–1120	
---	--

Table 2 (continued)

First author	Year published	Location	Study period	Controls, n	Cases (n, type)	Case ascertain- ment	GDM status assessment
Correa	2008	USA (10 states)	1997–2003	4895	13,030 Multiple defects	Live births, still births, and terminations Classified by clinical geneticists based Exclusions: cases with defects that are recognized to have a known cause	Maternal self- report
Gilboa	2010	USA (10 states)	1997–2004	5673	6440 Congenital car- diac defects	Live births, still births, and terminations	Maternal self- report
Shnorhavorian	2011	Washington State	1987–2007	18,692	4673 Congenital urinary tract anomalies (CUTA)	Live births ICD9 codes for urinary anom- alies-CHARS database Ascertainment period: birth to 5 years	Birth registry
Agopian	2013	USA (10 States)	1997–2007	8494	1239 Neural tube defects (spina bifida, anencephaly)	Live births, still births, termi- nations Standardized case defini- tions NBDPS Exclusions: other major birth defects unlikely to be secondary to neural tube defects	Maternal self- report
Van Bennekom	2013	USA (10 states)	1997–2005	6807	423 Microtia	Live births Standardized case defini- tions	Maternal self- report Telephone inter- view conducted up to 24 months after delivery

2013. Three were from the United States, two from Sweden, and one each from Spain, Mexico, Italy, Iran, India, Saudi Arabia, Bangladesh, Malta, and the United Arab Emirates. Universal screening was the most common method of determination of maternal diabetes status. Other methods included self-report, birth registry, and birth certificates. All of the cohort studies included multiple types of birth defects. Seven included only live births, and four included live births and stillbirths. Three studies included live births, stillbirths, and terminations. One study excluded multiple gestation pregnancies and breech presentation, and another excluded infants with Trisomy 21.

Synthesis of Results

The overall findings of the systematic review are displayed for case-control studies in Table 4 and for cohort studies in Table 5.

First author	Year published	Location	Study period	Sample size	Birth defects, n-subtype, n	Case ascertain- ment and clas- sification	GDM diagnosis
Janssen	1996	Washington State	1984–1991	19335 GDM 8898 DM 1511 No DM 8926	Single birth defect, 411 ≥2 birth defects, 38	Live births Birth certifi- cates (16 pos- sible choices of defects) Exclusion: down's syn- drome	Birth certificate
Ramachandran	1998	India	1994–1996	1062 GDM 211 No GDM 851	Birth defects, 13 GDM 5 No GDM 8	Live births, still births, termi- nations	Universal screening (OGTT ^{a,b})
Moore	2000	Boston, MA	1984–1987	22,951 DM 68 GDM 506 No DM 22,377	Birth defects, 310 DM 4 GDM 7 No DM 299	Live births Maternal telephone interview at 15–20 weeks gestation (pre- pregnancy factors) Delivering physician questionnaire (neonatal outcomes)	Self report or physician interpretation of medical records at delivery ^c
Aberg	2001	Sweden	1987–1997	1,216,198 GDM 8684 DM 3874 No DM 1,220,072	Congenital mal- formations GDM 343 DM 272 No DM 45214	Live births	Birth registry ^d
Savona-Ventura	2004	Malta	1996–2000	1263 GDM 291 No GDM 972	Congenital anomalies, 57 GDM–13 No GDM–44	Live births Malformations classified by birth registry	Universal screening (OGTT ^e)
Garcia-Patter- son	2004	Spain	1986–2002	2060 All GDM 2060	Congenital mal- formation Major 124 (6%) Minor 78 (3.8%)		Universal screening (OGTT ^{a,f})
Abolfazl	2008	Iran	2006	420 GDM 70 No DM 350	Congenital anomalies, 7 GDM–4 No DM–3	Live births, still births Women referred for delivery Validated ques- tionnaire	Validated ques- tionnaire
Lapolla	2009	Italy 31 centers	1999–2003	3465 GDM 3465 No GDM 367,932 national population comparison	Congenital mal- formations, 72/3465	Live births, still births Malformations classified according to EUROCAT	Universal screening (OGTT ^{g,h})

Table 3 Characteristics of cohort studies examining gestational diabetes mellitus (GDM) and birth defects

 Table 3 (continued)

First author	Year published	Location	Study period	Sample size	Birth defects, n-subtype, n	Case ascertain- ment and clas- sification	GDM diagnosis
Fadl	2010	Sweden	1991–2003	1,260,297 GDM 10,525 No GDM 1,249,772	Major mal- formations, 22,738 GDM, 242 No GDM, 22496	Live births, still births ≥ 28 weeks Singleton preg- nancies No pre-preg- nancy dx of DM	-universal screening (Fasting capil- lary whole blood glucose ⁱ ; OGTT ⁱ)
Pablo Velazquez	2010	Mexico	2007–2008	142 GDM 71 No DM 71	Congenital mal- formations, 7 GDM, 5 No DM, 2	Live births Defects identi- fied at birth Exclusion: preg- nancies with pregestational diabetes	Universal screening (OGTT ^e)
Mannan	2012	Bangladesh	2006–2007	144 GDM 72 No GDM 72	Congenital anomalies, 1 GDM, 1 No GDM, 0	Live births, still births, termi- nations Defects identi- fied by clini- cal evaluation after birth	Universal screening (OGTT ⁱ)
Gasim	2012	Saudi Arabia	2001–2008	440 GDM 220 No GDM 220	Congenital anomalies, 7 GDM, 3 No GDM, 4	Live births, still births Case definition not defined Exclusion: mul- tiple gestation or breech presentation	Universal screening (OGTT ^h)
Aryasinghe	2012	Ajman, United Arab Emirates	2007–2008	1222 GDM 66 No GDM 1153	Congenital anomalies GDM, 8 No GDM, 76	Live births ICD9 diagno- ses coded by pediatrician at birth Physician com- pleted birth detail form with infant and maternal variables	Physician com- pleted birth detail form
Agopian	2012	Texas	1999–2008	1335 Syndromic (772) Non-syndromic (563)	Nonsyndromic complete atrioven- tricular canal defect, 563	Live births, still births, termi- nations BPA code for CAVC in registry	Birth registry

^aWorld Health Organization criteria

^bO'Sullivan and Mahan criteria

°77% from outcome questionnaire sent to delivery MD and extracted from medical record; remainder from maternal self-report

^dICD coding used in birth registry: DM (ICD9=6480; ICD10=0240); GDM (ICD9=6488; ICD10=0244)

^eAmerican diabetes association (ADA) criteria

^hCarpenter and Coustan criteria

ⁱCriteria used was not reported in the study

^f3rd Workshop conference on gestational diabetes mellitus criteria

^g4th Workshop conference on gestational diabetes mellitus criteria

Case-Control Studies

Of the ten case-control studies included in the systematic review, two were cases comprising multiple types of births defects, and eight focused on cases involving a selected subset of defects (Table 4). The two most commonly evaluated types of birth defects were cardiac and CNS defects.

Multiple Types of Defects Combined as a Group

Ramos-Arroyo et al. (1992) reported a significant association between GDM and any type of birth defect (OR 1.6 [CI 1.2, 2.2]). In this study, a stronger association between GDM and birth defects was reported in women using insulin when evaluating any minor or major birth defect (OR 1.9 [CI 1.1, 3.4]), and when evaluating major defects only (OR 1.9 [CI 1.0, 3.7]). Correa et al. (2008) reported a significant, although weak, association between GDM and isolated non-cardiac defects (OR 1.3 [CI 1.05, 1.6]), and a similar association with the presence of multiple non-cardiac defects, although the confidence interval included the null value in this group (OR 1.31 [CI 0.92, 1.80]).

Cardiac Malformations

A weak association between GDM and cardiac defects was reported in four case-control studies. Ferencz, Rubin, McCarter, and Clark (1990) evaluated multiple types of cardiac defects and reported a slight increase in the proportion of women with GDM in the group of offspring with cardiac defects, compared to those without (OR 1.45, [99.5% CI 0.94, 2.23]). No association was found between GDM and specific types of cardiac defects. Ramos-Arroyo et al. (1992) found a significant association between GDM and cardiac defects (OR 5.0 [95% CI 1.2, 17.8]). When analyzed by type of cardiac defect, they reported a significant association between GDM and transposition of the great arteries (OR 22.5 [95% CI 1.2, 170.30]). Correa et al. (2008) found an association between GDM and multiple types of cardiac defects evaluated as a group (OR 1.65 [95% CI 1.14, 2.39]), as well as an association between GDM and isolated cardiac defects (OR 1.59 [95% CI 1.27, 1.99]). Analysis by subtype of cardiac defect demonstrated an association between GDM and three specific types of cardiac defects: atrial septal defects (OR 2.16 [95% CI 1.46, 2.31]), tetralogy of Fallot (OR 1.8 [95% CI 1.12, 2.87]), and isolated pulmonary valve stenosis (OR 2.41 [95% CI 1.59, 3.64]). Gilboa et al. (2010) found an increase in the proportion of women with GDM in the group containing infants with cardiac defects, as compared to those without (OR 1.43 [95% CI 1.21, 1.70]).

Central Nervous System Defects

Three case-control studies demonstrated associations between maternal GDM and CNS defects. CNS defects types evaluated varied between studies, and included neural tube defects, anencephaly, holoprosencephaly, hydrocephaly, craniorachischisis, and microcephaly, among others.

Ramos-Arroyo et al. (1992) reported a significant association between GDM and CNS defects of any type (OR 4.1 [95% CI 1.4, 11.7]). When individual CNS defects were evaluated, they found significant associations between GDM and both neural tube defects and anencephaly (OR 5.1 [95% CI 1.6, 15.8] and OR 7.0 [95% CI 1.2, 31.3], respectively). Encephalocele, holoprosencephaly, and microcephaly demonstrated no association.

Correa et al. (2008) found no association between GDM and select types of CNS defects (including spina bifida, encephalocele, holoprosencephaly, hydrocephaly, anencephaly and craniorachischisis).

Anderson et al. (2005) evaluated the association between GDM and select types of CNS defects. Holoprosencephaly showed the strongest association with GDM (adjusted OR 2.9 [95% CI 1.0, 8.4]). For anencephaly, spina bifida, and hydrocephaly, no association was seen.

Agopian et al. (2013) described the association between GDM and spina bifida or an encephaly. Neither demonstrated an association with GDM when analyzed alone nor when analyzed as a group.

Stronger associations were reported by the Ramos-Arroyo group for both anencephaly and neural tube defects (as a combined group), as compared to either Anderson or Agopian when evaluating anencephaly or spina bifida, either individually or combined.

Genitourinary Defects

Two case-control studies evaluated specific defects of the genitourinary system. Porter et al. (2005) found no association between GDM and hypospadias. Congenital urinary tract anomalies of any type were reported by Shnorhavorian et al. (2011) to have a weak association with GDM (OR 1.25 [CI 1.06, 1.48]). When these defects were divided into isolated kidney defects or lower urinary tract defects, there was a stronger association between GDM and kidney defects (OR 1.42 [CI 1.09, 1.85]) than between GDM and lower urinary tract defects (OR 1.25 [CI 1.01, 1.56]).

Miscellaneous Defects

A few studies reported weak associations between maternal GDM and individual birth defect types that were less commonly a focus of the other studies reviewed (e.g., skeletal defects and microtia). Ramos-Arroyo et al. (1992) reported

References	Outcome	Odds ratios (95% confidence intervals)	confidence in	tervals)			
Multiple defect types	pes						
Ramos-Arroyo	Multiple types of	Any defect cOR ^a				Major defects cOR ^a	
(1992)	birth defects	1.6 (1.2, 2.2) 1.9 (1.1, 3.4) 1.5 (1 1 2 1)		all GDM GDM insulin users GDM non-insulin users		- 1.9 (1.0, 3.7) 1.2 (0.8 1.8)	
	At for the second s	All and models der	dan - otret	ODM 11011-11011 11000		1.2 (0.0, 1.0)	
COITEA (2000)	birth defects	All non-cardiac defects <i>a</i> Isolated	siects a OK		Multiple defects		
		1.3 (1.05–1.60)			1.31(0.92 - 1.80)		
Cardiac defects							
Ferencz (1990)	Cardiac defects	1.45 (0.94, 2.23) cOR ^c	OR^{c}				
Ramos-Arroyo (1992)	Cardiac defects	All Cardiac defects <i>cOR^a</i> 5 0 (1 2 1 7 8)	s <i>cOR</i> ^a		Transposition of the great arteries (TGA) cOR^a	eries (TGA) <i>cOR</i> ^a	
	Condina dafaata	Icoloted conding	A C D	TOF			Multinlo
COITEA (2008)	Carulac defects	tsolated cardiac defect aOR^b	aOR ^b	aOR ^b	aOR ^b	-	cardiac defects
		1 60	21.0	0 -	c		4UN 1.65
		(1.27 - 1.99)	(1.46-2.31)	(1.12–2.87)	2.71 (1.59–3.64)		(1.14–
Gilboa (2010) Central nervous s	Gilboa (2010) Cardiac defects Central nervous system (CNS) defects	1.43 (1.21–1.70) <i>cOR</i> ^a	OR^a				(60.7
P amos-A movo	Multinla tynas of	All CNS defects COPd		Naural tube defects $\alpha O B^{d}$		A nencenhalv $_{ODa}$	
(1992) Anderson	birth defects CNS defects	All CLAS delects CON 4.1 (1.4, 11.7) Specific CNS defects <i>aOR^d</i>		5.1 (1.6, 15.8)		7.0 (1.2, 31.3)	
(2005)	(anencephaly snina hifida holo-	Anencephaly	Spina bifida	la	Holoprosencephaly	Η	Hydro-
	prosencephaly, hydrocephaly)	0.3 (0.1–1.2)	1.2 (0.6–2.4)	(4.	2.9 (1.0-8.4)		cepnary 1.6 (0.7– 3.5)
Agopian (2013)	Neural tube defects (spina bifida, anencephaly)	All cases (spina bifida + anencephaly) <i>cOR</i> ^a 1.12 (0.83, 1.51)	fida + anence	phaly) cOR^a	All cases of spina bifida <i>cOR^a</i> 1.29 (0.91, 1.79)		
Genitourinary tract defects	ct defects						
Porter (2005)	Hypospadias	Hypospadias <i>cOR</i> ^{<i>a</i>} 1.18 (0.88–1.59)	^{ba}				
Shnorhavorian (2011)	Congenital Urinary Tract	Any CUTA defect <i>aOR^e</i> 1.25 (1.06, 1.48)	t <i>aOR^e</i>	Kidney defect <i>aOR^e</i> 1.42 (1.09, 1.85)		UBUA a <i>OR</i> ^e 1.25 (1.01, 1.56))R ^e , 1.56)
	Anomalies						

Table 4 (continued)	ed)		
References	Outcome	Odds ratios (95% confidence intervals)	
Miscellaneous defects	fects		
Ramos-Arroyo (1992)	Multiple types of birth defects	Multiple types of Pre-axial polydactyly cOR^a birth defects 9.0 (1.7, 40.5)	
Van Bennekom	Microtia	Any Defect: aOR ⁶	Isolated Microtia <i>aOR</i> ⁶
(2013)		$1.4\ (0.9, 2.0)$	1.4 (0.9, 2.2)
^a Crude odds ratios	s were calculated by	^a Crude odds ratios were calculated by 2×2 contingency tables for each exposure. 95% confidence intervals were used	
^b Adjusted for mate	ernal age, race/ethnic	^b Adjusted for maternal age, race/ethnicity, entry into prenatal care, BMI, study center, and household income	
^c Crude odds ratios	s were calculated by	^c Crude odds ratios were calculated by 2×2 contingency tables for each exposure. 99.5% confidence intervals were used	
^d Adjusted for ethn	nicity, BMI, age, mate	^d Adjusted for ethnicity, BMI, age, maternal education, smoking, alcohol use, and periconceptional folic acid use	

Adjusted for race/ethnicity, education, periconceptional folic acid use, and study center. For each category, reference category comprises women who were not exposed

Final model, including all maternal characteristics (race, parity, sex, and the established CUTA risk factors)

an association between GDM and pre-axial polydactyly (OR 9.0 [95% CI 1.7, 40.5]). Von Bennekom, Mitchell, Moore, and Werler (2013) reported a weak association between GDM and microtia; however, this did not meet statistical significance (OR 1.4 [CI 0.9, 2.2]).

Cohort Studies

Of the 14 cohort studies included in the review, three demonstrated weak but significant associations (OR 1.0–1.5) between GDM and birth defects as a group (Table 5).

Abolfazl, Hamidreza, Narges, and Maryam (2008) reported a relative risk of 7.28 (95% CI 1.59, 33.32) for the development of birth defects in offspring of women with GDM. Using data from a study reported by Lapolla et al. (2009), a crude odds ratio of 2.37 (95% CI 1.87, 2.99) was calculated for birth defects in offspring of women with GDM. Fadl et al. (2010) also reported a weak association (adjusted OR 1.19 [95% CI 1.02, 1.39]) between "major" birth defects (i.e., potentially life threatening or likely to lead to serious handicap or cosmetic defect if not surgically corrected) and GDM.

Janssen et al. (1996) reported no association between GDM and birth defects, whether evaluating the presence of multiple defects or single defects. When looking at specific defect types, they reported slightly stronger associations, however, none met statistical significance.

Agopian et al. (2012) reported an association between GDM and complete atrioventricular canal defect (CAVC) (adjusted prevalence ratio 1.7 [CI 1.0, 2.8]). In those with CAVC and heterotaxy syndrome, the association with GDM was stronger with an adjusted prevalence ratio of 2.0 [CI 1.0, 4.0]. The remaining eight cohort studies, summarized in Table 5, did not demonstrate associations between GDM and birth defects. (Aberg et al. 2001; Aryasinghe 2012; Gasim 2012; Mannan 2012; Moore et al. 2000; Pablo Velazquez 2010; Ramachandran et al. 1998; Savona-Ventura and Gatt 2004).

GDM Stratified by Pre-pregnancy BMI and Birth Defects

Several studies evaluated the association between GDM stratified by pre-pregnancy BMI category and birth defects. Most showed no association between GDM and birth defects in the normal pre-pregnancy BMI category, but did suggest an association for the higher pre-pregnancy BMI categories (Table 6).

Garcia-Patterson et al. (2004) divided women with GDM into BMI tertiles, and evaluated the association with major birth defects. They found that, within the higher BMI tertiles, there was a stronger association between GDM and offspring having at least one major birth defect (2nd tertile OR 2.54 [CI 1.28, 5.02]; 3rd tertile OR 2.67 [CI 1.36,

I

Table 5 Odds ratios for association between gestational diabetes mellitus and birth defects in cohort studies

Reference	Outcomes	Relative risl	k estimates	(95% confidence	intervals)			
Janssen (1996)	1 birth defect or ≥2 birth defects	≥ 2 defects <i>POR^a</i>	1 defect POR ^a	Skeletal defect POR ^a	Cleft lip/palate POR ^a		Neural tube defect <i>POR</i> ^a	Cardiac defect POR ^a
		1.1 (0.5, 2.6)	1.1 (0.5, 2.6)	1.5 (0.9, 2.3)	1.6 (0.7, 4.0)		1.5 (0.3, 9.2)	1.5 (0.8, 2.3)
Ramachan- dran (1998)	Birth defects	(0.5, 2.0) 2.56 (0.87, 7		(0.9, 2.3)	(0.7, 4.0)		(0.3, 9.2)	(0.0, 2.5)
Moore (2000)	Birth defects	1.0 (0.48, 2.	2) RR ^c					
Aberg (2001)	Birth defects	(1.07 (0.96,	1.19) <i>cOR^b</i>					
Savona- Ventura (2004)	Birth defects	0.99 (0.53, 1	1.84) <i>cOR^b</i>					
Abolfazl (2008)	Birth defects	7.28 (1.59. 3	33.32) <i>RR</i> ^d					
Lapolla (2009)	Birth defects	2.37 (1.87, 2	2.99) cOR^{b}					
Pablo Velazquez (2010)	Birth defects	2.6 (0.49, 13	3.94) <i>RR^d</i>					
Fadl (2010)	Major birth defects	1.29 (1.14–	1.47) <i>cOR^e</i>	1.19 (1.02–1.39)	aOR^{f}			
Agopian	Complete atrio-	CAVC				CAVC without heterotaxy		
(2012)	ventricular canal (CAVC) defects	1.7 (1.0, 2.8	b) aPR^g			$2.0(1.0, 4.0) a P R^{g}$		
Mannan (2012)	Birth defects	Cannot calc	ulate odds r	atio—zero cell in	unexposed group			
Gasim (2012)	Birth defects	0.75 (0.19, 3	$3.02) cOR^b$					
Aryasinghe (2012)	Birth defects	1.47 (0.63–3	3.43)					

REF reference group, DM diabetes mellitus, GDM gestational diabetes mellitus, CAVC common atrioventricular canal defect

^aPOR prevalence odds ratio

^bcOR Crude odds ratio and 95% confidence interval calculated from available raw data

^c*RR* Relative risk of major defects by category of body mass index and diabetes mellitus [prevalence ratios (PR) and 95% confidence limits (CL)]^{**} Adjusted for age, education, first-trimester cigarette and alcohol use, and supplemental folate and retinol per day (weeks 3–8)

^d*RR* Relative risk

^ecOR Crude odds ratio and 95% confidence interval

^faOR Adjusted odds ratio, adjusted for maternal age, body mass index, parity, chronic hypertensive disorder, smoking habits, and ethnicity ^gaPR Adjusted prevalence ratio

5.27]). When specific defect types were evaluated in subgroups, there was a strong association between GDM and renal/urinary defects in women in the 3rd (highest) BMI tertile (OR of 5.22 [CI 1.15, 23.74]).

Anderson et al. (2005) stratified women with GDM by pre-pregnancy BMI (obese versus non-obese, using a

BMI of $>30 \text{ kg/m}^2$ for obese). They reported a significant association between obese GDM women and both spina bifida (adjusted OR 4.5 [CI 1.5, 13]) and holoprosencephaly (adjusted OR 6.5 [CI 1.3, 31]), as compared to normal weight women without GDM. Anencephaly and hydrocephaly showed a weak association with obese GDM women when stratified by BMI category, but did

Table 6	Odds ratios a	nd 95% con.	Table 6 Odds ratios and 95% confidence intervals for associations between gestational diabetes mellitus (GDM) and birth defects stratified by maternal pre-pregnancy BMI	s mellitus (GDM) and birth defects s	stratified by maternal pre	pregnancy BMI
Refer- ences	Outcome	Exposure category	Results			
Garcia- Patter- son (2004)	Birth defects (multiple defects)	Pre-preg- nancy BMI tertile	l or more major CM Renal/urinary	1st BMI tertile (15.43–21.91) REF REF	2nd BMI tertile (21.92–24.77) 2.54 (1.28–5.02) 1.47 (0.24–8.80)	3rd BMI tertile (24.78–47.07) 2.67 (1.36–5.27) 5.22 (1.15–23.74)
Anderson	0			GDM	Maternal obesity	aOR^a
(cnn7)	System		Anencephaly	Yes	(BMI≥30 kg/m ⁻) Yes	1.5(0.3-7.6)
	Defects	Pre-preg-	•	Yes	No	
		BMI		No	Yes	2.0 (1.1–3.6)
				No	No	1.0 (REF)
			Spina bifida	Yes	Yes	4.5 (1.5–13)
				Yes	No	0.8 (0.3–2.2)
				No	Yes	2.6 (1.6-4.3)
				No	No	1.0 (REF)
			Holoprosencephaly	Yes	Yes	6.5 (1.3–31)
				Yes	No	1.8 (0.5–6.8)
				No	Yes	0.8 (0.2–3.0)
				No	No	1.0 (REF)
			Hydrocephaly	Yes	Yes	2.7 (0.6–11)
				Yes	No	1.9 (0.7–4.8)
				No	Yes	2.3 (1.3-4.2)
				No	No	1.0 (REF)

Table 6	Table 6 (continued)								
Refer- ences	Outcome	Exposure category	Results						
Martinez- Frias (2005)	Birth defects	Gesta- tional Diabetes				BMI≤20.9 aOR ^a	BMI 21 -24.9	BMI 25-29.9	BMI≥30
~		Pre-preg- nancy	Selected defects	No GDM GDM		REF 1 22	REF 1 16	REF 0.98	REF 2.76
		BMI				(0.79–1.89)	(0.88-1.51)	(0.57 - 1.68)	(1.49-5.11)
			Cardiac	No GDM		REF	REF	REF	REF
			defects	GDM		1.09	1.14	1.35	3.47
						(0.47 - 2.54)	(0.68 - 1.92)	(0.74 - 2.46)	(1.71 - 7.03)
			Cardiac	GDM		1.0	1.0 (REF)	1.6	2.82
			defects in those			(0.32–2.98)		(0.68–3.75)	(1.13 - 7.04)
			with						
			mater- nal						
			GDM						
Gilboa (2010)	Cardiac defects	Gesta- tional				Normal weight BMI≥18.5 to <25	Overweight BMI≥25 to <30	Obese BMI≥30	
	(multiple tynes)	diabetes Pre-nreg-	Any cardiac defect	ic defect	No GDM	REF	1.17 (1.06–1.29)	1.17 (1.05–1.31)	
	(and fa	nancy			GDM	1.05 (0.77–1.42)	1.46 (1.04–2.05)	1.82 (1.36–2.44)	
		BMI	TOF		No GDM	REF	1.21 (0.96–1.52)	1.20 (0.92–1.57)	
					GDM	0.50 (0.18–1.39)	1.05 (0.55–2.48)	2.38 (1.37-4.14)	
			LVOT defects	ects	No GDM	REF	1.09 (0.91–1.31)	1.14(0.93 - 1.41)	
					GDM	0.68 (0.34–1.37)	1.72 (0.98–3.01)	1.87 (1.15–3.05)	
^a <i>aOR</i> adjı	^a aOR adjusted odds ratio	tio							

not reach statistical significance (adjusted OR 1.5 [CI 0.3, 7.6] and 2.7 [CI 0.6, 11], respectively).

Two studies evaluating cardiac defects demonstrated a stronger association with GDM when stratified by prepregnancy BMI category. Martinez-Frias et al. (2005) reported a significant association between cardiac defects and women with both GDM and $BMI \ge 30 \text{ kg/m}^2$ (OR 3.47 [CI 1.71, 7.03]). There was no association between cardiac defects and GDM in women with lower BMI categories (reference group included women without GDM in the same BMI category). When only women with GDM were considered (reference group consisting of those with GDM and BMI $< 20.9 \text{ kg/m}^2$), there was a significant association between women with a BMI \geq 30 kg/m² and cardiac defects (OR 2.82 [1.13, 7.04]). When a broader group of defects was considered, they found a significant association between GDM women with a BMI \geq 30 kg/m² and the presence of any of a selected group of birth defects, as compared to the reference group of women without diabetes in the same BMI category (OR 2.76 [CI 1.49, 5.11]).

In 2010, Gilboa et al. evaluated the association between GDM, stratified by pre-pregnancy obesity status, and cardiac defects in the offspring and found an association between cardiac defects and maternal GDM *and* either overweight (BMI \geq 25 and <30 kg/m²; OR 1.46 [CI 1.04, 2.05]) or obese status (BMI > 30 kg/m²; 1.82 [CI 1.36, 2.44]). When specific types of cardiac defects were evaluated, a significant association was noted between maternal GDM in the obese BMI category and the presence of either tetralogy of Fallot (OR 2.38 [CI 1.37, 4.14]) or left ventricular outflow tract defects (OR 1.87 [CI 1.15, 3.05]).

Comments

Study Strengths and Limitations

There are several strengths to our study design. Utilizing the strategies outlined in The PRISMA Statement (Moher 2009), we adhered to guidelines aimed at improving quality of reporting and accuracy and transparency of publications. Not limiting our search by language or date of publication allowed us to review a more robust group of available studies, decreasing the potential of omitting important studies due to search strategy and, thereby, strengthening our results.

Another strength is that we considered associations between GDM and multiple types of birth defects (combined as a group), as well as associations between GDM and specific defect types. This is important because evaluating the consistency of findings across studies depends on the comparability of case groups from individual reports, which is more likely to be achieved for specific types of birth defects than for birth defects combined as a group as such groups are likely to vary in inclusion criteria among studies. Lastly, by examining associations of GDM with birth defects stratified by maternal pre-pregnancy obesity, it was possible to determine that the associations were present only among offspring of women with GDM and prepregnancy obesity or overweight status, and not among offspring of women with GDM but no pre-pregnancy obesity or overweight status.

One limitation of our study is that GDM status was obtained using multiple methods, all of which are not likely to be directly comparable. For example, in eight of fourteen cohort studies, GDM was diagnosed using universal screening. Of these, seven utilized oral glucose tolerance testing (OGTT) and followed recommended cut-off values provided by well-established published guidelines, and one utilized a combination of fasting blood capillary glucose testing and OGTT during the study. Six cohort studies used birth registry data, birth certificate data, or a questionnaire completed by the patient or healthcare provider as the source of information on GDM.

Of the ten case-control studies, eight obtained GDM status through maternal self-report and two through birth registry data or a combination of birth certificate data and ICD-9 (International Classification of Diseases, Ninth Revision) coding from maternal medical records. Variation in data source and method of diagnosis probably resulted in some misclassification of GDM status within and among studies, and in lack of comparability regarding GDM status among studies. If GDM misclassification was non-differential with respect to case-control status, the net effect of such misclassification would be of attenuation of a true association between GDM and birth defects towards the null or of no effect in the absence of a true association.

Another limitation of this review is that the composition of phenotypes of birth defects included likely varied across studies, as such composition depends on the population under surveillance, case ascertainment and classification methods, and inclusion and exclusion criteria, all of which tend to vary across studies. Given the heterogeneity in methods and composition of case groups across studies, we did not attempt to pool the results from multiple studies into summary measures as such an approach would not provide a valid assessment of the relationship between GDM and birth defects.

Discussion

Our findings regarding the association between GDM and birth defects were inconsistent. However, when analyses were stratified by maternal pre-pregnancy BMI category, there was a significant association between GDM and birth defects, but only among offspring of women with pre-pregnancy obesity. In the four studies where these stratified analyses were reported, moderate (OR 1.5-2.0) to strong (OR > 2.0) associations were evident for selected birth defects (i.e., cardiac and neural tube defects) and GDM in the setting of obesity and with pre-pregnancy obesity in the absence of GDM. Furthermore, in studies with more than two BMI categories, there seemed to be a monotonic relationship between higher pre-pregnancy BMI and higher prevalence of birth defects, independent of the presence of GDM.

Conclusions and Implications

Our review of the literature indicates no consistent evidence of an association between GDM and birth defects in women with GDM but no pre-pregnancy obesity. However, there was consistent evidence of an increased risk of selected birth defects (i.e., cardiac and neural tube defects) among offspring of women with both pre-pregnancy obesity and GDM. These findings suggest that previously reported associations between GDM and birth defects that develop early in pregnancy may be due, in part, to undiagnosed metabolic disorders associated with obesity, such as PGDM, rather than to GDM that develops and is diagnosed later in pregnancy.

These findings are of public health concern given the increasing prevalence of obesity among women of childbearing age, particularly among minority populations (Correa and Marcinkevage 2013), and that about 40% of all pregnancies are unplanned (Finer and Zolna 2011; Mosher et al. 2012). These findings also highlight the need for increased efforts to screen for undiagnosed PGDM among women of childbearing age with obesity, and for referral of women with newly diagnosed PGDM for diabetes management, family counseling, and, when indicated, preconception care. Our findings also highlight the need for increasing awareness among women of childbearing age about the importance of appropriate weight management before and during pregnancy for their reproductive health and the health of their offspring.

Compliance with Ethical Standards

Conflict of interest The authors report no conflict of interest.

References

- Aberg, A., Westbom, L., & Kallen, B. (2001). Congenital malformations among infants whose mothers had gestational diabetes or preexisting diabetes. *Early Human Development*, 61(2), 85–95.
- Abolfazl, M., Hamidreza, T. S., Narges, M., & Maryam, Y. (2008). Gestational diabetes and its association with unpleasant

outcomes of pregnancy. Pakistan Journal of Medical Sciences, 24(4), 566–570.

- Agopian, A. J., Moulik, M., Gupta-Malhotra, M., Marengo, L. K., & Mitchell, L. E. (2012). Descriptive epidemiology of non-syndromic complete atrioventricular canal defects. *Paediatric and Perinatal Epidemiology*, 26(6), 515–524. doi:10.1111/ppe.12006.
- Agopian, A. J., Tinker, S. C., Lupo, P. J., Canfield, M. A., & Mitchell, L. E. (2013). Proportion of neural tube defects attributable to known risk factors. *Birth Defects Research Part A*, 97(1), 42–46. Retrieved, from http://www.ncbi.nlm.nih.gov/pubmed/23427344.
- Anderson, J. L., W, D. K., Canfield, M. A., Shaw, G. M., Watkins, M. L., & Werler, M. M. (2005). Maternal obesity, gestational diabetes, and central nervous system birth defects. *Epidemiology*, 16(1), 87–92.
- Aryasinghe, L., M, D., Ansari, T. A., Khoury, R., Mathew, E., Sharbatti, S. A., & Shaikh, R. B. (2012). Congenital anomalies at birth: A hospital based study in UAE. *Journal of Nepal Paediatric Society*, 32(2), 105–112.
- Correa, A., Gilboa, S. M., Besser, L. M., Botto, L. D., Moore, C. A., Hobbs, C. A., ... Reece, E. A. (2008). Diabetes mellitus and birth defects. *American Journal of Obstetrics and Gynecology*, 199(3), 237.e231–239. doi:10.1016/j.ajog.2008.06.028.
- Correa, A., & Marcinkevage, J. (2013). Prepregnancy obesity and the risk of birth defects: An update. *Nutrition Reviews*, 71(Suppl 1), S68–77. doi:10.1111/nure.12058.
- Fadl, H. E., Ostlund, I. K., Magnuson, A. F., & Hanson, U. S. (2010). Maternal and neonatal outcomes and time trends of gestational diabetes mellitus in Sweden from 1991 to 2003. *Diabetic Medicine*, 27(4), 436–441. doi:10.1111/j.1464-5491.2010.02978.x.
- Ferencz, C., Rubin, J. D., McCarter, R. J., & Clark, E. B. (1990). Maternal diabetes and cardiovascular malformations: Predominance of double outlet right ventricle and truncus arteriosus. *Teratology*, 41(3), 319–326. doi:10.1002/tera.1420410309.
- Finer, L. B., & Zolna, M. R. (2011). Unintended pregnancy in the United States: Incidence and disparities, 2006. *Contraception*. doi:10.1016/j.contraception.2011.07.013.
- Garcia-Patterson, A., Erdozain, L., Ginovart, G., Adelantado, J. M., Cubero, J. M., Gallo, G., ... Corcoy, R. (2004). In human gestational diabetes mellitus congenital malformations are related to pre-pregnancy body mass index and to severity of diabetes. *Diabetologia*, 47(3), 509–514. doi:10.1007/s00125-004-1337-3.
- Gasim, T. (2012). Gestational diabetes mellitus: maternal and perinatal outcomes in 220 saudi women. *Oman Medical Journal*, 27(2), 140–144. doi:10.5001/omj.2012.29.
- Gilboa, S. M., Correa, A., Botto, L. D., Rasmussen, S. A., Waller, D. K., Hobbs, C. A., ... Riehle-Colarusso, T. J. (2010). Association between prepregnancy body mass index and congenital heart defects. *American Journal of Obstetrics and Gynecology*, 202(1), 51.e51–51.e10. doi:10.1016/j.ajog.2009.08.005.
- Inkster, M. E., Fahey, T. P., Donnan, P. T., Leese, G. P., Mires, G. J., & Murphy, D. J. (2006). Poor glycated haemoglobin control and adverse pregnancy outcomes in type 1 and type 2 diabetes mellitus: Systematic review of observational studies. *BMC Pregnancy* and Childbirth, 6, 30. doi:10.1186/1471-2393-6-30.
- Janssen, P. A., Rothman, I., & Schwartz, S. M. (1996). Congenital malformations in newborns of women with established and gestational diabetes in Washington State, 1984–91. *Paediatric and Perinatal Epidemiology*, 10(1), 52–63. Retrieved, from http:// www.ncbi.nlm.nih.gov/pubmed/8746431.
- Lapolla, A., Dalfra, M. G., Bonomo, M., Parretti, E., Mannino, D., Mello, G., & Di Cianni, G. (2009). Gestational diabetes mellitus in Italy: A multicenter study. *European Journal of Obstetrics, Gynecology, and Reproductive Biology*. doi:10.1016/j. ejogrb.2009.04.023.
- Mannan, M. A., Rahman, M. H., Ara, I., & Afroz, H. (2012). Prevelence and pregnancy outcome of gestational diabetes mellitus

among Bangladeshi urban pregnant women. *Journal of Medicine* (Bangladesh), 13(2), 147–151.

- Martinez-Frias, M. L., Frias, J. P., Bermejo, E., Rodriguez-Pinilla, E., Prieto, L., & Frias, J. L. (2005). Pre-gestational maternal body mass index predicts an increased risk of congenital malformations in infants of mothers with gestational diabetes. *Diabetic Medicine*, 22(6), 775–781. doi:10.1111/j.1464-5491.2005.01492.x.
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., The Prisma Group (2009). Preferred reporting items for systemic reviews and metaanalyses: The Prisma Statement. *Journal of Clincal Epidemiol*ogy, 62, 1006–1012.
- Moore, L. L., Singer, M. R., Bradlee, M. L., Rothman, K. J., & Milunsky, A. (2000). A prospective study of the risk of congenital defects associated with maternal obesity and diabetes mellitus. *Epidemiology*, 11(6), 689–694.
- Mosher, W. D., Jones, J., & Abma, J. C. (2012). Intended and unintended births in the United States: 1982–2010. National Health Statistics Reports, 55, 1–28. Retrieved, from http://www.ncbi. nlm.nih.gov/pubmed/23115878.
- Pablo Velazquez, G., Genero, V. M., & Martha Leticia Martinez, M. (2010). Neonatal morbidity and mortality associated with gestational diabetes. *Revista Chilena de Obstetricia y Ginecologia*, 75(1), 35–41.
- Porter, M. P., Faizan, M. K., Grady, R. W., & Mueller, B. A. (2005). Hypospadias in Washington State: Maternal risk factors and prevalence trends. *Pediatrics*, 115(4), e495–e499. doi:10.1542/ peds.2004-1552.
- Ramachandran, A., Snehalatha, C., Clementina, M., Sasikala, R., & Vijay, V. (1998). Foetal outcome in gestational diabetes in south Indians. *Diabetes Research and Clinical Practice*, 41(3), 185–189.
- Ramos-Arroyo, M. A., Rodriguez-Pinilla, E., & Cordero, J. F. (1992). Maternal diabetes: the risk for specific birth defects. *European*

Journal Epidemiology, *8*(4), 503–508. Retrieved, from http:// www.ncbi.nlm.nih.gov/pubmed/1397216.

- Reece, E. A., Ma, X. D., Wu, Y. K., & Dhanasekaran, D. (2002). Aberrant patterns of cellular communication in diabetes-induced embryopathy. I. Membrane signalling. *The Journal of Maternal-Fetal & Neonatal Medicine*, 11(4), 249–253. doi:10.1080/ jmf.11.4.249.253.
- Reece, E. A., Ma, X. D., Zhao, Z., Wu, Y. K., & Dhanasekaran, D. (2005). Aberrant patterns of cellular communication in diabetesinduced embryopathy in rats: II, apoptotic pathways. *Ameri*can Journal of Obstetrics and Gynecology, 192(3), 967–972. doi:10.1016/j.ajog.2004.10.592.
- Savona-Ventura, C., & Gatt, M. (2004). Embryonal risks in gestational diabetes mellitus. *Early Human Development*, 79(1), 59–63. Retrieved, from http://www.ncbi.nlm.nih.gov/ pubmed/15449398.
- Sheffield, J. S., Butler Koster, E.L., Casey, B.M., McIntire, D.D., Leveno, K.J. (2002). Maternal diabetes mellitus and infant malformations. *Obstetrics and Gynecology*, 100(5), 925–930.
- Shnorhavorian, M., Bittner, R., Wright, J. L., & Schwartz, S. M. (2011). Maternal risk factors for congenital urinary anomalies: Results of a population-based case-control study. *Urology*. doi:10.1016/j.urology.2011.04.022.
- Stothard, K. J., Tennant, P. W., Bell, R., & Rankin, J. (2009). Maternal overweight and obesity and the risk of congenital anomalies: A systematic review and meta-analysis. *JAMA*, 301(6), 636–650. doi:10.1001/jama.2009.113.
- Van Bennekom, C. M., Mitchell, A. A., Moore, C. A., & Werler, M. M. (2013). Vasoactive exposures during pregnancy and risk of microtia. *Birth Defects Research. Part A*, 97(1), 53–59. doi:10.1002/bdra.23101.