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Abstract
With the rise of artificial intelligence in our everyday lives, the need for human interpreta-
tion of machine learning models’ predictions emerges as a critical issue. Generally, inter-
pretability is viewed as a binary notion with a performance trade-off. Either a model is 
fully-interpretable but lacks the ability to capture more complex patterns in the data, or it 
is a black box. In this paper, we argue that this view is severely limiting and that instead 
interpretability should be viewed as a continuous domain-informed concept. We leverage 
the well-known Mixture of Experts architecture with user-defined limits on non-interpret-
ability. We extend this idea with a counterfactual fairness module to ensure the selection 
of consistently fair experts: FairMOE. We perform an extensive experimental evaluation 
with fairness-related data sets and compare our proposal against state-of-the-art methods. 
Our results demonstrate that FairMOE is competitive with the leading fairness-aware algo-
rithms in both fairness and predictive measures while providing more consistent perfor-
mance, competitive scalability, and, most importantly, greater interpretability.

Keywords Interpretability · Mixture of experts · Counterfactual fairness · Scalability

1 Introduction

Explainable AI (XAI) has been studied for over three decades  (Chandrasekaran et  al., 
1989), with the objective of providing explanations for learning models’ outcomes such 
that it (1) guarantees the highest level possible of model accuracy, and (2) that human 
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actors can understand  (Arrieta et  al., 2020). Today, explainability usually divides efforts 
into two groups  (Arrieta et  al., 2020). On the one hand, post-hoc explanations extract 
information on more complex (and non-interpretable) models’ behavior where the relation 
between inputs and outputs is complex for humans to understand. On the other hand, inter-
pretable models provide a more transparent view of how model decisions are carried out.

There are several real-world examples of how non-interpretable models deployed in 
high-risk decision-making environments may incur costly mistakes (Rudin, 2019). In addi-
tion, post-hoc explainability cannot fully approximate a black box model and often results 
in biased and unfair conclusions  (Balagopalan et  al., 2022). In high-risk situations, e.g., 
healthcare, the resulting non-interpretable errors could reduce a model’s usefulness, mak-
ing inherently interpretable models an appropriate choice. Nonetheless, there are domains 
where a fully interpretable model may not be necessary.

Building fully interpretable models is challenging. First, high-quality interpretable mod-
els may require extra time and effort from analysts with domain expertise compared to non-
interpretable alternatives. Also, they sometimes fail to uncover “hidden patterns” within 
the data that black-box (i.e., non-interpretable) models may specialize in finding (Rudin, 
2019). Doshi-Velez and Kim (2017) suggest interpretability is unnecessary when there is 
no significant impact or severe consequences for incorrect results or the problem is so well-
studied and validated in real applications that one may trust the system’s decisions.

We posit that defining interpretability as a binary notion is severely limiting. Instead, 
we define it as a domain-informed and user-defined parameter, allowing for models with 
varying levels of interpretability, capable of extracting the benefits of complex models but 
retaining interpretability for higher-risk predictions. However, this objective hinges on 
accurately anticipating such high-risk cases, e.g. those related to decisions concerning non-
privileged groups in protected classes. This basis should allow for models that better bal-
ance interpretability, fairness, and performance trade-offs, avoiding focus on a single one.

Contributions. We introduce FairMOE, a Mixture of Experts (MOE) architecture using 
interpretable and non-interpretable experts, where a single expert is chosen per predic-
tion. To the traditional MOE architecture we add (1) Performance meta-learners to antici-
pate the probability of a given expert prediction being correct; (2) a Counterfactual Fair-
ness Module to identify highest-risk samples and ensure they are handled fairly, and; (3) 
an Assignment Module for expert selection, using results from the previous components 
within constraints of maximum levels of non-interpretability, i.e., the maximum amount of 
predictions from non-interpretable experts.

2  Related work

Our FairMOE proposal intersects four topics: (1) interpretability: definitions and contra-
dictions; (2) mixture of experts, the basis for our proposal; (3) meta-learning, and how to 
anticipate predictive performance, and; (4) fairness and how to improve interpretability, 
fairness, and predictive performance trade-offs. Additionally, we evaluate how FairMOE 
handles high-risk samples and consider the various previous attempts at measuring sample 
risk.

Interpretability. XAI has rapidly increased in popularity. Arrieta et al. (2020) describe 
techniques involving transparent, inherently interpretable models and post-hoc explainabil-
ity. Despite the popularity of post-hoc explainable models, there are many contexts when 
inherently interpretable models are superior. Rudin (2019) argues against explaining black 
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box models for high-stakes decisions and demonstrates many of the flaws of explaining 
black box models. Carvalho et al. (2019) establish motivations for interpretability, includ-
ing the potential impact of high-stakes decisions, societal concerns, and regulation. Despite 
a significant level of research, there is still no single agreed-upon definition of interpret-
ability. Miller (2019) defines interpretability as “the degree to which a human can under-
stand the cause of a decision”, while Kim et al. (2016) define it as “the degree to which a 
human can consistently predict the model’s result”.

One consistency is the idea that models are either interpretable or not. Recently, Frost 
et  al. proposed a hybrid approach to interpretability in which a simple interpretable 
model will either make a prediction or will pass and allow a black box model to predict 
instead  (Frost et  al., 2024). In this paper, we use a continuous notion of interpretability, 
envisioning an architecture capable of minimizing the number of non-interpretable errors.

Mixture of Experts. Proposed over 30 years ago, MOE  Jacobs et  al. (1991) has been 
extensively explored within regression and classification tasks  (Yuksel et  al., 2012). 
Recently, sparse MOE has been used as layers to large neural networks  (Shazeer et  al., 
2017) and as a vision transformer (Riquelme et al., 2021) to increase large, deep learning 
tasks’ efficiency. Closer to our work,  Ismail et  al. (2022) applied an interpretable MOE 
approach to structured and time series data, using an Assignment Module to pick indi-
vidual expert for predictions and variable percentage of samples assigned to interpretable 
experts. Our approach leverages meta-learners to predict the accuracy of each expert given 
a specific sample, inspired by Cerqueira et al. (2017) work on time series forecasting.

Meta-Learning. Meta-learning has been applied to domains such as transfer learning, 
neural networks, and few-shot learning (Vanschoren, 2018). In each of them, it is used for 
error correction. The model’s weights are adjusted based on the knowledge gained from 
meta-features. We use meta-learning for error anticipation, towards selecting the best 
model. Khan et al. (2020) detail meta-learners’ usage for classifier selection. In an error-
anticipation context, meta-learners are trained to predict model performance using a com-
bination of the original feature space, meta-features, and model predictions. Using meta-
learners, our proposal creates a fully-interpretable pipeline for selecting individual models 
and allows us to exploit each model’s strengths. However, by optimizing our proposal for 
predictive performance, this might create additional issues with regard to model fairness.

Fairness. There are two main approaches to analyzing fairness. Group fairness meas-
ures disparate treatment in protected groups over predictions, including pre-processing, 
in-processing, and post-processing methods  (Hort et  al., 2022). Pre-processing includes 
methods such as relabeling data  (Kamiran & Calders, 2012), perturbation, and sam-
pling (Chakraborty et al., 2021). Post-processing methods include input correction (Adler 
et al., 2018), classifier correction (Hardt et al., 2016), and output correction (Kamiran et al., 
2012). Xian et  al. (2023) explore the trade-off of fairness and performance and propose 
a post-processing algorithm using fair classifier score functions. In-processing methods 
attempt to train a model to learn fairness concepts. Agarwal et al. (2018) use adversarial 
learning. Zafar et al. (2017) apply constraints to the loss function to ensure fairness. Other 
approaches include a composition of multiple classification models  (Pleiss et  al., 2017) 
and adjusted learning (Zhang et al., 2021). Fairness can also be measured on an individual 
or sample-wise basis. Kusner et al. (2017) proposed the notion of counterfactual fairness, 
which uses the tools from causal inference to establish a prediction as fair if an individual’s 
prediction remains the same with changing protected attributes. Counterfactual fairness has 
been adopted in several domains as a viable approach toward fairness. For example, Garg 
et  al. (2019) apply counterfactual fairness to text classification by considering perturba-
tions obtained by substituting words within specific identity groups. Meanwhile, Guo et al. 
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applied counterfactual fairness to Graph Neural Networks to learn fair node representations 
for node classification tasks (Guo et al., 2023). Our approach uses counterfactual fairness 
to ensure our selected model predicts samples consistently. That is, selected experts should 
not discriminate against different protected attribute values. We separately evaluate our 
results with group fairness.

Assessing Risk of Examples Attempts at identifying difficult to predict cases have long 
been a focus in Imbalanced Learning literature. Frequently, cases are defined as either 
safe or unsafe where safe examples are those whose nearest neighbors make up entirely 
one class  (Han et  al., 2005; Kubat & Matwin, 1997; Laurikkala, 2001; Stefanowski, 
2013). In some cases, unsafe examples are further classified as borderline, noisy, rare, or 
outlier  (Kubat & Matwin, 1997; Napierala & Stefanowski, 2016) to further distinguish 
between levels of risk. Similarly, topics such as one-class novelty prediction attempt to 
identify test examples that do not belong to the train distribution (Ruff et al., 2018). Perera 
et al. (2019) use latent representations of in-class examples to detect unique classes. Ding 
et  al. (2022) use KNN and Generative Adversarial Networks as part of a new sampling 
approach to detect intrusions across a network.

In our proposal, we perform post-hoc analysis using the safe, borderline, rare, and out-
lier categories proposed by Napierala and Stefanowski (2016). Our analysis gauges how 
effectively FairMOE handles high-risk cases and opens up avenues for future research to 
ensure these are predicted using interpretable experts.

3  Fair mixture of experts

This section describes our fairness-aware MOE-based proposal. FairMOE has four main 
components: (1) individual experts, where each predicts each sample; (2) performance 
meta-learners, which predict the probability of each expert’s prediction accuracy; (3) 
a counterfactual fairness model, to assess predictive consistency regardless of protected 
attribute values in each case and, (4) an assignment module, combining the outcome of the 
previous two components and solving for non-interpretable model usage constraints. This 
high-level workflow is illustrated in Fig. 1, and components are described below.

3.1  FairMOE components

(1) Experts. FairMOE leverages a set of diverse expert learners trained using half the train-
ing data, including interpretable and non-interpretable models.

(2) Performance Meta-learner. A performance meta-learner per expert is trained to pre-
dict the probability of an accurate prediction. For interpretability, meta-learners use one of 
the following algorithms: Logistic Regression, Naive Bayes, Decision Tree, or K-Nearest 
Neighbors. They are trained using 10-fold cross-validation with grid search. The expert 
prediction is included as a feature within training, and the ground truth is a binary value 
indicating whether the expert correctly classified the sample. The learners are fit using the 
unused half of the training data to ensure they are trained using out-of-sample predictions.

(3) Counterfactual Fairness Module. To assess the fairness of individual models in a 
given sample, FairMOE uses a counterfactual fairness approach inspired by Kusner et al. 
(2017). Let A, X, Y and (U, V, F) represent protected features, remaining features, the out-
put of interest, and a causal model where U is a set of latent background variables, V a 
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set of observable variables, and F a set of structural equations. We define a predictor Ŷ  as 
counterfactually-fair if:

where A is the set of all possible combinations of values within A, � is a given combina-
tion, and y is a given label.

The Counterfactual Fairness Module creates counterfactuals per sample to assess mod-
els with regard to individual (counterfactual) fairness. It generates a counterfactual for all 
possible permutations of Privileged/Unprivileged across protected classes, minus the origi-
nal sample combination while holding all non-protected features constant.1 Each expert 
then predicts them, being evaluated with a consistency score to determine their level of 
fairness, defined as:

where I is an indicator function returning one if the two values match and 0 otherwise. 
Then, the Module selects the set of models per sample with the maximum consistency 
score:

where E is the set of experts. This set of counterfactually fair experts Mx is then used by the 
Assignment Module to pick the best fair expert per prediction.

(4) Assignment Module. Finally, the Assignment Module considers the performance 
meta-learners, the Fairness Module, and the Non-Interpretable Budget to select an expert 

(1)P(ŶA←𝛼
(U) = y|X = x) = P(ŶA←𝛼�

(U) = y|X = x)

(2)CS =

∑
𝛼�∈A⧵𝛼 I(ŶA←𝛼

(U)�X = x, ŶA←𝛼�
(U)�X = x)

�A� − 1
,

(3)Mx = {∀e ∈ E ∶ CS(e) = max(CS(E))}

Fig. 1  a FairMOE training. Train data is split into two halves: Train1 and Train2. Experts are trained with 
Train1 and performance meta-learners on Train2 using experts’ predictions. b FairMOE testing. Experts 
predict the test data, which feeds into the respective performance meta-learners. Counterfactuals are gen-
erated around the protected attributes and assessed for consistency regarding expert predictions (Fairness 
Module). Finally, the Assignment Module uses the output from the Fairness Module and Performance Meta-
Learners to select an expert and make the final prediction

1 Counterfactuals are created by (1) binarizing the features as privileged/unprivileged, (2) creating the per-
mutations as described, and (3) transforming the binary value into a categorical or continuous variable by 
picking a random value following the distribution from the original training data.
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for each sample. It has two stages. In the first stage, each sample within the test data is 
considered individually. The Fairness Module returns the fair experts for each sample to 
be predicted. Using the performance meta-learners, vectors are created with the interpret-
able and non-interpretable experts with the highest probability of an accurate prediction 
(HPAP), and the difference between the probabilities is calculated. In the second stage, 
the test data is considered as a whole. Samples with the highest positive difference, i.e., 
the probability of an accurate prediction is higher for the non-interpretable model, are 
assigned to the non-interpretable expert until the budget is exhausted. All remaining sam-
ples are assigned to the interpretable expert. Samples with a negative difference are always 
assigned to the interpretable expert, so the total budget is not always used. The designated 
expert’s prediction is the final FairMOE prediction. The selection procedure is described in 
Algorithm 1.

Algorithm 1  Assignment Module

4  Experimental evaluation

First, we present the data and methods used. Then, we proceed to assess the performance 
of FairMOE regarding predictive accuracy, interpretable decision-making, and fair behav-
ior. We compare such performance against state-of-the-art baselines, aiming to answer the 
following research questions: 

RQ1  Does the Non-Interpretable Budget impact predictive performance?
RQ2  Does FairMOE improve the predictive performance and fairness trade-off?
RQ3  What is the impact of the Counterfactual Fairness Module?
RQ4  Does FairMOE scale well with larger data sets?
RQ5  How well does FairMOE1.0 assign high-risk predictions to Interpretable experts?

4.1  Data

We use nine fairness-oriented and public data sets (Le Quy et al., 2022) (Table 1), follow-
ing the pre-processing steps, protected class definitions, and privileged groups described 
in Le Quy et al. (2022). For all data sets, pre-processing included removing samples which 
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had missing data and dropping non-predictive columns such as IDs. When necessary, 
the target variable was converted to a binary value and categorical variables were one-
hot encoded. We used the definitions from Le Quy et al. (2022) for the privileged groups. 
When undefined, the majority class was designated as the privileged group.

4.2  Algorithms

We compare FairMOE against each expert and six fairness-aware algorithms. To build 
FairMOE we used seven algorithms as experts, optimized using grid search with 10-fold 
cross-validation (Table  2): Logistic Regression, Decision Tree, Naive Bayes, K-Near-
est Neighbors (KNN) are interpretable, and Random Forest, LightGBM (LGBM), and 
XGBoost (XGB) are not.

Concerning fairness-aware algorithms, we used the solutions proposed by Hardt et al. 
(2016) (post-processing optimization of equalized odds), Zafar et al. (2017) (builds models 
using covariance between a sample’s sensitive attributes to measure the decision bound-
ary fairness, which guarantees disparate impact’s business necessity clause, by maximizing 
fairness subject to accuracy constraints), Agarwal et al. (2018) (reduces a fairness classifi-
cation task to a series of cost-sensitive classification problems, where the final outcome is 
a randomized classifier optimized for the most accurate classifier subject to fairness con-
straints) and xFAIR  (Peng et  al., 2022) (aims to mitigate bias and identify its cause by 
relabeling protected attributes in test data through extrapolation models designed to predict 
protected attributes through other independent variables). Additionally, we consider the 
Random Forest Fair Trees method proposed by Pereira Barata et al. (2023) which defines 
a new fairness-based tree splitting criteria and Adversarial Debiasing (AdvDeb) proposed 
by Zhang et al. (2018) which uses adversarial learning to address fairness concerns.

Hardt et  al., Agarwal et  al., and AdvDeb algorithms are implemented using the Fair-
learn python package  (Bird et  al., 2020). For xFAIR, we used a Decision Tree as the 
extrapolation model and a Random Forest as the classification model suggested in the orig-
inal paper (Peng et al., 2022). The Zafar et al. baseline was implemented using a Logistic 
Regression loss function. Of these alternatives, only the method proposed by Zafar et al. 
is interpretable. We adapted the authors’ code to allow for multiple protected classes as 
necessary. Protected classes were encoded as binary features for the baselines incompat-
ible with categorical or continuous features. AdvDeb is only able to optimize for a single 
protected attribute at a time. To adjust for this, models were fit optimizing for each of the 
protected attributes and the model which performed best on the test set was chosen for each 
of the evaluation metrics giving it an advantage over the other baselines.

We evaluate six versions of our method. The most basic version (noted as “Mode”) 
considers the experts as an ensemble that predicts the most common prediction from all 
experts. Next, we consider an ensemble method that prioritizes fairness over performance 
(noted as “FairMode”) by using the Counterfactual Fairness Module and predicting the 
most common prediction from only the counterfactual-fairest models, i.e., with a maxi-
mum consistency score. Alternatively, we consider the Mixture of Experts approach using 
performance meta-learners without the Counterfactual Fairness Module to test the inter-
pretability aspect of our proposal, noted as “MOE”. Finally, our full proposal “FairMOE”, 
combines performance meta-learners, the Counterfactual Fairness Module and the Assign-
ment Module. For MOE and FairMOE, we examined non-interpretable budgets of 0% 
(fully interpretable model) and 100% (no interpretability constraints), noted as MOE0.0 , 
FairMOE0.0 , MOE1.0 , and FairMOE1.0 , respectively.
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4.3  Evaluation metrics

For thoroughness, we evaluate our results with Accuracy, F1-score, and G-mean. To 
measure fairness, we used Statistical Parity (SP)  (Cynthia et  al., 2012) and Equal-
ized Odds (EO) (Hardt et al., 2016). SP is derived from the legal doctrine of Disparate 
Impact (Davis, 2004) but disregards ground truth labels, while EO considers them (Le 
Quy et al., 2022).

FairMOE is evaluated by running each data set 10 times with different 80%/20% train-
test splits. For each iteration, the models were ranked by performance across all five met-
rics. With multiple protected classes, EO and SP are calculated for each protected class. 

Table 2  Overview of the solutions used as benchmarks including their name, underlying model(s), param-
eters, and whether or not the solution is interpretable

Model Underlying algorithm(s) Tuning parameters Interpretable?

Expert 1 Logistic regression N/A Yes
Expert 2 Decision tree Max. depth: [3, 5, 10, 15],

Min. Samples per leaf: [5, 10, 25]
Yes

Expert 3 Naïve Bayes N/A Yes
Expert 4 KNN Weights: distance,

Neighbors: [5, 9, 13, ..., 45]
Yes

Expert 5 Random forest Estimators: [10, 50, 100, 250],
Min. samples per leaf: [5, 10, 25]

No

Expert 6 LGBM Estimators: [10, 50, 100, 250],
Learning rate: [.001,.01,.1],
Min. samples per leaf: [5, 10, 25]

No

Expert 7 XGB Estimators: [10, 50, 100, 250],
Learning rate: [.001,.01,.1],
Max. dEPTH: [3, 5, 10]

No

Agarwal (Agarwal et al., 
2018)

LGBM Estimators: [10, 50, 100, 250],
Learning Rate: [.001,.01,.1],
Min. samples per leaf: [5, 10, 25]

No

Hardt (Hardt et al., 2016) LGBM Estimators: [10, 50, 100, 250],
Learning rate: [.001,.01,.1],
Min. samples per leaf: [5, 10, 25]

No

Zafar (Zafar et al., 2017) Logistic regression N/A Yes
xFAIR (Peng et al., 2022) Decision tree, random 

forest
N/A No

Fair Trees (Pereira Barata 
et al., 2023)

Random Forest N/A No

AdvDeb (Zhang et al., 
2018)

Neural Network N/A No

Mode Experts 1–7 N/A No
Fair mode Experts 1–7 N/A No
MOE0.0 Experts 1–7 N/A Yes
MOE1.0 Experts 1–7 N/A Partially
FairMOE0.0 Experts 1–7 N/A Yes
FairMOE1.0 Experts 1–7 N/A Partially
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The metrics are grouped by performance (Accuracy, F1, G-mean) and fairness (SP, EO), 
and assessed as to the model’s average ranking across these groups.

4.4  Results

4.4.1  Levels of interpretability (RQ1)

To measure the impact of interpretability on predictive performance, we test how Accu-
racy, G-Mean and F1 scores change as the Non-Interpretable Budget is increased (0–100% 
in 5pp) within each data set.

Results (Fig. 2) show that increasing the Non-Interpretable Budget can lead to predic-
tive performance increases, but the magnitude of the effect is usually small. In all except 
one data set, the increase in accuracy is less than 1%. Additionally, in some cases increas-
ing the use of more complex (non-interpretable) models worsens performance.

Importantly, results show that FairMOE performs well even in contexts where strict 
transparency is necessary. And, even when allowed to use the Non-Interpretable Budget, 
every metric quickly stabilizes when increasing the budget. We illustrate this in Fig.  3, 
showing that FairMOE does not need to resort to the total allotted non-interpretable pre-
dictions: with no interpretability constraints, FairMOE only used an average of 37.2% 
of the budget. This suggests that, in the majority of instances, fully interpretable models 
are capable of producing accurate predictions with high confidence. While non-interpret-
able models offer some performance benefits, these improvements occur on the margins 

Fig. 2  Predictive performance of FairMOE at varying budgets. The performance lines represent average 
percentage change in Accuracy, F1, and G-Mean scores over ten runs compared to the fully interpretable 
FairMOE. Higher scores represent better performance. Note that the y-axes are not on the same scale
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supporting our theory that peak performing models can be achieved while maintaining 
high interpretability.

4.4.2  Performance and fairness (RQ2)

Next, we compare how well FairMOE balances the predictive performance and fair-
ness trade-off compared to other baselines, studying each baseline’s Accuracy, F1-score, 
G-mean, SP, and EO rankings. The results depicted in Table 3 (grouped by metric type) 
show that: 

1. Adding the Counterfactual Fairness Module notably increases group fairness at the cost 
of predictive performance;

2. Performance meta-learners add interpretability and fairness to our model with only a 
minor impact on predictive performance;

3. FairMOE is competitive with state-of-the-art baselines in predictive performance and 
fairness while increasing consistency and adding interpretability;

4. The Non-Interpretable Budget increases FairMOE’s predictive performance without 
sacrificing fairness, demonstrating a cumulative advantage.

 On predictive performance, XGB and LGBM are the best individual experts. While 
both are competitive with FairMOE overall, they produce non-interpretable models and 
poorly balance fairness and predictive performance (see the rightmost column in Table 3), 
limiting their utility in domains with fairness concerns. As for fairness-aware approaches, 
Fair Trees is the top model in group fairness. However, it is the weakest model in predic-
tive performance.

Agarwal is competitive with FairMOE in both predictive performance and fairness and 
is the only model that outperforms FairMOE when considering the trade-off. Regardless, 
Agarwal’s performance is less consistent than FairMOE with significantly higher standard 
deviations, and, importantly, Agarwal produces a non-interpretable model.

FairMOE, with and without interpretability constraints, shows competitive performance 
with regard to predictive and fairness. Figure  4 shows the magnitude of between model 
disparity with regard to predictive power beyond their rankings. FairMOE and MOE are 

Fig. 3  Average total percentage 
of non-interpretable predictions 
for each budget in FairMOE and 
MOE. The dashed line indicates 
maximum budget usage
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consistently in the middle or top-half of the accuracy and F1 box plots, suggesting they are 
competitive with the baselines. This is also observed concerning fairness metrics (Fig. 5).

Ultimately, FairMOE is competitive with the state-of-the-art baselines at striking a bal-
ance between fairness and predictive performance and can do so while maintaining inter-
pretability. Even for high-risk domains, results show that a fully interpretable FairMOE 
(FairMOE0.0 ) is competitive with baselines.

4.4.3  Counterfactual fairness module (RQ3)

Comparing the results of Mode and FairMode (Table 3), it is evident that the Counterfac-
tual Fairness Module improves group fairness. Mode is one the worst-performing fairness-
aware model regarding group fairness and is only fairer than the most extreme fairness-
agnostic methods. Meanwhile, FairMode is the second-best trailing only Fair Trees. On the 
other hand, FairMode is weak in terms of predictive performance while Mode is the third-
best, demonstrating the significant trade-off between fairness and predictive performance. 
The differences between MOE and FairMOE further support these findings. However, 
adding the performance meta-learners mitigates the loss in predictive performance. Addi-
tionally, removing the interpretability constraints from MOE, leads to a significant drop in 
group fairness as predictive performance is prioritized. However, in FairMOE, the model is 
able to maintain roughly equivalent levels of fairness and predictive performance. Overall, 
the Counterfactual Fairness Module successfully improves fairness while the performance 
meta learners add predictive performance and interpretability.

Fig. 4  Accuracy, F1, and G-mean scores per solution across all trials. Higher scores signal better perfor-
mance
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4.4.4  Scalability (RQ4)

Results show that FairMOE is competitive in predictive performance and fairness with 
regard to state-of-the-art baselines while producing consistent results. However, scalability 
is key. Table 4 shows the average total train and predict time per fairness-aware model, by 
data set. It shows that, while FairMOE is slower than Hardt and xFAIR, it improves over 
both alternatives in combined predictive performance and group fairness. Also, FairMOE 
is faster than Agarwal, the leading fairness-aware algorithm in most cases. Finally, Zafar, 
the only interpretable fairness-aware baseline, is much slower than other benchmarks and 
does not scale well. Overall, FairMOE is competitive with state-of-the-art baselines in 
terms of fairness and predictive performance trade-off, interpretable, faster, and more scal-
able than some of the leading alternatives.

4.4.5  Expert assignment (RQ5)

Following the methodology proposed by  Napierala and Stefanowski (2016), we use a 
5-Nearest Neighbor algorithm to classify each sample in the testing set as either Safe, Bor-
derline, Rare, or Outlier based on the number of neighbors belonging to the same class 
label. We examine how frequently each group is being assigned to an interpretable or non-
interpretable expert and their relative accuracies. These results are in Table 5. The Diabetes 
data set is omitted from this analysis because FairMOE consistently picked all interpretable 
experts.  

Ideally, we would expect to see the majority of high-risk cases (rare and outlier) being 
handled by interpretable experts where the predictions can be easily audited. Meanwhile, 
safe and borderline cases would preferably be predicted by the most accurate expert. As 
demonstrated in RQ1, in all data sets except Bank Marketing, the interpretable experts are 
selected for a majority of the predictions. Notably, the Bank Marketing data set also has the 
largest drop in performance between the interpretable and non-interpretable experts.

Across all 8 data sets, the majority of outlier and rare samples are being assigned to 
interpretable experts suggesting that FairMOE is effective at ensuring high-risk predictions 
are interpretable. Additionally, while the non-interpretable models consistently have higher 
total accuracy, this is largely due to them being assigned a larger proportion of safe sam-
ples than the interpretable models. Despite non-interpretable models perceived ability to 
identify hidden patterns within the data, in 6 out of 8 data sets the interpretable models’ 

Fig. 5  SP and EO for each solution across all trials. Lower scores represent better performance. Note that 
the y-axes are not on the same scale
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accuracy is within one standard deviation of the non-interpretables in predicting rare cases 
and 7 out of 8 in outlier cases. Overall, the performance of non-interpretable experts is 
similar to that of interpretable experts further supporting our finding in RQ1 that peak per-
formance can be achieved without sacrificing interpretability when it is important. Future 
work will expand upon our current meta-learning technique. We envision finer-tuning of 
our method to create more hyper-specialized experts that minimize the number of high-risk 
non-interpretable predictions.

5  Discussion

This work intersects three essential concepts: predictive performance, fairness, and inter-
pretability. The interactions between each of these are complex, and each has its own set of 
unique challenges.

FairMOE utilizes a Non-Interpretable Budget to address the trade-off between predic-
tive performance and fairness. FairMOE balances the predictive performance of complex, 
non-interpretable models with the user-specified interpretability requirements with this 
budget. As our results demonstrate, FairMOE is capable of maintaining interpretability on 
more than 60% of predictions (average) without noticeable drops in performance. Further, 
our analysis demonstrates that FairMOE is effective in ensuring that high-risk cases are 
most commonly handled by interpretable experts. This finding illustrates that FairMOE is 
effective even in domains where strict interpretability is not necessary because it allows 
greater insight into the most-important, risky predictions without sacrificing predictive 
performance. Importantly, even in cases where strict interpretability is necessary, FairMOE 
performs competitively. This finding shows that FairMOE is applicable even in highly-reg-
ulated domains with strict transparency requirements. Introducing a user-defined, domain-
specific Non-Interpretable Budget allows FairMOE to be amendable to different domain 
requirements.

Next, the Counterfactual Fairness Module within FairMOE addresses the trade-off 
between interpretability and fairness. By limiting our results to our counterfactually fair 
learners, FairMOE confines itself to making fair predictions even if such a result leads to a 
non-interpretable prediction. The results illustrate that, by adding the Counterfactual Fair-
ness Module, we improve group fairness results.

Finally, we established FairMOE’s success at balancing the predictive performance and 
fairness trade-off: it is the second-best option to Agarwal. To extend our understanding of 
how FairMOE handles this trade-off, in Fig. 6, we show how each solution performs with 
varying weights on performance and fairness. Our results show that FairMOE attains its 
success via consistent performance in both prediction and fairness whereas many of the 
baselines specialize in either one or the other. We make all the data and code available for 
reproducibility purposes at https:// github. com/ joege rmino/ FairM OE.

Limitations. Results are dependent on the number and diversity of the algorithms used 
for experts in training. In real-world applications, the definition of an acceptable level of 
interpretability is an open question that a domain expert will need to define based on their 
risk tolerance. Finally, evaluation was conducted measuring fairness on individual sensitive 
attributes. Ideal fairness measures should consider the effect of multiple sensitive attributes 
simultaneously. We envision future work exploring these topics and expanding our pro-
posal to regression.

https://github.com/joegermino/FairMOE
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6  Conclusion

In this paper, we propose FairMOE, a fairness-aware solution based on the mixture of 
experts’ architecture. Our proposal is the first to consider interpretability as a continuous, 
domain-informed notion. By combining three components: predictive meta-learners, the 
counterfactual fairness module, and the assignment module, we introduce a method which 
is able to achieve peak performance in the trade-off between predictive performance and 
fairness while maintaining high levels of interpretability. Our results demonstrate that the 
inclusion of a Non-Interpretable Budget allows for customizable levels of interpretabil-
ity while improving overall performance. The counterfactual fairness module effectively 
improves group fairness performance without a significant reduction in predictive perfor-
mance. Finally, we demonstrate that FairMOE is effective in identifying higher-risk cases 
that ideally would be handled by interpretable experts. Importantly, FairMOE challenges 
the paradigm that interpretability is a binary aspect of modeling. Instead, with FairMOE, 
we introduce the idea of interpretability as a continuous domain-informed notion that best 
exploits the typical performance interpretability trade-off.
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