
Vol.:(0123456789)

Machine Learning (2024) 113:7103–7125
https://doi.org/10.1007/s10994-024-06595-y

1 3

Jaccard‑constrained dense subgraph discovery

Chamalee Wickrama Arachchi1 · Nikolaj Tatti1

Received: 26 March 2024 / Revised: 4 July 2024 / Accepted: 5 July 2024 /
Published online: 23 July 2024
© The Author(s) 2024

Abstract
Finding dense subgraphs is a core problem in graph mining with many applications in
diverse domains. At the same time many real-world networks vary over time, that is, the
dataset can be represented as a sequence of graph snapshots. Hence, it is natural to con-
sider the question of finding dense subgraphs in a temporal network that are allowed to
vary over time to a certain degree. In this paper, we search for dense subgraphs that have
large pairwise Jaccard similarity coefficients. More formally, given a set of graph snap-
shots and input parameter � , we find a collection of dense subgraphs, with pairwise Jaccard
index at least � , such that the sum of densities of the induced subgraphs is maximized.
We prove that this problem is NP-hard and we present a greedy, iterative algorithm which
runs in O

(

nk
2
+ m

)

 time per single iteration, where k is the length of the graph sequence
and n and m denote number of vertices and total number of edges respectively. We also
consider an alternative problem where subgraphs with large pairwise Jaccard indices are
rewarded. We do this by incorporating the indices directly into the objective function.
More formally, given a set of graph snapshots and a weight � , we find a collection of dense
subgraphs such that the sum of densities of the induced subgraphs plus the sum of Jaccard
indices, weighted by � , is maximized. We prove that this problem is NP-hard. To discover
dense subgraphs with good objective value, we present an iterative algorithm which runs
in O

(

n
2
k
2
+ m log n + k

3
n
)

 time per single iteration, and a greedy algorithm which runs in
O
(

n
2
k
2
+ m log n + k

3
n
)

 time. We show experimentally that our algorithms are efficient,
they can find ground truth in synthetic datasets and provide good results from real-world
datasets. Finally, we present two case studies that show the usefulness of our problem.

Keywords Dense subgraphs · Jaccard index · Jaccard-constrained · Jaccard-weighted

Editors: Rita P. Ribeiro, Ana Carolina Lorena, Albert Bifet.

 * Chamalee Wickrama Arachchi
 chamalee.wickramaarachch@helsinki.fi

 Nikolaj Tatti
 nikolaj.tatti@helsinki.fi

1 HIIT, University of Helsinki, Helsinki, Finland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06595-y&domain=pdf

7104 Machine Learning (2024) 113:7103–7125

1 3

1 Introduction

Finding dense subgraphs is a core problem in graph mining with many applications in
diverse domains such as social network analysis (Semertzidis et al., 2019), temporal
pattern mining in financial markets (Du et al., 2009), and biological system analysis
(Fratkin et al., 2006). Often, many real-world networks vary over time, in which case
a sequence of graph snapshots naturally exists. Consequently, mining dense subgraphs
over time has gained attention in data mining literature (Jethava & Beerenwinkel, 2015;
Semertzidis et al., 2019; Rozenshtein et al., 2020; Galimberti et al., 2020).

Our goal is to find dense subgraphs in a temporal network. To measure the density,
we will use the definition of the ratio between the number of induced edges and verti-
ces. We should point out that there are other definitions of density such as the propor-
tion of edges. However, our choice is popular since the densest subgraph can be found
in polynomial time (Goldberg, 1984) and approximated efficiently (Charikar, 2000).

Given a graph sequence, there are natural extremes to find the densest subgraphs:
the first approach is to find a common subgraph that maximizes the sum of densities for
individual snapshots, as proposed by Semertzidis et al. (2019) among other techniques.
The other approach is to find the densest subgraphs for each snapshot individually.

In this paper, we study the problem that bridges the gap between these two extremes,
namely, we seek dense subgraphs in a temporal network that are allowed to vary over
time to a certain degree. More formally, given a graph sequence G and parameter � , we
seek a sequence of subgraphs, with pairwise Jaccard index at least � , such that the sum
of densities is maximized.

We demonstrate the differences in the following toy example.

Example 1 Consider a graph sequence (G1,G2,G3) shown in Fig. 1, each graph consisting
of 6 vertices and varying edges. We denote the density induced by the vertex set Si by
d
(

Si
)

 , defined as the ratio between number of induced edges and vertices, d
(

Si
)

=
|
E(Si)|

|
Si|

 .

We define the sum of densities as
∑3

i=1
d
�

Si
�

.
The densest common subgraph, that is, a single common subgraph over each snapshot

maximizing the sum of densities, is S = (a, b, d, e, f) . The density sum induced by S is
4

5
+

5

5
+

8

5
= 3.40.

On the other hand, the densest subgraphs for individual snapshots are S�
1
= (a, b, d) ,

S�
2
= (a, b, c, f) , and S�

3
= (a, b, d, e, f) . The sum of densities of individually densest sub-

graphs is given by 3
3
+

6

4
+

8

5
= 4.1.

Note that the Jaccard index between set S and T is defined as J(S, T) = |S∩T|

|S∪T|
 . Therefore,

J
(

S�
1
, S�

2

)

=
3

5
= 0.6 , J

(

S�
1
, S�

3

)

=
4

5
= 0.8 , and J

(

S�
2
, S�

3

)

=
3

6
= 0.5 . Therefore,

mini<j J(S
�
i
, S�

j
) is 0.5.

Fig. 1 Toy graphs used in Example 1 and 2

7105Machine Learning (2024) 113:7103–7125

1 3

Let � = 0.6 and let S1 = (a, b, d, f) , S2 = (a, b, c, f) , and S3 = (a, b, d, f) . Then,
J
(

S1, S2
)

=
3

5
= 0.6 , J

(

S1, S3
)

=
4

4
= 1 , and J

(

S2, S3
)

=
3

5
= 0.6 . The total density induced

by the sets with pairwise Jaccard index at least 0.6 is given by 4
4
+

6

4
+

5

4
= 3.75 . Hence,

three different density results are ordered as 3.4 ≤ 3.75 ≤ 4.1.

We also consider an alternative problem, where we incorporate the Jaccard index into
an objective function instead of having it as a constraint. Here, we reward similar graphs
over the snapshots. More formally, given a graph sequence G and a parameter � , we seek
a sequence of subgraphs, such that the sum of densities plus the sum of Jaccard indices,
weighted by � , is maximized.

We demonstrate the objective in the following example.

Example 2 Consider a graph sequence (G1,G2,G3) shown in Fig. 1. Given a weight
parameter � and a sequence of subgraphs (S1, S2, S3) , we define our objective function as
∑3

i=1
d
�

Si
�

+ 𝜆
∑

i<j J
�

Si, Sj
�

.
Assume that we set � = 0.3 and select S1 = (a, b, d, f) , S2 = (a, b, c, f) , and

S3 = (a, b, d, f) . The sum of densities is 4

4
+

6

4
+

5

4
= 3.75 . Here, J

(

S1, S2
)

=
3

5
= 0.6 ,

J
(

S1, S3
)

=
4

4
= 1 , and J

(

S2, S3
)

=
3

5
= 0.6 . Therefore, our objective is equal to

3.75 + 0.3 × (0.6 + 1 + 0.6) = 4.41.

We show that both of our problems are NP-hard and consequently propose greedy
algorithms. For the constrained version of the problem, we propose an iterative algo-
rithm that starts from the common densest subgraph solution and greedily improves the
solution by adding or removing vertices.

For the second problem, we propose two algorithms. The first approach is an iterative
algorithm where we start either with the common densest subgraph or a set of the dens-
est subgraphs for each individual snapshot and then iteratively improve each individual
snapshot. The improvement step is done with a classic technique used to approximate
the densest subgraph (in a single graph) (Asahiro et al., 2000; Charikar, 2000). We start
with the complete snapshot, and iteratively seek out the vertex so that the remaining
graph yields the largest score. We remove the vertex, and the procedure is repeated until
no vertices remain; the best subgraph for that snapshot is selected. This is repeated for
each snapshot until no improvement is possible. The second algorithm uses a similar
approach with the following differences. The algorithm does not iterate over snapshots.
Instead, we search for the best snapshot and the best vertex in that snapshot and delete
the vertex. We continue until there are no vertices left, and select the best set of sub-
graphs seen during the deletion.

The appeal of this approach is that, when dealing with a single graph, finding the
next vertex can be done efficiently using a priority queue (Charikar, 2000; Asahiro
et al., 2000). We cannot use this approach directly due to the updates in Jaccard indices.
Instead, we maintain a set of priority queues that allow us to find vertices quickly in
practice.

This paper extends the earlier paper (Wickrama Arachchi & Tatti, 2023) by consider-
ing maximizing the density while constraining Jaccard indices.

The remainder of the paper is organized as follows. In Sect. 2, we provide prelimi-
nary notation along with the formal definitions of our optimization problems. All our
algorithms and their running times are presented in Sect. 3. Related work is discussed

7106 Machine Learning (2024) 113:7103–7125

1 3

in Sect. 4. In Sect. 5 we present an extensive experimental study both with synthetic
and real-world datasets followed by two case studies. Finally, Sect. 6 summarizes the
paper and provides directions for future work. This paper is an extension of a confer-
ence paper (Wickrama Arachchi & Tatti, 2023).

2 Preliminary notation and problem definition

We begin by providing preliminary notation and formally defining our problem.
Our input is a sequence of graphs G = (G1,… ,Gk) , where each snapshot Gi = (V ,Ei)

is defined over the same set of vertices. We denote the number of vertices and edges by
n = |V| and mi =

|

|

Ei
|

|

 , or m = |E| , if i is omitted.
Given a graph G = (V ,E) , and a set of vertices S ⊆ V , we define E(S) ⊆ E to be the sub-

set of edges having both endpoints in S.
As mentioned before, our goal is to find dense subgraphs in a temporal network, and for

that, we need to quantify the density of a subgraph. More formally, assume an unweighted
graph G = (V ,E) , and let S ⊆ V . We define the density d(S) of a single vertex set S and
extend this definition for a sequence of subgraphs S = (S1,… , Sk) by writing

We will use the Jaccard index to measure the similarity between two subgraphs. More for-
mally, given two sets of vertices S and T, we write

Given a sequence of graph snapshots and an input parameter � , our goal is to find a col-
lection of subsets of vertices, one per each snapshot, such that the sum of the densities of
subgraphs is maximized while maintaining pairwise Jaccard coefficient between the sets to
be at least �.

Problem 2.1 [Jaccard Constrained Densest Subgraphs (JCDS)] Given a graph sequence
G = (G1,… ,Gk) , with Gi = (V ,Ei) , and a real number � ∈ [0, 1] , find a collection of subset
of vertices S = (S1,… , Sk) , such that d(S) is maximized and J

(

Si, Sj
)

≥ � for all i and j.

We will consider two extreme cases. The first case is � = 1 , which we refer to as dens-
est common subgraph or DCS that maximizes total density. This problem can be solved by
first flattening the graph sequence into one weighted graph, where an edge weight is the
number of snapshots in which an edge occurs. The problem is then a standard (weighted)
densest subgraph problem that can be solved using the method given by Goldberg (1984)
in O(n(n + m)(log n + log k)) time. The other extreme case is � = 0 which can be solved by
solving the densest subgraph problem for each individual snapshot.

The main difference from prior studies (Jethava & Beerenwinkel, 2015; Semertz-
idis et al., 2019) is that we allow the subsets to be varied within a given margin (which
is defined by Jaccard coefficient), without enforcing subsets to be fully identical. In other

d
(

Si
)

=
|

|

E(Si)
|

|

|

|

Si
|

|

and d(S) =

k
∑

i=1

d
(

Si
)

.

J(S, T) =
|S ∩ T|

|S ∪ T|
.

7107Machine Learning (2024) 113:7103–7125

1 3

words, we extend the idea of the common densest subgraph in which � = 1 , for a more gen-
eralized case where � can be less than one.

In addition to the hard constraint version, we consider a variant where we incorporate
the constraints directly into the optimization score. Ideally, we would like each subgraph to
have high density, and share as many vertices as possible with each other. This leads to the
following score and optimization problem. More specifically, given a weight parameter �
and a sequence of subgraphs S = (S1,… , Sk) , we define a score

Problem 2.2 [Jaccard Weighted Densest Subgraphs (JWDS)] Given a graph sequence
G = (G1,… ,Gk) , with Gi = (V ,Ei) , and a real number � , find a collection of subset of ver-
tices S = (S1,… , Sk) , such that q(S) is maximized.

The purpose of user parameter � is to maintain a predefined balance between the two
terms of q(S) ; namely the density term and Jaccard similarity term. Here we will consider
changing � according to our needs. If we want the collection of subgraphs to be more iden-
tical, we set � to be very large. In this case, we favor the vertex sets who incur higher
overlap with other snapshots. Nevertheless, if we are more focused on the density than the
similarity between sets, we assign a small value to � which is less than 1.

3 Algorithms

The problem of finding a common subgraph which maximizes the sum of densities can be
solved optimally in polynomial time. Moreover, if we set � = 0 , then we can solve the prob-
lem by finding optimal dense subgraphs for each snapshot individually. However, JCDS
and JWDS are both NP-hard. The proof of the propositions is in “Appendix A.1–A.2”.

Proposition 1 JCDS is NP-hard.

Proposition 2 JWDS is NP-hard.

Next, we will present our heuristic algorithms.

3.1 Finding Jaccard‑constrained densest subgraphs

First, we consider a straightforward greedy algorithm for JCDS. The idea of the proposed
iterative algorithm is as follows. We start by solving the densest common subgraph prob-
lem, that is, JCDS with � = 1.

We initialize the sets to be the densest common subgraph. Note that the Jaccard con-
straint is automatically satisfied. We then try to improve the sum of the densities by either
adding or removing vertices to each subset, while satisfying the pairwise Jaccard similar-
ity coefficient constraints. We repeat the same process until the algorithm converges. The

q(S;�) = d(S) + �

k
∑

i=1

k
∑

j=i+1

J
(

Si, Sj
)

.

7108 Machine Learning (2024) 113:7103–7125

1 3

objective value only either improves or stays constant at the end of each iteration. Thus our
algorithm always converges. The pseudo-code for the algorithm is given in Algorithm 1.

Algorithm 1 HARD(G, �) , finds S with good d(S) s.t. min J
(

Si, Sj
)

≥ �.

To quickly test each vertex, we maintain the sizes of intersections and the unions
between Si and Sj . This leads to the following running time for a single iteration.

Proposition 3 Assume a graph sequence G1,… ,Gk with n vertices and total m =
∑

i mi
edges. Then the running time of a single iteration of HarD is in O

(

nk2 + m
)

.

Proof Computing the density gain d
(

S
�
)

− d(S) requires iterating over the edges adjacent
to v. Consequently, testing over all v and i results in visiting every edge twice, amounting
to a total of O(m) time.

Testing the Jaccard constraint can be done in O(k) time since we maintain the sizes of
intersections and the unions between Si and Sj . Once Si is updated, updating these sizes can
be updated in O(k) time. Since there are n vertices in k snapshots, the claim follows. ◻

3.2 Finding Jaccard‑weighted densest subgraphs

In this section, we present two algorithms that we will use to find a sequence of sub-
graphs with good score q(⋅;�).

The first algorithm is as follows. We start with an initial candidate S . This set is
either the solution of the densest common subgraph or the densest subgraphs of each
individual snapshot; we test both and select the best end result.

To improve the initial set we employ the strategy used in Asahiro et al. (2000),
Charikar (2000) when approximating the densest subgraph: Here, the algorithm starts
with the whole graph and removes a vertex with the minimum degree, or equivalently,
removes a vertex such that the remaining subgraph has the highest density. This is con-
tinued until no vertices remained, and among the tested subgraphs the one with the
highest density is selected.

We employ a similar strategy. For a snapshot Gi , we start with Si = V , and then itera-
tively remove the vertices so that the score is maximal. After removing all vertices, we
pick the subgraph for Si which maximizes our objective q(S;�) . We iterate over all snap-
shots, we keep on modifying the sets until the algorithm converges. Since the objective

7109Machine Learning (2024) 113:7103–7125

1 3

value either only increases or stays constant at the end of each iteration, the algorithm
always converges. The pseudo-code for this approach is given in Algorithm 2.

Algorithm 2 ITR(G, �,S) , finds subgraphs with good q(⋅;�)

Next, we will show that, due to the choice of the initial sets, Itr is a 2-approximation
algorithm.

Proposition 4 Assume a graph sequence G and let S∗ be the optimal solution. Let S be the
subgraph sequence consisting of the densest common subgraph. Let S′ be the subgraph
sequence consisting of the densest subgraphs for each snapshot. Then

Before proving this result we should point out that any sequence with a common
subgraph in place of S will yield the result. However, choosing the densest common
subgraph is a sensible choice.

Proof Let us write f (S) = �
∑k

i=1

∑k

j=i+1
J
�

Si, Sj
�

 . Note that S′ maximizes the density term
in q(⋅) while S maximises the Jaccard term in q(⋅) . Thus,

proving the claim. ◻

Since iterative phase cannot decrease the score, the following approximation result is
imminent.

Corollary 3.1 Let S∗ be the solution to JWDS and let S = ITR(G, �) be the sequence pro-
duced by Itr. Then q

(

S
∗, �

)

≤ 2q(S, �).

Our second algorithm is similar to Itr. In Algorithm 2 we consider each snapshot
separately and peel off vertices. In our second algorithm, we initialize each Si with V.
In each iteration, we find a snapshot Si and a vertex v so that the remaining subgraph
sequence is maximized. We remove the vertex and continue until no vertices are left. In
the process, we choose the one which maximizes our objective function. The pseudo-
code for this method is given in Algorithm 3.

q
(

S
∗
)

≤ 2max(q(S), q
(

S
�
)

) .

q
(

S
∗
)

= d
(

S
∗
)

+ f (S∗)

≤ 2max(d
(

S
∗
)

, f (S∗)) ≤ 2max(d
(

S
�
)

, f (S)) ≤ 2max(q(S), q
(

S
�
)

),

7110 Machine Learning (2024) 113:7103–7125

1 3

Algorithm 3 GRD(G, �) , finds subgraphs with good q(⋅;�)

The bottleneck in both algorithms is finding the next vertex to delete. Let us now
consider how we can speed up this selection. To this end, select Si and let v ∈ Si . Let
us write S′ to be S with Si replaced with Si ⧵ {v} . We can write the score difference
between S and S′ as

Let us first consider GrD. To find the optimal v and i, we will group the vertices in Si such
that the the sum in Eq. 1 is equal for the vertices in the same group. In order to do that we
group the vertices based on the following condition: if two vertices u, v ∈ Si belong to the
exactly same Sj for each j, that is, u ∈ Sj if and only if v ∈ Sj , then u and v belong to the
same group. More formally, let us first define act(v) =

{

j ∣ v ∈ Sj
}

 to be the set of indices
of all Sj that have v as a member. The function act(⋅) induces a partition Pi of Si : each group
in Pi consists of vertices v having the same act(v).

Select P ∈ Pi . Since the sum in Eq. 1 is constant for all vertices in P, the vertex in P
maximizing Eq. 1 must have the smallest degree. Thus, we maintain the vertices in P in
a priority queue keyed by the degree. We also maintain the difference of the Jaccard
indices, the sum in Eq. 1. In order to maintain the difference, we maintain the sizes of
intersection ||

|

Si ∩ Sj
|

|

|

 and the union ||
|

Si ∪ Sj
|

|

|

 for all i and j. To find the optimal v and i, we
find the vertex with the smallest degree in each group, and then compare these candi-
dates among different groups.

This data structure leads to the following running time.

Proposition 5 Assume a graph sequence G1,… ,Gk with n vertices and total m =
∑

i mi
edges. Let Pir be the groups of Si (based on the vertex memberships in other snapshots)
when deleting the rth vertex. Define Δ = max |

|

Pir
|

|

 . Then the running time of GrD is in

See “Appendix A.3” for proof.
We should point out that the running time depends on Δ , the number of queues in a

single snapshot. This number may be as high as the number of vertices, n, but ideally
Δ ≪ n.

The same data structure can be also used Itr. The only difference is that we do not
select optimal i; instead, i is fixed when looking for the next vertex to delete. Trivial adjust-
ments to the proof of Prop. 5 imply the following claim.

(1)q
(

S
�
)

− q(S) =
|

|

E(Si)
|

|

− deg v

|

|

Si
|

|

− 1
−

|

|

E(Si)
|

|

|

|

Si
|

|

+
∑

j≠i

J
(

Si ⧵ {v}, Sj
)

− J
(

Si, Sj
)

.

O
(

nk2Δ + m log n + k2n(k + log n)
)

⊆ O
(

n2k2 + m log n + k3n
)

.

7111Machine Learning (2024) 113:7103–7125

1 3

Proposition 6 Assume a graph sequence G1,… ,Gk with n vertices and total m =
∑

i mi
edges. Let Pir be the groups of Si (based on the vertex memberships in other snapshots)
when deleting rth vertex. Define Δ = max |

|

Pir
|

|

 . Then the running time of a single iteration
of Itr is in

4 Related work

In this section we discuss previous studies on discovering the densest subgraph in a single
graph, the densest common subgraph over multiple graphs, overlapping densest subgraphs,
and other types of density measures.

The densest subgraph: Given an undirected graph, finding the subgraph which maxi-
mizes density has been first studied by Goldberg (1984) where an exact, polynomial time
algorithm which solves a sequence of min-cut instances is presented. Asahiro et al. (2000)
provided a linear time, greedy algorithm proved to be a 1/2-approximation algorithm by
Charikar (2000). The idea of the algorithm is that at each iteration, a vertex with the mini-
mum degree is removed, and then the densest subgraph among all the produced subgraphs
is chosen.

Several variants of the densest subgraph problem constrained on the size of the sub-
graph |S| have been studied: finding the densest k-subgraph (|S| = k) (Feige et al., 2001;
Khot, 2006; Asahiro et al., 2000), at most k-subgraph (|S| ≤ k) (Andersen & Chellapilla,
2009; Khuller & Saha, 2009), and at least k-subgraph (|S| ≥ k) (Andersen & Chellapilla,
2009; Khuller & Saha, 2009). Unlike the densest subgraph problem, when the size con-
straint is applied, the densest k-subgraph problem becomes NP-hard (Feige et al., 2001).
Furthermore, there is no polynomial time approximation scheme (PTAS) (Khot, 2006).
Approximating the problem of finding at most k-subgraph is shown as hard as the densest
k-subgraph problem by Khuller and Saha (2009). To find exactly k-size densest subgraph,
Bhaskara et al. (2010) gave an O

(

n1∕4+�
)

-approximation algorithm for every 𝜖 > 0 that
runs in nO(1∕�) time. Andersen and Chellapilla (2009) provided a linear time 1/3-approxi-
mation algorithm for at least k densest subgraph problem.

The densest common subgraph over multiple graphs: Jethava and Beerenwinkel (2015)
extended the densest subgraph problem (DCS) for the case of multiple graph snapshots. As
a measure, the authors’ goal was to maximize the minimum density. Moreover, Semertzidis
et al. (2019) introduced several variants of this problem by varying the aggregate function
of the optimization problem, one variant, BFF-AA, is closely related to the DCS problem
discussed in Sect. 2. DCS which maximizes the total density can be solved exactly through
a reduction to the densest subgraph problem, and is consequently polynomial. The hard-
ness of DCS variants has been addressed (Charikar et al., 2018). For a survey on the dens-
est subgraph problem and its variants, we refer the reader to a recent survey by Lanciano
et al. (2023).

Overlapping densest subgraphs of a single graph: Finding multiple dense subgraphs in
a single graph which allows graphs to be overlapped is studied by adding a hard constraint
to control the overlap of subgraphs (Balalau et al., 2015). Later, Galbrun et al. (2016) for-
mulated the same problem adding a penalty in the objective function for the overlap. The
difference between our problem and the works of Balalau et al. (2015) and Galbrun et al.

O
(

nk2Δ + m log n + k2n(k + log n)
)

⊆ O
(

n2k2 + m log n + k3n
)

.

7112 Machine Learning (2024) 113:7103–7125

1 3

(2016) is that our goal is to find a collection of dense subgraphs over multiple graph snap-
shots (one dense subgraph for each graph snapshot) while they discover a set of dense sub-
graphs within a single graph. Due to this difference, we want to reward similar subgraphs
while the authors want to penalize similar subgraphs.

Other density measures: We use the ratio of edges over the vertices as our measure
as it allows us to compute it efficiently. Alternative measures have been also considered.
One option is to use the proportion of edges instead, that is, |E|∕

(

|V|

2

)

 . The issue with this
measure is that a single edge yields the highest density of 1. Moreover, finding the largest
graph with the edge proportion of 1 is equal to finding a clique, a classic problem that does
not allow any good approximation (Håstad, 1996). As an alternative approach, Tsouraka-
kis et al. (2013) proposed finding subgraphs with large score |E| − �

(

|V|

2

)

 . Optimizing this
measure is an NP-hard problem but an algorithm similar to the one given by Asahiro et al.
(2000) leads to an additive approximation guarantee. In a similar vein, Tatti (2019) con-
sidered subgraphs maximizing |E| − �|V| and showed that they form a nested structure
similar to k-core decomposition. An alternative measure called triangle-density has been
proposed by Tsourakakis (2015) as a ratio of triangles and vertices, possibly producing
smaller graphs. Like the density, optimizing this measure can be done in polynomial time.
We leave adopting these measures as a future work.

5 Experimental evaluation

The goal of this section is to experimentally evaluate our algorithms. We first generate
several synthetic datasets and plant dense subgraph components, in each snapshot and test
how well our algorithms discover the ground truth. Next, we study the performance of
the algorithm on real-world temporal datasets in terms of running time. We compare our
results with the solutions obtained with the densest common subgraph which maximizes
the total density (Semertzidis et al., 2019) and the sum of densities of individually dens-
est subgraphs (Goldberg, 1984). Finally, we present interpretative results from two case
studies.

We implemented the algorithms in Python.1 and performed the experiments using a
2.4GHz Intel Core i5 processor and 16GB RAM.

Synthetic datasets: The primary goal of the experiments with the synthetic data is to
compare the algorithms, and demonstrate the effect of the parameter � (and �). For this
purpose, we created several synthetic datasets, which we will describe next.

Each dataset consists of k graphs given as (G1,… ,Gk) . We split the vertex set into dense
and sparse components Vd and Vs . To generate the ith snapshot we create two components
Vd
i
 and Vs

i
 by starting from Vd and Vs and moving vertices from Vs to Vd with a probability

of �i . The probability �i is selected randomly for each snapshot from a uniform distribution
[0.01, 0.09]. Once the vertices are generated, we sample the edges using a stochastic block
model, with the edge probabilities being pd , ps , and pc for dense component, sparse com-
ponent, and cross edges, respectively.

We tested our algorithms with several synthetic datasets by varying the component sizes
and the edge probabilities. We highlight the results for 3 such datasets, as the conclusions

1 The source code is available at https:// versi on. helsi nki. fi/ dacs/ jacca rd- const rained- dense st- subgr aph.

https://version.helsinki.fi/dacs/jaccard-constrained-densest-subgraph

7113Machine Learning (2024) 113:7103–7125

1 3

for the other datasets were the same. The statistics and the related parameters of the data-
sets are given in Table 1.

We consider Vd as the ground truth vertex set and we denote the density of Vd by dtrue .
We should point out that the datasets have a prominent dense component, so we expect to
find the ground truth, or a set that is very close to the ground truth.

Results of synthetic datasets: We report our results for the JCDS and JWDS problems in
Tables 2 and 3 respectively.

First, we compare the discovered density, ddis in Table 2, with the ground truth density,
dtrue in Table 1. For all synthetic datasets, HarD obtains approximately similar densities or
better densities compared to the ground truth density.

We compare the discovered sets against the ground truth by computing the Jaccard
index between the sets, shown in the � column in Table 2. We see that we achieve high
overlap with the ground truth: � column shows at least 0.97 for all the datasets. High values
of � are expected as our synthetic datasets have a prominent dense component.

Next let us examine ddis column of Table 2 separately for each dataset. As expected, ddis
increases as we decrease � . Finally, we see that the minimum Jaccard index Jmin between
discovered vertices increases as � increases.

Table 1 Characteristics of synthetic datasets

Here, |
|

Vd
|

|

 and |Vs
| give initial number of dense and sparse vertices respectively, E[|E|] is the expected num-

ber of edges, k is the number of snapshots, pd , ps , and pc give the dense, sparse, and cross edge probabili-
ties, Jmin = mini<j J(V

d
i
,Vd

j
) is the minimum Jaccard index between ground truth sets, dtrue is the ground

truth density of dense components, ddcs gives the density of a common subgraph which maximizes the total
density, and dind gives the sum of densities of individual densest subgraph from each graph snapshot

Dataset
|Vd

|
|Vs

| E[|E|] k pd ps pc dtrue ddcs dind Jmin

Syn-1 120 1200 3922 5 0.06 0.005 0.002 27.4 17.66 27.62 0.45
Syn-2 500 3500 12136.29 7 0.05 0.0003 0.0003 112.11 87.27 112.12 0.53
Syn-3 350 3500 32015 5 0.06 0.005 0.002 67.96 52.18 67.96 0.49

Table 2 Computational statistics
from the experiments with the
synthetic datasets using HarD
algorithm

Here, � is the constraint, i gives the number of iterations, ddis is the
discovered sum of densities, Jmin and Javg provide the minimum and
average pairwise Jaccard coefficients between discovered sets of verti-
ces, respectively, � = k−1

∑

J
�

Si,V
d
i

�

 gives the average Jaccard index
between discovered and ground-truth sets of vertices, and time gives
the computational time in seconds

Data � ddis Jmin Javg � Time i

Syn-1 0.3 27.62 0.43 0.48 0.97 6 4
0.5 25.23 0.5 0.52 0.88 5 4
0.7 19.98 0.7 0.82 0.73 4 3

Syn-2 0.3 112.12 0.53 0.66 1 48 3
0.5 112.12 0.53 0.66 1 50 3
0.7 102.12 0.7 0.76 0.92 69 4

Syn-3 0.3 67.96 0.49 0.65 1 35 3
0.5 67.43 0.5 0.65 0.99 34 3
0.7 60.68 0.7 0.76 0.91 31 3

7114 Machine Learning (2024) 113:7103–7125

1 3

Next, we consider the results of the JWDS problem, shown in Table 3. First, we
observe that the discovered density values ddis approximately match each other, that is,
both Itr and GrD perform equally well in terms of densities. A similar result holds also
for the scores q(⋅;�) and minimum Jaccard coefficients Jmin . However, Itr runs faster
than GrD. This is probably due to the fact that GrD takes more time to select the next
vertex to delete, which is the bottleneck in both algorithms despite having the same
asymptotic time complexity per iteration in Itr and overall time complexity in GrD.
Next, we compare the discovered sets to the ground truth, given in columns � . We see
both algorithms give similar values which indicates equally good performance of Itr
and GrD.

Our next step is to study the effect of the input parameters: � or � . First, we observe
Fig. 2 which demonstrates � and discovered density ddis as a function of � . In Fig. 2a, we
see that � remains relatively constant in 0.97 at the start and as we increase � beyond 0.45
it starts to decrease more prominently. That is because Jmin which gives the minimum pair-
wise Jaccard coefficient between the planted dense components is 0.45 for Syn-1 dataset.
When we set 𝛼 > 0.45 , HarD deviates from the ground truth as the ground truth no longer
satisfies the constraints. Let us now consider Fig. 2b which demonstrates how the discov-
ered sum of densities changes with respect to � . In Fig. 2b, we observe that ddis remains
constant until 0.45 and decreases further as we increase �.

Next, we observe Fig. 3 which demonstrates � as a function of � . In Fig. 3a, we see that
� gradually decreases as we increase � . This is due to the fact that when we increase the
weight of the constraint part of q , the algorithms try to find dense sets with higher Jaccard
coefficients which eventually forces to deviate from their ground truth. Furthermore, if we
set � = 2 , we can see a drastic change in �.

Let us now consider Fig. 3b which demonstrates how the discovered sum of densities
changes with respect to � . We see the decreasing trend showing that the Jaccard term in the
objective function starts to dominate with the increase of � . As expected, in Fig. 3c we see
that both Itr and GrD yield increasing scores when we increase �.

Table 3 Computational statistics from the experiments for synthetic datasets using Itr and GrD algorithms

Here, � is the parameter in q(⋅;�) , i is the number of iterations using Itr, columns ddis and q are the sum of
densities and scores of the discovered sets, Jmin and Javg provide the minimum and average Jaccard index
between discovered sets, columns � give the average Jaccard index between discovered and ground truth
sets, and columns time give the computational time in seconds

Itr Grd

Data � ddis q Jmin Javg � Time i ddis q Jmin Javg � Time

Syn-1 0.3 27.59 29.09 0.44 0.5 0.97 18 3 27.6 29.09 0.44 0.5 0.97 31
0.5 27.59 30.1 0.44 0.5 0.97 19 3 27.6 30.08 0.44 0.5 0.97 29
0.7 27.47 31.12 0.45 0.52 0.98 25 4 27.6 31.06 0.43 0.49 0.97 33

Syn-2 0.3 112.12 116.3 0.53 0.66 1 121 3 112.12 116.3 0.53 0.66 1 276
0.5 112.12 119.09 0.53 0.66 1 118 3 112.12 119.09 0.53 0.66 1 266
0.7 112.11 121.88 0.53 0.66 1 116 3 112.11 121.88 0.53 0.66 1 279

Syn-3 0.3 67.96 69.92 0.49 0.65 1 64 3 67.96 69.91 0.65 0.65 1 251
0.5 67.96 71.22 0.49 0.65 1 71 3 67.96 71.22 0.49 0.65 1 288
0.7 72.53 67.96 0.49 0.65 1 80 3 67.96 72.52 0.49 0.65 1 273

7115Machine Learning (2024) 113:7103–7125

1 3

Note that the problems JCDS and JWDS optimize two different objective functions. The
JCDS problem focuses solely on maximizing the sum of the induced densities while satis-
fying the similarity constraints. On the other hand, JWDS maximizes the sum of total den-
sity and weighted Jaccard indices without explicitly enforcing similarity constraints over
the solution sets. Next, we study how the discovered density behaves as a function of Jmin
and Javg for HarD and Itr algorithms, as shown in Fig. 4. Let us first observe Fig. 4a. We
see that HarD achieves higher density for low Jmin values. On the other hand, Itr performs
better with high Jmin values even though Itr optimizes a different problem. The discrep-
ancy is due to HarD being stuck in a local minimum. Nevertheless, the densities are similar
for both algorithms.

In Fig. 4b, we observe that Itr achieves higher average Jaccard indices as HarD for the
same density. This is expected since Itr uses Javg as a part of its objective function whereas
HarD uses minimum Jaccard index.

Fig. 2 Jaccard index to the ground truth � as a function of � for HarD in a and discovered density ddis as a
function of � for HarD in b. This experiment was performed using Syn-1 dataset

Fig. 3 Average Jaccard index to the ground truth � as a function of � in a. Discovered density ddis as a func-
tion of � in b. Scores q(⋅;�) as a function of � in c. This experiment was performed using Syn-1 dataset

Fig. 4 The discovered density ddis as a function of Jmin for HarD and Itr in a and discovered density ddis as a
function of Javg for HarD and Itr in b. This experiment was performed using Syn-2 dataset

7116 Machine Learning (2024) 113:7103–7125

1 3

Real-world datasets: We consider 6 publicly available, real-world datasets. The details
of the datasets are shown in Table 4. Twitter-# (Tsantarliotis & Pitoura, 2015)2 is a hashtag
network where vertices correspond to hashtags and edges corresponds to the interactions
where two hashtags appear in a tweet. This dataset contains 15 such daily graph snapshots
in total. Enron3 is a popular dataset which contains email communication data within sen-
ior management of Enron company. It contains 183 daily snapshots in which the daily
email count is at least 5. Facebook (Viswanath et al., 2009)4 is a network of Facebook users
in New Orleans regional community. It contains a set of Facebook wall posts among these
users from the 9th of June to the 20th of August, 2006. Students5 is an online message
network at the University of California, Irvine. It spans over 122 days. Twitter-user (Rozen-
shtein et al., 2020)6 is a network of twitter users in Helsinki 2013. The edges correspond to
the mentions of users. Tumblr (Leskovec et al., 2009)7 contains phrases or quote mentions
that appeared in blogs and news media. It contains author and meme interactions of users
over 3 months from February to April 2009.

Results of real-world datasets: We report the results obtained from the experiments with
real-world datasets for the JCDS problem in Table 5 and for the JWDS problem in Table 6.
In Table 5, we can see that the discovered density values ddis exceed the density of the
common subgraph ddcs (see column ddcs in Table 4). As expected, we can observe that ddis
increases as � decreases. Moreover, we see that running time which is shown in the time
column increases when we increase � . Furthermore, we see in the i column that HarD con-
verges in less than 5 iterations which is reasonable in practice. Finally, we see that Jmin and
Javg increase as � increases, as expected.

Table 4 Characteristics of real-
world datasets

Here, |V| gives the number of vertices, |E| is the expected number of
edges, k is the number of snapshots, ddcs gives the density of a com-
mon subgraph which maximizes the total density, dind gives the sum
of densities of individual densest subgraph from each graph snapshot,
and Jmin , Jmax , and Javg give the minimum, maximum, and average
pairwise Jaccard coefficients between the set of individual densest
subgraphs from each graph snapshot, respectively

Data |V| |E| k ddcs dind Jmin Jmax Javg

Twitter-# 806 101.2 15 9.8 38.8 0 0.38 0.019
Enron 1079 23.2 183 52.7 185.94 0 1 0.068
Facebook 1117 83.13 104 14 88.65 0 0.46 0.005
Students 889 43.68 122 26.32 118.01 0 0.67 0.045
Twitter-user 4605 109.19 93 23 90.63 0 0.6 0.013
Tumblr 1980 65.3 89 55.83 103.99 0 0.8 0.131

4 https:// netwo rkrep osito ry. com/ fb- wosn- frien ds. php.
5 https:// toreo psahl. com/ datas ets/# online_ social_ netwo rk.
6 https:// github. com/ polin apoli na/ segme ntati on- meets- dense st- subgr aph/ tree/ master/ data.
7 http:// snap. stanf ord. edu/ data/ memet racke r9. html.

3 http:// www. cs. cmu. edu/ ~./ enron/.

2 https:// github. com/ ksemer/ BestF riend sFore ver- BFF-.

https://networkrepository.com/fb-wosn-friends.php
https://toreopsahl.com/datasets/#online_social_network
https://github.com/polinapolina/segmentation-meets-densest-subgraph/tree/master/data
http://snap.stanford.edu/data/memetracker9.html
http://www.cs.cmu.edu/%7e./enron/
https://github.com/ksemer/BestFriendsForever-BFF-

7117Machine Learning (2024) 113:7103–7125

1 3

Next, let us focus on the performance of Itr and GrD algorithms with real-world data-
sets that are given in Table 6. Note that, as a normalization step, we set � =

ddcs

k
�
� for the

real-world experiments where � is the parameter in q(⋅;�).
First, we compare the scores q obtained using Itr and GrD. As we can see, apart

from the cases in Tumblr dataset, Itr achieves a greater score than GrD. As expected,
we see that q and Javg increase and ddis decreases as a function of �′ for both algorithms.
Furthermore, we observe in time columns, that Itr runs faster than GrD. Next, let us
observe column i which gives the number of iterations with Itr algorithm. We can see
that we have at most 13 number of iterations which is reasonable to deal with real-world
datasets.

Next, we study the effect of �′ on Javg across the real-world datasets as shown in
Fig. 5. In general, we observe that Javg has an increasing trend with �′ up to a certain
value and stays almost constant afterwards.

Case studies: In this section, we present two case-studies and analyze their results
which illustrate trending twitter hash tags over a span of 8 days and strongly connected
DBLP co-authorships over a decade, under several Jaccard-constrained and weighted
environments.

Twitter-8 dataset: Twitter-8 contains a hashtag network from November 2013. This
dataset was created by extracting the first 8 daily graph snapshots from the Twitter-#
dataset. Here, each vertex of the graph represents a specific hashtag. As seen in the tags
from Table 7, Formula-1 racing car event which occurred on Abu Dhabi was trending
during the period. By varying input parameters (� or �), we discovered different sets

Table 5 Computational statistics
from the experiments with
real-world datasets using HarD
algorithm

Here, � is the constraint, i gives the number of iterations, ddis is the
discovered sum of densities, Jmin and Javg provide the minimum and
average pairwise Jaccard coefficients between discovered sets of ver-
tices, respectively, and time gives the computational time in seconds

Data � ddis Time i Jmin Javg

Twitter-# 0.3 16.08 0.12 4 0.31 0.53
0.5 13.23 0.11 4 0.5 0.67
0.7 11.9 0.05 2 0.71 0.75

Enron 0.3 102.32 1.6 4 0.3 0.51
0.5 70.98 0.61 3 0.5 0.79
0.7 54.65 0.32 3 0.71 0.97

Facebook 0.3 16.33 1.37 2 0.5 0.94
0.5 16.33 1.37 2 0.5 0.94
0.7 14 0.13 1 1 1

Students 0.3 43.61 1.69 4 0.3 0.69
0.5 36.36 0.99 3 0.5 1.79
0.7 29.36 0.98 2 0.7 0.92

Twitter-user 0.3 37.43 1.26 2 0.3 0.62
0.5 33.32 0.93 2 0.5 0.72
0.7 23.2 0.38 2 0.8 1

Tumblr 0.3 69.65 0.56 3 0.3 0.57
0.5 65.38 0.29 2 0.5 0.71
0.7 58.21 0.22 2 0.75 0.91

7118 Machine Learning (2024) 113:7103–7125

1 3

of dense subgraphs. Note that often, due to simplicity, we give the set of hashtags with
reference to the DCS solution which maximizes the sum of the densities. For example,
if we set � = 0.8 , only the indiangp tag is added to Day 1 to the DCS. On Day 5, tags
teamlh and japanesegp are added to the dense hashtag collection which indicates that
additional racing car event related tags are trending. For � = 0.8 , the discovered density
is 7.79 whereas letting � = 0.5 increases the density up to 9.63. To gain higher density,
some of the tags sandracing, formula-1, wenevergiveup, and quali have newly added to
several daily dense collections and abudhabi is removed from some of the dense collec-
tions but abudhabigp still remains in dense subgraphs. For the results of JWDS, we can
observe more new tags like bahrain, english, arabic, french, danish, and swedish, which
seem not directly related to the racing car event. Moreover, the new dense collection
gives a higher density of 14.55. The larger value for JWDS is evident since JWDS finds
solution sets without enforcing similarity constraints hardly as JCDS.

We see that discovered hashtags vary during 8 days. For example, let us consider the
results of HarD. The tag indiangp was included only during Day 1, 2, and 5. However,
abudhabigp tag was included over the entire period. The tags like teamlh and japanesegp
were included only during Day 5.

DBLP dataset: The DBLP2 dataset contains annual co-authorship connections in top data-
base and data mining conferences over a decade from 2006 to 2015. An edge corresponds to

Table 6 Computational statistics from the experiments for real-world datasets

Here, � =
ddcs

k
�
� where � is the parameter in q(⋅;�) , i gives the number of iterations using Itr, columns ddis

are the discovered sum of densities, Javg columns provide the average pairwise Jaccard coefficients between
discovered sets of vertices, columns q are the discovered scores, and columns time give the computational
time in seconds

Itr Grd

Data �
′

ddis q Javg Time i ddis q Javg Time

Twitter-# 0.3 38.57 39.01 0.02 1 3 37.65 37.94 0.01 6
0.5 37.34 39.53 0.06 2 4 37.65 38.55 0.03 7
0.7 21.78 43.16 0.45 1 2 35.93 39.68 0.08 6

Enron 0.3 110.54 618.03 0.35 59 4 73.08 529.37 0.32 867
0.5 104.6 958.13 0.36 52 4 83.95 797.72 0.3 783
0.7 102.2 1299.92 0.36 54 4 20 1277.59 0.37 770

Facebook 0.3 62.22 84.7 0.1 560 13 58.17 67.81 0.01 9849
0.5 60.48 100.31 0.11 268 8 57.31 75.4 0.05 9759
0.7 56.08 122.24 0.13 205 6 26.75 86.46 0.12 10,290

Students 0.3 52.74 212.88 0.34 215 10 42.37 209.22 0.35 2312
0.5 48.65 310.01 0.33 124 6 38.84 321.45 0.36 2410
0.7 47.1 414.85 0.33 112 6 37.91 434.34 0.36 2479

Twitter-user 0.3 17.05 183.64 0.52 318 8 15.86 164.67 0.47 7577
0.5 12.04 329.79 0.6 194 6 13.64 264.03 0.47 6953
0.7 11.49 474.1 0.62 160 5 11.24 363.56 0.48 6550

Tumblr 0.3 59.25 630.05 0.77 51 4 63.25 524.77 0.63 1323
0.5 59.25 1010.59 0.77 51 4 62.97 833.87 0.63 1263
0.7 59.25 1391.12 0.77 41 3 62.97 1142.24 0.63 1358

7119Machine Learning (2024) 113:7103–7125

1 3

Fig. 5 Average Jaccard index
Javg as a function of �′ for the Itr
algorithm

Table 7 Twitter hash tags discovered for Twitter-8 dataset

 DCS: abudhabigp, fp1, abudhabi, guti, f1, pushpush, skyf1, hulk, allowing, bottas, kimi, fp3, fp2, den-
sity: 7.15, size: 13

 HarD algorithm: � = 0.8 , density: 7.79
Day 1 added: indiangp (14)
Day 2 added: teamlh, indiangp, india (16)
Day 3–4 DCS (13)
Day 5 added: indiangp, teamlh, japanesegp (16)
Day 6–8 DCS (13)
 HarD algorithm: � = 0.5 , density: 9.63
Day 1 added: indiangp (14)
Day 2 added: teamlh, indiangp, india, dubai (17)
Day 3 DCS (13)
Day 4 added: sandracing, japanesegp, f1ad, williamstrackwalk,

mclaren50, removed: bottas (17)
Day 5 added: hothot, indiangp, justsaying, lhf1, teamlh, removed:

abudhabi, bottas (16)
Day 6 added: fridayschedule, toomanyts, pitlaneparking, socialfri-

day (17)
Day 7 added: quali, q1, q2, mclarenlive (17)
Day 8 added: wenevergiveup, lhf1, unleashthehulk, formula1, xs,

removed: abudhabi, bottas (16)
 Itr algorithm: � = 0.8 , density: 14.55, objective: 21.25
Day 1 indiangp, skyf1, kimi, f1 (4)
Day 2 abudhabigp, abudhabi, f1, skyf1, mexico, us, germany, brazil,

whys (9)
Day 3 kimi, skyf1, abudhabigp, f1 (4)
Day 4 abudhabigp, abudhabi, f1, skyf1, bottas, williamstrackwalk (6)
Day 5 abudhabigp, english, arabic, spanish, french, danish, swedish, f1,

endimpunitybh, skyf1, bahrain (11)
Day 6 abudhabigp, fp1, abudhabi, guti, f1, skyf1, hulk, allowin, bottas,

kimi, fp3, fp2 (12)
Day 7 abudhabigp, abudhabi, guti, f1, pushpush, skyf1, hulk, allowin,

bottas, kimi, fp3, quali (12)
Day 8 atxfloods, mutualaid, abudhabi, abudhabigp, guti, f1, push-

push, skyf1, hulk, allowin, bottas, kimi, texas, austin, pets,
horses (16)

7120 Machine Learning (2024) 113:7103–7125

1 3

being a co-author pair in a publication. We pick authors who have co-authored papers at least
in 4 different years during a period of 10 years. As shown in Table 8, we have uncovered a set
of prominent co-authors. We see that the algorithms provide denser solutions than the densest
common subgraph. For example, JCDS achieves a density of 21.86 while JWDS induces den-
sity value of 17.47 with score of 48.13.

We see that there is a temporal dependency of the collaborations between authors. The set
found by Itr matches to the densest common subgraph only during 2010–2012, and during
other years some authors are removed.

Table 8 Authors discovered for DBLP dataset and the number in parentheses indicates the size of the set

 DCS: J.Pei, H.Wang, J.Han, J.XuYu, X.Yu, W.Wang, W.Fan, L.Qin, L.Chang, Y.Sun, X.Lin, W.Zhang,
M.AamirCheema, J.Gao, C.Wang, X.Yan, Y.Zhang, P.S.Yu, H.Cheng, C.C.Aggarwal, B.Ding, density:
15.9, size: 21

 HarD algorithm: � = 0.4 , density: 21.86

2006 added: H.Liu, D.W.Cheung, G.PuiCheongFung, P.Wang, W.Wang, B.Shi,
C.Chen, J.Xu, S.Wang, F.Korn, F.Zhu, J.Yang, D.Xin, J.Zhang, A.Wai-
CheeFu, J.Cheng, removed: J.Gao, W.Fan (35)

2007 added: H.Liu, L.Liu, B.Gedik, M.Kitsuregawa, X.Yin, X.Zhou,
G.PuiCheongFung, C.Chen, K.Chen-ChuanChang, E.Bouillet, S.Wang,
F.Zhu, K.Wu, removed: Y.Sun, J.Pei, W.Wang (31)

2008 added: K.Zhang, D.W.Cheung, Z.Yin, X.Yin, T.Wu, O.Verscheure,
C.Chen, B.Zhao, C.XideLin, F.Zhu, B.Jiang, J.Cheng, removed: Y.Zhang,
W.Zhang, W.Wang, L.Qin, C.C.Aggarwal (28)

2009 added: C.Zhang, D.Lo, T.Wu, removed: C.C.Aggarwal, X.Yu, C.Wang (21)
2010 added: L.Khan, B.M.Thuraisingham, removed: X.Yu, H.Wang (21)
2011 added: Y.Ke, D.S.Turaga, M.Winslett, B.M.Thuraisingham, D.Lo, Z.Li,

L.Khan, T.Weninger, removed: W.Wang (28)
2012 added: W.Yu, H.Gonzalez, L.Chen, removed: C.C.Aggarwal, C.Wang,

W.Wang (21)
2013 added: S.Ma, W.Liang, C.Liu, B.Zhao, C.XideLin, Q.Gu, Y.Li, H.Ji, W.Yu,

T.Weninger (31)
2014 added: K.Zhang, J.Hu, J.Zhou, A.K.Singh, Y.Chang, J.Ye, H.Ji, W.Yu,

removed: X.Yu (28)
2015 added: S.Xie, W.Wang, B.Zhao, J.Wang, Y.Chang, X.Wang, Q.Hu, H.Ji,

removed: X.Yu (28)
 Itr algorithm: � = 0.8 , density: 17.47, objective: 48.13
2006 removed: Y.Sun, W.Zhang, M.AamirCheema, X.Yu, L.Chang, C.Wang (15)
2007 removed: W.Zhang, M.AamirCheema, X.Yu, L.Chang, C.Wang (16)
2008 removed: L.Chang, M.AamirCheema, X.Yu, C.Wang (17)
2009 removed: M.AamirCheema (20)
2010–12 DCS (21)
2013 removed: M.AamirCheema (20)
2014 removed: W.Wang (20)
2015 removed: H.Cheng, W.Wang (19)

7121Machine Learning (2024) 113:7103–7125

1 3

6 Concluding remarks

We introduced a Jaccard constrained, dense subgraph discovery problem (JCDS) for graphs
with multiple snapshots. Here, our goal was to find a dense subset of vertices from each
graph snapshot such that the sum of densities is maximized while pairwise Jaccard index
constraint is satisfied.

We considered also an alternative problem (JWDS), where we incorporated Jaccard
indices directly into the objective function, weighted by a user parameter.

We proved that both problems are NP-hard and hence we resorted to heuristics. First,
we designed a greedy, iterative algorithm for JCDS which runs in O

(

nk2 + m
)

 time, where
k is the length of the graph sequence and n and m denote number of vertices and total
number of edges respectively. For JWDS, we designed an iterative algorithm which runs
in O

(

n2k2 + m log n + k3n
)

 time per single iteration, and a greedy algorithm which runs in
O
(

n2k2 + m log n + k3n
)

 time.
We experimentally showed that the number of iterations was low in iterative algorithms,

and that the algorithms could find the ground truth using synthetic datasets and could dis-
cover dense collections in real-world datasets. We also studied the effect of our user param-
eters: the threshold for the Jaccard index � in JCDS, and weight � for Jaccard indices in
JWDS. Finally, we performed two case studies showing interpretable results.

The paper introduces several interesting directions for future work. In this paper, we
enforced the pairwise Jaccard constraint between all available pairs of snapshots. However,
we can relax this constraint further by letting only a portion of sets which lies within a
specific window to assure the Jaccard similarity constraint which may lead to future work.
Another possible direction is adopting different types of density for our problem setting.

Appendix A

Appendix A.1: Computational complexity proof of JCDS problem

Proof of Proposition 1 We prove the hardness from k-ClIque, a problem where, given a
graph H, we are asked if there is a clique of size at least k.

Assume that we are given H with n vertices, and k ≥ 2 . Let r = 3n . Our graph sequence
G = {G1,… ,Gr} is as follows: The first graph snapshot G1 consists of the graph H and
additional k singleton vertices, say U. The remaining snapshots are identical, and consist of
a k-clique over the vertices U. We set � = 1∕2.

We claim that there is a collection of subset of vertices S = {S1,… , Sr} yielding
d(S) = (k − 1)(1∕4 + (r − 1)∕2) if and only if there is a k-clique in H.

Let S be the solution to JCDS. Assume d(S) ≥ (k − 1)(1∕4 + (r − 1)∕2) . We show that
there is a k-clique in H.

First, we can safely assume that S2,… , Sr are all equal. We argue that the sets S2 to Sr
are equal to U. We prove our argument by contradiction.

If S2 ⧵ U ≠ ∅ , then we can show that d
(

S2
)

≤
k(k−1)

2(k+1)
 . Due to optimality of S,

(r − 1)
k(k − 1)

2k
= (r − 1)d(U) ≤ d(S) ≤ (r − 1)

k(k − 1)

2(k + 1)
+ d

(

S1
)

7122 Machine Learning (2024) 113:7103–7125

1 3

which we can rewrite as

which is a contradiction, since d
(

S1
)

≤ (n − 1)∕2 . Consequently, S2 ⊆ U . Now, if S2 ≠ U ,
then d

(

S2
)

≤
(k−1)(k−2)

2k
<

k(k−1)

2(k+1)
 , and we can repeat the previous argument. Thus, S2 = U.

Let x = |

|

S1 ∩ S2
|

|

 and let y = |

|

S1 ⧵ U
|

|

 . Then, by definition, |S1∩S2|
|S1∪S2|

=
x

y+k
≥

1

2
 , or, since

also x ≤ k,

Consequently, k ≥ x ≥ y . The density of S1 is at most

By assumption d(S1) ≥
k−1

4
 . Therefore equalities in the previous equation hold only if

x = y = k and S1 ⧵ S2 is a k-clique, proving the claim.
On the other hand, assume there is a clique C of size k in H. Then set S1 = C ∪ U and

Si = U for i = 2,… , r . Immediately, d(S) = (k − 1)(1∕4 + (r − 1)∕2) and Jaccard index
J
(

Si, Sj
)

≥ 1∕2 for all i and j, proving the claim. ◻

Appendix A.2: Computational complexity proof of JWDS problem

Proof of Proposition 2 We will prove the hardness by reducing from a 2-bounded 3-set
packing problem 3DM-2, a problem where we are given a set of items U, a family of sets C
each of size 3 such that each item in U is included in exactly two sets, and are asked to find
a disjoint cover (Chlebik & Chlebikova, 2003).

Assume that we are given an instance with r = |U| items and � = |C| sets. For each set
Ci we introduce two vertices vi and v′

i
 , and for each item ui we introduce a vertex wi . We

also introduce four additional vertices z1 , z2 , z3 , and z4 . In total, we have n = 2� + r + 4
vertices.

Let ui be an item and let Ca and Cb be two sets containing ui . We add two snapshots: the
first graph Gi contains (z1, z2) , (z1, z3) , (wi, z1) , (z1, va) , and (z1, vb) edges and the second
graph G′

i
 contains (z1, z2) , (z1, z3) , (wi, z1) , (z1, v�a) , and (z1, v�b) edges.

We also add q = 2r(10n)4 graphs Fj , each with three edges (z1, z2) , (z1, z3) , and (z1, z4) .
We set � = 0.55∕q.

Let S be the optimal solution. We claim that

if and only if there is a matching with p sets.
Assume that Eq. 2 holds. Let Qj be the optimal subgraph in Fj . Write Si to be the opti-

mal subgraph in Gi and S′
i
 to be the optimal subgraph in G′

i
 . Due to symmetry, we can

d
(

S1
)

≥ (r − 1)
k(k − 1)

2

(

1

k
−

1

k + 1

)

= (r − 1)
k − 1

2(k + 1)
≥

n

2
,

y + k ≤ 2x ≤ x + k .

d(S1) ≤
y(y − 1)

2(x + y)
≤

y(y − 1)

2(y + y)
=

y − 1

4
≤

k − 1

4
.

(2)
q(S) ≥ T1 + T2 + T3, where T1 = q

3

4
+ �

(

q

2

)

, T2 = 2r(
3

4
+ 0.55

3

5
), and

T3 = 3�

(

2r

2

)

+ 8�p + 4�r∕5,

7123Machine Learning (2024) 113:7103–7125

1 3

safely assume that the subgraphs Qj are all equal. Next, we claim that Qj =
{

z1, z2, z3, z4
}

 .
Assume otherwise. Case 1: let Qj =

{

z1, z2, z3
}

 . The score q(S) contains 2r density terms
from Si and S′

i
 with each density at most 1. In addition, Jaccard index is always less than

or equal to 1. Therefore q(S) ≤ 2q

3
+ 2r + 𝜆(2rq +

(

2r

2

)

) <
2q

3
+ 6r . The difference in the

density value of Qj s between our case and Qj =
{

z1, z2, z3, z4
}

 case is q
12

> 2 × (40)4r which
is a contradiction. Case 2: let Qj =

{

z1, z2
}

 or Qj =
{

z1, z3
}

 . This follows a similar proof as
Case 1 proving our claim. Therefore the values of the densities and Jaccard indices of Qj s
now correspond to T1.

Next, we claim that Si (and S′
i
) consists of 4 vertices and 3 edges, two of them being

(z1, z2) and (z1, z3) . Fix Si with y = |

|

E(Si)
|

|

 edges and x = |

|

Si
|

|

 vertices. Let
z =

|

|

|

Si ∩
{

z1, z2, z3, z4
}

|

|

|

 be the intersection with Qj . We can show that the score is

where R contains the Jaccard terms using Si and not any Qj , and C contains the remaining
densities and Jaccard terms not depending on Si . The first two terms form a fraction with
a denominator of at most (10n)2 . Consequently, any changes to x, y, and z change the first
two terms by at least (10n)−4 . Note that R contains only 2r − 1 terms, and due to � , we have
R < (10n)−4 . In other words, S must optimize the first two terms. Since there are only 6
non-singleton vertices in Gi , x ≤ 6 . Moreover, z ≤ min(3, x) and y ≤ min(5, x − 1) . Enu-
merating all the possible combinations show that x = 4 and z = y = 3 yield optimal score.
This is only possible if Si consists of 4 vertices and 3 edges, two of them being (z1, z2) and
(z1, z3) . Now, densities of Si (and S′

i
) and Jaccard indices between Si (and S′

i
) and Qj corre-

spond to T2.
Finally, let us look now at the Jaccard terms between Si and/or S′

j
 . These terms will

constitute T3 . Let a be the number of vertices vi or v′
i
 that are included in 3 subgraphs; any

such vertex will yield 3 Jaccard terms of value 1. Let b be the number of vertices vi , v′i , or
wi that are included in 2 subgraphs; any such vertex will yield one Jaccard term of value 1.
The remaining Jaccard terms between Si and S′

i
 are all of value 3/5. In summary, the terms

are equal to

Assume that a < 2p . Then since a + b ≤ 2r these terms are less than T3 , which is a contra-
diction. Therefore, a ≥ 2p . Now, there are p vertices in

{

vi
}

 or p vertices in
{

v′
i

}

 that are
included in 3 subgraphs. These sets correspond to matchings, and at least one of them will
have p sets.

To prove the other direction, assume there is a matching M with p sets. To form the
subgraph sequence, we first select (z1, z2) and (z1, z3) in every set. For ui ∈ Cj ∈ M , we
also select (vj, z1) in Gi and (v�

j
, z1) in G′

i
 . For an item ui not covered by M , we select (wi, z1)

in Gi and (wi, z1) in G′
i
 . A straightforward calculation shows that this sequence yields the

score given in Eq. 2. ◻

q(S) =
y

x
+ 0.55

z

x + 4 − z
+ R + C,

�

(

2r

2

)

3

5
+ �a3

(

1 −
3

5

)

+ �b
(

1 −
3

5

)

=
�3

5

(

2r

2

)

+ �a
4

5
+

�(a + b)2

5
.

7124 Machine Learning (2024) 113:7103–7125

1 3

Appendix A.3: Computational complexity of GrD

Proof of Proposition 5 Finding the best vertex u and the snapshot Si requires
O
�
∑

i
�

�

Pir
�

�

�

∈ O(kΔ) time. Consider deleting u from Si , and assume that it is the rth vertex
being deleted.

Deleting u from its queue requires O(log n) time. Upon deletion, we update the degrees
of the neighboring vertices in the corresponding queues, in total time of O(m log n) .
Updating the intersection and the union sizes requires O(k) time.

We also need to update the gain coming from Jaccard indices for each group P ∈ Pjr .
Only one term changes if P ∉ Pir ; there are at most kΔ such groups. Otherwise, if P ∈ Pir ,
then k − 1 terms change; there are at most Δ such groups. In summary, we need O(kΔ)
time.

Vertex u is included in O(k) queues. As we remove u from Si , these queues need to be
updated by moving u to the correct queue. A single such update requires deleting u from its
current queue, finding (and possibly creating) the new queue, and adding u to it. This can
be done in O(k + log n) time.

Combining these times, and the fact that there are kn vertices, proves the claim. ◻

Funding Open Access funding provided by University of Helsinki (including Helsinki University Central
Hospital).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
Asahiro, Y., Iwama, K., Tamaki, H., & Tokuyama, T. (2000). Greedily finding a dense subgraph. Journal of

Algorithms, 34(2), 203–221.
Feige, U., Peleg, D., & Kortsarz, G. (2001). The dense k-subgraph problem. Algorithmica, 29, 410–421.
Fratkin, E., Naughton, B. T., Brutlag, D. L., & Batzoglou, S. (2006). Motifcut: regulatory motifs finding

with maximum density subgraphs. Bioinformatics, 22(14), 150–157.
Galbrun, E., Gionis, A., & Tatti, N. (2016). Top-k overlapping densest subgraphs. DMKD, 30(5),

1134–1165.
Galimberti, E., Bonchi, F., Gullo, F., & Lanciano, T. (2020). Core decomposition in multilayer networks:

Theory, algorithms, and applications. TKDD, 14(1), 1–40.
Khot, S. (2006). Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J.

Comput., 36(4), 1025–1071.
Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., & Tatti, N. (2020). Finding events in temporal networks:

Segmentation meets densest subgraph discovery. KAIS, 62(4), 1611–1639.
Semertzidis, K., Pitoura, E., Terzi, E., & Tsaparas, P. (2019). Finding lasting dense subgraphs. DMKD,

33(5), 1417–1445.
Tatti, N. (2019). Density-friendly graph decomposition. TKDD, 13(5), 1–29.
Andersen, R., & Chellapilla, K. (2009). Finding dense subgraphs with size bounds. In WAW (pp. 25–37).
Balalau, O. D., Bonchi, F., Chan, T. H., Gullo, F., & Sozio, M. (2015). Finding subgraphs with maximum

total density and limited overlap. In WSDM (pp. 379–388).
Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., & Vijayaraghavan, A. (2010). Detecting high log-den-

sities: an O(n1∕4) approximation for densest k-subgraph. In STOC (pp. 201–210).
Charikar, M. (2000). Greedy approximation algorithms for finding dense components in a graph. In

APPROX (pp. 84–95).

http://creativecommons.org/licenses/by/4.0/

7125Machine Learning (2024) 113:7103–7125

1 3

Charikar, M., Naamad, Y., & Wu, J. (2018). On finding dense common subgraphs. https:// doi. org/ 10. 48550/
ARXIV. 1802. 06361

Chlebík, M., & Chlebíková, J. (2003). Approximation hardness for small occurrence instances of np-hard
problems. In CIAC (pp. 152–164).

Du, X., Jin, R., Ding, L., Lee, V. E., & Thornton, J. H. (2009). Migration motif: A spatial-temporal pattern
mining approach for financial markets. In KDD (pp. 1135–1144).

Goldberg, A. V. (1984). Finding a maximum density subgraph
Håstad, J. (1996). Clique is hard to approximate within n1−� . In STOC (pp. 627–636).
Jethava, V., & Beerenwinkel, N. (2015). Finding dense subgraphs in relational graphs. In ECMLPKDD (pp.

641–654).
Khuller, S., & Saha, B. (2009). On finding dense subgraphs. In ICALP (pp. 597–608).
Lanciano, T., Miyauchi, A., Fazzone, A., & Bonchi, F. (2023). A survey on the densest subgraph problem

and its variants. arXiv: 2303. 14467
Leskovec, J., Backstrom, L., & Kleinberg, J. (2009). Meme-tracking and the dynamics of the news cycle. In

KDD (pp. 497–506).
Tsantarliotis, P., & Pitoura, E. (2015). Topic detection using a critical term graph on news-related tweets. In

EDBT/ICDT Workshops (pp. 177–182).
Tsourakakis, C. (2015). The k-clique densest subgraph problem. In WWW (pp. 1122–1132).
Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., & Tsiarli, M. (2013). Denser than the densest subgraph:

Extracting optimal quasi-cliques with quality guarantees. In KDD (pp. 104–112).
Viswanath, B., Mislove, A., Cha, M., & Gummadi, K. P. (2009). On the evolution of user interaction in

Facebook. In WOSN (pp. 37–42).
Wickrama Arachchi, C., & Tatti, N. (2023). Jaccard-constrained dense subgraph discovery. In Discovery

Science (pp. 508–522). Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.48550/ARXIV.1802.06361
https://doi.org/10.48550/ARXIV.1802.06361
http://arxiv.org/abs/2303.14467

	Jaccard-constrained dense subgraph discovery
	Abstract
	1 Introduction
	2 Preliminary notation and problem definition
	3 Algorithms
	3.1 Finding Jaccard-constrained densest subgraphs
	3.2 Finding Jaccard-weighted densest subgraphs

	4 Related work
	5 Experimental evaluation
	6 Concluding remarks
	Appendix A
	Appendix A.1: Computational complexity proof of JCDS problem
	Appendix A.2: Computational complexity proof of JWDS problem
	Appendix A.3: Computational complexity of Grd

	References

