
Vol.:(0123456789)

Machine Learning (2024) 113:6561–6610
https://doi.org/10.1007/s10994-024-06590-3

1 3

Fast linear model trees by PILOT

Jakob Raymaekers1,3 · Peter J. Rousseeuw2  · Tim Verdonck1,2 · Ruicong Yao2

Received: 19 September 2023 / Revised: 15 June 2024 / Accepted: 20 June 2024 /
Published online: 8 July 2024
© The Author(s) 2024

Abstract
Linear model trees are regression trees that incorporate linear models in the leaf nodes.
This preserves the intuitive interpretation of decision trees and at the same time enables
them to better capture linear relationships, which is hard for standard decision trees. But
most existing methods for fitting linear model trees are time consuming and therefore not
scalable to large data sets. In addition, they are more prone to overfitting and extrapolation
issues than standard regression trees. In this paper we introduce PILOT, a new algorithm
for linear model trees that is fast, regularized, stable and interpretable. PILOT trains in a
greedy fashion like classic regression trees, but incorporates an L2 boosting approach and a
model selection rule for fitting linear models in the nodes. The abbreviation PILOT stands
for PIecewise Linear Organic Tree, where ‘organic’ refers to the fact that no pruning is car-
ried out. PILOT has the same low time and space complexity as CART without its pruning.
An empirical study indicates that PILOT tends to outperform standard decision trees and
other linear model trees on a variety of data sets. Moreover, we prove its consistency in
an additive model setting under weak assumptions. When the data is generated by a linear
model, the convergence rate is polynomial.

Keywords  Consistency · Piecewise linear model · Regression trees · Scalable algorithms

Editor: Annalisa Appice.

 *	 Peter J. Rousseeuw
	 peter.rousseeuw@kuleuven.be

	 Jakob Raymaekers
	 jakob.raymaekers@uantwerpen.be

	 Tim Verdonck
	 tim.verdonck@uantwerpen.be

	 Ruicong Yao
	 ruicong.yao@kuleuven.be

1	 Department of Mathematics, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium
2	 Section of Statistics and Data Science, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
3	 Department of Quantitative Economics, Maastricht University, Maastricht, The Netherlands

http://orcid.org/0000-0002-3807-5353
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06590-3&domain=pdf

6562	 Machine Learning (2024) 113:6561–6610

1 3

1  Introduction

Despite their long history, decision trees such as CART (Breiman et al., 1984) and C4.5
(Quinlan, 1993) remain popular machine learning tools. Decision trees can be trained
quickly with few parameters to tune, and the final model can be easily interpreted and visu-
alized, which is an appealing advantage in practice. As a result, these methods are widely
applied in a variety of disciplines including engineering (Shamshirband et al., 2020), bio-
informatics (Shaikhina et al., 2019), agriculture (Tariq et al., 2023), and business analy-
sis (Aydin et al., 2022; Golbayani et al., 2020). In addition to their standalone use, deci-
sion trees have seen widespread adoption in ensemble methods, often as the best available
“weak learner”. Prime examples are random forests (Breiman, 2001) and gradient boosting
methods such as XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017). In
this work we assume that the target variable is continuous, so we focus on regression trees
rather than on classification.

A limitation of classical regression trees is that their piecewise constant nature makes
them ill-suited to capture continuous relationships. They require many splits in order to
approximate linear functions, which is undesirable. There are two main approaches to over-
come this issue. The first is to use ensembles of decision trees such as random forests or
gradient boosted trees. These ensembles smooth the prediction and can therefore model a
more continuous relation between predictors and response. A drawback of these ensembles
is the loss of interpretability. Combining multiple regression trees no longer allows for a
simple visualization of the model, or for an explainable stepwise path from predictors to
prediction. The second approach to capture continuous relationships is to use model trees.
Model trees have a tree-like structure for the partition of the space, but allow for non-con-
stant fits in the leaf nodes of the tree. Model trees thus retain the intuitive interpretability of
classical regression trees while being more flexible. Arguably the most intuitive and com-
mon model tree is the linear model tree, which allows for linear models in the leaf nodes.

There are several algorithms for fitting linear model trees. The first linear model tree
algorithm to be proposed, which we will abbreviate as FRIED (Friedman, 1979), uses uni-
variate piecewise linear fits to replace the piecewise constant fits in CART. Once a model
is fit on a node, its residuals are passed on to its child nodes for further fitting. The final
prediction is given by the sum of the linear models along the path. Therefore, the final
model can be written as a binary regression tree with linear models in the leaf nodes. The
coefficients of these linear models in the leaf nodes are given by the sum of the coeffi-
cients of all linear models along the path from the root to the leaf node. Our experiments
suggest that this method may suffer from overfitting and extrapolation issues. The FRIED
algorithm received much less attention than its more involved successor MARS (Friedman,
1991).

The M5 algorithm (Quinlan, 1992) is by far the most popular linear model tree, and is
still commonly used today (Shamshirband et al., 2020; da Silva et al., 2021; Khaledian &
Miller, 2020; Pham et al., 2022; Fernández-Delgado et al., 2019). It starts by fitting CART.
Once this tree has been built, linear regressions are introduced at the leaf nodes. Pruning
and smoothing are then applied to reduce its generalization error. One potential objection
against this algorithm is that the tree structure is built completely oblivious of the fact that
linear models will be used in the leaf nodes.

6563Machine Learning (2024) 113:6561–6610	

1 3

The GUIDE algorithm (Loh, 2002) fits multiple linear models to numerical predic-
tors in each node and then applies a �2 test comparing positive and negative residuals to
decide on which predictor to split. The algorithm can also be applied to detect interactions
between predictors. However, no theoretical guarantee is provided to justify the splitting
procedure. There are also algorithms that use ideas from clustering in their splitting rule.
For example, SECRET (Dobra & Gehrke, 2002) uses the EM algorithm to fit two Gauss-
ian clusters to the data, and locally transforms the regression problem into a classification
problem based on the closeness to these clusters. Experimental results do not favor this
method over GUIDE, and its computational cost is high.

The SMOTI method (Malerba et al., 2004) uses two types of nodes: regression nodes
and splitting nodes. In each leaf, the final model is the multiple regression fit to its ‘active’
variables. This is achieved by ‘regressing out’ the variable of a regression node from both
the response and the other variables. The resulting fit is quite attractive, but the algorithm
has a complexity of O(n2p3) , where n denotes the number of cases and p the number of
predictors. This can be prohibitive for large data sets, and makes it less suitable for an
extension to random forests or gradient boosting.

Most of the above algorithms need a pruning procedure to ensure their generalization
ability, which is typically time consuming. An exception is LLRT (Vogel et al., 2007)
which uses stepwise regression and evaluates the models in each node via k-fold cross vali-
dation. To alleviate the computational cost, the algorithm uses quantiles of the predictors
as the potential splitting points. It also maintains the data matrices for fitting linear models
on both child nodes so that they can be updated. Unfortunately, the time complexity of
LLRT is quite high at O(knp3 + np5) where k is the depth of the tree.

It is also interesting to compare ensembles of linear model trees with ensembles of clas-
sical decision trees. Recently, certain piecewise linear trees were incorporated into gradient
boosting (Shi et al., 2019). For each tree, they used additive fitting (Friedman, 1979) or
half additive fitting where the past prediction was multiplied by a factor. To control the
complexity of the tree, they set a tuning parameter for the maximal number of predictors
that can be used along each path. Empirical results suggest that this procedure outper-
formed classical decision trees in XGBoost (Chen & Guestrin, 2016) and in LightGBM
(Ke et al., 2017) on a variety of data sets, and required fewer training iterations. This points
to a potential strength of linear model trees for ensembles.

To conclude, the main issue with existing linear model trees is their high computational
cost. Methods that apply multiple regression fits to leaf and/or internal nodes introduce a
factor p2 or p3 in their time complexity. And the methods that use simple linear fits, such
as FRIED, still require pruning which is also costly on large data sets. In addition, these
methods can have large extrapolation errors (Loh et al., 2007). Finally, to the best of our
knowledge there is no theoretical support for linear model trees in the literature.

In response to this challenging combination of issues we propose a novel linear model
tree algorithm. Its acronym PILOT stands for PIecewise Linear Organic Tree, where
‘organic’ refers to the fact that no pruning is carried out. The main features of PILOT are:

•	 Speed: It has the same low time complexity as CART without its pruning.
•	 Regularized: In each node, a model selection procedure is applied to the potential lin-

ear models. This requires no extra computational complexity.

6564	 Machine Learning (2024) 113:6561–6610

1 3

•	 Explainable: Thanks to the simplicity of linear models in the leaf nodes, the final tree
remains highly interpretable. Also a measure of feature importance can be computed.

•	 Stable extrapolation: Two truncation procedures are applied to avoid extreme fits on
the training data and large extrapolation errors on the test data, which are common
issues in linear model trees.

•	 Theoretically supported: PILOT has proven consistency in additive models. When the
data is generated by a linear model, PILOT attains a polynomial convergence rate, in
contrast with CART.

The paper is organized as follows. Section 2 describes the PILOT algorithm and discusses
its properties. Section 3 presents the two main theoretical results. First, the consistency
for general additive models is discussed and proven. Second, when the true underlying
function is indeed linear an improved rate of convergence is demonstrated. We refer to
the Appendix for proofs of the theorems, propositions and lemmas. In addition to these,
we derive the time and space complexity of PILOT. Empirical evaluations are provided in
Sect. 4, where PILOT is compared with several alternatives on a variety of benchmark data
sets. It outperformed other tree-based methods on data sets where linear models are known
to fit well, and outperformed other linear model trees on data sets where CART typically
performs well. Section 5 concludes.

2 � Methodology

In this section we describe the workings of the PILOT learning algorithm. We begin by
explaining how its tree is built and motivate the choices made, and then derive its compu-
tational cost.

We will denote the n × p design matrix as X = (X1,… ,Xn)
⊤ and the n × 1 response vec-

tor as Y = (y1,… , yn)
⊤ . We consider the standard regression model y = f (X) + � , where

f ∶ ℝp
→ ℝ is the unknown regression function and � has mean zero.

As a side remark, the linear models and trees we consider here are equivariant to adding
a constant to the response, that is, the predictive models would keep the same fitted param-
eters except for the intercept terms. Therefore, in the presentation we will assume that the
responses are centered around zero, that is, Ymin = −Ymax without loss of generality.

2.1 � Main structure of PILOT

A typical regression tree has four ingredients: a construction rule, the evaluation of the
models/splits, a stopping rule, and the prediction. Most regression tree algorithms are built
greedily from top to bottom. That is, they split the original space along a predictor and
repeat the procedure on the subsets. This approach has some major advantages. The first is
its speed. The second is that it starts by investigating the data from a global point of view,
which is helpful when detecting linear relationships.

Algorithm 1 presents a high-level description of PILOT. It starts by sorting each pre-
dictor and storing its ranks. At each node, PILOT then selects a predictor and a univariate
piecewise linear model via a selection procedure that we will describe in Sects. 2.2 and 2.3.

6565Machine Learning (2024) 113:6561–6610	

1 3

Then it fits the model and passes the residuals on to the child nodes for further fitting. This
recursion is applied until the algorithm stops. There are three stopping triggers. In particu-
lar, the recursion in a node stops when:

•	 the depth reaches the preset maximal depth of the tree Kmax;
•	 the number of cases in the node is below a threshold value nfit;
•	 none of the candidate models do substantially better than a constant prediction, as we

will describe in Sect. 2.3.

When all nodes have reached a stopping trigger, the algorithm is done. The final prediction
is given by aggregating the predictions of the linear models from the root to the leaves, as
in the example in Fig. 1.

Fig. 1   An example of a PILOT
tree

6566	 Machine Learning (2024) 113:6561–6610

1 3

Algorithm 1   Sketch of the PILOT algorithm

Note that PILOT retains good interpretability. The tree structure visualizes the decision
process, while the simple linear models in each step reveal which predictor was used and
how the prediction changes with respect to a small change in this predictor. For exam-
ple, in Fig. 1, the result from the node X3>0.4 can be interpreted as: given X1 < 2.3 and

6567Machine Learning (2024) 113:6561–6610	

1 3

the previous prediction 0.3 ∗ X1 + 0.2 , the best additional predictor is X3 where the split
of the space happens. Furthermore, if X3 > 0.4 , 0.9 ∗ X3 + 0.1 is added to the prediction
and 0.5 ∗ X3 − 0.4 otherwise, meaning that there was a correlation between X3 and the
residuals after the first prediction. Since the final prediction in each leaf node is linear, it is
easy to interpret. Moreover, we will define a measure of feature importance similar to that
of CART, based on the variance reduction in each node. This is because PILOT selects
only one predictor in each node, which makes the gain fully dependent on it. This differs
from methods such as M5, GUIDE, and LLRT that use multiple predictors in each node,
making it harder to fairly distribute the gain over several predictors in order to derive an
overall measure of each predictor’s importance. We refer to Sect. 4.5 for a more detailed
discussion.

2.2 � Models used in the nodes

As stated in the high-level summary in Algorithm 1, at each node PILOT selects a fit from
a number of linear and piecewise linear models. In particular, PILOT considers the follow-
ing regression models on each predictor, shown in Fig. 2:

•	 pcon: A Piecewise CONstant fit, as in CART.
•	 lin: Simple LINear regression.
•	 blin: A Broken LINear fit: a continuous function consisting of two linear pieces.
•	 plin: A two-Piece LINear fit that need not be continuous.
•	 con: A CONstant fit. We stop the recursion in a node after a con model is fitted.

Fig. 2   The five regression models used in PILOT

6568	 Machine Learning (2024) 113:6561–6610

1 3

These models extend the piecewise constant pcon fits of CART to linear fits. In par-
ticular, plin is a direct extension of pcon while blin can be regarded as a regularized and
smoothed version of plin. For variables that are categorical or have but a few unique val-
ues, only pcon and con are used.

To guard against unstable fitting, the lin and blin models are only considered when the
number of unique values in the predictor is at least 5. Similarly, the plin model is only con-
sidered if both potential child nodes have at least 5 unique values of the predictor.

PILOT reduces to CART (without its pruning) if only pcon models are selected, since
the least squares constant fit in a child node equals its average response.

Note that a node will not be split when lin is selected. Therefore, when a lin fit is car-
ried out in a node, PILOT does not increase its reported depth. This affects the reported
depth of the final tree, which is a tuning parameter of the method.

It is possible that a consecutive series of lin fits is made in the same node, and this did
happen in our empirical studies. In a node where this occurs, PILOT is in fact executing
L2 boosting (Bühlmann, 2006), which fits multiple regression using repeated simple linear
regressions. It has been shown that L2 boosting is consistent for high dimensional linear
regression and produces results comparable to the Lasso. It was also shown that its con-
vergence rate can be relatively fast under certain assumptions (Freund et al., 2017). PILOT
does not increment the depth value of the node for lin models, to avoid interrupting this
boosting procedure.

2.3 � Model selection rule

In each node, PILOT employs a selection procedure to choose between the five model
types con, lin, pcon, blin and plin. It would be inappropriate to select the model based on
the largest reduction in the residual sum of squares ( RSS ), since this would always choose
plin, as that model generalizes all the others. Therefore, we need some kind of regulariza-
tion to select a simpler model when the extra RSS gain of going all the way to plin is not
substantial enough.

After many experiments, the following regularization scheme was adopted. In each
node, PILOT chooses the combination of a predictor and a regression model that leads to
the lowest BIC value

which is a function of the residual sum of squares RSS , the number of cases n in the node,
and the degrees of freedom v of the model. With this selection rule PILOT mitigates over-
fitting locally, and applying it throughout the tree leads to a global regularization effect.

It remains to be addressed what the value of v in (1) should be for each of the five mod-
els. The degrees of freedom are determined by aggregating the number of model param-
eters excluding the splits, and the degrees of freedom of a split. The model types con, lin,
pcon, blin and plin contain 1, 2, 2, 3, and 4 coefficients apart from any split points. There
is empirical and theoretical evidence in support of using 3 degrees of freedom for a discon-
tinuity point (Hall et al., 2017). We follow this recommendation for pcon and plin, which
each receive 3 additional degrees of freedom. Also blin contains a split point, but here the

(1)n log
(
RSS

n

)
+ v log(n)

6569Machine Learning (2024) 113:6561–6610	

1 3

fitted function is continuous. To reflect this intermediate complexity we add 2 degrees of
freedom to blin. We empirically tested 1 to 3 additional degrees of freedom for blin, and
the performance was generally not very sensitive to this choice. Of course, these values
could be considered hyperparameters and could thus be tuned by cross-validation. This
would come at a substantial increase in computation time though, so we provide default
parameters instead. In conclusion, we end up with v = 1, 2, 5, 5, and 7 for the model types
con, lin, pcon, blin and plin.

The BIC in (1) is one of several model selection criteria that we could have used. We
also tried other measures, such as the Akaike information criterion (AIC) and the adjusted
AIC. It turned out that the AIC tended to choose plin too often, which reduced the regulari-
zation effect. The adjusted AIC required a pruning procedure to perform comparably to the
BIC criterion. As pruning comes at a substantial additional computational cost, we decided
in favor of the BIC, which performed well.

Alternatively, one option is to compute the degrees of freedom for the aggregated
model in each node, and then compute the adjusted AIC to decide when to stop (Bühl-
mann, 2006). But in this approach hat matrices have to be maintained for each path, which
requires more computation time and memory space. Moreover, as the number of cases in
the nodes changes, the evaluations of the hat matrices become more complicated. For these
reasons, we preferred to stay with the selection rule (1) in each node.

Algorithm 2 shows the pseudocode of our model selection procedure in a given node.
We iterate through each predictor separately. If the predictor is numerical, we find the
univariate model with lowest BIC among the 5 candidate models. For con and lin this
evaluation is immediate. For the other three models, we need to consider all possible split
points. We consider these in increasing order (recall that the ordering of each predictor was
already obtained at the start of the algorithm), which allows the Gram and moment matri-
ces for the linear models to be maintained and updated efficiently in each step. On the other
hand, if the predictor is categorical, we follow the approach of CART as in Section 9.2.4 of
Hastie et al. (2009). That is, we first compute the mean mc of the response of each level c
and then sort the cases according to mc . We then fit the model pcon in the usual way.

6570	 Machine Learning (2024) 113:6561–6610

1 3

Algorithm 2   Model selection and split finding in a node of the training set

Once the best model type has been determined for each predictor separately, Algo-
rithm 2 returns the combination of predictor and model with the lowest BIC criterion.

2.4 � Truncation of predictions

PILOT relies on two truncation procedures to avoid unstable predictions on the training
data and the test data.

6571Machine Learning (2024) 113:6561–6610	

1 3

The first truncation procedure is motivated as follows. The left panel of Fig. 3 shows
the data in a node of PILOT. The selected predictor is on the horizontal axis. The plot
illustrates a situation where most of the data points in a node are concentrated in a part of
the predictor’s range, causing the linear model to put a lot of weight on these points and
little weight on the other(s). This can result in extreme predictions, for instance for the
red point on the right. Although such unstable predictions might be corrected by deeper
nodes, this could induce unnecessarily complicated models with extra splits. Moreover, if
this effect occurs at a leaf node, the prediction cannot be corrected. To avoid this issue we
will truncate the prediction function. Note that if we add a constant to the response, PILOT
will yield the same estimated parameters except for the intercept terms that change the way
they should. Denote B = max(Y) = −min(Y) , thus the original responses have the range
[−B,B] . We then clip the prediction so it belongs to [−1.5B, 1.5B] . Then we compute the
response Y minus the truncated prediction to get the new residuals, and proceed with build-
ing the tree for the next depth. The whole process is summarized in Algorithm 3. We found
empirically that this works well.

Fig. 3   Left: An example of the first truncation method in one node of the tree. Right: An example of the
second truncation method

6572	 Machine Learning (2024) 113:6561–6610

1 3

Algorithm 3   Truncation during tree building on the training data

The first truncation method is not only applied when training the model, but also
when predicting on new data. The range of the response of the training data is stored,
and when a prediction for new data would be outside the proposed range [−1.5B, 1.5B]
it is truncated in the same way. This procedure works as a basic safeguard for the pre-
diction. However, this is not enough because a new issue can arise: it may happen that
values of a predictor in the test data fall outside the range of the same predictor in the
training data. This is illustrated in the right panel of Fig. 3. The vertical dashed lines
indicate the range of the predictor on the training data. However, the predictor value
of the test case (the red point) lies quite far from that range. Predicting its response
by the straight line that was fitted during training would be an extrapolation, which
could be unrealistic. This is a known problem of linear model trees. For instance, in

6573Machine Learning (2024) 113:6561–6610	

1 3

our experiments in Sect. 4 the out-of-sample predictions of FRIED and M5 became
extremely large on some data sets, which turned out to be due to this exact problem.

Therefore we add a second truncation procedure as done in Loh et al. (2007). This
second truncation step is only applied to new data because in the training data, all pre-
dictor values are by definition inside the desired range. More precisely, during training
we record the range [x

min
, x

max
] of the predictor selected in this node, and store the range

of the corresponding predictions [f̂ (x
min
), f̂ (x

max
)] . When predicting on new data, we

truncate the predictions so they stay in the training range. More precisely, we replace
the original predictions f̂ (x

test
) on this node by max(min(f̂ (x

test
), f̂ (x

max
)), f̂ (x

min
)).

The two truncation methods complement each other. For instance, the first approach
would not suffice in the right panel of Fig. 3 since the linear prediction at the new
case would still lie in [−1.5B, 1.5B] . Also, the second approach would not work in the
left panel of Fig. 3 as the unusual case is included in the range of the training data.
Our empirical studies indicate that combining both truncation approaches helps elimi-
nate extreme predictions and therefore improve the stability of our model. Moreover,
this did not detract from the overall predictive power. Algorithm 4 describes how both
truncation methods are applied when PILOT makes predictions on new data.

Algorithm 4   Truncation during prediction on new data

6574	 Machine Learning (2024) 113:6561–6610

1 3

2.5 � Stopping rules versus pruning

It is well known that decision trees have a tendency to overfit the data if the tree is allowed
to become very deep. A first step toward avoiding this is to require a minimal number of
cases in a node before it can be split, and a minimal number of cases in each child node. In
addition, PILOT also stops splitting a node if the BIC model selection criterion selects con.

Several decision trees, including CART, take a different approach. They let the tree
grow, and afterward prune it. This indeed helps to achieve a lower generalization error.
However, pruning can be very time consuming. One often needs a cross-validation pro-
cedure to select pruning parameters. It would be possible for PILOT to also incorporate
cost-complexity pruning as in CART. It would work exactly the same as in CART, and
additionally consider a series of lin fits as a single model to be kept or removed in the
pruning. However, in our empirical study we found that adding this pruning to PILOT did
not outperform the existing con stopping rule on a variety of datasets. Also, we will see in
the next section that the generalization error vanishes asymptotically. Moreover, not prun-
ing is much more efficient computationally. For these reasons, PILOT does not employ
pruning. The computational gain of this choice makes it more feasible to use PILOT in
ensemble methods.

3 � Theoretical results

3.1 � Universal consistency

In this section we prove the consistency of PILOT. We follow the settings in Klusowski
(2021) and assume the underlying function f ∈ F ⊂ L2([0, 1]p) admits an additive form

where fi has bounded variation and X(j) is the j-th predictor. We define the total variation
norm ||f ||TV of f ∈ F as the infimum of

∑p

i=1
��fi��TV over all possible representations of f,

and assume that the representation in (2) attains this infimum.
For all f , g ∈ L2([0, 1]p) and a dataset X1,… ,Xn of size n, we define the empirical norm

and the empirical inner product as

For the response vector Y = (Y1,… , Yn) we denote

The general L2 norm on vectors and functions will be denoted as || ⋅ || without subscript.
To indicate the norm and the inner product of a function on a node T with t observations

we replace the subscript n by t. We denote by Tk the set of tree nodes at depth k, plus the
leaf nodes of depth lower than k. In particular, TK contains all the leaf nodes of a K-depth
tree.

(2)f (X) ∶= f1(X
(1)) +⋯ + fp(X

(p))

(3)��f ��2
n
∶=

1

n

n�
i=1

�f (Xi)�2 and ⟨f , g⟩n ∶= 1

n

n�
i=1

f (Xi)g(Xi).

(4)��Y − f ��2
n
∶=

1

n

n�
i=1

(Yi − f (Xi))
2 and ⟨Y , f ⟩n ∶= 1

n

n�
i=1

Yif (Xi).

6575Machine Learning (2024) 113:6561–6610	

1 3

Now we can state the main theorem:

Theorem 1  Let f ∈ F with ||f ||TV ⩽ A and denote by f̂ (TK) the prediction of a K-depth
PILOT tree. Suppose X ∼ P on [0, 1]pn , the responses are a.s. bounded in [−B,B] , and the
depth Kn and the number of predictors pn satisfy Kn → ∞ and 2Knpn log(npn)∕n → 0 . Then
PILOT is consistent, that is

Note that the conditions on the depth and the dimension can easily be satisfied if we let
Kn = log2(n)∕r for some r > 1 and pn = ns such that 0 < s < 1 − 1∕r . The resulting con-
vergence rate is O(1∕ log(n)) . This is the same rate as previously obtained for CART under
very similar assumptions (Klusowski, 2021).

The key of the proof of Theorem 1 is to establish a recursive formula for the training
error Rk ∶= ||Y − f̂ (Tk)||2n − ||Y − f ||2

n
 for each depth k. Then we can leverage results from

empirical process theory (Györfi et al., 2002) to derive an oracle inequality for PILOT, and
finally prove consistency.

For the recursive formula we first note that Rk =
∑

T∈TK
w(T)Rk(T) where w(T) ∶= t∕n

is the weight of node T and Rk(T) ∶= ||Y − f̂ (Tk)||2t − ||Y − f ||2
t
 . Then we immediately

have Rk+1 = Rk −
∑

T∈Tk
w(T)Δk+1(T) where

is the impurity gain of the model on T. Here tl and tr denote the number of cases in the left
and right child node. If no split occurs, one of these numbers is set to zero. For PILOT we
need to remove con nodes that do not produce an impurity gain from the recursive formula.
To do this, we define C+

k
= {T|T = CON, T ∈ Tk−1,Rk(T) > 0} , i.e., the set of ‘bad’ nodes

on which con is fitted, and similarly C−
k
 for those with Rk(T) ⩽ 0 . Then we can define

RC+
k
∶=

∑
T∈C+

k

w(T)Rk(T) , the positive training error corresponding to the cases in these
con nodes. We can then consider R̃k ∶= Rk − RC+

k
 and show that asymptotically both Rk and

RC+
k
 become small.
Now the problem is reduced to relating the impurity gain of the selected model to the

training error before this step. Recently, a novel approach was introduced for this kind of
estimation in CART (Klusowski, 2021). However, the proof used the fact that in each step
the prediction is piecewise constant, which is not the case here. Therefore, we derived a
generalized result for pcon in PILOT (Lemma 3 in Appendix 2.1). For controlling the gain
of the other models, we can use the following proposition:

Theorem 2  Let Δ1 , Δ2 and v1 , v2 be the impurity gains and degrees of freedom of two
regression models on some node T with t cases. Let R0 be the initial residual sum of squares
in T. We have that

•	 If model 1 does better than con, i.e. BIC
CON

> BIC1 , we have tΔ1∕R0 > C(v1, t) > 0 for
some positive function C depending on v1 and t.

•	 If BIC
CON

> BIC1 and BIC2 > BIC1 with v2 ⩾ v1 we have Δ1

Δ2

⩾
v1−1

v2−1
.

Moreover, if con is chosen at a node, it will also be chosen in subsequent models.

(5)lim
n→∞

�[||f − f̂ (TKn
)||2] = 0.

Δk+1(T) ∶= ||Y − f̂ (Tk)||2t − tl||Y − f̂ (Tk+1)||2tl∕t − tr||Y − f̂ (Tk+1)||2tr∕t

6576	 Machine Learning (2024) 113:6561–6610

1 3

We thus know that the gain of the selected model is always comparable to that of pcon,
up to a constant factor.

The proposition also justifies the con stopping rule from a model selection point of
view: when con is selected for a node, all the subsequent models for this node will still
be con. A con model is selected when the gain of other regression models do not make up
for the complexity they introduce. Since con only regresses out the mean, we can stop the
algorithm within the node once the first con fit is encountered.

We can show the following recursive formula:

Theorem 3  Under the same assumptions as Theorem 1 we have for any K ⩾ 1 and any
f ∈ F that

Moreover, if we let K = log2(n)∕r with r > 1 we have RC+
K
∼ O(

√
log(n)∕n(r−1)∕r).

The BIC criterion ensures that the training errors in all con nodes vanish as n → ∞ .
This allows us to prove the main theorem by using the preceding results and Theorems
11.4 and 9.4 and Lemma 13.1 of Györfi et al. (2002). All intermediate lemmas and proofs
can be found in the “Appendix 2”.

3.2 � Convergence rates on linear models

The convergence rate resulting from Theorem 1 is the same as the previously derived
one of CART (Klusowski, 2021). This is because we make no specific assumptions on
the properties of the true underlying additive function. Therefore this rate of convergence
holds for a wide variety of functions, including poorly behaved ones. In practice however,
the convergence could be much faster if the function is somehow well behaved. In particu-
lar, given that PILOT incorporates linear models in its nodes, it is likely that it will perform
better when the true underlying function is linear, which is a special case of an additive
model. We will show that PILOT indeed has an improved rate of convergence in that set-
ting. This result does not hold for CART, and to the best of our knowledge was not proved
for any other linear model tree algorithm.

In order to prove the convergence rate of PILOT in linear models, we apply a recent
result of Freund et al. (2017). For the convergence rate of the L2 boosting algorithm, they
showed in their Theorem 2.1 that the mean squared error (MSE) decays exponentially with
respect to the depth K, for a fixed design matrix. The proof is based on the connection
between L2 boosting and quadratic programming (QP) on the squared loss ||Y − X�||2

n
 . In

fact, the L∞ norm of the gradient of the squared loss is equal to the largest impurity gain
among all simple linear models, assuming each predictor has been centered and standard-
ized. Therefore, the gain of the k-th step depends linearly on the mean squared error in step
k − 1 , which results in a faster convergence rate. By the nature of quadratic programming,
the rate depends on the smallest eigenvalue �min of X⊤

X.
In our framework we can consider a local QP problem in each node to estimate

the gain of lin, which gives a lower bound for the improvement of the selected model
(except when con is selected). To ensure that we have a constant ratio for the error
decay, we have to make some assumptions on the smallest eigenvalue of the local

(6)||Y − f̂ (TK)||2n ⩽ ||Y − f ||2
n
+

(||f ||TV + 6B)2

6(K + 3)
+ RC+

K
.

6577Machine Learning (2024) 113:6561–6610	

1 3

correlation matrix of the predictors. This eigenvalue can be regarded as a measure of
multicollinearity between the predictors, which is a key factor that affects the conver-
gence rate of least squares regression.

To be precise, we require that the smallest eigenvalue of the theoretical correlation
matrix (the jl-th entry of which is �[(X − X̄)(X − X̄)⊤]jl∕(𝜎j𝜎l) where �j is the standard
deviation of the j-th predictor) is lower bounded by some constant �0 in any cubic region
that is sufficiently small. Then we apply two concentration inequalities to show that the
smallest eigenvalue of a covariance matrix of data in such a cube is larger than �0 with
high probability. Finally, we can show that the expectation of the error decays exponen-
tially, which leads to a fast convergence rate.

Our conditions are:

•	 Condition 1: The PILOT algorithm stops splitting a node whenever

–	 the number of cases in the node is less than n
min

= n� , 0 < 𝛼 < 1.
–	 the variance of some predictor is less than 2�2

0
 where 0 < 𝜎0 < 1.

–	 the volume of the node is less than a threshold � , 0 < 𝜂 < 1.

•	 Condition 2: We assume that X ∼ P on [0, 1]p and the error � has a finite fourth
moment. Moreover, for any cube C with volume smaller than � we assume
that𝜆min(Cor(X|X ∈ C)) ⩾ 2𝜆0 > 0 , where Cor(X) is the correlation matrix.

The first condition is natural for tree-based methods. For the second one, an immediate
example would be a setting when all the predictors are independent. Another example
is when they follow a multivariate Gaussian distribution, which becomes a truncated
Gaussian when restricted to [0, 1]p or to some other cube C. It can be shown that the
Gaussian distribution has relatively small correlation in cubes C of small volume; see,
e.g., Muthen (1990) for the two-dimensional case. This is not surprising since on small
cubes the density tends to a constant. As a result, the smallest eigenvalue of the correla-
tion matrix on such cubes will be bounded from below.

Under these conditions we obtain the following result, whose proof can be found in
“Appendix 3”.

Theorem 4  Assume the data are generated by the linear model Y ∼ X� + � with n cases.
Under Conditions 1 and 2, the difference between the training loss Lk

n
 of PILOT at depth k

and the training loss L∗
n
 of least squares linear regression satisfies

where

Combining this result with the techniques in the proof of Theorem 1, we can show
polynomial rate convergence of our method on linear functions.

Theorem 5  (Fast convergence on linear models) Assume the conditions of Theorem 4 hold
and that |Y| is a.s. bounded by some constant B. Let Kn = log� (n) . Then we have for any
0 < 𝛼 < 1 and corresponding n

min
= n� that

(7)𝔼[Lk
n
− L∗

n
] ⩽ �k

√
𝔼[(L0

n
− L∗

n
)2] +O(Nleaves log(n)∕n)

� ∶= 1 −
�0
4p

.

6578	 Machine Learning (2024) 113:6561–6610

1 3

The choice of the tuning parameter � thus determines the convergence rate. When we
use a low � we get smaller nodes hence more nodes, yielding looser bounds in the oracle
inequality and for the errors in con nodes, leading to a slower convergence. This is natural,
as we have fewer cases for the estimation in each node. If we choose � relatively high we
obtain a faster rate, which is intuitive since for � → 1 we would have only a single node.

3.3 � Time and space complexity

Finally, we demonstrate that the time complexity and space complexity of PILOT are the
same as for CART without its pruning. The main point of the proof is that for a single
predictor, each of the five models can be evaluated in a single pass through the predictor
values. Evaluating the next split point requires only a rank-one update of the Gram and
moment matrices, which can be done in constant time. Naturally, the implicit proportional-
ity factors in front of the O(.) complexities are higher for PILOT than for CART, but the
algorithm is quite fast in practice.

Theorem 6  PILOT has the same time and space complexities as CART without its pruning.

Proof  For both PILOT and CART we assume that the p predictors have been presorted,
which only takes O(np log(n)) time once.

We first check the complexity of the model selection in Algorithm 2. It is known that
the time complexity of CART for split finding is O(np) . For the pcon model, PILOT uses
the same algorithm as CART. For con we only need to compute one average in O(n) time.
For lin, the evaluation of (DLIN)⊤DLIN and (DLIN)⊤Y also takes O(n) . In the evaluation of the
plin model, the Gram matrices always satisfy GPLIN

l
+ GPLIN

r
= GLIN = (DLIN)⊤DLIN and the

moment matrices satisfy MPLIN

l
+MPLIN

r
= (DLIN)⊤Y  . These matrices have at most 22 = 4

entries, and can be incrementally updated in O(1) time as we evaluate the next split point.
For blin the reasoning is analogous, with at most 32 = 9 matrix entries.

In each model, inverting the Gram matrix only takes O(1) because its size is fixed.
Therefore, we can evaluate all options on one presorted predictor in one pass through
the data, which remains O(n) , so for all predictors this takes O(np) time, the same as for
CART. For the space complexity, the Gram and moment matrices only require O(1) of
storage. Since CART also has to store the average response in each child node, which takes
O(1) storage as well, the space complexity of both methods is the same.

For the tree building in Algorithm 3, the time complexity of computing the indices Il,r
and the residuals is O(n) at each depth 1 ⩽ k ⩽ Kmax . CART also computes the indices Il,r
which requires the same complexity O(n) for each step. Therefore, the overall time for both
methods is O(Kmaxn) . Since the PILOT tree only has O(1) more attributes in each node
than CART, the space complexity of PILOT remains the same as that of CART.

For the initialization and prediction parts, the results are straightforward. 	� ◻

We can estimate the proportionality factor of the O(np) time of the split step as fol-
lows. We have to update 3 additional pairs of Gram and moment matrices: one pair for
blin, where the Gram matrix is 3 × 3 and the moment matrix is 3 × 1 , and two pairs for
plin where Gram matrices are 2 × 2 and the moment matrices are 2 × 1 . The number of

(8)𝔼[||f̂ (TK) − X𝛽||2] ⩽ O
(log(n)

n𝛼

)
.

6579Machine Learning (2024) 113:6561–6610	

1 3

additional entries is thus 1 × (32 + 3) + 2 × (22 + 2) = 24 . Therefore the time needed for
PILOT is roughly 30 times that of CART. Note that this is pretty low compared with other
linear model tree methods, many of which have higher asymptotic complexities. Moreover,
PILOT does not contain the common pruning step of CART, which is computationally
quite demanding.

To illustrate the time complexity of PILOT we ran simulations using different numbers
of cases (ranging from 10 to 10,000) and predictors (ranging from 2 to 1000). The func-
tions are piecewise linear and randomly simulated. Here, we tested the running time of the
split function, which is the main part of the algorithm, so not including the presorting with
time complexity O(np log(n)) . The other parts of PILOT are not fundamentally different
from the corresponding parts in CART, and so the comparison of the split function is of
primary interest.

The left panel of Fig. 4 plots the log of the measured runtime versus the log number of
cases, in the middle panel versus the log number of predictors and in the right panel versus
the log number of predictors times cases. The trends are linear, and the least squares lines
have slopes close to 1. This illustrates the O(np) time complexity.

4 � Empirical evaluation

In this section we evaluate the proposed PILOT algorithm empirically and compare its
results with those of some popular competitors. We start by describing the data and meth-
ods under comparison.

4.1 � Data sets and methods

We analyzed 25 benchmark data sets, with the number of cases ranging from 71 to 21,263
and the number of predictors ranging from 4 to 4,088. From the UCI repository (Dua &
Graff, 2017) we used the data sets Abalone, Airfoil, Auto mpg, Bike, Commu-
nities, Concrete, Diabetes, Electricity, Energy, Power plant, Real
estate, Residential, Skills, slump test, Superconductor, Tempera-
ture, Thermography and Wine. From Kaggle we obtained Bodyfat, Boston
Housing, Graduate Admission, and Walmart. The California Housing
data came from the StatLib repository (http://​lib.​stat.​cmu.​edu/​datas​ets/). The Ozone data
is in the R-package hdi (Dezeure et al., 2015), and Riboflavin came from the R-package

Fig. 4   Logarithm of the computation time of the split step in PILOT, versus (left) the logarithm of the num-
ber of cases; (middle) the number of predictors; and (right) the number of cases times the number of predic-
tors

http://lib.stat.cmu.edu/datasets/

6580	 Machine Learning (2024) 113:6561–6610

1 3

missMDA (Josse & Husson, 2016). Table 1 gives an alphabetical list of the data sets with
their sizes.

In the comparative study we ran the following tree-based methods: the proposed
PILOT algorithm we implemented in Python with NUMBA acceleration in the split func-
tion, FRIED (Friedman, 1979) implemented by us, M5 (Quinlan, 1992) from the R pack-
age Rweka (Hornik et al., 2009), and CART. We also ran ridge linear regression from the
Scikit-Learn package (Pedregosa et al., 2011) and the lasso (Tibshirani, 1996). When run-
ning methods that were not developed to deal with categorical variables, we first applied
one-hot encoding to such variables, that is, we replaced each categorical variable with m
outcomes by m binary variables.

The settings for hyperparameter tuning are the following. For PILOT we considered the
depth parameter Kmax in (3, 6, 9, 12, 15, 18), the minimal number of cases to fit a model nfit
in (2, 10, 20, 40), and the minimal number of cases in a leaf node nleaf in (1, 5, 10, 20). For
CART and FRIED we tuned Kmax , nfit and nleaf over the same ranges. For the latter meth-
ods, we tuned the data driven parameter �ccp for cost complexity pruning for each combina-
tion of (Kmax, nfit, nleaf) . For M5, nleaf is the only parameter since the building, smoothing
and pruning procedures are parameter-free. For the Lasso and Ridge models, we tuned the
� of the penalty term.

Table 1   The data sets used in the
empirical study

Source Dataset n p

UCI repository Abalone 4177 8
UCI repository Airfoil 1503 6
UCI repository Auto mpg 392 7
UCI repository Bike 17,389 16
Kaggle Bodyfat 252 14
Kaggle Boston Housing 506 13
StatLib repository California Housing 20,640 8
UCI repository Communities 1994 128
UCI repository Concrete 1030 9
UCI repository Diabetes 442 10
UCI repository Electricity 10,000 14
UCI repository Energy 768 8
Kaggle Graduate Admission 400 7
missMDA Ozone 112 11
UCI repository Power plant 9568 4
UCI repository Real estate 414 6
UCI repository Residential 372 105
hdi Riboflavin 71 4088
UCI repository Skills 3395 20
UCI repository Slump test 103 7
UCI repository Superconductor 21,263 81
UCI repository Temperature 7750 25
UCI repository Thermography 1018 33
Kaggle Walmart 6435 8
UCI repository Wine 4898 12

6581Machine Learning (2024) 113:6561–6610	

1 3

In order to evaluate the methods, we start by randomly splitting each dataset into 5
folds. For each method, and on each training set (each consisting of 4 folds), we perform
5-fold cross validation to select the best combination of hyperparameters. Finally, we com-
pute the cross-validated mean square error, that is, the average test MSE of each method
with hyperparameters tuned on the test folds. The final score of each method is its MSE
divided by the lowest MSE on that dataset. A score of 1 thus corresponds with the method
that performed best on that dataset, and the scores of the other methods say how much
larger their MSE was.

4.2 � Results

The results on these datasets are summarized in Table 2. The bold entries correspond to
scores of at most 1.05, that is, methods whose MSE was at most 5% higher than the MSE
of the best performing method on that dataset. The bottom four lines of the table sum-
marize the performance, and we see that PILOT achieved the best average score with the
lowest standard deviation. Moreover, its mean rank and standard deviation of its rank were
also the lowest.

Table 2 has some unusual entries that require an explanation. In the last column, the
M5 results were partially adjusted because its predictions are not invariant to scaling the
predictors. Therefore we ran M5 both with and without predictor scaling, and we present
the best result here. Those based on scaling are shown in parentheses. Note that these
MSEs are at least 10 times lower than the results of M5 on the unscaled dataset, indicating
that M5 is sensitive to the preprocessing of the predictors. Still, the performance of M5
remained poor on the California Housing dataset. On the Superconductor data
the hyperparameter tuning time for CART exceeded the preset wall time, despite applying
optimized functions (from Scikit-Learn) for cross validation and pruning, so we left this
table entry blank. We also noticed that FRIED had extremely high test errors (up to 100
times larger than the best MSE) for several choices of hyperparameters on the Residen-
tial dataset. A careful examination revealed that this was caused by extrapolation. At one
node, the value of the predictor of a test case was outside the range of the training cases, so
lin extrapolated and gave a wild prediction.

Overall, PILOT outperformed FRIED 21 times. It also did better than CART on 22
datasets. As for M5, PILOT outperformed it 15 times. In the comparison with M5 we note
that PILOT has a much more stable performance, with a performance standard deviation
that is 6 times smaller.

A closer look at the results reveals that PILOT struggled on the Airfoil data. A
potential explanation is the fact that the Airfoil data has a rather complicated under-
lying structure, which is often fit using ensemble methods such as gradient boosting and
random forests (Patri & Patnaik, 2015). All tree-based methods including PILOT gave rela-
tively poor predictions on the Riboflavin data, which is high-dimensional with only 71
observations but over 4000 predictors, and whose response has a strong linear relationship
with the regressors. This explains why Ridge and Lasso performed so well on these data.
The tree-based methods suffered from the relatively small number of cases in the training
set, which resulted in a higher test error. Still, PILOT did better than CART, FRIED and
M5 on these data, suggesting that it is indeed less prone to overfitting and better at captur-
ing linear relationships.

There are several other datasets on which Ridge and/or Lasso did very well, indicat-
ing that these data have linear patterns. The results show that PILOT tended to do quite

6582	 Machine Learning (2024) 113:6561–6610

1 3

well on those datasets and to outperform CART on them. This confirms that the linear
components of PILOT make it well suited for such data, whereas we saw that it usually
did at least as well as the other tree-based methods on the other datasets.

To assess the statistical significance of the performance differences involving PILOT,
we conducted Wilcoxon signed rank tests between the PILOT performance and each of
the other methods, with the results shown in Table 3. (The M5 result is with the scaled
datasets when they did better.) All the p-values are below 5% and often much lower.
To formally test for the superiority of the PILOT results in this study, we can apply
the Holm-Bonferroni method (Holm, 1979) for multiple testing, at the level � = 5% . To
this end we must sort the five p-values in Table 3 from smallest to largest, and check

Table 2   MSE ratios relative to best, for the datasets of Table 1

Each entry is the MSE of that method on that dataset, divided by the lowest MSE of that row. Entries within
5% of the best performance in their row are shown in bold. **Exceeded preset maximal wall time. (xxx):
M5 results based on the rescaled predictors

PILOT Ridge Lasso FRIED CART​ M5

Abalone 1.05 1.06 1.06 1.08 1.14 1.00
Airfoil 1.86 4.13 4.13 1.00 1.07 2.48
Auto mpg 1.07 1.31 1.30 1.08 1.33 1.00
Bike 1.00 3.17 3.18 1.21 1.02 1.54
Bodyfat 1.01 1.00 1.06 1.21 1.71 1.05
Boston Housing 1.37 1.36 1.44 1.42 1.10 1.00
California Housing 1.00 1.98 1.98 1.03 1.37 (10.15)
Communities 1.09 1.01 1.00 1.24 1.31 1.06
Concrete 1.00 2.52 2.53 1.26 1.16 1.20
Diabetes 1.08 1.01 1.01 1.25 1.35 1.00
Electricity 1.00 2.75 2.75 1.24 1.80 1.06
Energy 1.03 3.22 3.20 2.78 1.10 1.00
Graduate Admission 1.16 1.00 1.00 1.09 1.51 (1.04)
Ozone 1.26 1.05 1.00 1.41 1.47 1.22
Power plant 1.17 1.56 1.57 1.00 1.22 (2.49)
Real estate 1.00 1.29 1.29 1.04 1.05 (1.15)
Residential 1.08 1.15 1.08 1.05 2.85 1.00
Riboflavin 2.24 1.00 1.14 3.19 3.27 3.10
Skills 1.00 1.02 1.03 1.08 1.24 (1.03)
Slump test 1.00 1.14 1.07 1.04 1.40 1.09
Superconductor 1.00 2.05 2.06 1.01 ** (1.29)
Temperature 1.03 1.45 1.52 1.26 1.30 1.00
Thermography 1.00 2.84 1.61 1.05 1.24 1.02
Walmart 1.00 1.36 1.37 5.93 2.91 1.27
Wine 1.00 1.10 1.10 1.05 1.12 (1.08)
Mean 1.14 1.70 1.66 1.48 1.52 (1.65)
Std 0.30 0.89 0.86 1.07 0.66 (1.85)
Mean Rank 2.16 3.84 4.08 3.48 4.54 (2.80)
Std Rank 1.31 1.57 1.63 1.48 1.64 (1.50)

6583Machine Learning (2024) 113:6561–6610	

1 3

whether p(1) < 𝛼∕5 , p(2) < 𝛼∕4 , p(3) < 𝛼∕3 , p(4) < 𝛼∕2 , and p(5) < 𝛼∕1 . All of these ine-
qualities hold, so we have significance.

4.3 � Results after transforming predictors

It has been observed that linear regression methods tend to perform better if the numerical
predictors are not too skewed. In order to address potentially skewed predictors, we reran
the empirical experiments after preprocessing all numerical predictors by the Yeo-John-
son (YJ) transformation (Yeo & Johnson, 2000). The parameter of the YJ transformation
was fit using maximum likelihood on the training set, after which the fitted transformation
parameter was applied to the test set. One way in which such a transformation could help is
by mitigating the extrapolation issue, as this is expected to occur mainly on the long tailed
side of a skewed predictor, which becomes shorter by the transformation.

Table 4 shows the results after transforming the predictors. The MSE ratios are rela-
tive to the lowest MSE of each row in Table 2, so the entries in Table 4 can be compared
directly with those in Table 2. We see that the transformation often enhanced the perfor-
mance of PILOT as well as that of some other methods. On the high dimensional Ribo-
flavin data set the score of PILOT came closer to Ridge and Lasso, whereas the other
decision trees kept struggling. Also on the other data sets with linear structure PILOT was
comparable with both linear methods. The average and the standard deviation of its score
and rank were reduced by the transformation as well. The Wilcoxon tests in Table 5 gave
similar results as before, and the Holm-Bonferroni test again yields significance. The over-
all performance of PILOT remained the best. We conclude that PILOT typically benefits
from transforming the data before fitting the tree.

4.4 � Depth comparison between the tree‑based methods

Here we compare the depth of the trees fitted by CART, PILOT and FRIED, to gain insight
into how the inclusion of linear models in the nodes affects the tree structure and tree depth.
Figure 5 shows the frequencies of tree depths of these methods, for all folds on all datasets,
when the maximal depth was set to 18. We see that the PILOT trees are much more shal-
low than those built by CART. This is understandable, because CART needs many splits to
model approximately linear relations to a reasonable precision. On the other hand, PILOT
can avoid many of those splits by fitting linear models. The depth of FRIED trees is more
similar to those of PILOT. Moreover, these conclusions remain the same when the experi-
ment is done on the transformed datasets instead of the raw datasets. We did not include
the depth of M5 for two reasons: First, not all the reported results of M5 in Table 2 were
for the raw datasets, because of its sensitivity to the predictor scales. Second, the maximal
depth of M5 cannot be specified as a tuning parameter (Hornik et al., 2009), making it dif-
ficult to obtain a fair comparison.

Table 3   The p-values of Wilcoxon signed rank tests comparing the performance of PILOT and the other
methods on these datasets

Ridge Lasso FRIED CART​ M5

0.0024 0.0017 0.0010 0.0002 (0.0334)

6584	 Machine Learning (2024) 113:6561–6610

1 3

4.5 � Feature importance in PILOT

Feature importance is a popular tool for assessing the role of each predictor in the final
model (Hastie et al., 2009). Due to the tree structure of PILOT, we can construct a measure

Table 4   MSE ratios relative
to best, after transforming the
predictors

Each entry is the MSE of that method on that dataset, divided by the
lowest MSE of the same row in Table 2. Entries within 5% of the best
performance in their row are shown in bold. **Exceeded preset maxi-
mal wall time

PILOT Ridge Lasso FRIED CART​ M5

Abalone 1.03 1.06 1.05 1.13 1.18 0.99
Airfoil 1.66 4.70 4.71 1.00 1.12 4.11
Auto mpg 1.00 1.05 1.06 1.24 1.32 0.98
Bike 0.92 3.17 3.18 1.20 1.02 1.33
Bodyfat 0.98 1.01 0.97 1.23 1.55 1.01
Boston Housing 1.22 1.27 1.30 1.34 1.11 0.92
California Housing 1.03 1.90 1.90 1.10 1.37 1.52
Communities 1.04 1.04 1.03 1.24 1.30 1.06
Concrete 0.91 1.20 1.20 0.93 1.14 2.39
Diabetes 1.09 1.01 1.01 1.23 1.33 1.02
Electricity 1.00 2.75 2.75 1.22 1.80 1.06
Energy 1.17 3.44 3.45 2.78 1.09 0.99
Graduate Admission 1.19 1.00 1.00 1.09 1.51 1.21
Ozone 1.23 1.07 1.00 1.52 1.40 1.22
Power plant 1.18 1.72 1.72 1.02 1.22 2.31
Real estate 0.99 1.02 1.02 1.41 1.05 1.15
Residential 0.89 1.04 0.87 1.02 2.14 0.96
Riboflavin 1.88 1.01 1.28 3.52 3.28 2.84
Skills 0.95 0.93 0.93 1.07 1.17 0.94
Slump test 0.97 1.08 1.03 1.19 1.26 0.98
Superconductor 1.02 1.97 1.97 1.02 *** 1.69
Temperature 1.09 1.51 1.58 1.27 1.30 0.99
Thermography 1.01 1.54 1.53 1.13 1.24 1.05
Walmart 1.00 1.36 1.38 3.78 2.91 1.25
Wine 1.01 1.08 1.08 1.04 1.07 1.05
Mean 1.10 1.60 1.60 1.43 1.45 1.39
Std 0.22 0.95 0.96 0.75 0.57 0.76
Mean Rank 2.16 3.72 3.60 3.96 4.42 2.92
Std Rank 1.21 1.43 1.96 1.65 1.53 1.47

Table 5   The p-values of Wilcoxon signed rank tests comparing the performance of PILOT and the other
methods, on the transformed datasets

Ridge Lasso FRIED CART​ M5

0.0037 0.0022 0.0006 0.0001 (0.0241)

6585Machine Learning (2024) 113:6561–6610	

1 3

of feature importance similar to that of CART. For each predictor, we find the nodes in
which it plays a role. We then compute the cumulative variance reduction of the corre-
sponding fitted models. The cumulative variance reductions of all predictors are then nor-
malized so they sum to 1. Note that this construction is exactly like the one used in CART
(Hastie et al., 2009).

To illustrate feature importance in PILOT we analyze two examples, the Wine data-
set and the Communities dataset. The former is low-dimensional and the latter is high-
dimensional, but both datasets have variables that are easy to interpret. We first tuned the
hyperparameters of PILOT and then calculated the feature importance. When computing
the feature importance in PILOT, repeated lin fits in the same node are counted separately.

The Wine dataset has 11 continuous predictors and 4894 cases. The response is a meas-
ure of wine quality, provided as a score between 1 and 10. The feature importances from
CART and PILOT are shown in Fig. 6. We see that the main effects are due to variables X2
(volatile acidity), X6 (free sulfur dioxide), and X11 (alcohol percentage), for both CART
and PILOT. Figure 7 plots the response versus each of these predictors. We see that these
predictors have some explanatory power, which CART can capture by piecewise constants.
PILOT also uses these predictors to split on, but for X11 it fits additional linear models to
the different regions, as seen in the last panel of Fig. 7. As a result, the feature importance
of X11 is higher in PILOT than in CART, leaving less importance in some of the other
variables.

We now consider the Communities dataset. Its continuous response measures the
per capita violent crimes in communities in the US. The predictors are numerical too, and
describe features of the communities such as median income, racial distribution, and aver-
age family composition. As the data are relatively high-dimensional with 128 predictors,

Fig. 5   Depths of the regression trees estimated through CART, PILOT and FRIED on 5 folds on the raw
data (left) and the transformed data (right)

Fig. 6   Feature importance on the Wine dataset for CART (left) and PILOT (right)

6586	 Machine Learning (2024) 113:6561–6610

1 3

we will only discuss the predictors with feature importance above 0.01 . Figure 8 shows the
feature importances of CART and PILOT. In this example the difference between the two
methods is more pronounced. CART identifies X51 (percentage of kids aged 4 or under in
family housing with two parents) as the most important predictor, and assigns some addi-
tional importance to a few other predictors. On the other hand, PILOT identifies X45 (per-
centage of males who have never married) as the dominant predictor.

Figure 9 plots the response against these two predictors and superposes the fits on
the root nodes of CART and PILOT. For CART this was a piecewise constant model on
X51, whereas PILOT selected a blin fit on X45. The former reduces the RSS by 41%,
whereas the latter yields a reduction in RSS of 56%. Therefore PILOT captured the
underlying relation more accurately in its initial fit. This resulted in a substantially better

Fig. 7   Response against the predictors X2 (left), X6 (middle) and X11 (right) on the Wine dataset. Both
PILOT and CART selected X11 as the first predictor to split on. The rightmost panel illustrates the predic-
tions of CART and PILOT on this first node

Fig. 8   Feature importance of CART (left) and PILOT (right) on the Communities dataset. Only the vari-
ables with feature importance above 1% are shown

Fig. 9   Communities dataset: response versus the first predictor selected by CART (left) and the first pre-
dictor selected by PILOT (right). The red line in the left panel shows the piecewise constant fit of CART in
its root node. The red line in the right panel is the blin fit of PILOT in its root node

6587Machine Learning (2024) 113:6561–6610	

1 3

predictive performance of the final model: from Table 2 we see that the MSE of PILOT
was 1.09∕1.31 ≈ 83% of the MSE of CART on this dataset.

4.6 � Explainability of PILOT

We illustrate the explainability and interpretability of PILOT on the Graduate Admis-
sion dataset, which has 400 cases and 7 predictors. The response variable is the prob-
ability of admission, and the predictors include features such as the GPA and GRE scores.
Figures 10 and 11 show the CART and PILOT trees of depth 3 on this dataset. The depth
of the final fits is higher, but here we focus on depth 3 for illustrative purposes. Note that
the first node of the PILOT tree performs two lin fits in a row, which it is allowed to.

Both methods result in a simple cascade of decision rules and found X6 to be an impor-
tant predictor, which corresponds to the student’s GPA score. CART performs six splits out
of seven on X6, whereas PILOT carries out two splits out of three on X6, and has X6 in all
the linear models in the leaf nodes.

The left panel of Fig. 12 shows the probability of admission versus the GPA score X6.
The GPA is clearly related with the response. Moreover, the relationship looks nearly lin-
ear, making a piecewise linear model a much better fit than a piecewise constant model.
This is confirmed by the fact that the initial PILOT fit on X6 explains 77.8% of the vari-
ance of the response, while the initial CART split on X6 explains 54.1% of the variance.
The explained variance of the final trees is 78.3% for PILOT versus 72.4% for CART,
while PILOT uses half the number of leaf nodes and less than half the number of splits.

Regarding the other predictors, both methods carry out a split on the GRE score X1 at
depth 2. The relation between the admission probability and X1 is shown in the right panel
of Fig. 12. Interestingly, PILOT also chooses a piecewise constant split on this variable,
and does so at basically the same split point as CART. Therefore, both models suggest that
the GRE score is sometimes used as a rough threshold to distinguish between candidates.
Moreover, PILOT suggests that students have little to gain by raising the GRE much above

Fig. 10   CART regression tree on the Graduate Admission dataset

6588	 Machine Learning (2024) 113:6561–6610

1 3

this threshold. Figure 11 indicates that PILOT makes slight linear adjustments based on the
variables X2 (TOEFL score), X3 (university rating) and X5 (quality of personal statement).

5 � Conclusion

This paper presented a new linear model tree algorithm called PILOT. It is computation-
ally efficient, as it has the same time and space complexity as CART. To avoid overfitting,
PILOT is regularized by a model selection rule. This regularization adds no computational

Fig. 11   Linear model tree by PILOT on the Graduate Admission dataset

Fig. 12   Left: response versus the GPA score X6 on the Graduate Admission dataset. The lines show
the fits of PILOT and CART after the first split. Right: response versus the GRE score X1. The red lines
indicate the means of the cases left and right of the split point 317.5

6589Machine Learning (2024) 113:6561–6610	

1 3

complexity, and no pruning is required once the tree has been built. This makes PILOT
faster than most existing linear model trees. The prediction can easily be interpreted due
to its tree structure and its additive piecewise linear nature. To guide variable selection, a
measure of feature importance was defined in the same way as in CART. PILOT applies
two truncation procedures to the predictions, in order to avoid the extreme extrapolation
errors that were sometimes observed with other linear model trees. An empirical study
found that PILOT often outperformed the CART, M5, and FRIED decision trees on a vari-
ety of datasets. When applied to roughly linear data, PILOT behaved more similarly to
high-dimensional linear methods than other tree-based approaches did, indicating a better
ability to discover linear structures. We proved a theoretical guarantee for its consistency
on a general class of functions. When applied to data generated by a linear model, the con-
vergence rate of PILOT is polynomial. To the best of our knowledge, this is the first linear
model tree with proven theoretical guarantees.

We feel that PILOT is particularly well suited for fields that require both performance
and explainability, such as healthcare (Ahmad et al., 2018), business analytics (Bohanec
et al., 2017; Delen et al., 2013) and public policy (Brennan & Oliver, 2013), where it could
support decision making.

A future research direction is to integrate PILOT trees as base learners in ensemble
methods, as it is well known that the accuracy and diversity of base learners benefit the
performance of the ensemble. On the one hand, we have seen that PILOT gave accurate
predictions on a number of datasets. On the other hand, the wide choice of models avail-
able at each node allows for greater diversity of the base learner. For these reasons and the
fact that PILOT requires little computational cost, we expect it to be a suitable base learner
for random forests and gradient boosting.

6 � Supplementary information

This consists of Python code for the proposed method, and an example script.

Appendix 1: Preliminary theoretical results

Here we provide notations and preliminary results for the theorems in Sect. 3.

Notation

We follow the notations in Sects. 2 and 3. The n response values form the vector Y with
mean Y  . The values of the predictors of one case are combined in X ∈ ℝp . The design
matrix of all n cases is denoted as X ∈ ℝn×p . Given some tree node T with t cases, we
denote by XT ∶= (XT1

,… ,XTt
)⊤ ∈ ℝt×p the restricted data matrix and by X(j)

T
 its j-th col-

umn. The variance of the j-th column is given by 𝜎̂2
j,T

∶=
∑t

k=1
(X

(j)

Tk
− X

(j)

T
)2∕t . We also let

(𝜎̂U
j,T
)2 be the classical unbiased variance estimates with denominator t − 1 . T is omitted in

these symbols when T is the root node, or if there is no ambiguity.
We denote by Tk the set of nodes of depth k together with the leaf nodes of depth less

than k. The PILOT prediction on these nodes is denoted as f̂ (Tk) ∈ ℝn , and f̂ k
T
 denotes the

prediction of the selected model (e.g. plin) on some T ∈ Tk , obtained by fitting the residuals

6590	 Machine Learning (2024) 113:6561–6610

1 3

Y − f̂ (Tk−1) of the previous level. The impurity gain of a model on a node T with t cases can
be written as

where Tl , Tr are the left and right child nodes, containing tl and tr cases, and P(tl) = tl∕t ,
P(tr) = tr∕t.

Since f̂ (Tk) is additive and we assume that all f ∈ F are too, we can write the functions
on the j-th predictor as f̂j(Tk) and fj . The total variation of a function f on T is denoted as
||f ||TV(T) . For nonzero values An and Bn which depend on n → ∞ , we write An ≾ Bn if and
only if An∕Bn ≤ O(1) , and ≿ is analogous. We write An ≍ Bn if An∕Bn = O(1) . The differ-
ence of the sets C1 and C2 is denoted as C1∖C2.

Representation of the gain and residuals

In this section we show that the impurity gain of lin and pcon can be written as the square
of an inner product. It is also shown that plin can be regarded as a combination of these two
models. These formulas form the starting point of the proof of the consistency of PILOT and
its convergence rate on linear models.

Proposition 7  Let 𝛽 be the least squares estimator of a linear model fitting Y ∈ ℝp in func-
tion of a design matrix X ∈ ℝn×p . Then we have

Proof  This follows from 𝛽 = (X⊤
X)−1X⊤Y and ⟨Y ,X𝛽⟩n = Y⊤X𝛽∕n . 	� ◻

Lemma 1  (Representation of lin) Let T be a node with t cases. For a lin model on the vari-
able X(j) it holds that:

Moreover, if we normalize the second term in the last expression and denote

where w(t) = t∕n , we have

Proof  By Proposition 7 we have

�Δk+1(T) = ||Y − f̂ (Tk)||2t − P(tl)||Y − f̂ (Tk) − f̂ k+1
Tl

||2
tl
− P(tr)||Y − f̂ (Tk) − f̂ k+1

Tr
||2
tr
,

(9)⟨Y ,X𝛽⟩n = ��X𝛽��2
n
.

(10)�Δk+1
LIN

=
|||||

⟨
Y − f̂ (Tk),

X
(j)

T
− X

(j)

T

𝜎̂j,T

⟩

t

|||||

2

+
(
Y − f̂ (Tk)

)2

.

�f T
LIN

∶=
X(j) − X

(j)

T√
w(t)𝜎̂j,T

1{X ∈ T}

f̂ k+1
T

= ⟨Y − f̂ (Tk),
�f T
LIN
⟩n �f TLIN + Y − f̂ (Tk).

�Δk+1
LIN

= ��Y − f̂ (Tk)��2t − ��(Y − f̂ (Tk)) − (𝛼̂ + 𝛽X(j)

T
)��2

t

= 2⟨Y − f̂ (Tk), 𝛼̂ + 𝛽X(j)

T
⟩t − ��𝛼̂ + 𝛽X(j)

T
��2
t

= ⟨Y − f̂ (Tk), 𝛼̂ + 𝛽X(j)

T
⟩t .

6591Machine Learning (2024) 113:6561–6610	

1 3

For 𝛽 we don’t need to take the mean of the residuals into account, hence

On the other hand 𝛼̂ = Y − f̂ (Tk) − 𝛽X(j)

T
 , therefore

The second result follows from the definition of 𝛼̂ , 𝛽 and the above formula. 	� ◻

Next we show a similar result for pcon. Note that here our f̂ (Tk) is not a constant on
each node, so we need to adapt the result for CART in Klusowski (2021) to our case.

Lemma 2  (Representation of pcon) Let T be a node with t cases and Tl , Tr be its left and
right children. We then have

Moreover, if we normalize the second term in the inner product and denote

where w(t) = t∕n , we have

Proof  By the definition of pcon, we have

where Yl is the mean of Y in Tl , f̂ (Tk)l is the mean of f̂ (Tk) in Tl , and similarly for the cases
in the right child node. In the following, we also denote the constant predictions for the left
and right node as f̂ k+1

l
∶= f̂ k+11(XT ∈ Tl) and f̂ k+1

r
∶= f̂ k+11(XT ∈ Tr) . Thus we have

𝛽 =
(X

(j)

T
− X

(j)

T
)⊤(Y − f̂ (Tk))

(X
(j)

T
− X

(j)

T
)⊤(X

(j)

T
− X

(j)

T
)

=
⟨Y − f̂ (Tk),X

(j)

T
− X

(j)

T
⟩t

𝜎̂2
j,T

.

�Δk+1
LIN

= 𝛽⟨Y − f̂ (Tk),X
(j) − X(j)⟩t +

�
Y − f̂ (Tk)

�2

=
�����

�
Y − f̂ (Tk),

X(j) − X(j)

𝜎̂j,T

�

t

�����

2

+
�
Y − f̂ (Tk)

�2

.

�Δk+1
PCON

=
�����

�
Y − f̂ (Tk),

1{XT ∈ Tl}tr − 1{XT ∈ Tr}tl√
trtl

�

t

�����

2

+
�
Y − f̂ (Tk)

�2

.

f̃ T
PCON

∶=
1{XT ∈ Tl}P(tr) − 1{XT ∈ Tr}P(tl)√

w(t)P(tr)P(tl)
,

f̂ k+1
T

= ⟨Y − f̂ (Tk),
�f T
PCON

⟩n �f TPCON + Y − f̂ (Tk).

f̂ k+1 = (Yl − f̂ (Tk)l)1(XT ∈ Tl) + (Yr − f̂ (Tk)r)1(XT ∈ Tr)

6592	 Machine Learning (2024) 113:6561–6610

1 3

where (i) follows from the fact that

Therefore,

Finally we have

	� ◻

�Δk+1
PCON

=
1

t

[
2
∑
XT∈Tl

(Y − f̂ (Tk))f̂
k+1 −

∑
XT∈Tl

(f̂ k+1)2

+ 2
∑
XT∈Tr

(Y − f̂ (Tk))f̂
k+1 −

∑
XT∈Tr

(f̂ k+1)2
]

=
1

t
[2tl(f̂

k+1
l

)2 − tl(f̂
k+1
l

)2 + 2tr(f̂
k+1
r

)2 − tr(f̂
k+1
r

)2]

=
1

t
[tl

(
Yl − f̂ (Tk)l

)2

+ tr

(
Yr − f̂ (Tk)r

)2

]

=
tltr

t2

[(
Yl − f̂ (Tk)l

)2

+
(
Yr − f̂ (Tk)r

)2

+
tl

tr

(
Yl − f̂ (Tk)l

)2

+
tr

tl

(
Yr − f̂ (Tk)r

)2]

(i)
=

tltr

t2

[(
Yl − f̂ (Tk)l

)2

+
(
Yr − f̂ (Tk)r

)2

− 2(Yl − f̂ (Tk)l)(Yr − f̂ (Tk)r)
]

+
(
Y − f̂ (Tk)

)2

=
tltr

t2

[
(Yl − f̂ (Tk)l) − (Yr − f̂ (Tk)r)

]2
+
(
Y − f̂ (Tk)

)2

tl

tr

(
Yl − f̂ (Tk)l

)2

+
tr

tl

(
Yr − f̂ (Tk)r

)2

+ 2(Yl − f̂ (Tk)l)(Yr − f̂ (Tk)r)

=
1

tltr

(∑
XT∈Tl

(Y − f̂ (Tk)) +
∑
XT∈Tr

(Y − f̂ (Tk))
)2

=
t2

tltr

(
Y − f̂ (Tk)

)2

.

�Δk+1
PCON

=
�����
1

t

tltr(Yl − f̂ (Tk)l) − tltr(Yr − f̂ (Tk)r)√
tltr

�����

2

+
�
Y − f̂ (Tk)

�2

=
�����

�
Y − f̂ (Tk),

1{XT ∈ Tl}tr − 1{XT ∈ Tr}tl√
trtl

�

t

�����

2

+
�
Y − f̂ (Tk)

�2

⟨Y − f̂ (Tk),
�f T
PCON

⟩n�f TPCON + Y − f̂ (Tk)

=
1

t
[(Yl − f̂ (Tk)l) − (Yr − f̂ (Tk)r)](1{XT ∈ Tl}tr − 1{XT ∈ Tr}tl) + Y − f̂ (Tk)

=
tl + tr

t
[(Yl − f̂ (Tk)l)1{XT ∈ Tl} + (Yr − f̂ (Tk)r)1{XT ∈ Tr}]

− Y − f̂ (Tk)(1{XT ∈ Tl} + 1{XT ∈ Tr}) + Y − f̂ (Tk) = f̂ k
T
.

6593Machine Learning (2024) 113:6561–6610	

1 3

Note that plin is equivalent to a combination of the two preceding models (pcon fol-
lowed by two lin models). As a result, we have a similar expansion for its prediction.

Proposition 8  (Representation of PLIN) For plin, there exists a function f̃ T
PLIN

 depending on
X, T, Tl and Tr such that

Proof  As plin can be regarded as a pcon followed by two lin fits on the same predictor, we
have

where the last equation follows from ⟨1, f̃
LIN
⟩n = 0 and the fact that the prediction of pcon is

constant on two child nodes. Moreover, since f̃ Tr
LIN

 , f̃ Tl
LIN

 , f̃ T
PCON

 are orthogonal to each other,
we can deduce that

for some A, B and C depending on X and the nodes T, Tl and Tr . 	� ◻

Appendix 2: Proof of the universal consistency of PILOT

In this section we show the consistency of PILOT for general additive models. As dis-
cussed in Sect. 3, we begin with the estimation of the impurity gains of PILOT. Then we
derive a recursion formula which allows us to develop an oracle inequality and prove the
consistency at the end. For all the intermediate results, we assume the conditions in Theo-
rem 1 holds.

A lower bound for 1
PCON

The key to the proof of the consistency is to relate the impurity gain Δk+1 to the training
error Rk ∶= ||Y − f̂ (Tk)||2n − ||Y − f ||2

n
 so that a recursion formula on Rk can be derived.

Recently, Klusowski (2021) developed such a recursion formula for CART. He showed in
Lemma 7.1 that for CART, Δk+1 is lower bounded by R2

k
 , up to some factors. However,

the proof used the fact that ⟨Y − Yt,Yt⟩ = 0 , and this formula no longer holds when Yt
is replaced by f̂ (Tk) . The reason is that we cannot assume that the predictions in the leaf
nodes of a PILOT tree are given by the mean response in that node, due to earlier nodes.
To overcome this issue, we provide a generalized result for pcon in the following.

f̂ k+1
T

= ⟨Y − f̂ (Tk),
�f T
PLIN

⟩n �f TPLIN + Y − f̂ (Tk).

f̂ k+1
T

= ⟨Y − f̂ (Tk),
�f T
PCON

⟩n �f TPCON + ⟨Y − f̂ (Tk) − f̂
PCON

,�f
Tl
LIN
⟩n �f TlLIN

+

+ ⟨Y − f̂ (Tk) − f̂
PCON

,�f
Tr
LIN
⟩n �f TrLIN

+ Y − f̂ (Tk)

= ⟨Y − f̂ (Tk),
�f T
PCON

⟩n �f TPCON + ⟨Y − f̂ (Tk),
�f
Tl
LIN
⟩n �f TlLIN

+ ⟨Y − f̂ (Tk),
�f
Tr
LIN
⟩n �f TrLIN

+ Y − f̂ (Tk)

f̂ k+1 = ⟨Y − f̂ (Tk),A
�f T
PCON

+ B�f
Tl
LIN

+ C�f
Tr
LIN
⟩n (A�f TPCON + B�f

Tl
LIN

+ C�f
Tr
LIN
)

+ Y − f̂ (Tk)

6594	 Machine Learning (2024) 113:6561–6610

1 3

Lemma 3  Assuming Rk(T) > 0 in some node T, then the impurity gain of pcon on this node
satisfies:

where ŝ , ĵ is the optimal splitting point and prediction.

Proof  Throughout this proof, the computations are related to a single node T so that we
sometimes drop the T in this proof for notational convenience. We first consider the case
where the mean of the previous residuals in the node is zero. We will show that

Note that f̂ (Tk) is the sum of pn linear functions defined on pn predictors. Let 𝛽j be the
slope of the linear function on j-th predictor. Then we define a probability measure Π(s, j)
on the space ℝ × {1,… , pn} by the following Radon-Nikodym derivative:

Here, (tl, tr) and (t�
l
, t�
r
) are the child nodes due to the split point s and predictor j, and aj and

f �
j
(x) are defined as

where X(j)

(1)
,…X

(j)

(t)
 are the ordered data points along the j-th predictor.

The idea is that the optimal impurity gain Δ̂
PCON

(ŝ, ĵ, t) is always larger than the average
impurity gain with respect to this probability measure:

where the last inequality follows from Jensen’s inequality, and the representation in
Lemma 2 is used. We now focus on the term inside the brackets, for which we obtain an
analog of (29) in Klusowski (2021):

Δ̂k+1
PCON

(ŝ, ĵ, T) ⩾
R2
k
(T)

(||f ||TV + 6B)2

Δ̂k+1
PCON

(ŝ, ĵ, t) ⩾
�⟨Y − f̂ (Tk), f − f̂ (Tk)⟩t�2

4��f − f̂ (Tk)��2TV
.

dΠ(s, j)

d(s, j)
=

�f �
j
(s) − aj�

√
P(tl)P(tr)

∑pn
j=1

∫ �f �
j
(s�) − aj�

�
P(t�

l
)P(t�

r
)ds�

.

aj = 𝛽j, f �
j
(s) =

⎧
⎪⎨⎪⎩

fj(X
(j)

(i)
)−fj(X

(j)

(i−1)
)

X
(j)

(i)
−X

(j)

(i−1)

X
(j)

(i−1)
< s < X

(j)

(i)

0 otherwise

Δ̂
PCON

(ŝ, ĵ, t) ⩾ ∫ Δ̂(s, j, t)dΠ(s, j)

= ∫ �⟨Y − f̂ (Tk),
√
w(t)�f T

PCON
⟩t�2dΠ(s, j)

⩾

�
∫ �⟨Y − f̂ (Tk), f̂t⟩t�dΠ(s, j)

�2

� �⟨Y − f̂ (Tk), f̂t⟩t�dΠ(s, j) ⩾
�⟨Y − f̂ (Tk),

∑pn
j=1

∫ (f �
j
(s) − aj)1{X(j)>s}ds⟩t�

∑p

j=1
∫ �f �

j
(s�) − aj�

�
Pt�

l
Pt�

r
ds�

.

6595Machine Learning (2024) 113:6561–6610	

1 3

For the numerator we have

where (i) again used ⟨1, Y − f̂ (Tk)⟩t = 0.
For the denominator restricted to one predictor, we have

If we sum over all j predictors we have

Putting the bounds on the numerator and denominator together, we obtain:

⟨
Y − f̂ (Tk),

pn∑
j=1

∫ (f �
j
(s) − aj)1{X(j)>s}ds

⟩
t

(i)
=

⟨
Y − f̂ (Tk),

pn∑
j=1

∫ (f �
j
(s) − aj)1{X(j)>s}ds +

pn∑
j=1

(fj(X
(j)

(1)
) − f̂j(Tk)|x=X(j)

(1)

)
⟩
t

=
⟨
Y − f̂ (Tk),

pn∑
j=1

(
fj(X

(j)

(1)
) +

∑
X
(j)

(2)
⩽X

(j)

(i)
⩽X(j)

fj(X
(j)

(i)
) − fj(X

(j)

(i−1)
)

X
(j)

(i)
− X

(j)

(i−1)

(X
(j)

(i)
− X

(j)

(i−1)
)

− f̂j(Tk)|x=X(j)

(1)

− aj(X
(j) − X

(j)

(1)
)
)⟩

t

=
⟨
Y − f̂ (Tk),

pn∑
j=1

(fj − f̂j(Tk))
⟩
t

=
⟨
Y − f̂ (Tk), f − f̂ (Tk)

⟩
t

∫ �f �
j
(s�) − aj�

�
Pt�

l
Pt�

r
ds�

=

N(t)�
i=0

∫N(t)P�(t�
l
)=i

�f �
j
(s�) − aj�

√
(i∕N(t))(1 − i∕N(t))ds�

=

N(t)−1�
i=1

∫
X
(j)

(i+1)

X
(j)

(i)

�f �
j
(s�) − aj�ds�

√
(i∕N(t))(1 − i∕N(t))

=

N(t)−1�
i=1

�fj(X(j)

(i+1)
) − ajX

(j)

(i+1)
− fj(X

(j)

(i)
) + ajX

(j)

(i)
�√(i∕N(t))(1 − i∕N(t))

⩽
1

2

N(t)−1�
i=1

�fj(X(j)

(i+1)
) − ajX

(j)

(i+1)
− fj(X

(j)

(i)
) + ajX

(j)

(i)
�

=
1

2

N(t)−1�
i=1

�(fj(X(j)

(i+1)
) − f̂j(Tk)�x=X(j)

(i+1)

) − (fj(X
(j)

(i)
) − f̂j(Tk)�x=X(j)

(i)

)�

=
1

2
��fj − f̂ (Tk)j��TV (T) .

pn∑
j�=1

∫ |f �
j
(s�) − aj|

√
Pt�

L
Pt�

R
ds� ⩽

1

2
||f − f̂ (Tk)||TV(T) .

6596	 Machine Learning (2024) 113:6561–6610

1 3

Now note that

where (i) is the triangle inequality and (ii) follows from the assumption that Rk(T) is strictly
positive.

Finally, we deal with 1
2
||f − f̂ (Tk)||TV(T) for which we need an upper bound. We have

1

2
||f − f̂ (Tk)||TV(T) ⩽

1

2
||f ||TV +

1

2
||f̂ (Tk)||TV(T) . It thus remains to bound the total variation

of f̂ (Tk) on the node T. We now show that the sum of the total variations along all the pre-
dictors is bounded by (max f̂ (Tk) −min f̂ (Tk)) ⩽ 3B < 6B . Since f̂ (Tk) is linear, the maxi-
mum and minimum values are always attained on vertices of the node (or cube). We can
therefore assume without loss of generality that the cube is [0, 1]pn and f̂ (Tk) =

∑pn
j=1

𝛽jX
(j)

s.t. for ∀j < j� , 𝛽j < 𝛽j′ and 𝛽j < 0 ⇔ j < p0 . Now we start with the vertex v0 ∈ [0, 1]pn such
that its j-th variable is 1 if and only if j < p0 (otherwise 0). Then we move to another vertex
v1 (along the edge) which is identical to v0 except on the first entry, i.e. its first entry is 0. In
addition, we have ||f̂1(Tk)||TV = f̂ (Tk)|X=v1 − f̂ (Tk)|X=v0 . Similarly, for ∀j , we let the vertex
vj+1 be identical to vj except for the j-th variable (by changing 1 to 0 or 0 to 1) and we have
||f̂j(Tk)||TV = f̂ (Tk)|X=vj − f̂ (Tk)|X=vj−1 . Furthermore, it holds that ∑pn

j=1
��f̂ (Tk)j��TV = max f̂ (Tk) −min f̂ (Tk) ⩽ 6B . Therefore, we obtain (

1

2
||f − f̂ (Tk)||TV(T)

)2

⩽
1

4
(||f ||TV + 6B)2.

Putting everything together yields

Finally, we treat the general case where the mean of the residuals in the node
is not necessarily zero (which can happen after fitting a blin model). Note that
Rk(T) = {||Y − f̂ (Tk) − (Y − f̂ (Tk))||2t − ||Y − f ||2

t
} + (Y − f̂ (Tk))

2 ∶= Rk(1) + Rk(2)   ,
where Rk(1) is the squared training error after regressing out the mean and Rk(2) is the
squared mean. Since the first truncation procedure ensures that Rk(T) ⩽ 16B2 , we have
(||f ||TV + 6B)2 ⩾ 36B2 ⩾ 2Rk(T) = 2(Rk(1) + Rk(2)) , so that

� �⟨Y − f̂ (Tk), f̂t⟩t�dΠ(s, j) ⩾
�⟨Y − f̂ (Tk),

∑pn
j=1

∫ (f �
j
(s) − aj)1{X(j)>s}ds⟩t�

∑p

j=1
∫ �f �

j
(s�) − aj�

�
Pt�

l
Pt�

r
ds�

⩾

�
Y − f̂ (Tk), f − f̂ (Tk)

�
t

1

2
��f − f̂ (Tk)��TV(T)

.

�⟨Y − f̂ (Tk), f − f̂ (Tk)⟩t� = �⟨Y − f̂ (Tk),Y − f̂ (Tk)⟩t + ⟨Y − f̂ (Tk), f − Y⟩t�
(i)

⩾ ��Y − f̂ (Tk)��2t − �⟨Y − f̂ (Tk), f − Y⟩t�
⩾ ��Y − f̂ (Tk)��2t − ��Y − f ��t��Y − f̂ (Tk)��t
⩾

1

2
��Y − f̂ (Tk)��2t − 1

2
��Y − f ��2

t

=
1

2
Rk(t)

(ii)

> 0

Δ̂k+1
PCON

(ŝ, ĵ, t) ⩾
�⟨Y − f̂ (Tk), f − f̂ (Tk)⟩t�2

1

4
��f − f̂ (Tk)��2TV

⩾
R2
k
(T)

(��f ��TV + 6B)2
.

6597Machine Learning (2024) 113:6561–6610	

1 3

Thus, by the preceding results and the fact that pcon makes the mean of the residuals zero,
we have

	� ◻

Proof of Proposition 2

As plin generalizes pcon, we always have Δ̂k
PLIN

⩾ Δ̂k
PCON

 . For other models, however, it
is not possible to develop a lower bound by similarly constructing a carefully designed
probability measure as that in Lemma 3. This is because we do not have an indicator
function which naturally generates f when associated with f ′ in the integral (see the
estimation of the numerator). Fortunately, we can rely on the BIC criterion to obtain
bounds on the relative impurity gains between the different models. More precisely,
Proposition 2 shows that if blin or lin are chosen, their gain has to be comparable (i.e.,
differ by at most a constant factor) to that of pcon. This ensures no underfitting occurs.
Moreover, if con is chosen at one node, all the subsequent models on that node would
also be con which justifies the use of the con stopping rule. The proof is given in the
following.

Proof  Without loss of generality, we may assume no model fits perfectly. Let us start with
the first claim. By the assumption that BIC1 > BIC2 we have for any v1, v2 that

Therefore, for any model i that is selected over con by the BIC criterion, we have

Since t ⩾ 2 , log(t)∕t is always positive, so is the lower bound in the preceding equations.
We now proceed with the second claim. If (12) holds for model 1, we have by (11),

R2
k(1)

(||f ||TV + 6B)2
+ Rk(2) ⩾

(Rk(1) + Rk(2))
2

(||f ||TV + 6B)2
.

Δk+1
PCON

(ŝ, ĵ, t) ≥ R2
k(1)

(||f ||TV + 6B)2
+ Rk(2) ⩾

Rk(T)
2

(||f ||TV + 6B)2
.

(11)

BIC2 < BIC1

t log

(
R0 − tΔ2

t

)
+ v2 log(t) < t log

(
R0 − tΔ1

t

)
+ v1 log(t)

log
(
1 −

tΔ2

R0

)
− log

(
1 −

tΔ1

R0

)
< (v1 − v2)

log t

t(
1 −

tΔ2

R0

)/(
1 −

tΔ1

R0

)
< exp

(
(v1 − v2)

log t

t

)

tΔ2

R0

> 1 + exp
(
(v1 − v2)

log t

t

)(tΔ1

R0

− 1
)

(12)
tΔi

R0

> 1 − exp
(
(1 − vi)

log t

t

)

6598	 Machine Learning (2024) 113:6561–6610

1 3

On the other hand, if (12) does not hold for model 1, we still get Δ2 > C∗Δ1 by using (11)
for model 2 and con, its inverse inequality for model 1 and con, and the fact that function
f (x) = (1 + ax)∕(1 + bx) is monotonically increasing for x ∈ [−1, 0] and 1 > a > b > 0.

Next we find the minimum of C∗ . We compute the derivative of the numerator and
denominator of C∗ with respect to (log t)∕t to get (v2 − 1) exp((1 − v2)(log t)∕t) and
(v1 − 1) exp((1 − v1)(log t)∕t) . Therefore, for any (log t)∕t ∶= s ∈ (0, 1∕2] we have

due to v1 ⩾ v2 . Therefore we conclude that C∗ ⩾ (v2 − 1)∕(v1 − 1) for any t ⩾ 2.
By previous lemmas we know that the impurity gain of the models can be divided into

two parts. The first is from regressing out the mean and the second is from the model
assumption, which does not depend on the mean of the response variable. Therefore, we
can let Δ2 = Δ1 + Δ�

2
 in (11) when model 1 is con. Here, Δ�

2
 is the gain after regressing out

the mean. Now, if con is better, we have by the inverse inequality of (11) that

which means that the subsequent node still prefers con, even if its gain is 0. 	� ◻

As an example, for our choice of degrees of freedom, Δ
LIN

⩾ Δ
PCON

∕4 if lin is cho-
sen. Similarly, if blin is the preferred model, we must have Δ

BLIN
⩾ Δ

PCON
 since their

degrees of freedom are the same.

Proof of Theorem 3

The remaining issue is that the RSS in con nodes does not get improved as the depth
increases, since subsequent nodes will select con again. Therefore, we first construct a
recursion formula which excludes the terms corresponding to the RSS in the con nodes.
Then we will show that the training error in these con nodes vanishes asymptotically,
which justifies the con stopping rule.

Δ2

Δ1

>
(
1 − exp

(
(v1 − v2)

log t

t

)) R0

tΔ1

+ exp
(
(v1 − v2)

log t

t

)

>
(
1 − exp

(
(v1 − v2)

log t

t

))/(
1 − exp

(
(1 − v1)

log t

t

))
+ exp

(
(v1 − v2)

log t

t

)

=
1 − exp((1 − v2) log t∕t)

1 − exp((1 − v1) log t∕t)
∶= C∗

(
log t

t

)
> 0 .

C∗(s) =
∫ s

0
(v2 − 1) exp((1 − v2)r)dr

∫ s

0
(v1 − 1) exp((1 − v1)r)dr

⩾
(v2 − 1) ∫ s

0
exp((1 − v1)r)dr

(v1 − 1) ∫ s

0
exp((1 − v1)r)dr

=
v2 − 1

v1 − 1

(13)

tΔ�
2

R0

+
tΔ1

R0

< 1 − exp
(
(1 − v2)

log t

t

)(
1 −

tΔ1

R0

)

⟺

tΔ�
2

R0

<
(
1 − exp

(
(1 − v2)

log t

t

))(
1 −

tΔ1

R0

)

< 1 − exp
(
(1 − v2)

log t

t

)
,

6599Machine Learning (2024) 113:6561–6610	

1 3

Recall the definitions of C+
k
= {T|T = CON, T ∈ Tk−1,Rk−1(T) > 0} , the set of nodes

on which con is fitted before the k-th step, and C−
k
 for those with Rk(T) ⩽ 0 . Further define

C∗
k
∶= C+

k
�C+

k−1
 and C#

k
∶= C−

k
�C−

k−1
 . Finally, let A+

k
∶= {T|T ∈ Tk, T ≠ CON,Rk(T) > 0}

and A−
k
∶= {T|T ∈ Tk, T ≠ CON,Rk(T) ⩽ 0} . Note that with these disjoint sets of nodes

we now have

Next we can calculate the errors in these sets of nodes. Let RC+
k
∶=

∑
T∈C+

k

w(T)R(T) and
define RC−

k
 , RC∗

k
 , RC#

k
 , RA+

k−1
 , RA−

k−1
 in similar fashion. This yields

Finally, we let R̃k ∶= Rk − RC+
k
.

Throughout the proof we assume without loss of generality that the gain of the con
node fitted at depth k is already included into Rk , therefore RC+

k
 can be regarded as the

remaining error after regressing out the mean for con nodes before depth k.

Proof  Without loss of generality we may assume that RC+
k
⩽ Rk so that Rk > 0 . Otherwise

the claim follows immediately. We have

where the second inequality follows from the preceding Lemma and Proposition, and (i) is
Jensen’s inequality. Since Rk−1 − RC+

k−1
 is positive and the other three terms in R∗

k−1
 are neg-

ative, we may replace R∗
k−1

 by Rk−1 − RC+
k−1

= �Rk−1 > 0 on the right hand side of the above
inequality. Furthermore, we have by definition,

In fact, by assuming that the first regression model is not con, we already have R̃1 ⩽ F∕4
for any initial R0 by either inequality in (14). Therefore, all the subsequent estimations fol-
low the second inequality and we have for any k ⩾ 2,

Tk−1 = C+
k−1

∪ C−
k−1

∪ A+
k−1

∪ A−
k−1

∪ C∗
k
∪ C#

k
.

Rk−1 = RC+
k−1

+ RC−
k−1

+ RA+
k−1

+ RA−
k−1

+ RC#
k
+ RC∗

k
.

R̃k = Rk − RC+
k

⩽ Rk−1 − RC+
k
−

∑
T∈A+

k−1

w(T)Δ(T)

⩽ R̃k−1 − RC∗
k
−

∑
T∈A+

k−1

w(T)

F
R2
k−1

(T)

(i)

⩽ R̃k−1 − RC∗
k
−

1

F

(∑
T∈A+

k−1

w(T)Rk−1(T)
)2

= R̃k−1 − RC∗
k
−

1

F

(
Rk−1 − RC+

k−1
− RC−

k−1
−

∑
T∈A−

k−1

w(T)Rk−1(T) − RC#
k
− RC∗

k

)2

=∶ R̃k−1 − RC∗
k
−

1

F

(
R∗
k−1

− RC∗
k

)2

(14)−RC∗
k
− (�Rk−1 − RC∗

k
)2∕F ⩽

{
−�Rk−1 + F∕4 < −�Rk−1∕2 if �Rk−1 > F∕2

−�R2
k−1

∕F otherwise.

6600	 Machine Learning (2024) 113:6561–6610

1 3

By a similar induction argument to Lemma 4.1 of Klusowski (2021), we get the estimation
of RK after moving RC+

K
 to the right hand side.

It remains to control the errors in the con nodes. We can assume that the con models
have regressed out the mean in each C+

k
 . The first step is to use Proposition 2 and Lemma 3

to get the following upper bound for any con node T:

where we used Lemma 3 for the first inequality and (13) for the second. Since we assume
the response is almost surely bounded by ±B , we have

Therefore the weighted sum of R(T) on C+
K

 is asymptotically

By the Cauchy-Schwarz inequality we obtain

Therefore if we let K = log2(n)∕r with r > 1 , RC+
K
 is of order O(

√
log(n)∕n(r−1)∕r) , which

tends to zero as the number of cases goes to infinity. 	� ◻

Proof of Theorem 1

Now we can apply Theorem 3 to derive an oracle inequality for our method and finally
prove its consistency. We will use Theorem 11.4 together with Theorem 9.4 and Lemma
13.1 from Györfi et al. (2002), since these results do not require the estimator to be an
empirical risk minimizer.

Proof  Let f be the true underlying function in F  , and Fn be the class of the linear model
tree. We first write the L2 error as ||f − f̂ (TK)||2 = E1 + E2 to apply Theorem 11.4, where

and

R̃k ⩽ R̃k−1 −
1

F
R̃2
k−1

.

(15)
R(T)2

FR0

⩽
Δ

PCON

R0

⩽
1

t

(
1 − exp

(
(1 − v

PCON
)
log t

t

))

R(T) ⩽
√
B2F

�
1 − exp

�
(1 − v

PCON
)
log t

t

�
≾

�
(v

PCON
− 1) log t

t

�
T∈C+

K

w(T)R(T) ≾
1

n

�
T∈C+

K

√
t log t.

�
T∈C+

K

√
t log t ⩽

√
2K

� �
T∈C+

K

t log t
�1∕2

⩽

√
2K

�
log n

�
T∈C+

K

t
�1∕2

=
√
2Kn log n.

E1 ∶= ||f − f̂ (TK)||2 − 2(||Y − f̂ (TK)||2n − ||Y − f ||2
n
) − 𝛼 − 𝛽

E2 ∶= 2(||Y − f̂ (TK)||2n − ||Y − f ||2
n
) + 𝛼 + 𝛽.

6601Machine Learning (2024) 113:6561–6610	

1 3

By our assumption, we can define B0 = max{1.5B, 1} so that the class of functions and Y
are a.s. bounded by [−B0,B0] , which fulfills the condition of Theorem 11.4. Thus by Theo-
rem 11.4 with � = 1∕2 in their notation, it holds that

where �, � → 0 as n → ∞.
Theorem 9.4 gives the estimation for the covering numbers of Gn which denotes the class

of functions in the leaf nodes. We note that the condition of the theorem 𝛽∕40B0 < B0∕2 is
automatically satisfied for sufficiently large n if � → 0 is well-defined.

Combining Theorem 9.4 and Lemma 13.1, we get the estimation for the covering num-
ber of Fn . Specifically we have,

Here Λn is the set of all possible binary trees on the training set of n cases, and Γn(Λn) is
the upper bound for the number of different partitions on that set that can be induced by
binary trees. The upper bound on Γn(Λn) follows from Klusowski (2021) and Scornet et al.
(2015). The exponent V(Gn) is the VC dimension of Gn , and since we have multivariate lin-
ear predictions V(Gn) = p + 1.

If we further let � ≍
B2
0

n
 and � ≍ 3B4

0
log(np log n)2K+log(p+1)∕n we have

and

Moreover, E1 ⩽ C1 for some constant C1 by the fact that ||f ||TV ⩽ A and both Y and f (Tk)
are bounded in [−B0,B0] for any k. Thus 𝔼[E1] ⩽ C1∕n for some C1 > 0 . By Theorem 3 we
also have for any f ∈ F that

and therefore summing up everything we have,

P({∃f̂ (TK) ∈ Fn s.t. E1 > 0}) ⩽ 14 sup
x
n

N
(𝛽

40B0

,Fn, L1(𝜈xn)
)
exp

(
−

𝛼n

2568B4
0

)

N
(�

40B0

,Fn, L1(�xn)
)
⩽ Γn(Λn)

[
3
(
4eB0

40B0

�
log

(
6eB0

40B0

�

))V(Gn)
]2K

⩽ Γn(Λn)
[
3
(160eB2

0

�
log

240eB2
0

�

)V(Gn)
]2K

⩽ (np)2
K
[
3
(160eB2

0

�
log

240eB2
0

�

)p+1]2K
.

N
(𝛽

40B0

,Fn, L1(𝜈xn)
)
≾ (np)2

K

(n log n)2
K+log(p+1)

P(E1 > 0) ⩽ P({∃f̂ (TK) ∈ Fn s.t. E1 > 0})

≾ (np)2
K

(n log n)2
K+log(p+1) 1

(np log n)3×2
K+log(p+1)

≾
1

(np log n)2
K+log(p+1)

⩽ O
(
1

n

)
.

𝔼[E2] ⩽
2F

K + 3
+

C2

√
2Kn log n

n
+ � + �,

6602	 Machine Learning (2024) 113:6561–6610

1 3

where C3 and C4 only depend on A and B.
By our assumption, the expected error tends to zero. Moreover, if we pick Kn = log(n)∕r

for some r > 1 and pn = ns such that 0 < s < 1 − 1∕r , the first term in (16) is O(1∕ log(n))
and the second and third terms turn out to be o(1∕ log(n)) . Therefore, the overall conver-
gence rate becomes O(1∕ log(n)) . 	� ◻

Appendix 3: Convergence rate for linear model data

Preliminaries and Ideas

In the previous section we derived the consistency of PILOT in case the underlying is a
general additive function. The convergence rate obtained in that setting is O(1∕ log(n)) ,
the same as CART but rather slow. Of course this is merely an upper bound, and it is not
unlikely that we can obtain much faster convergence if the true underlying function is
somehow well-behaved.

In this section, we consider such a scenario. In particular, we aim to show a faster con-
vergence rate of PILOT for linear functions. In order to tackle this problem, we cannot
use the same approach as for the general consistency result. In particular, a counterpart of
Lemma 3 for the gain of lin would still result in a squared error in the left hand side which
would restrain the convergence rate. Therefore, we take a different approach and turn to a
recent tool proposed by Freund et al. (2017) in the context of boosting models. In our case,
we consider a linear regression of YT on XT in each node T and estimate the gradient of a
related quadratic programming (QP) problem, thereby estimating the impurity gain.

Throughout the proof we use the same notation as that in Freund et al. (2017) to indicate
a subtle difference in the excess error compared to Klusowski (2021). We first define the
notation of the relevant quantities related to the loss. Let L∗

n
(T) ∶= min𝛽 ||Y − XT𝛽||2T be

the least squares loss on the node T and L∗
n
∶= min𝛽 ||Y − X𝛽||2

n
 be the least squares loss

on the full data. We further denote the loss of a k depth PILOT by Lk
n
∶= ||Y − f̂ (Tk)||2n .

Finally, Lk
n
(T) ∶= ||YT − XT�T ||2t is its loss in node T for some �T (we can write the loss

like this, since on T the prediction function is linear). When the depth k is not important,
we omit the superscript.

In the following we use the notation X̃T for the standardized predictor matrix obtained
by dividing each (non-intercept) column j in X by

√
n𝜎̂U

j
 where 𝜎̂U

j
 is the usual estimate of

the standard deviation of column j. We then consider Ln(T) ∶= ||YT − X̃T𝛽T ||2t and write
its gradient as ∇Ln(T)|𝛽=𝛽T.

Theorem 2.1 of Freund et al. (2017) used a fixed design matrix so that a global eigen-
value condition can be imposed on it. As we are fitting linear models locally, we need
a more flexible result. To this end we will impose a distributional condition that makes
use of the following matrix concentration inequality:

(16)𝔼[��f − f̂ (Tk)��2] ⩽ 2F

K + 3
+

C3

√
2Kn log n

n
+

C4 log(np log n)2
K+log(p+1)

n

6603Machine Learning (2024) 113:6561–6610	

1 3

Theorem 9  (Theorem 1.6.2 of Tropp (2015)) Let S1,… , Sn be independent, centered ran-
dom matrices with common dimension d1 × d2 , and assume that �[Si] = 0 and ||Si|| ⩽ L .
Let Z =

∑n

k=1
Si and define

Then

A probabilistic lower bound for 1
LIN

Our first step is to show a probabilistic bound for the impurity gain of Δ
LIN

 based on the
ideas in the preceding section.

Lemma 4  Let T be a node with n cases. We define Ln(T) as the training loss of PILOT and
L∗
n
(T) as that of least squares regression. In addition to conditions 1 and 2, we assume that

the residuals of the response on T have zero mean. Then there exists a constant C such that
the lin model satisfies

Proof  By the definition of the gradient we have,

where r denotes the residuals Y − X̃𝛽T and the last equality follows from (10) and the
assumption that the residuals of the response on T have zero mean.

By letting h(⋅) = Ln(⋅) , Q =
2

n
X̃
⊤
X̃ in Proposition A.1 of Freund et al. (2017) and (C9),

we have (assuming the difference in the loss is positive),

v(Z) = max{||�[ZZ⊤]||, ||�[Z⊤
Z]||}.

P[||Z|| ⩾ t] ⩽ (d1 + d2) exp
(−t2∕2

v(Z) + Lt∕3

)
for all t ⩾ 0.

P

[
Δ

LIN
⩾

�0(Ln(T) − L∗
n
(T))

4p

]
⩾ 1 − exp(C�0,�0,p

n).

(17)

n��∇Ln(T)�𝛽=𝛽T ��∞
2

= ��X̃⊤
r��∞ = max

j∈1…p
{�r⊤X̃(j)�}

= max
j∈1…p

�r⊤X(j)�√
n𝜎̂U

j

⩽ max
j∈1…p

�r⊤(X(j) − X
(j)
)�√

n𝜎̂j

=
√
nΔ

LIN

P

[
Δ

LIN
⩾

𝜆0(Ln(T) − L∗
n
)

4p

]
⩾ P

[
n||∇Ln|𝛽=𝛽T ||2∞

4
⩾

𝜆0(Ln(T) − L∗
n
)

4p

]

⩾ P

[
n

p
||∇Ln|𝛽=𝛽T ||22 ⩾

𝜆0(Ln(𝛽T) − L∗
n
)

p

]

⩾ P[𝜆min(X̃
⊤
X̃) > 𝜆0] .

6604	 Machine Learning (2024) 113:6561–6610

1 3

All that is left to show is that

In order to do so, we compute the minimum eigenvalue of X̃⊤
X̃ . We define the vector

Si ∈ ℝp by its coordinates S(j)
i
= X

(j)

i
∕�j where �j is the true standard deviation of the j-th

predictor. By the properties of eigenvalues and singular values, we can split the estimation
into three parts

Therefore, we may lower bound the eigenvalues of the matrix X̃⊤
X̃ using the singular val-

ues of 3 other matrices. The left hand side is already bounded by 2�0 by our assumption.
For 𝜎max(Ãn) , we note that the two matrices inside differ only in the estimation of the stand-
ard deviation. If we can show that the difference in the entries are uniformly bounded by
some constant, then we could also upper bound its largest singular value. To do this, we
use Theorem 10 in Maurer and Pontil (2009), which states that for i.i.d. random variables
X1,… ,Xn in [0,1] and 𝛿 > 0 , the classical unbiased variance estimates (𝜎̂U)2 and the true
variance �2 satisfy

Due to

we only need to control the difference in the variance term, as each X(k)

i
 is bounded by 1. If

we put
√
2 log(1∕�)∕(n − 1) = �0�

4
0
∕2p and let Ek be the event that |𝜎k − 𝜎̂U

k
| ⩽ 𝜆0𝜎

4
0

2p
 , we

have

due to 𝜎0 < 1 , 𝜆0 < 2𝜆0 ⩽ tr(𝔼[(S − S)(S − S)⊤]) ⩽ p and our assumption that the estimated
variance should be lower bounded by 2�2

0
 . On E ∶=

⋃
k Ek we have

P[𝜆min(X̃
⊤
X̃) > 𝜆0] ⩾ 1 − exp(−C𝜆0,𝜎0,p

n).

𝜆min(𝔼[SS
⊤]) = 𝜎min(𝔼[SS

⊤])

= 𝜎min

[
X̃
⊤
X̃ +

1

n

n∑
i=1

SiS
⊤
i
− X̃

⊤
X̃

���������������������
Ãn

+
1

n

n∑
i=1

(
𝔼[SS⊤] − SiS

⊤
i

���������������������������
B̃n

)]

⩽ 𝜆min(X̃
⊤
X̃) + 𝜎max(Ã) + 𝜎max(B̃)

P

[
|𝜎 − 𝜎̂U| >

√
2 log(1∕𝛿)

n − 1

]
< 2𝛿.

1

n

n�
i=1

SiS
⊤
i
− X̃

⊤
X̃ =

1

n

n�
i=1

[SiS
⊤
i
− X̃iX̃i

⊤
]

=

�∑n

i=1
X
(k)

i
X
(l)

i

n

�
1

𝜎k𝜎l
−

1

𝜎̂U
k
𝜎̂U
l

��

kl

P[Ek] ⩾ 1 − exp(−C𝜆0,𝜎0,p
n) and 𝜎k > 𝜎0 on Ek

max
k,l

(|Ãkl|) ⩽ max
k,l

|𝜎k𝜎l − 𝜎̂U
k
𝜎̂U
l
|

𝜎k𝜎l𝜎̂
U
k
𝜎̂U
l

⩽ max
k,l

𝜎k(|𝜎l − 𝜎̂U
l
|) + 𝜎̂U

l
(|𝜎k − 𝜎̂U

k
|)

2𝜎4
0

⩽
𝜆0
2p

6605Machine Learning (2024) 113:6561–6610	

1 3

where the last inequality is due to �k, �
U
l
⩽ 1 . Thus

P[maxk,l(|Ãkl|) ⩽ 𝜆0∕(2p)] ⩾ 1 − p2 exp(−C𝜆0,𝜎0,p
n) by the union bound. As

max||x||2=1 ||Ãx||2 ⩽ maxk,l(|Ãkl|)p we have

For 𝜆max(B̃n) we can apply Theorem 9 to obtain that it is lower bounded by �0∕2 with high
probability. In fact, on E the squared L2 norm of Si is bounded by p∕�2

0
 , and therefore

||SiS⊤i || = 𝜆max(SiS
⊤
i
) ⩽ p∕𝜎2

0
 so that ||𝔼[SS⊤]|| ⩽ 𝔼[||Si||2] ⩽ p∕𝜎2

0
 by Jensen’s inequality.

Moreover, for Si ∶= �[SS⊤] − SiS
⊤
i
 we have �[Si] = 0 and

Using the same argument in Section 1.6.3 of Tropp (2015) we find that v(B̃n) ⩽ p2∕n𝜎4
0
 so

that on E,

At the end we note that

Summing up all the estimations, we know that by a union bound there exists a constant
C𝜆0,𝜎0,p

> 0 such that P[𝜆min(X̃
⊤
X̃) > 𝜆0] ⩾ 1 − exp(−C𝜆0,𝜎0,p

n) . 	� ◻

Proof of Theorem 4

We can now prove the recursion formula for the expectation of the excess error.

Proof  We first deal with the case where con is not included. We know that whatever non-
con model is chosen on T, its impurity gain is always larger than that of lin (because the
degrees of freedom of lin is the smallest). Moreover, the first truncation procedure does not
deteriorate the gain of the model, since it only eliminates bad predictions. Therefore when
Lk
n
− L∗

n
 is given and positive, by Lemma 4, with probability at least

∑
T∈Tk

exp(−C�0,�0,p
t) ,

it holds that

P[𝜎max(Ã) ⩽ 𝜆0∕2] = P[max||x||2=1
||Ãx||2 ⩽ 𝜆0∕2]

⩾ P[max
k,l

(|Ãkl|) ⩽ 𝜆0∕2p] ⩾ 1 − p2 exp(−C𝜆0,𝜎0,p
n)

||Si|| ⩽ 1

n
(||SiS⊤i || + ||𝔼[SS⊤]||) ⩽ 2p

n𝜎2
0

.

P(||B̃n|| >
𝜆0
2
) ⩽ P

(
||B̃n|| >

𝜆0
2

on E

)
+ P(Ec)

⩽ 2p exp

(
−𝜆2

0
𝜎4
0
n∕8

p2 + p𝜆0𝜎
2
0
∕3

)
+ p2 exp(−C𝜆0,𝜎0,p

n).

2𝜆0 ⩽ 𝜆min(Cor(X)) = 𝜆min(𝔼[(S − S)(S − S)⊤]) ⩽ 𝜆min(𝔼[SS
⊤]).

6606	 Machine Learning (2024) 113:6561–6610

1 3

where rk
T
∶= Y − XT�T are the residuals on T. Here, (i) follows from equation (10). The

Δ̃
LIN
(T) in (ii) means the gain of lin after regressing out the mean. The last equation in (iii)

follows from Lemma 4. (iv) is due to ||rk
T
− r̄k

T
||2
t
+ ||r̄k

T
||2
t
= ||rk

T
||2
t
 and the fact that the

coefficient �0
4p

 is less than 1. (v) follows from the fact that the weighted sum of the optimal
loss in each leaf node

∑
T∈Tk

w(T)L∗
n
(T) is less than L∗

n
 for each k. As argued in the previous

lemma, the factor 1 − �0
4p

 is always positive.
It remains to control the ‘bad’ probability, i.e. the case where 𝜆min(T) < 𝜆0 . We have that

By condition 1 it holds that

as long as logK ≾ n𝛼 which is satisfied by choosing K of order log n . To sum up every-
thing, if we let G ∶= {∀T ∈ TK , 𝜆pmin(T) > 𝜆0} and assume �[𝜖4] < ∞ , we have for suf-
ficiently large n,

Lk+1
n

− L∗
n
= Lk+1

n
− Lk

n
+ Lk

n
− L∗

n
= Lk

n
− L∗

n
− (Lk+1

n
− Lk

n
)

⩽ Lk
n
− L∗

n
−

∑
T∈TK

w(T)Δ
LIN
(T)

= Lk
n
− L∗

n
−

∑
T∈TK

w(T)(Lk+1
lin,n

(T) − Lk
n
(T))

(i)
= Lk

n
− L∗

n
−

∑
T∈TK

w(T)
(
(Y − XT𝛽T)

2 +
⟨
Y − XT𝛽T ,

X(j) − X(j)

𝜎j

⟩2

t

)

(ii)
= Lk

n
− L∗

n
−

∑
T∈TK

w(T)(r̄k
T
)2 −

∑
T∈TK

w(T)Δ̃
LIN
(T)

(iii)

⩽ Lk
n
− L∗

n
−

∑
T∈TK

w(T)(r̄k
T
)2

−
∑
T∈TK

𝜆0
4p

w(T)(||rk
T
− r̄k

T
||2
t
− L∗

n
(T))

(iv)

⩽ Lk
n
− L∗

n
−

∑
T∈TK

𝜆0
4p

w(T)(Lk
n
(T) − L∗

n
(T))

(v)

⩽ Lk
n
− L∗

n
−

𝜆0
4p

(Lk
n
− L∗

n
)

= (Lk
n
− L∗

n
)
(
1 −

𝜆0
4p

)

P(∃T ∈ TK s.t. 𝜆min(T) < 𝜆0) ⩽
∑

T∈∪K
k=1

Tk

exp(−C𝜆0,𝜎0,p
t) ⩽ K

∑
T∈TK

exp(−C𝜆0,𝜎0,p
t).

K
∑
T∈TK

exp(−C𝜆0,𝜎0,p
t) ⩽ Kn1−𝛼 exp(−C𝜆0,𝜎0,p

n𝛼)

= exp(−C𝜆0,𝜎0,p
n𝛼 + logK + (1 − 𝛼) log n)

≾ exp(−C�
𝜆0,𝜎0,p

n𝛼)

6607Machine Learning (2024) 113:6561–6610	

1 3

Since we have an exponential decay in the probability, the error can be bounded by O(1∕n)
if we let K ≍ log n.

When con is included, we can derive an analog of (15) by using Lemma 4 and Proposi-
tion 2 to get for all T with con:

Moreover, since the error term has a finite fourth moment and the true underlying f is lin-
ear, we have with probability at least 1 − exp(C�0,�0,p

n) that

Let us denote by TCON

K
 all the con nodes in the tree up to depth K. Then the expectation of

the weighted sum of the errors on all of these nodes satisfies

Noticing that in our previous estimation for non-con nodes, the estimation of
Lk+1
n

(T) − L∗
n
(T) is always positive if Lk

n
(T) − L∗

n
(T) > 0 due to �0 ⩽ p (see the proof of

Lemma 4), we were able to first ignore the con nodes to get the recursion formula, and at
the end to add back the errors in all con nodes to get the final results. 	� ◻

Proof of Theorem 5

Finally, by applying the preceding results and the proof of the consistency theorem, we
get the convergence rate of PILOT on linear model data.

𝔼[Lk
n
− L∗

n
] = 𝔼X[1G𝔼��X[Lkn − L∗

n
] + 1Gc𝔼��X[Lkn − L∗

n
]]

⩽
√
P(X ∈ G)

�
𝔼X[(𝔼��X∈G[Lkn − L∗

n
])2]

+
√
P(X ∈ Gc)

�
𝔼X[(𝔼��X∈Gc [L0n − L∗

n
])2]

⩽ (1 − exp(−C�
�0,�0,p

n�))1∕2
�
1 −

�0
4p

�k�
𝔼[(L0

n
− L∗

n
)2]

+ exp(−C��
�0,�0,p

n�)

�
𝔼[(L0

n
− L∗

n
)2]

⩽

�
1 −

�0
4p

�k�
𝔼[(L0

n
− L∗

n
)2] +O(1∕n).

PX,𝜖

[
𝜆0

Ln(T) − L∗
n
(T)

4pR0

<
1

t

(
1 − exp

(
(1 − v

LIN
)
log t

t

))]
⩾ 1 − exp(C𝜆0,𝜎0,p

n).

�𝜖|X[Ln(T) − L∗
n
(T)] ≾ �𝜖|X[Y2]

(
1 − exp

(
(1 − v

LIN
)
log t

t

))
≾

(v
LIN

− 1) log t

t
.

𝔼X,𝜖

[∑
T∈TCON

K

w(T)(Ln(T) − L∗
n
(T))

]
⩽ 𝔼X

[
1Gc

∑
T∈TCON

K

𝔼𝜖|X[w(T)(Ln(T) − L∗
n
(T))]

]

+ 𝔼X

[
1G

∑
T∈TCON

K

(v
LIN

− 1) log(t)

n

]

≾ O
(
1

n

)
+O

(Nleaves log(n)

n

)
.

6608	 Machine Learning (2024) 113:6561–6610

1 3

Proof  We know that �[L∗
n
− ||X�||2

n
] = O(1∕n) for the true parameter � . So if we choose

Kn = log� (n) , by the preceding theorem we have �[LKn

n − ||X�||2
n
] = O(Nleaves log(n)∕n) .

Finally we can follow the proof of Theorem 1 in which we replace 2K by Nleaves and use
Theorem 4 to derive a similar oracle inequality as (16):

	� ◻

As a side remark, in the situation where some predictors are correlated with each other,
in practice plin and pcon can lead to even faster convergence than pure L2 boosting.

Funding  This work was supported by the European Union’s Horizon 2022 research and innovation pro-
gramme under the MSCA Grant Agreement No. 101103017 (JR), by Grant C16/15/068 of KU Leuven, Bel-
gium (PR), and by the BASF Chair on Robust Predictive Analytics at KU Leuven (JR, PR, TV, RY). This
research also received funding from the Flemish Government under the "Onderzoeksprogramma Artificiele
Intelligentie (AI) Vlaanderen" programme.

 Data availability  The data was downloaded from publicly available repositories.

 Code availability  The Python code is submitted as Supplementary Material. It is also available at https://​
github.​com/​STAN-​UAntw​erp.

Declarations 

Conflict of interest  The authors declare they have no Conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmad, M. A., Eckert, C., & Teredesai, A. (2018). Interpretable machine learning in healthcare. In Pro-
ceedings of the 2018 ACM international conference on bioinformatics, computational biology, and
health informatics (pp. 559–560).

Aydin, N., Sahin, N., Deveci, M., & Pamucar, D. (2022). Prediction of financial distress of companies with
artificial neural networks and decision trees models. Machine Learning with Applications, 10, 100432.
https://​doi.​org/​10.​1016/j.​mlwa.​2022.​100432

Bohanec, M., Borštnar, M. K., & Robnik-Šikonja, M. (2017). Explaining machine learning models in sales
predictions. Expert Systems with Applications, 71, 416–428.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees.

Routledge.
Brennan, T., & Oliver, W. L. (2013). Emergence of machine learning techniques in criminology: Implica-

tions of complexity in our data and in research questions. Criminology & Public Policy, 12, 551.

�[||X𝛽 − f̂ (TK)||2] ≾ O
(Nleaves log(n)

n

)
+ 2�[|LKn

n
− ||X𝛽||2

n
|]

≾ O
(log(n)

n𝛼

)
.

https://github.com/STAN-UAntwerp
https://github.com/STAN-UAntwerp
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.mlwa.2022.100432

6609Machine Learning (2024) 113:6561–6610	

1 3

Bühlmann, P. (2006). Boosting for high-dimensional linear models. The Annals of Statistics, 34(2), 559–583.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining
da Silva, R. G., Ribeiro, M. H. D. M., Moreno, S. R., Mariani, V. C., & Santos Coelho, L. (2021). A novel

decomposition-ensemble learning framework for multi-step ahead wind energy forecasting. Energy,
216, 119174. https://​doi.​org/​10.​1016/j.​energy.​2020.​119174

Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree
approach. Expert Systems with Applications, 40(10), 3970–3983.

Dezeure, R., Bühlmann, P., Meier, L., & Meinshausen, N. (2015). High-dimensional inference: Confidence
intervals, p-values and R-software hdi. Statistical Science, 30(4), 533–558.

Dobra, A., & Gehrke, J. (2002). SECRET: A scalable linear regression tree algorithm. In Proceedings of the
8th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 481–487).

Dua, D., & Graff, C. (2017). UCI machine learning repository. http://​archi​ve.​ics.​uci.​edu/​ml
Fernández-Delgado, M., Sirsat, M. S., Cernadas, E., Alawadi, S., Barro, S., & Febrero-Bande, M.

(2019). An extensive experimental survey of regression methods. Neural Networks, 111, 11–34.
https://​doi.​org/​10.​1016/j.​neunet.​2018.​12.​010

Freund, R. M., Grigas, P., & Mazumder, R. (2017). A new perspective on boosting in linear regression
via subgradient optimization and relatives. The Annals of Statistics, 45(6), 2328–2364.

Friedman, J. H. (1979). A tree-structured approach to nonparametric multiple regression. In T. Gasser &
M. Rosenblatt (Eds.), Smoothing techniques for curve estimation (pp. 5–22). Springer.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67.
Golbayani, P., Florescu, I., & Chatterjee, R. (2020). A comparative study of forecasting corporate credit

ratings using neural networks, support vector machines, and decision trees. The North American
Journal of Economics and Finance, 54, 101251. https://​doi.​org/​10.​1016/j.​najef.​2020.​101251

Györfi, L., Kohler, M., Krzyzak, A., & Walk, H. (2002). A distribution-free theory of nonparametric
regression. Springer.

Hall, A. R., Osborn, D. R., & Sakkas, N. (2017). The asymptotic behaviour of the residual sum of
squares in models with multiple break points. Econometric Reviews, 36, 667–698.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: Data mining,
inference, and prediction. Springer.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Sta-
tistics, 6(2), 65–70.

Hornik, K., Buchta, C., & Zeileis, A. (2009). Open-source machine learning: R meets Weka. Computa-
tional Statistics, 24(2), 225–232.

Josse, J., & Husson, F. (2016). missMDA: A package for handling missing values in multivariate data
analysis. Journal of Statistical Software, 70(1), 1–31.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A
highly efficient gradient boosting decision tree. Advances in Neural Information Processing Sys-
tems, 30

Khaledian, Y., & Miller, B. A. (2020). Selecting appropriate machine learning methods for digital soil map-
ping. Applied Mathematical Modelling, 81, 401–418. https://​doi.​org/​10.​1016/j.​apm.​2019.​12.​016

Klusowski, J. M. (2021). Universal consistency of decision trees in high dimensions. arXiv preprint
arXiv:​2104.​13881

Loh, W.-Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statistica
Sinica, 12, 361–386.

Loh, W.-Y., Chen, C.-W., & Zheng, W. (2007). Extrapolation errors in linear model trees. ACM Transac-
tions on Knowledge Discovery from Data (TKDD), 1(2), 1–17.

Malerba, D., Esposito, F., Ceci, M., & Appice, A. (2004). Top-down induction of model trees with
regression and splitting nodes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(5), 612–625.

Maurer, A., & Pontil, M. (2009). Empirical Bernstein bounds and sample variance penalization. arXiv
preprint arXiv:​0907.​3740

Muthen, B. (1990). Moments of the censored and truncated bivariate normal distribution. British Jour-
nal of Mathematical and Statistical Psychology, 43(1), 131–143.

Patri, A., & Patnaik, Y. (2015). Random forest and stochastic gradient tree boosting based approach for
the prediction of airfoil self-noise. Procedia Computer Science, 46, 109–121.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learn-
ing Research, 12, 2825–2830.

https://doi.org/10.1016/j.energy.2020.119174
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.neunet.2018.12.010
https://doi.org/10.1016/j.najef.2020.101251
https://doi.org/10.1016/j.apm.2019.12.016
http://arxiv.org/abs/2104.13881
http://arxiv.org/abs/0907.3740

6610	 Machine Learning (2024) 113:6561–6610

1 3

Pham, Q. B., Kumar, M., Di Nunno, F., Elbeltagi, A., Granata, F., Islam, A. R. M. T., Talukdar, S., Nguyen,
X. C., Ahmed, A. N., & Anh, D. T. (2022). Groundwater level prediction using machine learning algo-
rithms in a drought-prone area. Neural Computing and Applications, 13, 10751–10773.

Quinlan, J. R. (1992). Learning with continuous classes. In 5th Australian joint conference on artificial
intelligence (Vol. 92, pp. 343–348). World Scientific.

Quinlan, J. R.: C4.5: Programs for machine learning. The Morgan Kaufmann Series in Machine Learn-
ing (1993)

Scornet, E., Biau, G., & Vert, J.-P. (2015). Consistency of random forests. The Annals of Statistics,
43(4), 1716–1741.

Shaikhina, T., Lowe, D., Daga, S., Briggs, D., Higgins, R., & Khovanova, N. (2019). Decision tree and
random forest models for outcome prediction in antibody incompatible kidney transplantation. Bio-
medical Signal Processing and Control, 52, 456–462. https://​doi.​org/​10.​1016/j.​bspc.​2017.​01.​012

Shamshirband, S., Hashemi, S., Salimi, H., Samadianfard, S., Asadi, E., Shadkani, S., Kargar, K., Mosavi,
A., Nabipour, N., & Chau, K.-W. (2020). Predicting standardized streamflow index for hydrological
drought using machine learning models. Engineering Applications of Computational Fluid Mechanics,
14(1), 339–350.

Shi, Y., Li, J., & Li, Z. (2019). Gradient boosting with piece-wise linear regression trees. In Proceedings
of the 28th international joint conference on artificial intelligence. IJCAI’19 (pp. 3432–3438). AAAI
Press.

Tariq, A., Yan, J., Gagnon, A. S., Khan, M. R., & Mumtaz, F. (2023). Mapping of cropland, cropping pat-
terns and crop types by combining optical remote sensing images with decision tree classifier and ran-
dom forest. Geo-spatial Information Science, 26(3), 302–320. https://​doi.​org/​10.​1080/​10095​020.​2022.​
21002​87

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B, 58(1), 267–288.

Tropp, J. A. (2015). An introduction to matrix concentration inequalities. Foundations and Trends in
Machine Learning, 8(1–2), 1–230.

Vogel, D.S., Asparouhov, O., & Scheffer, T. (2007). Scalable look-ahead linear regression trees. In Proceed-
ings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining (pp.
757–764).

Yeo, I.-K., & Johnson, R. A. (2000). A new family of power transformations to improve normality or sym-
metry. Biometrika, 87(4), 954–959.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1016/j.bspc.2017.01.012
https://doi.org/10.1080/10095020.2022.2100287
https://doi.org/10.1080/10095020.2022.2100287

	Fast linear model trees by PILOT
	Abstract
	1 Introduction
	2 Methodology
	2.1 Main structure of PILOT
	2.2 Models used in the nodes
	2.3 Model selection rule
	2.4 Truncation of predictions
	2.5 Stopping rules versus pruning

	3 Theoretical results
	3.1 Universal consistency
	3.2 Convergence rates on linear models
	3.3 Time and space complexity

	4 Empirical evaluation
	4.1 Data sets and methods
	4.2 Results
	4.3 Results after transforming predictors
	4.4 Depth comparison between the tree-based methods
	4.5 Feature importance in PILOT
	4.6 Explainability of PILOT

	5 Conclusion
	6 Supplementary information
	Appendix 1: Preliminary theoretical results
	Notation
	Representation of the gain and residuals

	Appendix 2: Proof of the universal consistency of PILOT
	A lower bound for
	Proof of Proposition 2
	Proof of Theorem 3
	Proof of Theorem 1

	Appendix 3: Convergence rate for linear model data
	Preliminaries and Ideas
	A probabilistic lower bound for
	Proof of Theorem 4
	Proof of Theorem 5

	References

