
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-024-06584-1

Autoreplicative random forests with applications to missing
value imputation

Ekaterina Antonenko1,2,3,4 · Ander Carreño5 · Jesse Read1

Received: 6 December 2023 / Revised: 4 June 2024 / Accepted: 12 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2024

Abstract
Missing values are a common problem in data science and machine learning. Removing
instances with missing values is a straightforward workaround, but this can significantly
hinder subsequent data analysis, particularly when features outnumber instances. There
are a variety of methodologies proposed in the literature for imputing missing values.
Denoising Autoencoders, for example, have been leveraged efficiently for imputation.
However, neural network approaches have been relatively less effective on smaller datasets.
In this work, we propose Autoreplicative Random Forests (ARF) as a multi-output learning
approach, which we introduce in the context of a framework that may impute via either
an iterative or procedural process. Experiments on several low- and high-dimensional
datasets show that ARF is computationally efficient and exhibits better imputation
performance than its competitors, including neural network approaches. In order to provide
statistical analysis and mathematical background to the proposed missing value imputation
framework, we also propose probabilistic ARFs, where the confidence values are provided
over different imputation hypotheses, therefore maximizing the utility of such a framework
in a machine-learning pipeline targeting predictive performance.

Keywords Multi-label classification · Multi-output modeling · Missing value imputation ·
Probabilistic inference

Editor: Myra Spiliopoulou.

 * Ekaterina Antonenko
 ekaterina.antonenko@minesparis.psl.eu

1 LIX, Ecole Polytechnique, IP Paris, 91120 Palaiseau, France
2 Mines Paris, CBIO-Centre for Computational Biology, PSL Research University, 75006 Paris,

France
3 Institut Curie, PSL Research University, 75005 Paris, France
4 INSERM, U900, 75005 Paris, France
5 Quant AI Lab, 28043 Madrid, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06584-1&domain=pdf

 Machine Learning

1 Introduction

Missing values are a common problem and an important issue in the domain of data science
and machine learning. Most off-the-shelf statistical and machine learning methods cannot
learn from data containing missing values, and so prior to analysis or learning, either all
instances with missing values must be removed or missing value imputation (MVI) must be
performed. When many values are missing, the first approach of considering only complete
instances (no missing values) can lead to a significant loss of information or even an empty
dataset, and thus MVI becomes important.

Indeed, missing values can occur in many or most training samples, especially when
there are sufficiently more features (p) than samples (N), i.e. when p ≫ N . Examples
of this scenario include medical and bioinformatics arrays, classification problems in
astronomy, tool development for finance data, and weather prediction (Johnstone and
Titterington 2009).

Missing value patterns are traditionally classified into three types (Santos et al. 2019).
Where values are Missing Completely at Random (MCAR), the presence or absence
of missing values does not depend on observed or unobserved data. In the Missing at
Random (MAR) case, the missingness is dependent on observed variables but not on the
missing values themselves; and values Missing Not at Random (MNAR) are missing with
probability dependent on the values that are missing. Like the methods we will refer to, we
will assume that data follows the MCAR pattern.

In this paper we propose a novel framework specifically distinguishing between
two types of approaches, which we call the 1) procedural approach, where each value
is imputed only once, versus 2) iterative approach in which values are successively
re-imputed until convergence. We first propose a unifying framework for MVI within
which to set these two strategies.

Within this framework, we propose a novel MVI method, Autoreplicative Random
Forests, that does not require such a vast number of instances to obtain accurate results
and also leverages from the statistical dependence information of the surrounding features
to predict the target missing values. The proposed approach can be carried out in either
a procedural or iterative fashion. To the best of our knowledge, using multi-label models
in such an autoreplicative fashion without explicit encoding has not been studied in the
literature.

We empirically demonstrate the advantages of this method in terms of marginal
accuracy, joint accuracy, and likelihood. Furthermore, we show the computational
efficiency of this method when dealing with a small number of instances.

We also notice that many MVI methods do not explicitly consider the underlying
distribution, in particular the joint distribution. That is to say, there is little work that
explicitly considers joint imputation. Rather, existing approaches simply do MVI in
the view that each imputation will be treated independently (of other imputations) and
identically (to existing/non-imputed values). Furthermore, they do not explicitly model
the associated uncertainty of such imputation. To approach this task, we further propose
in our general framework a probabilistic imputation method, distributional iterative
Autoreplicative Random Forest (ditARF), that takes uncertainty into account during MVI
iterations and provides a corresponding estimate of uncertainty (or, inversely speaking,
confidence) associated with final imputations, both value-wise (marginal) and instance-
wise (jointly).

Machine Learning

We consider Autoreplicative Random Forests for MVI as a multi-label predictive method,
which allows us not only to exploit target interdependencies but also to sufficiently alleviate
the time complexity when compared to leave-one-out schemes such as MICE. As we show in
the empirical evaluation part, itARF consistently outperforms its iterative competitors in terms
of computation time though maintains high imputation quality.

In this work, we focus on categorical features as a multi-label multi-output classification
problem. The proposed framework does not fundamentally show any obstruction to work
with continuous features and we believe that it would be easily adapted to work with such
data. In the meantime, the categorical approach can be applied to continuous data via
feature discretization. Data discretization is known to be an effective approach to regression
in some contexts (Dougherty et al. 1995), particularly where interpretation is required.

To sum up, we contribute to the state-of-the-art with the following:

• We propose a general MVI framework, incorporating both procedural and iterative
imputation strategies;

• In this framework, we identify weaknesses of existing methods and propose
Autoreplicative Random Forests (ARF), represented by a variant in both procedural
(pARF) and iterative (itARF) strategies;

• We propose distributional iterative ARF (ditARF), a probabilistic variant that provides
confidence over imputation hypotheses, both under the assumptions of marginal
(individual) and joint (combinatorial) imputations;

• We demonstrate the effectiveness of our proposed methods when compared to a range
of competing methods on both standard-dimensional and high-dimensional (p ≫ N)
data.

The rest of the paper is organized as follows. Together with summarizing the background
and related work, we present an imputing framework unifying different methods in Sect. 2.
We expand this framework with a group of new methods, pARF, itARF, and ditARF, in
Sect. 3. The results and their discussion as well as complexity analysis are described in
Sect. 4. In Sect. 5, we draw conclusions and describe future work.

2 A general framework for missing value imputation

In this section, we describe a general framework unifying different approaches for MVI.
First, in Sect. 2.1, we formalize the problem and set out our notation. In Sect. 2.2 we

classify the existing strategies as procedural and iterative; thus laying all the foundation in
which to consider related work, which we do in detail in Sect. 2.3; and then we propose our
novel methodology – in Sect. 3.

2.1 Features, missing and imputed values

We define a dataset D = {X ∪ X̃} , consisting of N rows (instances) and p columns
(features), with observed and missing values denoted as X and X̃ , respectively. For example
(N = 5 , p = 3),

 Machine Learning

where xi,j stands for an existing value in the dataset, and x̃i,j implies that such a value is not
yet known/realized (i.e. it is missing).

We will further denote ẋ[t]
i,j

 for the imputation of missing values on the iteration t. Besides, xi
corresponds to the i-th instance of the dataset D and ẋ[t]

i
 is the i-th instance after imputation t.

A model h (e.g. Autoencoder, Random Forest, ...) is parametrized by � , and
pt(ẋ

[t]

i
∣ ẋ

[t−1]

i
,�) is the probability that random vector x̃i takes value ẋ[t]

i
 at iteration t.

Formally, each of the missing value types can be formalized as follows. Let D = {X ∪ X̃}
be a dataset, where X and X̃ represent observed and missing data, respectively, and Xi,j is the
observed value of the observation i for the variable j.

Let R represent the indicator matrix where Ri,j = 1 if Xi,j is observed and Ri,j = 0 if Xi,j is
missing.

Further, let P(Ri,j = 1) be read as the probability that the j-th feature of the i-th row be
missing. We consider the MCAR (Missing Completely At Random) framework, where this
probability P is a Bernoulli distribution of unknown parameter � : Ri,j ∼ P

�
(⋅) ; unknown but

assumed to be independent of all other missingness. On the other hand, MAR (Missing At
Random) is the case where Ri,j ∼ P

�
(⋅ ∣ xi) (i.e., missingness depends on other observed

features). Finally, the MNAR (Missing Not At Random) scenario is when Ri,j ∼ P
�
(⋅ ∣ x̃i) , i.e.

depends on the missing values themselves.
The aforementioned scenarios can be frequently encountered in real-world situations. For

instance, MCAR is commonly found in biological data, and in particular, Single Nucleotide
Polymorphisms (SNP) data used in experiments in this paper. Often, some of the numerous
features obtained from the genome are not valid due to a failure of the tests, the machines
that carry on the analyses, or the mistake of the practitioner. These faults can not be directly
associated with any specific cause and they are considered random. At the same time, if the
source can be recognized, for instance, because there is a faulty machine, the MNAR scenario
may be found, e.g. if a specific machine is prone to output samples as positive, rather than
negative due to faulty behavior. Finally, the MAR can be described as when the machine is not
able to analyze a specific type of individual. Hence, the dataset would result in the missingness
of an entire observation due to its nature.

2.2 Missing value imputation: procedural vs iterative

In this work, we particularly distinguish between the ways how the missing values can be
imputed, i.e. procedurally or iteratively. Procedural methods impute values only once, based
on the observed values. Iterative methods first impute values randomly and then update these
imputations until some convergence criterion is met. We note, that a method belonging to one
of these families, might be easily adaptable to another one.

A general schema for the procedural methods is given in Algorithm 1. The following exam-
ple below illustrates one-shot row-wise procedural imputation (blue represents training
samples):

D =

⎡
⎢⎢⎢⎢⎣

x̃1,1 x̃1,2 x1,3
x2,1 x̃2,2 x2,3
x̃3,1 x3,2 x3,3
x4,1 x4,2 x4,3
x5,1 x5,2 x5,3

⎤
⎥⎥⎥⎥⎦

whereX̃ = {x̃1,1, x̃1,2, x̃2,2, x̃3,1},

Machine Learning

Algorithm 1 General framework for procedural imputation

Algorithm 2 General framework for iterative imputation

Algorithm 2 summarizes the general schema for iterative imputation and the following
example illustrates an approach (all samples are used for training):

and thus so for t + 1, t + 2,… until some convergence is established.

2.3 Missing value imputation: related work

We will now review existing work from the literature on MVI, roughly categorized into the
above-mentioned approaches, procedural and iterative.

⎡
⎢⎢⎢⎢⎣

x̃1,1 x̃1,2 x1,3

x2,1 x̃2,2 x2,3

x̃3,1 x3,2 x3,3

x4,1 x4,2 x4,3

x5,1 x5,2 x5,3

⎤
⎥⎥⎥⎥⎦
⇒

⎡
⎢⎢⎢⎢⎢⎣

ẋ
[1]

1,1
ẋ
[1]

1,2
x1,3

x2,1 ẋ
[1]

2,2
x2,3

ẋ
[1]

3,1
x3,2 x3,3

x4,1 x4,2 x4,3

x5,1 x5,2 x5,3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x̃1,1 x̃1,2 x1,3
x2,1 x̃2,2 x2,3
x̃3,1 x3,2 x3,3
x4,1 x4,2 x4,3
x5,1 x5,2 x5,3

⎤⎥⎥⎥⎥⎦
⇒

⎡
⎢⎢⎢⎢⎢⎣

ẋ
[0]

1,1
ẋ
[0]

1,2
x1,3

x2,1 ẋ
[0]

2,2
x2,3

ẋ
[0]

3,1
x3,2 x3,3

x4,1 x4,2 x4,3
x5,1 x5,2 x5,3

⎤
⎥⎥⎥⎥⎥⎦

⇒ … ⇒

⎡
⎢⎢⎢⎢⎢⎣

ẋ
[t]

1,1
ẋ
[t]

1,2
x1,3

x2,1 ẋ
[t]

2,2
x2,3

ẋ
[t]

3,1
x3,2 x3,3

x4,1 x4,2 x4,3
x5,1 x5,2 x5,3

⎤
⎥⎥⎥⎥⎥⎦

⇒ …

 Machine Learning

2.3.1 Basic statistical imputation

The procedural methods range from rather simple ones such as replacement with the
column-wise mean, mode, or median statistics (Little and Rubin 2019) to techniques
such as k-Nearest Neighbours (kNN) (Schwender 2012) and Cascade Imputation
(CIM) (Montiel et al. 2018), leveraging machine learning methods. While the kNN method
processes the data row-wise, i.e. extracting information from the k instances that are most
similar to the one whose missing values need to be replaced, CIM first rearranges data, so
that missing values may be imputed block by block.

2.3.2 Denoising autoencoders (DAE)

Using Denoising Autoencoders (DAE) for MVI (Vincent et al. 2008) can be considered a
state-of-the-art; wherein missing values are treated as ‘noise’. They may be trained either
procedurally on complete data (ignoring missing values) or iteratively, with missing values
randomly imputed first (i.e., as noisy values), and then iteratively re-trained on updated
re-imputed data until convergence, as in, e.g., (Seo et al. 2022; Wright 2015; McCoy
et al. 2018). Principal Component Analysis (PCA), which indeed can be seen as a special
(linear) autoencoder, has been used in a similar way (Dray and Josse 2015); often done via
singular value decomposition (SVD), e.g., (Troyanskaya et al. 2001).

Classical Autoencoders implemented within neural networks architecture consist of
encoder and decoder structures as illustrated in Fig. 1a. A classical Autoencoder learns
to embed the input data into a hidden representation aiming at a low reconstruction error
when decoded. Denoising Autoencoders try to eliminate noise from the data by first manu-
ally corrupting the input data, embedding such input into a hidden representation, and then
performing reconstruction (see Fig. 1b). The reconstruction error is computed against the
clean input data and hence, the Autoencoder learns to clean noisy data or, in other words,
impute missing values. While the inner structure of hidden layers of these approaches can
be very different, the typical common property is having at least one narrow middle layer
H (so-called bottleneck) to restrict the model to learning only important information from
the data.

2.3.3 Multiple imputation with chained equations (MICE)

Another well-known approach for MVI is Multiple Imputation with Chained Equations
(MICE) (Buuren and Groothuis-Oudshoorn 2011). MICE, like iterative DAE approaches,
also initially imputes the missing values randomly, but proceeds in a column-wise leave-
one-out scheme using an off-the-shelf method (base learner). The procedure is further
independently repeated with the goal to obtain multiple candidate values for imputation,
i.e., an ensemble-like approach. The well-known MissForest imputer (Stekhoven and
Buhlmann 2011) can be seen as a special case of MICE with Random Forest chosen as a
base learner.

We need to mention also the idea of applying Gaussian Processes for MVI proposed in
Jafrasteh et al. (2023). Gaussian Processes are non-parametric models and output predictive
distributions for target variables, which can be also considered as uncertainty estimates.
Sparse Gaussian Processes have been applied for MVI leveraging the idea of the MICE
method where the features are processed one by one in a cascaded fashion. While obtaining
promising results, the proposed method has a much higher computational cost both for

Machine Learning

training and prediction than other baselines including already computationally expensive
MICE. Also, in Jafrasteh et al. (2023), Gaussian Processes are applied for continuous
variables and assume a normal distribution for each, which may not always be the case.

Fig. 1 a Classic Autoencoder embeds the input data into a hidden representation H, often referred to as bot-
tleneck, b Denoising Autoencoder, where input is corrupted with noise or missing values as X ∪ X̃ before
encoding, and c Autoreplicator, or an Autoencoder without an explicit encoding, where we propose to
bypass hidden representation and directly reconstruct input from its corruption X ∪ X̃ . In all cases, the goal
is to minimize the difference between input X and its reconstruction Z

 Machine Learning

2.3.4 Expectation‑maximization and coordinate‑ascent methods

The approach of iterative imputation takes the general schema of coordinate ascent,
with special cases including expectation maximization (EM) and classification
maximization (CM, i.e. ‘hard EM’) (MacKay 2003; Dempster et al. 1977) where
the expectation step E is replaced by a hard classification step (an actual value is
imputed), and the maximization step M refers to training. Inspired by this idea, many
MVI algorithms start from a random or data-driven (mode, mean, median, ...) initial
imputation so that any classifier can be trained on the entire dataset. Next, the missing
values are predicted and the model is re-trained after each imputation. This process is
repeated until convergence is reached.

2.3.5 Other approaches

We would also like to mention the work (Van Wolputte and Blockeel 2020) which uses a
Random-Forest-based predictor to perform imputation in the prediction phase assuming
complete data in the training phase which corresponds to a different problem setting. While
we think that with some extra effort, one could adapt this method to the setup described
in our work and thus incorporate it into the framework, we leave this question for future
research.

2.4 Summary, and framework parameters

Most of all iterative methods listed above (DAE, SVD, PCA) may be considered multi-
output predicting models, as they impute all missing values simultaneously. Oppositely,
Multivariate Imputation by Chained Equations (MICE) is also iterative but single-output,

Table 1 Some example methods as specific parametrizations of a general framework. Imputation types CW
= column-wise, RW = row-wise, BW = block-wise. Strategies p = procedural, it = iterative. Method fami-
lies SO = single-output, MO = multi-output. Taking uncertainty into account SI = single(standard)-impu-
tation, MI = multiple imputation where ‘-’ indicates that it could be implemented, but we are not aware of
any reference doing so; with Ensemble (MICE) or via a predictive posterior Distribution (̃x ∼ p(⋅ | ẋ)) being
options

Method Strategy SO/MO Type MI References

Mode p SO CW No Little and Rubin (2019)
kNN p MO RW No Schwender (2012)
MICE it SO CW Ens Buuren and Groothuis-Oudshoorn (2011)
CIM p SO BW – Montiel et al. (2018)
DAE p MO RW – Vincent et al. (2008)
DAE it MO RW – Seo et al. (2022)
PCA/SVD it MO RW – Dray and Josse (2015); Troyanskaya et al.

(2001)
ARF p MO RW – This work
ARF it MO RW – This work
ditARF it MO RW Dist This work

Machine Learning

as it processes features consequently in a leave-one-out manner. The MICE method is very
flexible with regard to the base model, i.e. any per-feature estimator is possible. The MICE
method is commonly used for different types of data and, in particular, clinical data, and
can be considered state-of-the-art for MVI, but we have not found substantial evidence of
using the MICE method for high-dimensional datasets, as the computational cost drasti-
cally increases in this setting. The CIM method mentioned above may be considered a pro-
cedural version of MICE. Table 1 summarizes the characteristics of the discussed methods.

Obviously, multiple variations of the methodologies shown above can be discussed.
Although we believe that these are out of the scope of this work, we think that is worth
sharing some insights. In procedural imputation, the main characteristic is that the
imputation is only done once for each missing value. Following this idea, we could
introduce the row-wise imputation in which we increasingly impute the missing values
through time and we relearn the imputation model after each procedure. By using this
procedure, we would add more true values to the training dataset after every imputation,
but, at the same time, we might supply incorrect imputations to the model as ground truth.
Similar to the previous approach, there is the column-wise imputation that matches the
MICE imputation strategy.

2.4.1 Estimator

For the MICE method, any single-output estimator can be used. As a default parameter,
we use Random Forests (of 20 trees each) as they proved to be a robust and stable method,
though any other classifier may be provided manually to the framework. Among multi-
output methods, we propose including Autoencoders and PCA as a standard choice and
Autoreplicative Random Forests as a novelty (see Sect. 3).

2.4.2 Initial imputation

For iterative methods, an initial pre-starting imputation is needed. There are several
possibilities for that: imputing all missing values with a constant, imputing with modes of
the values for each feature, or imputing randomly with a uniform or simulated distribution
over the observed values. We use random imputation with uniform distribution over the
observed values as a default value.

2.4.3 Number of iterations

For iterative methods, the re-predictive process stops when the convergence is reached.
To measure convergence, we calculate the fraction of the number of labels changed after
the last imputation and the number of all missing labels. If this fraction is lower than a
provided parameter � , set as default to 0.005, we stop and recover the last imputed dataset
as the final estimation. However, to keep the overall complexity feasible and to avoid
infinite loops, we provide a maximum number of iterations parameter that we set to 10 as
default.

 Machine Learning

3 Autoreplicative random forests

Following the description of the general imputation framework, we first introduce a
new imputation approach, Autoreplicative Random Forests. Secondly, we propose its
distributional extension.

3.1 Autoreplicative random forests (ARF)

Although apparently largely overlooked in the literature, we have noticed that any other
model designed for multi-label prediction can be used instead of a neural network as
an Autoreplicator for data denoising. One such example is a combination of Decision
Trees (İrsoy and Alpaydin 2016) where the first Decision Tree is used as an encoder, and
the second one is used in a vice versa manner as a decoder. Meanwhile, this idea can be
simplified even more: in our approach, we will use a multi-output Random Forest as an
estimator.

In contrast to Denoising Autoencoders, we use Random Forests as Autoreplicators
without an explicit encoding/representation, as shown in Fig. 1c, implicitly as an off-the-
shelf multi-label model. Not having an explicit latent representation in matrix form does
not concern us, as for MVI we aim to directly reconstruct the input from its corruption
without modeling hidden structure.

Random Forests have been selected since they naturally are multi-label and multi-class
classifiers and they proved to be competitive and robust classifiers in several works (Wood
et al. 2023). Such an approach can facilitate the optimization process for the model on
data containing a small number of samples, and at the same time, tree-based models are
both efficient and simple to understand and interpret. To the best of our knowledge, this
simple but efficient idea has not been well studied in the literature. We argue, that however
it deserves attention and can be further investigated. Applying this idea, we suggest further
Autoreplicative Random Forests.

It is worth noting, that while we choose Random Forests as a well-known and stable
multi-label method with good performance, this idea may be developed by using other
multi-label methods, such as e.g. Classifier Chains (Read et al. 2011), Multilabel k Nearest
Neighbours (Zhang and Zhou 2007), Random k-Labelsets (Tsoumakas and Vlahavas
2007), Conditional Dependency Networks (Guo and Gu 2011). However, a survey of base
learners is not the main objective of this paper.

In the procedural approach, further referred as procedural Autoreplicative Random
Forest (pARF), we first select complete instances X of the entire dataset D = {X ∪ X̃} ,
corrupt them manually to X̃′ with induced missing values (uniformly distributed, following
the missing value ratio in the original dataset), and train an Autoreplicative Random
Forest to reproduce Z ∼ X , i.e. fill missing values in X̃′ by minimizing loss function
between Z and X. In other words, a multi-label Random Forest is trained to predict p
outputs corresponding to X from p features corresponding to corrupted X̃′ . Then the fitted
model is used to impute actual missing values in the instances X̃ . In the usage of iterative
Autoreplicative Random Forests (itARF), values should be first imputed randomly, then a
Random Forest is re-trained in an iterative manner, on iteration t receiving D = {X ∪ X̃} as
an input, learning to reproduce Z ∼ Ẋ[t−1] as output and storing a prediction Ẋ[t] as a new
imputation.

Machine Learning

3.2 Distributional iterative ARF (ditARF)

A known issue of using MVI in a machine-learning pipeline is the imputation of imperfect
values. Imputation is inherently imperfect, but furthermore, masks the information that
values were imputed as well as any associated uncertainty about such values.

To address this issue, methods such as MICE propose using the technique of ‘multiple
imputation’, that is repeating the imputation several times independently (essentially,
bootstrapping) in order to obtain multiple plausible values and run further analysis on these
datasets.

Here we propose a distributional variant of ARF (ditARF) which provides a probability
distribution associated with imputations, i.e., encapsulating and expressing the uncertainty
associated with any imputation.

And in particular, we take into account a novel consideration not embraced by other
methods; namely a model of the joint distribution for a given instance with missing values.
Whereas imputation from a marginal distribution (j-th feature) can be expressed as

the imputation (full row/vector) from a joint distribution is expressed as

There is an issue with a naive implementation of multi-output Random Forests as
formally this model produces an empirical distribution that can be interpreted (with some
generalization) as

which assumes that each imputed feature is conditionally independent of the others
for a given instance. This may not be the case in real-world data, and ignoring feature

(1)ẋj = argmax
x̃j

p(x̃j ∣ x),

(2)ẋ = argmax
x̃

p(x̃ ∣ x).

(3)p(x̃ | x) =
p∏
j=1

p(x̃j | x)

Fig. 2 Illustrating the difference between the joint and marginal distributions of two binary missing-value
variables x̃ = {x̃1, x̃2} of an instance. The marginal distribution (the same distribution covers both variables,
having been marginalized from the joint) indicates that all combinations of values 0 and 1 are equally likely
b, even though only two such combinations would occur a. A multi-output Random Forest may impute
values from which such impossible combinations appear c. This indicates the potential importance of joint
modeling, which would produce ẋ ∈ {00, 11} according to Eq. (2)

 Machine Learning

dependencies can hinder the accuracy of imputation. Indeed, in certain application domains
such as medicine, it may be a critical mistake to make this assumption (Gerych et al. 2021).

Consider the illustration of Fig. 2, where the joint distribution p(x̃) only gives non-
zero probability to two values (x1x2 = 00 and x1x2 = 11), yet the marginal probability
(as would be estimated by Random Forest under Eq. (3)) indicates the equal probability
for all combinations (00, 01, 10, 11). This means that even though the dataset does not
contain values for two of the possible combinations, a Random Forest would produce
them as predictions. As an example, a Random Forest predicting gender and type of
cancer may assign a male gender and the presence of ovarian cancer, which do not
co-exist in reality.

The proposed ditARF variant is similar to itARF (introduced in Subsection 3.1) and
learns to predict missing values iteratively. However, at every iteration, the instances are
weighted by the output joint probability.

The Label Powerset (LP) method (Tsoumakas and Katakis 2007), for example,
transforms each combination of output values into a unique class and thus naturally
models the labels jointly. However, such an approach could not be applied in the
iterative setting as initial imputation creates value combinations that may not exist in
the data while closing the opportunity to learn other possible combinations in future
iterations.

We can imagine adapting, for example, a less strict and more generalized version
of the LP approach, the Random k-Labelsets method (Tsoumakas and Vlahavas 2007),
to tackle this issue, as well as inducing some randomness at each iteration. However,
these possible solutions are out of the scope of this work and we leave them for future
research.

The proposed solution is closely related to other well-known iterative methods such
as the Expectation Maximization (EM) algorithm (Dempster et al. 1977) and to more
general coordinate-ascent methods (Wright 2015). Such methods find the maximum
likelihood parameters for the corresponding model based on data. In the case of the EM,
it can be used to fit a mixture of Gaussian distribution models while the coordinate-
ascent method just performs a linear optimization in the log-likelihood function by
iteratively learning and predicting data. DitARF also maximizes the log-likelihood after
each iteration, which is computed as

Similar to the EM algorithm, ditARF considers a set of weights w , one per instance,

These weights are used when training a Random Forest classifier as weights for each
instance, thus giving higher weights for instances where the model is more confident about
the imputation. Following the strategy of the iterative version of ARFs, a Random Forest is
iteratively re-trained until it reaches convergence in terms of likelihood. When this occurs,
an estimate of the joint posterior distribution x̃[t] ∼ P is obtained and hence, we provide
p(x̃i,j | xi) as a measure of uncertainty along with the imputed missing value ẋi,j.

logL(� |D) =

N∑
i=1

p
max
j=1

log(p(x̃i,j | xi)).

wi =
∏
j

max p(x̃i,j | xi).

Machine Learning

4 Experimental study

In order to compare the performance of the proposed solution, we perform several
experiments on real-world datasets obtained from the UCI repository (Dua and Graff
2017) as well as on three high-dimensional (p > N) Single Nucleotide Polymorphism
(SNP) datasets which we have truncated to 1000 features in order to bound the memory
consumption. Most of these datasets contain categorical multinomial variables, while
three of them are described by continuous variables which we uniformly discretize to
b bins (Yeast, b = 3 ; Metro, b = 3 ; Energy, b = 2). We include Metro and Energy to
demonstrate the methods’ performance in a setting with a big number of samples. The
datasets used in the experiments are summarized in Table 2. So as to properly simulate
missing values in real-world situations, we followed the MCAR strategy by corrupting a
percentage of the data values. These percentages range from 1% to 30% . We refer to this
parameter as the Missing Value Ratio (MVR) throughout the text.

For the purpose of evaluating the proposed solution, we consider marginal accuracy,
which is also known as Hamming Score, among the imputed values; and joint accuracy
also referred to as Exact Match in the literature. Formally, marginal accuracy can be
defined as

where Nm and pi
m
 refer to the number of instances and the number of features per instance

with missing values, respectively. Similarly, joint accuracy can be defined as

(4)1

Nm

1

pi
m

Nm∑
i=1

pi
m∑

j=1

1(ẋi,j, xi,j),

Table 2 Datasets used in
experiments, p features, N
samples. Discretized continuous
datasets are marked with d .
High-dimensional datasets
(p > N) are marked with ∗ .
Datasets with a large number of
samples are marked with ⧫

Name p N References

Mushroom 22 8124 Dua and Graff (2017)
Soybean 35 307 Dua and Graff (2017)
Primary Tumor 17 339 Dua and Graff (2017)
Lymphography 18 148 Dua and Graff (2017)
Congressional

Voting Records
16 435 Dua and Graff (2017)

Financial Survey 212 6394 CFPB (2017)
Nursery 8 12,960 Dua and Graff (2017)
Splice 60 3190 Dua and Graff (2017)
Land Use 50 632 Karimi (2023)
SNP Maize∗ 1000 247 Negro et al. (2019)
SNP Eucalyptus∗ 1000 970 Grattapaglia (2019)
SNP Wheat∗ 1000 388 Reif (2020)
Yeastd 8 1484 Dua and Graff (2017)

Metrod⧫ 17 1,516,948 Dua and Graff (2017)

Energyd⧫ 7 2,049,279 Dua and Graff (2017)

 Machine Learning

Finally, since MVI is usually a preprocessing step for further classification tasks, we
compare the classification accuracy obtained with a Random Forest classifier trained on
full data, and on imputed data. The experiments have been run 5 times and the average of
the scores of all runs is used.

We compare our method against a variety of well-known approaches from the literature.
Autoencoder and PCA methods are implemented using the scikit-learn (Pedregosa et al.
2011) package. We tested the performance of both procedural and iterative Autoencoders
in three variants: with one hidden layer of 0.1p neurons, one hidden layer of 0.2p neurons,
or three hidden layers of 0.2p, 0.1p, and 0.2p neurons respectively, where p is the number
of features. The model with one hidden layer of 0.1p neurons has shown slightly better
performance, although the difference was not significant. The results of this model
are further presented. The PCA method was also realized as a neural network with one
hidden layer of 0.1p neurons but with an identity activation function. The kNN method
is presented with the number of neighbors k = 2 selected during inner validation where it
consistently outperformed other k values.

In order to select the best-performing parameters, we have internally run a grid search
over the parameters of Autoreplicative Random Forests. As a result, we opted to use 20
trees (base classifiers) per forest (no significant difference compared to other values), each
tree trained on all p provided features (better performance than with default

√
p parameter),

a minimal number of samples per split equal to 5. Criterion (gini/entropy) has not shown an
influence on the method’s performance. Other hyperparameters of the competitors are used
with default values shown in their original papers and implemented in the ScikitLearn
python library.

The main aim of this experimental study is to answer the following research questions:

(a) Analyze the imputation performance of the proposed solution and its competitors in
terms of marginal (entry-wise) and joint (row-wise) accuracy.

(b) Study the performance of the methods under the curse of dimensionality (when p > N).
(c) Evaluate the impact of the number of features (p) and the number of samples (N) for

each of the imputation methods w.r.t. the time taken to finish their imputation as well
as predictive performance.

(5)1

Nm

Nm∑
i=1

1(ẋi, xi).

Fig. 3 Convergence of the itARF method (accuracy vs number of iterations)

Machine Learning

4.1 Results and discussion

4.1.1 Imputation performance

First, we empirically evaluate the convergence of the proposed itARF method and demon-
strate the results for three datasets and different missing value ratios in Fig. 3. We observe
that in all cases accuracy monotonously increases and reaches its maximum after several
iterations. The number of iterations is shown to be small enough to maintain a feasible
computation time of itARF imputation.

Further, we evaluate three different initial imputation strategies for iterative methods,
namely imputing with a constant (0), with a mode of each feature, and with a randomly
selected value from the set of the observed ones for the corresponding feature. The results
illustrated in Fig. 4 suggest that imputing with a constant consistently provides the worst
imputation accuracy for all iterative methods, while imputing randomly and with modes
are competitive, and the best choice may depend on the dataset. In all further experiments,
a random initial imputation is used.

Then, we evaluate marginal and joint accuracies for the imputed missing values.
Table 3 summarizes the performance of all methods measured by the marginal accu-
racy, i.e. percentage of correctly imputed values out of the missing ones. Table 4 shows
joint accuracy, i.e. percentage of the instances where all values were imputed correctly.
MICE results are not shown for the datasets with a large number of features because of
excessive computation time. The ditARF method was not evaluated on the datasets with

Fig. 4 Comparison of initial imputation strategies for iterative methods on four datasets. The results are
averaged across 5 different missing value ratios and 5 independent runnings

 Machine Learning

Ta
bl

e
3

 M
ar

gi
na

l a
cc

ur
ac

y.
 T

he
 b

es
t a

cc
ur

ac
y

pe
r c

ol
um

n
is

 in
 b
ol
d.

 T
he

 s
ec

on
d

be
st

ac
cu

ra
cy

 is
 u

nd
er

lin
ed

. A
ll

re
su

lts
 a

re
 ro

un
de

d
to

 3
 d

p.
 F

or
 [i

t]e
ra

tiv
e

(in
cl

ud
es

 M
IC

E)

an
d

[p
]ro

ce
du

ra
l v

er
si

on
s o

f m
et

ho
ds

M
V

R
0.

01
0.

05
0.

1
0.

2
0.

3
0.

01
0.

05
0.

1
0.

2
0.

3
0.

01
0.

05
0.

1
0.

2
0.

3
M

us
hr

oo
m

So
yb

ea
n

Tu
m

or

C
om

pl
et

e
ca

se
s

80
.1

%
32

.3
%

10
.1

%
0.

7%
0.

04
%

69
.7

%
13

.7
%

1.
0%

0%
0%

83
.8

%
38

.9
%

15
.0

%
1.

2%
0%

M
IC

E
0.

64
9

0.
69

8
0.

73
0

0.
75
3

0.
76
7

0.
86
7

0.
87
3

0.
87
5

0.
83
8

0.
82
3

0.
77
5

0.
74
9

0.
77
8

0.
74
9

0.
72

5
di

tA
R

F
0.

74
8

0.
76
3

0.
74

7
0.

72
7

0.
69

9
0.

83
0

0.
84

5
0.

81
8

0.
76

8
0.

75
5

0.
63

9
0.

66
0

0.
67

9
0.

65
3

0.
65

8
itA

R
F

0.
74

1
0.

74
2

0.
74

6
0.

72
7

0.
68

4
0.

80
9

0.
84

4
0.

82
9

0.
77

6
0.

77
7

0.
60

4
0.

65
3

0.
66

5
0.

64
3

0.
64

5
pA

R
F

0.
76
7

0.
76
3

0.
76
4

0.
68

4
0.

51
4

0.
77

4
0.

78
0

0.
65

6
–

–
0.

57
2

0.
65

4
0.

70
5

0.
68

7
0.

69
8

itA
E

0.
60

5
0.

58
7

0.
59

5
0.

56
3

0.
56

6
0.

66
7

0.
71

8
0.

69
9

0.
68

2
0.

67
3

0.
70

2
0.

70
8

0.
74

2
0.

72
6

0.
72
7

pA
E

0.
57

4
0.

51
7

0.
50

0
0.

53
0

0.
52

5
0.

66
7

0.
72

5
0.

64
2

–
–

0.
70

2
0.

70
1

0.
74

3
0.

68
3

0.
60

6
itP

CA
0.

61
3

0.
61

1
0.

61
2

0.
60

7
0.

59
6

0.
71

0
0.

74
2

0.
72

1
0.

68
8

0.
69

2
0.

70
2

0.
71

2
0.

73
9

0.
72

7
0.
72
7

pP
CA

0.
60

9
0.

58
5

0.
57

1
0.

53
2

0.
49

0
0.

68
6

0.
72

9
0.

66
2

–
–

0.
70

2
0.

61
0

0.
71

7
0.

58
8

0.
52

2
kN

N
0.

64
2

0.
65

9
0.

67
8

0.
67

0
0.

56
9

0.
73

1
0.

77
4

0.
76

8
0.

72
9

0.
69

7
0.

52
6

0.
54

9
0.

59
4

0.
55

9
0.

50
7

Vo
te

s
Ly

m
ph

og
ra

ph
y

Fi
na

nc
ia

l S
ur

ve
y

C
om

pl
et

e
ca

se
s

85
.3

%
42

.2
%

18
.5

%
1.

3%
0%

81
.8

%
40

.5
%

14
.9

%
2.

7%
0%

11
.8

%
0%

0%
0%

0%

M
IC

E
0.
88
8

0.
77
4

0.
77
2

0.
75
8

0.
76
8

0.
56

2
0.
67
7

0.
62
1

0.
63
3

0.
64
3

–
–

–
–

–
di

tA
R

F
0.

71
2

0.
70

8
0.

69
7

0.
68

4
0.

70
3

0.
66

9
0.

55
6

0.
60

8
0.

59
0

0.
61

0
0.
68
7

0.
67
4

0.
67

0
0.

66
3

0.
65

5
itA

R
F

0.
76

5
0.

70
3

0.
69

6
0.

68
2

0.
68

9
0.

67
7

0.
54

6
0.

60
9

0.
58

3
0.

60
6

0.
67

6
0.

67
0

0.
67
3

0.
66
4

0.
65
6

pA
R

F
0.

65
3

0.
72

2
0.

72
0

0.
71

2
–

0.
70
8

0.
58

6
0.

61
0

0.
51

3
–

0.
66

8
–

–
–

–
itA

E
0.

61
2

0.
63

4
0.

59
1

0.
53

1
0.

55
3

0.
46

2
0.

48
0

0.
53

8
0.

46
1

0.
46

5
0.

62
2

0.
61

8
0.

61
6

0.
60

6
0.

58
9

pA
E

0.
59

4
0.

61
6

0.
53

7
0.

59
6

–
0.

46
2

0.
46

6
0.

55
3

0.
46

5
–

0.
51

8
–

–
–

–
itP

CA
0.

67
6

0.
63

4
0.

62
0

0.
60

3
0.

55
6

0.
43

1
0.

51
7

0.
53

5
0.

46
6

0.
46

2
0.

64
9

0.
64

7
0.

64
5

0.
63

6
0.

62
3

pP
CA

0.
62

9
0.

52
8

0.
53

7
0.

54
8

–
0.

44
6

0.
49

3
0.

55
0

0.
47

2
–

0.
62

5
–

–
–

–
kN

N
0.

82
4

0.
61

5
0.

66
7

0.
62

5
0.

64
1

0.
34

6
0.

40
6

0.
43

6
0.

42
5

0.
44

7
0.

49
0

0.
48

9
0.

49
1

0.
49

0
0.

48
7

Machine Learning

Ta
bl

e
3

 (c
on

tin
ue

d)

N
ur

se
ry

Sp
lic

e
La

nd
 U

se

C
om

pl
et

e
ca

se
s

92
.3

%
66

.4
%

43
.3

%
16

.8
%

5.
6%

53
.8

%
4.

0%
0.

1%
0%

0%
59

.7
%

8.
4%

0.
9%

0%
0%

M
IC

E
0.

02
1

0.
11

2
0.

19
6

0.
26

5
0.

29
6

0.
43
1

0.
43
8

0.
43
3

0.
41
5

0.
39
0

0.
39
4

0.
34
9

0.
36
9

0.
37
1

0.
35
9

di
tA

R
F

0.
29

9
0.

29
1

0.
29

7
0.

31
0

0.
31

4
0.

39
9

0.
37

3
0.

35
0

0.
32

1
0.

30
6

0.
33

8
0.

29
6

0.
30

2
0.

29
8

0.
30

0
itA

R
F

0.
29

7
0.

28
9

0.
29

5
0.

30
8

0.
31
8

0.
38

4
0.

37
9

0.
36

8
0.

34
1

0.
32

5
0.

31
6

0.
31

2
0.

30
1

0.
31

1
0.

29
5

pA
R

F
0.

29
8

0.
29

0
0.

29
5

0.
31

1
0.

31
4

0.
34

9
0.

28
7

0.
27

5
–

–
0.

32
2

0.
29

2
0.

25
5

–
–

itA
E

0.
31

2
0.

30
6

0.
30

6
0.

31
7

0.
31

7
0.

23
6

0.
24

3
0.

24
5

0.
24

3
0.

23
3

0.
17

3
0.

13
4

0.
12

2
0.

11
7

0.
11

8
pA

E
0.

30
5

0.
30

3
0.
30
8

0.
32
0

0.
31
8

0.
24

4
0.

24
3

0.
26

0
–

–
0.

17
4

0.
15

1
0.

16
3

–
–

itP
CA

0.
31

2
0.

30
6

0.
30

6
0.

31
8

0.
31

7
0.

27
4

0.
27

6
0.

27
8

0.
26

7
0.

26
0

0.
27

1
0.

21
3

0.
21

0
0.

19
2

0.
18

1
pP

CA
0.
31
3

0.
30
7

0.
30
8

0.
31

7
0.

31
7

0.
26

8
0.

24
3

0.
26

8
–

–
0.

21
8

0.
16

6
0.

17
6

–
–

kN
N

0.
18

1
0.

14
5

0.
18

2
0.

20
0

0.
21

1
0.

23
1

0.
23

7
0.

23
6

0.
22

6
0.

21
0

0.
15

5
0.

16
8

0.
16

9
0.

18
2

0.
17

3

SN
P

M
ai

ze
∗

SN
P

Eu
ca

ly
pt

us
∗

SN
P

W
he

at
∗

C
om

pl
et

e
ca

se
s

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

0%

M
IC

E
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

di
tA

R
F

0.
83

7
0.

81
9

0.
79

8
0.

75
5

0.
69

4
0.
93
6

0.
91

8
0.

90
8

0.
84

8
0.

78
2

0.
92

3
0.

93
1

0.
92

0
0.

90
4

0.
92

0
itA

R
F

0.
85
7

0.
84
6

0.
83
5

0.
82
5

0.
81
7

0.
93

5
0.
93
3

0.
92
9

0.
91
5

0.
90
1

0.
94
2

0.
94
0

0.
93
7

0.
93
3

0.
93
4

pA
R

F
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

itA
E

0.
72

4
0.

72
4

0.
71

7
0.

71
7

0.
71

5
0.

71
5

0.
72

3
0.

72
0

0.
71

5
0.

70
6

0.
93

1
0.

92
9

0.
93

1
0.

93
1

0.
93

1
pA

E
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

itP
CA

0.
72

5
0.

69
4

0.
67

2
0.

64
5

0.
62

4
0.

83
2

0.
85

0
0.

85
4

0.
84

9
0.

83
1

0.
89

5
0.

89
0

0.
88

3
0.

87
6

0.
85

6
pP

CA
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

kN
N

0.
75

8
0.

75
3

0.
74

9
0.

74
6

0.
73

6
0.

91
2

0.
91

2
0.

90
9

0.
90

3
0.

89
7

0.
91

4
0.

91
4

0.
91

3
0.

91
2

0.
91

1

 Machine Learning

Ta
bl

e
3

 (c
on

tin
ue

d)

Ye
as

td
M

et
ro

d
⧫

En
er

gy
d
⧫

C
om

pl
et

e
ca

se
s

92
.4

%
66

.0
%

43
.6

%
16

.8
%

5.
8%

86
.0

%
46

.3
%

20
.6

%
3.

5%
0.

5%
93

.2
%

69
.8

%
47

.8
%

20
.9

%
8.

2%

M
IC

E
0.
76
1

0.
78

8
0.
79
5

0.
78

5
0.

77
0

0.
95
9

0.
95
9

0.
95
8

0.
95
6

0.
95
3

0.
92
4

0.
92
4

0.
92
4

0.
92
3

0.
92
3

di
tA

R
F

0.
69

0
0.

79
1

0.
77

6
0.
78
8

0.
78
3

–
–

–
–

–
–

–
–

–
–

itA
R

F
0.

69
7

0.
79

3
0.

78
1

0.
78

7
0.
78
3

0.
87

1
0.

87
1

0.
87

2
0.

87
2

0.
87

1
0.

91
9

0.
91

9
0.

92
0

0.
92

0
0.

92
0

pA
R

F
0.

64
4

0.
70

8
0.

70
8

0.
72

5
0.

71
0

0.
95

8
0.

95
7

0.
95

6
0.

94
8

0.
93

8
0.

92
3

0.
92

3
0.

92
3

0.
92
3

0.
92

2
itA

E
0.

75
4

0.
79
4

0.
78

8
0.

78
6

0.
78
3

0.
93

4
0.

93
1

0.
93

2
0.

93
0

0.
92

2
0.

92
0

0.
92

1
0.

92
1

0.
92

0
0.

92
1

pA
E

0.
75

4
0.
79
4

0.
78

8
0.

78
6

0.
78
3

0.
94

9
0.

94
9

0.
94

7
0.

94
9

0.
94

6
0.

92
3

0.
92

3
0.

92
3

0.
92
3

0.
92
3

itP
CA

0.
75

1
0.

78
3

0.
77

9
0.

78
1

0.
77

9
0.

94
2

0.
93

5
0.

92
7

0.
92

9
0.

92
1

0.
92

0
0.

92
0

0.
92

0
0.

92
0

0.
92

0
pP

CA
0.

74
7

0.
78

1
0.

78
5

0.
78

7
0.

73
6

0.
93

3
0.

94
6

0.
94

5
0.

94
5

0.
94

1
0.

92
3

0.
92

3
0.

92
3

0.
92
3

0.
92

2
kN

N
0.

57
6

0.
60

4
0.

60
7

0.
60

4
0.

57
4

–
–

–
–

–
–

–
–

–
–

Machine Learning

Ta
bl

e
4

 Jo
in

t a
cc

ur
ac

y.
 T

he
 b

es
t a

cc
ur

ac
y

pe
r c

ol
um

n
is

 in
 b
ol
d.

 T
he

 s
ec

on
d

be
st

ac
cu

ra
cy

 is
 u

nd
er

lin
ed

. A
ll

re
su

lts
 a

re
 ro

un
de

d
to

 3
 d

p.
 F

or
 [i

t]e
ra

tiv
e

(in
cl

ud
es

 M
IC

E)
 a

nd

[p
]ro

ce
du

ra
l v

er
si

on
s o

f m
et

ho
ds

M
V

R
0.

01
0.

05
0.

1
0.

2
0.

3
0.

01
0.

05
0.

1
0.

2
0.

3
0.

01
0.

05
0.

1
0.

2
0.

3
M

us
hr

oo
m

So
yb

ea
n

Tu
m

or

C
om

pl
et

e
ca

se
s

80
.1

%
32

.3
%

10
.1

%
0.

7%
0.

04
%

69
.7

%
13

.7
%

1.
0%

0%
0%

83
.8

%
38

.9
%

15
.0

%
1.

2%
0%

M
IC

E
0.

62
2

0.
56

3
0.

48
0

0.
30

7
0.
19
1

0.
84
5

0.
76
5

0.
62
2

0.
33
9

0.
17
7

0.
76
3

0.
66
3

0.
60
6

0.
43
6

0.
26
4

di
tA

R
F

.7
31

0
0.

66
6

0.
54

1
0.
32
1

0.
15

4
0.

80
2

0.
71

4
0.

54
5

0.
26

6
0.

10
6

0.
61

9
0.

58
4

0.
50

1
0.

28
9

0.
18

0
itA

R
F

0.
72

5
0.

64
3

0.
53

4
0.

30
6

0.
13

0
0.

77
7

0.
71

9
0.

55
2

0.
25

1
0.

11
3

0.
58

1
0.

57
9

0.
48

8
0.

27
1

0.
17

0
pA

R
F

0.
75
2

0.
66
9

0.
56
5

0.
28

0
0.

03
9

0.
74

2
0.

61
4

0.
29

0
–

–
0.

54
8

0.
55

6
0.

53
1

0.
30

5
0.

20
8

itA
E

0.
58

2
0.

46
2

0.
34

9
0.

13
6

0.
04

6
0.

61
3

0.
53

8
0.

37
8

0.
14

1
0.

04
8

0.
68

5
0.

62
2

0.
55

7
0.

37
0

0.
26

1
pA

E
0.

55
3

0.
39

0
0.

25
3

0.
11

4
0.

03
8

0.
61

3
0.

54
3

0.
26

4
–

–
0.

68
5

0.
61

2
0.

56
3

0.
31

3
0.

11
1

itP
CA

0.
59

1
0.

49
2

0.
37

4
0.

17
9

0.
06

9
0.

66
2

0.
55

9
0.

39
6

0.
14

9
0.

08
4

0.
68

5
0.

62
8

0.
54

6
0.

37
0

0.
26

1
pP

CA
0.

58
7

0.
46

3
0.

32
8

0.
11

4
0.

03
1

0.
63

7
0.

55
0

0.
28

9
–

–
0.

68
5

0.
50

8
0.

52
5

0.
21

1
0.

08
7

kN
N

0.
62

0
0.

52
7

0.
42

0
0.

24
0

0.
10

0
0.

70
0

0.
59

4
0.

42
7

0.
18

8
0.

06
8

0.
50

0
0.

43
4

0.
37

8
0.

20
5

0.
09

8

Vo
te

s
Ly

m
ph

og
ra

ph
y

Fi
na

nc
ia

l S
ur

ve
y

C
om

pl
et

e
ca

se
s

85
.3

%
42

.2
%

18
.5

%
1.

3%
0%

81
.8

%
40

.5
%

14
.9

%
2.

7%
0%

11
.8

%
0%

0%
0%

0%

M
IC

E
0.
88
5

0.
70
1

0.
63
1

0.
47
0

0.
37
6

0.
52

7
0.
56
0

0.
42
4

0.
26
2

0.
10
5

–
–

–
–

–
di

tA
R

F
0.

70
3

0.
63

6
0.

55
1

0.
36

3
0.

27
2

0.
65

5
0.

45
3

0.
42
4

0.
20

1
0.

08
6

0.
45
4

0.
03
8

0.
00

1
0.

00
0

0.
00

0
itA

R
F

0.
77

0
0.

63
3

0.
55

4
0.

34
3

0.
22

9
0.

64
5

0.
43

7
0.

41
6

0.
21

5
0.

08
8

0.
44

2
0.

03
5

0.
00
2

0.
00

0
0.

00
0

pA
R

F
0.

64
2

0.
64

6
0.

57
3

0.
40

0
–

0.
68
2

0.
47

3
0.

42
1

0.
16

8
–

0.
43

2
–

–
–

–
itA

E
0.

60
0

0.
53

8
0.

40
3

0.
23

0
0.

09
6

0.
45

5
0.

38
9

0.
33

6
0.

10
5

0.
01

9
0.

38
4

0.
02

1
0.

00
1

0.
00

0
0.

00
0

pA
E

0.
58

2
0.

53
5

0.
38

8
0.

24
8

–
0.

45
5

0.
37

4
0.

33
6

0.
12

5
–

0.
27

0
–

–
–

–
itP

CA
0.

66
7

0.
55

1
0.

45
7

0.
28

7
0.

13
6

0.
41

8
0.

43
1

0.
33

9
0.

11
0

0.
02

2
0.

41
2

0.
02

9
0.

00
1

0.
00

0
0.

00
0

pP
CA

0.
61

8
0.

42
8

0.
35

5
0.

21
3

–
0.

45
5

0.
40

9
0.

33
6

0.
13

7
–

0.
38

3
–

–
–

–
kN

N
0.

81
8

0.
52

8
0.

49
5

0.
26

9
0.

23
7

0.
31

8
0.

29
7

0.
24

8
0.

10
3

0.
03

4
0.

25
9

0.
00

6
0.

00
0

0.
00

0
0.

00
0

 Machine Learning

Ta
bl

e
4

 (c
on

tin
ue

d)

N
ur

se
ry

Sp
lic

e
La

nd
 U

se

C
om

pl
et

e
ca

se
s

92
.3

%
66

.4
%

43
.3

%
16

.8
%

5.
6%

53
.8

%
4.

0%
0.

1%
0%

0%
59

.7
%

8.
4%

0.
9%

0%
0%

M
IC

E
0.

01
0

0.
05

3
0.

09
6

0.
10

4
0.

08
1

0.
38
2

0.
21
3

0.
12
8

0.
06
5

0.
02
4

0.
32
7

0.
12
8

0.
04
1

0.
00
2

0.
00
2

di
tA

R
F

0.
28

5
0.

24
9

0.
21

2
0.

16
0

0.
10

4
0.

34
9

0.
16

4
0.

07
5

0.
01

5
0.

00
1

0.
28

7
0.

08
9

0.
02

3
0.

00
0

0.
00

0
itA

R
F

0.
28

5
0.

24
6

0.
21

1
0.

15
9

0.
10

8
0.

34
1

0.
17

3
0.

08
3

0.
02

3
0.

00
3

0.
27

0
0.

10
6

0.
02

8
0.

00
1

0.
00

2
pA

R
F

0.
28

6
0.

24
7

0.
21

2
0.

16
1

0.
10

6
0.

30
8

0.
07

8
0.

01
1

–
–

0.
27

6
0.

09
4

0.
01

7
–

–
itA

E
0.
30
3

0.
26

6
0.

23
0

0.
17

3
0.
10
9

0.
19

9
0.

06
0

0.
00

8
0.

00
0

0.
00

0
0.

14
1

0.
03

5
0.

00
3

0.
00

0
0.

00
0

pA
E

0.
29

7
0.

26
6

0.
23
2

0.
17
4

0.
10
9

0.
20

6
0.

06
0

0.
01

1
–

–
0.

14
1

0.
04

7
0.

00
3

–
–

itP
CA

0.
30

1
0.

26
7

0.
23

0
0.

17
3

0.
10
9

0.
23

3
0.

07
3

0.
01

3
0.

00
0

0.
00

0
0.

22
3

0.
06

5
0.

01
4

0.
00

0
0.

00
0

pP
CA

0.
30

2
0.
26
8

0.
23
2

0.
17

1
0.
10
9

0.
23

0
0.

06
0

0.
01

1
–

–
0.

18
0

0.
04

4
0.

00
4

–
–

kN
N

0.
17

5
0.

10
9

0.
13

0
0.

09
2

0.
05

5
0.

20
1

0.
11

4
0.

07
1

0.
02

7
0.

00
8

0.
13

7
0.

05
7

0.
01

3
0.

00
2

0.
00

0

Ye
as

td
M

et
ro

d
⧫

En
er

gy
d
⧫

C
om

pl
et

e
ca

se
s

92
.4

%
66

.0
%

43
.6

%
16

.8
%

5.
8%

86
.0

%
46

.3
%

20
.6

%
3.

5%
0.

5%
93

.2
%

69
.8

%
47

.8
%

20
.9

%
8.

2%

M
IC

E
0.
76
1

0.
75

8
0.
72
9

0.
63

6
0.

52
9

0.
95
7

0.
94
4

0.
92
5

0.
87
7

0.
82
1

0.
92
1

0.
91
3

0.
90
0

0.
87
0

0.
83
6

di
tA

R
F

0.
69

0
0.
76
2

0.
70

1
0.

63
8

0.
55

3
–

–
–

–
–

–
–

–
–

–
itA

R
F

0.
69

7
0.
76
2

0.
70

5
0.

63
8

0.
55
5

0.
86

5
0.

83
8

0.
80

3
0.

72
7

0.
65

9
0.

91
7

0.
90

8
0.

89
5

0.
86

5
0.

83
0

pA
R

F
0.

64
4

0.
67

2
0.

62
6

0.
56

1
0.

44
4

0.
95

6
0.

94
2

0.
92

1
0.

85
8

0.
78

0
0.
92
1

0.
91

2
0.
90
0

0.
87
0

0.
83

5
itA

E
0.

75
4

0.
76

0
0.

71
4

0.
63

8
0.
55
5

0.
92

9
0.

90
7

0.
88

1
0.

81
3

0.
73

3
0.

91
8

0.
90

9
0.

89
7

0.
86

6
0.

83
1

pA
E

0.
75

4
0.

76
0

0.
71

4
0.

63
8

0.
55
5

0.
94

6
0.

93
1

0.
90

5
0.

86
2

0.
80

3
0.
92
1

0.
91

2
0.
90
0

0.
87
0

0.
83

5
itP

CA
0.

75
1

0.
74

9
0.

70
4

0.
63

1
0.

54
7

0.
93

8
0.

91
1

0.
87

4
0.

81
8

0.
72

6
0.

91
8

0.
90

9
0.

89
6

0.
86

6
0.

83
1

pP
CA

0.
74

7
0.

74
7

0.
71

1
0.
63
9

0.
48

2
0.

92
8

0.
92

6
0.

90
2

0.
85

0
0.

78
7

0.
92
1

0.
91

1
0.

89
9

0.
87
0

0.
83

5
kN

N
0.

57
6

0.
54

7
0.

51
0

0.
39

0
0.

26
1

–
–

–
–

–
–

–
–

–
–

Machine Learning

a very large number of samples for computational sake. For the same datasets, the kNN
results are not included, since kNN computational time is quadratic w.r.t. the number of
samples (Troyanskaya et al. 2001) and thus difficultly accessible when the number of
samples is large.

When evaluated, i.e. in low-dimensional datasets, the MICE method remains very
competitive. Its time consumption is significantly higher than for the ARF-based methods
but stays feasible when the number of features is relatively small. The procedural and
iterative ARFs show competitive performance. For the Mushroom dataset, pARF shows the

Fig. 5 Friedman–Nemenyi diagrams comparing the ranking of the experimentally tested methods. A lower
rank is better, statistically indistinguishable methods are connected by a horizontal line

Fig. 6 Representation of the stability of the ditARF method over a set of binary missing values. Each line
represents the changes in the probability of a missing value imputation throughout the different iterations.
In this case, we opted to plot the p(x̃ = 1 | x) . Each plot shows the stability of the method in a different data-
set

 Machine Learning

best results when the missing value ratio is small but fails when this ratio is big and thus
there is not enough data to train a reliable model. In most cases, the itARF method along
with its ditARF modification runs second best. We also observe that on the Nursery dataset,
MICE fails to predict relevant values, while other methods demonstrate more optimistic
results. The Friedman–Nemenyi diagrams demonstrate the statistical significance of the
methods’ performance difference in Fig. 5, confirming that three ARF-based methods lie in
the high spectrum of methods ranking along with the MICE method.

The ditARF method computes the probabilities of imputed values p(x̃ | x) on every
iteration and uses these to provide a measure of confidence per instance as sam-
ple weights of the model on the next iteration. To understand better its behavior, we
illustrate probabilities of having a ‘1’ class changing through iterations on Fig. 6. We
observe that after several iterations each probability ‘converges’ to a certain level and
continues oscillating around it. From this evidence, we conclude that the model is not
overfitting (otherwise we would expect converging to 0 or 1) and indeed can provide a
distribution for possible values for imputation.

Figure 7 shows the difference in classification accuracy of a Random Forest classifier
learned on ground-truth complete data, and a Random Forest learned on datasets imputed
by different methods. The analysis is performed for the datasets possessing a label to
predict. First, we observe that imputation quality and further classification quality do not
strictly correlate. This poses the question if the best strategy would be to do imputation
and classification simultaneously to optimize the performance of both. Second, in some
cases, the proposed ARF method facilitates classification compared to the MICE method
even when imputation accuracy is lower. Third, we see in the Votes dataset that the ditARF
method in some cases provides significantly better accuracy even when compared to the
itARF method, which supports the further need of considering prediction confidence
during the imputation step.

4.1.2 Imputation performance in high‑dimensional datasets

We study the performance of the proposed methods and their competitors in high-
dimensional settings, when p > N . The marginal imputation accuracy values are given in
Table 3, where the datasets of interest are marked with an asterisk (∗). Results for the MICE

Fig. 7 Classification accuracy gain/loss when compared to a complete dataset (smaller value = better)

Machine Learning

method could not be computed due to its excessive computation time. Similarly, procedural
methods cannot be used as all instances are affected by missing values. We observe that the
itARF and ditARF methods systematically outperform other iterative methods such as itAE
and itPCA, as well as the kNN method, and thus prove to be a competitive and powerful
alternative family of approaches.

Fig. 8 Empirical results on time complexity (in seconds) for imputation methods. For each method, its aver-
age running time (across 5 launches) is shown (by line) as well as its minimum and maximum (borders of
color interval). In a the number of features varies from 10 to 80 while the number of samples is constant, in
b the number of samples varies from 10 to 90 while the number of features is constant. Here, ditARF is not
specifically included since it is already covered by iterative ARF (itARF)

Table 5 Computational time (in seconds) for the experiments with missing value ratio 0.01. Median times
for 5 independent runnings are shown. All times are rounded to 3 dp

mice ditARF itARF pARF itAE pAE itPCA pPCA kNN

Mushroom 60.040 20.554 15.237 1.228 185.009 10.682 279.053 10.466 0.878
Soybean 14.237 2.142 0.724 0.180 1.877 0.580 5.997 0.566 0.018
Tumor 6.438 1.303 0.425 0.100 1.140 0.523 1.188 0.613 0.011
Votes 5.346 0.397 0.255 0.072 1.243 0.251 4.192 0.265 0.007
Lympho 6.442 1.062 0.445 0.077 0.740 0.274 3.639 0.263 0.008
Survey – 2755.776 2559.408 29.400 1011.730 16.980 1420.271 20.842 10.857
Nursery 24.176 18.928 7.033 0.813 113.971 13.104 124.335 18.703 0.901
Splice 386.047 71.791 70.706 3.661 27.653 6.814 140.628 6.767 0.558
Land Use 71.623 12.857 11.709 0.707 4.527 1.594 23.079 1.608 0.027
SNP Maize∗ – 524.257 377.264 – 219.756 – 188.778 – 0.399
SNP Euc.∗ – 1207.453 459.983 – 318.493 – 798.399 – 2.465
Yeastd 1.656 1.078 0.608 0.091 1.159 1.045 11.868 0.980 0.011

Metrod⧫ 852.686 – 219.643 166.201 2600.627 572.480 1368.618 564.626 –

Energyd⧫ 216.515 – 91.264 74.137 1566.590 316.695 4364.438 251.719 –

 Machine Learning

4.1.3 Time complexity analysis

The complexity of one Decision Tree with binary features is O(pN logN) with regard to
the number of features p and the number of instances N. If all the trees in an Autoreplica-
tive Random Forest are trained on all features, the total complexity of the forest remains
the same. In the MICE method, a separate model is trained per feature, thus for one itera-
tion, the complexity of the MICE method with Random Forest base estimator becomes
quadratic O

(
p2N logN

)
.

At the same time, with a multi-label Random Forest, the total complexity remains
linear. Thus, both the methods itARF and pARF provide linear complexity with regard to
the number of features, as the complexity of one forest is only multiplied by the number of
iterations which typically is low as convergence is reached soon.

The complexity of both single- and multi-output Random Forests remains similar with
regard to the number n of samples, i.e. N logN.

These theoretic estimations are well supported in the simulation study, see Fig. 8. We
empirically compare the time complexity of the imputation methods on subsets of the
Eucalyptus dataset under the MCAR scenario with 10% missing values. The subsets are
selected as (a) the first ps features of the original dataset, 10 ≤ ps ≤ 80 , and (b) the first Ns
samples, 10 ≤ Ns ≤ 90.

Further, we access actual computation times for all methods and present the results for
the missing value ratio of 0.01 in Table 5. In all datasets, the procedural methods and kNN
are very fast, but we have seen above that they do not always produce adequate results or
simply can not be used if there are not enough complete instances for training. Also, across
all datasets, the MICE method works several times slower and is not applicable when the
number of features increases. At the same time, we observe that itAE and itPCA methods
often also require significant time expense while producing not necessary high imputation
accuracy.

5 Conclusions and future work

In this work, we propose a general framework for missing value imputation and we deeply
analyze the literature on missing value imputation schemes. We identify that while there
exist multi-output missing value imputation methods such as Autoencoders, this idea may
be further applied to any multi-output machine learning methods but is yet not presented in
the literature.

Developing this idea, we propose multi-output Autoreplicative Random Forests
(ARFs) for accurate missing value imputation, in three different variants. First, we
propose procedural ARF (pARF) that leverages the idea of Denoising Autoencoders for
missing value imputation that only impute once the missing values. Second, we propose
iterative ARF (itARF). The proposed itARF approach works as a deterministic iterative
imputation method that not only obtains competitive results to the state-of-the-art methods
but also drastically outperforms them in terms of computational time. We have shown
that these approaches can provide significant improvements especially when there is a
lack of complete instances in the case of high-dimensional data. Moreover, we focused on
the necessity of providing a measure of uncertainty with respect to the imputed missing
values, and we proposed the distributional itARF (ditARF) which works similarly to the
EM algorithm and estimates the posterior distribution. With the probabilistic versions of

Machine Learning

the proposed framework, we provide not only imputation for the missing values but also
a measure of uncertainty which we believe could be beneficial in numerous applications.
Note that missing value imputation is commonly used in the preprocessing steps of
broader machine-learning tasks. Hence, wrongly imputed values could significantly impact
the forthcoming learning tasks. This could be avoided by only considering confident
imputations.

To evaluate the proposed solution, we have performed an extensive evaluation of the
proposed and previously existing methods on low- and high-dimensional datasets in which
we included a variety of datasets from the UCI repository and three SNP datasets. As
can be seen, the proposed solutions drastically outperform existing literature approaches
when p ≫ N . Finally, we have also tested the difference between training a Random Forest
classifier for an imputed dataset and ground-truth data. The results show that the obtained
accuracy with the classifier learned in ARF methods are good estimates since they obtain
similar results to the classifier learned with ground-truth data.

Author Contributions E.A. developed the general framework including the proposed new ARF approach
and conducted the experiments. A.C. developed the probabilistic version of the ARF method. All authors
actively participated in the discussions and in writing the manuscript.

Funding Non Applicable.

Data availability The data that support the findings of this study were derived from the following resources
available in the public domain: ∙ UCI datasets: https:// archi ve. ics. uci. edu/∙ Land Use dataset: https:// doi.
org/ 10. 17632/ GK3Z8 GP7CP.2∙ Financial Survey dataset: https:// www. consu merfi nance. gov/ data- resea rch/
finan cial- well- being- survey- data∙ SNP Maize: https:// doi. org/ 10. 15454/ AEC4BN∙ SNP Eucalyptus: https://
doi. org/ 10. 6084/ m9. figsh are. 80443 70∙ SNP Wheat: https:// doi. org/ 10. 5447/ ipk/ 2020/ 12

Code availablility All code for general missing value imputation framework, including newly proposed
methods based on Autoreplicative Random Forests, is available at https:// github. com/ ekaan tonen ko/ ARF.

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this
article.

Ethical approval Not Applicable.

Consent to participate Not Applicable.

Consent for publication Not Applicable.

References

Buuren, S., & Groothuis-Oudshoorn, K. (2011). MICE: Multivariate imputation by chained equations in
r. Journal of Statistical Software, 45(3), 1–7.

CFPB. (2017). Financial well-being survey data. https:// www. consu merfi nance. gov/ data- resea rch/ finan
cial- well- being- survey- data/

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continu-
ous features. Elsevier. https:// doi. org/ 10. 1016/ b978-1- 55860- 377-6. 50032-3

https://archive.ics.uci.edu/
https://doi.org/10.17632/GK3Z8GP7CP.2
https://doi.org/10.17632/GK3Z8GP7CP.2
https://www.consumerfinance.gov/data-research/financial-well-being-survey-data
https://www.consumerfinance.gov/data-research/financial-well-being-survey-data
https://doi.org/10.15454/AEC4BN
https://doi.org/10.6084/m9.figshare.8044370
https://doi.org/10.6084/m9.figshare.8044370
https://doi.org/10.5447/ipk/2020/12
https://github.com/ekaantonenko/ARF
https://www.consumerfinance.gov/data-research/financial-well-being-survey-data/
https://www.consumerfinance.gov/data-research/financial-well-being-survey-data/
https://doi.org/10.1016/b978-1-55860-377-6.50032-3

 Machine Learning

Dray, S., & Josse, J. (2015). Principal component analysis with missing values: A comparative survey of
methods. Plant Ecology, 216, 657–667.

Dua, D., & Graff, C. (2017). UCI Machine Learning Repository. http:// archi ve. ics. uci. edu/ ml
Gerych, W., Hartvigsen, T., Buquicchio, L., Agu, E., & Rundensteiner, E. A. (2021). Recurrent Bayes-

ian classifier chains for exact multi-label classification. Advances in Neural Information Processing
Systems, 34, 15981–15992.

Grattapaglia, D. (2019). Quantitative genetic parameters for growth and wood properties in Eucalyptus
urograndis - SNP marker data. figshare.

Guo, Y., & Gu, S. (2011). Multi-label classification using conditional dependency networks. IJCAI Pro-
ceedings-International Joint Conference on Artificial Intelligence, 22, 1300.

İrsoy, O., & Alpaydin, E. (2016). Autoencoder trees. Proceedings of Machine Learning ResearchIn G.
Holmes & T.-Y. Liu (Eds.), Asian Conference on Machine Learning (Vol. 45, pp. 378–390). Hong
Kong: PMLR.

Jafrasteh, B., Hernández-Lobato, D., Lubián-López, S. P., & Benavente-Fernández, I. (2023). Gaussian
processes for missing value imputation. Knowledge-Based Systems, 273, 110603. https:// doi. org/ 10.
1016/j. knosys. 2023. 110603

Johnstone, I. M., & Titterington, D. M. (2009). Statistical challenges of high-dimensional data. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
367(1906), 4237–4253.

Karimi, Arsalan. (2023). Questionnaire data on land use change of Industrial Heritage: Insights from Deci-
sion-Makers in Shiraz. Iran: Mendeley. https:// doi. org/ 10. 17632/ GK3Z8 GP7CP.2

Little, R. J., & Rubin, D. B. (2019). Statistical Analysis with Missing Data (Vol. 793). Hoboken, USA: John
Wiley & Sons.

MacKay, D. J. (2003). Information Theory. Inference and Learning Algorithms. Cambridge, Great Britain:
Cambridge University Press.

McCoy, J. T., Kroon, S., & Auret, L. (2018). Variational autoencoders for missing data imputation with
application to a simulated milling circuit. IFAC-PapersOnLine, 51(21), 141–146.

Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scalable model-based cascaded imputation of
missing data. In: PAKDD 2018: 22nd Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pp. 64–76.

Negro, S. S., Millet, E. J., Madur, D., Bauland, C., Combes, V., Welcker, C., Tardieu, F., Charcosset, A., &
Nicolas, S. D. (2019). Genotyping-by-sequencing and SNP-arrays are complementary for detecting
quantitative trait loci by tagging different haplotypes in association studies. BMC Plant Biology, 19(1),
1–22.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification.
Machine Learning, 85(3), 333–359. https:// doi. org/ 10. 1007/ s10994- 011- 5256-5

Reif, J. (2020). Genotyping information for diverse european bread wheat genotypes based on the ZUCHT-
WERT project. e!DAL - Plant Genomics and Phenomics Research Data Repository (PGP), IPK Gater-
sleben, Seeland OT Gatersleben, CorrensstraSSe 3, 06466, Germany.

Santos, M. S., Pereira, R. C., Costa, A. F., Soares, J. P., Santos, J., & Abreu, P. H. (2019). Generating syn-
thetic missing data: A review by missing mechanism. IEEE Access, 7, 11651–11667.

Schwender, H. (2012). Imputing missing genotypes with Weighted k Nearest neighbors. Journal of Toxicol-
ogy and Environmental Health, Part A, 75(8–10), 438–446.

Seo, B., Shin, J., Kim, T., & Youn, B. D. (2022). Missing data imputation using an iterative denoising
autoencoder (IDAE) for dissolved gas analysis. Electric Power Systems Research, 212, 108642. https://
doi. org/ 10. 1016/j. epsr. 2022. 108642

Stekhoven, D. J., & Buhlmann, P. (2011). MissForest-non-parametric missing value imputation for mixed-
type data. Bioinformatics, 28(1), 112–118.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., & Altman, R.
B. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520–525.

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification. International Journal of Data Warehousing
and Mining, 3(3), 1–13. https:// doi. org/ 10. 4018/ jdwm. 20070 70101

Tsoumakas, G., & Vlahavas, I. (2007). Random k-labelsets: An ensemble method for multilabel classifica-
tion. Machine Learning: ECML, 2007, 406–417.

http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.knosys.2023.110603
https://doi.org/10.1016/j.knosys.2023.110603
https://doi.org/10.17632/GK3Z8GP7CP.2
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1016/j.epsr.2022.108642
https://doi.org/10.1016/j.epsr.2022.108642
https://doi.org/10.4018/jdwm.2007070101

Machine Learning

Van Wolputte, E., & Blockeel, H. (2020). Missing value imputation with mercs: a faster alternative to miss-
forest. In: Discovery Science: 23rd International Conference, DS 2020, Thessaloniki, Greece, October
19–21, 2020, Proceedings, pp. 502–516.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features
with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learn-
ing - ICML ’08. https:// doi. org/ 10. 1145/ 13901 56. 13902 94

Wood, D., Mu, T., Webb, A., Reeve, H., Lujan, M., & Brown, G. (2023). A unified theory of diversity in
ensemble learning. Journal of Machine Learning Research, 24(359), 1–49.

Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Programming, 151(1), 3–34. https:// doi.
org/ 10. 1007/ s10107- 015- 0892-3

Zhang, M.-L., & Zhou, Z.-H. (2007). Ml-knn: A lazy learning approach to multi-label learning. Pattern
recognition, 40(7), 2038–2048.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10107-015-0892-3

	Autoreplicative random forests with applications to missing value imputation
	Abstract
	1 Introduction
	2 A general framework for missing value imputation
	2.1 Features, missing and imputed values
	2.2 Missing value imputation: procedural vs iterative
	2.3 Missing value imputation: related work
	2.3.1 Basic statistical imputation
	2.3.2 Denoising autoencoders (DAE)
	2.3.3 Multiple imputation with chained equations (MICE)
	2.3.4 Expectation-maximization and coordinate-ascent methods
	2.3.5 Other approaches

	2.4 Summary, and framework parameters
	2.4.1 Estimator
	2.4.2 Initial imputation
	2.4.3 Number of iterations

	3 Autoreplicative random forests
	3.1 Autoreplicative random forests (ARF)
	3.2 Distributional iterative ARF (ditARF)

	4 Experimental study
	4.1 Results and discussion
	4.1.1 Imputation performance
	4.1.2 Imputation performance in high-dimensional datasets
	4.1.3 Time complexity analysis

	5 Conclusions and future work
	References

