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Abstract
The field of ‘explainable’ artificial intelligence (XAI) has produced highly acclaimed meth-
ods that seek to make the decisions of complex machine learning (ML) methods ‘under-
standable’ to humans, for example by attributing ‘importance’ scores to input features. Yet, 
a lack of formal underpinning leaves it unclear as to what conclusions can safely be drawn 
from the results of a given XAI method and has also so far hindered the theoretical veri-
fication and empirical validation of XAI methods. This means that challenging non-linear 
problems, typically solved by deep neural networks, presently lack appropriate remedies. 
Here, we craft benchmark datasets for one linear and three different non-linear classifi-
cation scenarios, in which the important class-conditional features are known by design, 
serving as ground truth explanations. Using novel quantitative metrics, we benchmark the 
explanation performance of a wide set of XAI methods across three deep learning model 
architectures. We show that popular XAI methods are often unable to significantly outper-
form random performance baselines and edge detection methods, attributing false-positive 
importance to features with no statistical relationship to the prediction target rather than 
truly important features. Moreover, we demonstrate that explanations derived from differ-
ent model architectures can be vastly different; thus, prone to misinterpretation even under 
controlled conditions.
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1  Introduction

Only recently, a trend towards the objective empirical validation of XAI methods using 
ground truth data has been observed (Tjoa & Guan, 2020; Li et al., 2021; Zhou et al., 
2022; Arras et al., 2022; Gevaert et al., 2022; Agarwal et al., 2022). These studies are, 
however, limited in the extent to which they permit a quantitative assessment of expla-
nation performance, in the breadth of XAI methods evaluated, and in the difficulty of 
the posed ‘explanation’ problems. In particular, most published benchmark datasets are 
constructed in a way such that realistic correlations between class-dependent (e.g., the 
foreground or object of an image) and class-agnostic (e.g., the image background) fea-
tures are excluded. In practice, such dependencies can give rise to features acting as 
suppressor variables. Briefly, suppressor variables have no statistical association to the 
prediction target on their own, yet including them may allow an ML model to remove 
unwanted signals (noise), which can lead to improved predictions. In the context of 
image or photography data, suppressor variables could be parts of the background that 
capture the general lighting conditions. A model can use such information to normal-
ize the illumination of the object and, thereby, improve object detection. More details 
on the principles of suppressor variables can be found in Conger (1974); Friedman 
and Wall (2005); Haufe et al. (2014); Wilming et al. (2022). Here we adopt the formal 
requirement that an input feature should only be considered important if it has a statisti-
cal association with the prediction target, or is associated to it by construction. In that 
sense, it is undesirable to attribute importance to pure suppressor features.

Yet, Wilming et al. (2022) have shown that some of the most popular model-agnostic 
XAI methods are susceptible to the influence of suppressor variables, even in a linear 
setting. Using synthetic linearly separable data defining an explicit ground truth for 
XAI methods and linear models, Wilming et al. (2022) showed that a significant amount 
of feature importance is incorrectly attributed to suppressor variables. They proposed 
quantitative performance metrics for an objective validation of XAI methods, but lim-
ited their study to linearly separable problems and linear models. They demonstrated 
that methods based on so-called activation patterns (that is, univariate mappings from 
predictions to input features), based on the work of Haufe et al. (2014), provide the best 
explanations. Wilming et al. (2023) took this one step further and presented a minimal 
two-dimensional linear example, analytically showing that many popular XAI methods 
attribute arbitrarily high importance to suppressor variables. However, it is unclear as 
to what extent these results would transfer to various non-linear settings. In the con-
text of the lighting condition example, this recent work showed that many popular XAI 
methods could highlight every pixel containing illumination information as important. 
If the illumination information is present across all pixels of the image, an explanation 
could appear to be composed mostly of random noise, presenting little value to a user. 
We therefore necessitate that good XAI methods should be able to distinguish between 
truly important features and suppressors, and ideally inform the user of which category 
the highlighted variables belong to. Alternatively, a good XAI method should be able to 
highlight only the truly informative features used by a model, and to mask suppressors 
and other such misleading features.

Thus, well-designed non-linear ground truth data comprising of realistic correlations 
between important and unimportant features are needed to study the influence of sup-
pressor variables on XAI explanations in non-trivial settings, which is the purpose of 
this paper. We go beyond existing work in the following ways:
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First, we design one linear and three non-linear binary image classification problems, 
in which different types and combinations of tetrominoes (Golomb, 1996), overlaid on a 
noisy background, need to be distinguished. Tetrominoes are geometric shapes consisting 
of four blocks, popularized by the game Tetris ( Nintendo of America, 1989). In all cases, 
ground truth explanations are explicitly known through the location of the tetrominoes. 
Apart from the linear case, these classification problems require (different types of) non-
linear predictive models to be solved effectively.

Second, based on signal detection theory and optimal transport, we define three suit-
able quantitative metrics of ‘explanation performance’ designed to handle the case of few 
important features.

Third, using three different types of background noise (white, correlated, imagenet), we 
invoke the presence of suppressor variables in a controlled manner and study their effect on 
explanation performance.

Fourth, we evaluate the explanation performance of no less than sixteen of the most 
popular model-agnostic and model-specific XAI methods, across three different machine 
learning architectures. We compare these to four model-agnostic baselines that can serve as 
null models for explanation performance.

In doing this, we provide the first comprehensive study going beyond linear data. We 
position the XAI-TRIS datasets and metrics as tools to not only benchmark current XAI 
methods, but also to guide development of new XAI methods to overcome the susceptibil-
ity of false-positive attribution to suppressor variables.

2 � Methods

Our workflow of applying and benchmarking post-hoc XAI methods can be seen in Fig. 1. 
Given a classification dataset generated with an explicitly known ground truth control-
ling the class-conditional distribution, we train a machine learning model using the train-
ing (and validation) split of the data. Taking the trained model and test data (either as 

Fig. 1   The process of evaluating an XAI method. XAI-TRIS classification datasets are generated through 
explicitly defined tetrominoes controlling the class-conditional distribution, which serve as the ground truth 
features for explanations. Given an ML model trained on the given data, the XAI method takes test data and 
the model as input, producing explanations. These explanations are passed to performance metrics, which 
use the given ground truth as a basis for comparison
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individual samples or a batch) as the inputs to the given XAI method, we compute out-
put explanations of the same dimensionality as the input data, aimed to correspond to the 
importance of each pixel towards the trained model’s prediction output. Finally, we apply 
novel performance metrics to compare produced explanations and the ground truth for the 
given sample, giving us the explanation performance of the method, with quantitative and 
qualitative results visualized in Sect. 4. This section covers each component of Fig. 1, fol-
lowing the experimental pipeline from data generation through to output analyses.

2.1 � Data generation

For each scenario, we construct an individual dataset of 64 × 64-sized images as 
D = (x(n), y(n))

N

n=1
 , consisting of i.i.d observations (x(n) ∈ ℝD , y(n) ∈ {0, 1})Nn=1 , where feature space 

D = 642 = 4096 and N = 40, 000 . Here, x(n) and y(n) are realizations of the random vari-
ables X and Y, with joint probability density function p

X,Y (x, y).
In each scenario, we generate a sample x(n) as a combination of a signal pattern 

a
(n) ∈ ℝ

D , carrying the set of truly important features used to form the ground truth for 
an ideal explanation, with some background noise �(n) ∈ ℝ

D . We follow two different 
generative models depending on whether the two components are combined additively or 
multiplicatively.

Additive generation process For additive scenarios, we define the data generation 
process

for the n-th sample. Signal pattern a(n) = a(yn) carries differently shaped tetromino patterns 
depending on the binary class label y(n) ∼ Bernoulli(1/2) . We apply a 2D Gaussian spatial 
smoothing filter H ∶ ℝ

D
→ ℝ

D to the signal component to smooth the integration of the 
pattern’s edges into the background, with smoothing parameter (spatial standard deviation 
of the Gaussian) �smooth = 1.5 . The Gaussian filter H can technically provide infinite sup-
port to a(n) , so in practice we threshold the support at 5% of the maximum level. White 
Gaussian noise �(n) ∼ N(0, ID) , representing a non-informative background, is sampled 
from a multivariate normal distribution with zero mean and identity covariance ID . For 
each classification problem, we define a second background scenario, denoted as CORR, in 
which we apply a separate 2D Gaussian spatial smoothing filter G ∶ ℝ

D
→ ℝ

D to the noise 
component �(n) . Here, we set the smoothing parameter to �smooth = 10 . The third back-
ground type is that of samples from the ImageNet database (Deng et al., 2009), denoted 
IMAGENET. We scale and crop images to be 64 × 64-px in size, preserving the original 
aspect ratio. Each 3-channel RGB image is converted to a single-channel gray-scale image 
using the built-in Python Imaging Library (PIL) functions and is zero-centered by subtrac-
tion of the sample’s mean value.

As alluded to below, we also analyze a scenario where the signal pattern a(n) underlies 
a random spatial rigid body (translation and rotation) transformation R(n) ∶ ℝ

D
→ ℝ

D . 
All other scenarios make use of the identity transformation R(n)

◦(H◦a
(n)) = H◦a

(n) . 
Transformed signal and noise components (R(n)

◦(H◦a
(n))) and (G◦�(n)) are hori-

zontally concatenated into matrices A =
[
(R(1)

◦(H◦a
(1))),… , (R(N)

◦(H◦a
(N)))

]
 and 

E =
[
(G◦�(1)),… , (G◦�(N))

]
 . Signal and background components are then normal-

ized by the Frobenius norms of A and E : R(n)
◦(H◦a

(n)) ← (R(n)
◦(H◦a

(n)))∕||A||F and 
(G◦�(n)) ← (G◦�(n))∕||E||F , where the Frobenius norm of a matrix A is defined as 

(1)x
(n) = �(R(n)

◦(H◦a
(n))) + (1 − �)(G◦�(n)),
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��A��F∶=(
∑N

n=1

∑D

d=1
(a

(n)

d
)2)1∕2 . Finally, a weighted sum of the signal and background 

components is calculated, where the scalar parameter � ∈ [0, 1] determines the signal-
to-noise ratio (SNR).

Multiplicative generation process For multiplicative scenarios, we define the genera-
tion process

where a(n) , �(n) , R(n) , H and G are defined as above, A and E are Frobenius-normalized, and 
1 ∈ ℝ

D.
For data generated via either process, we scale each sample x(n) ∈ ℝ

D to the range 
[−1, 1]D , such that x(n) ← x(n)∕max |x| , where max |x| is the maximum absolute value of 
any feature across the dataset.

Emergence of suppressors Note that the correlated background noise scenario 
induces the presence of suppressor variables, both in the additive and the multiplica-
tive data generation processes. A suppressor here would be a pixel that is not part of the 
foreground R(n)

◦(H◦a
(n)) , but whose activity is correlated with a pixel of the foreground 

by virtue of the smoothing operator G. Based on previously reported characteristics of 
suppressor variables (Conger, 1974; Friedman & Wall, 2005; Haufe et al., 2014; Wilm-
ing et al., 2022), we expect that XAI methods may be prone to attributing importance to 
suppressor features in the considered linear and non-linear settings, leading to drops in 
explanation performance as compared to the white noise background setting.

Scenarios
We make use of tetrominoes (Golomb, 1996), geometric shapes consisting of four 

blocks (each block here being 8 × 8-pixels), to define each signal pattern a(n) ∈ ℝ
64×64 . 

We choose these as the basis for signal patterns as they allow a fixed and controllable 
amount of features (pixels) per sample, and specifically the ‘T’-shaped and ‘L’ shaped 
tetrominoes due to their four unique appearances under each 90-degree rotation. These 
induce statistical associations between features and target in four different binary clas-
sification problems:

Linear (LIN) and multiplicative (MULT)
For the linear case, we use the additive generation model Eq. (1), and for the multipli-

cative case, we instead use the multiplicative generation model. In both, signal patterns 
are defined as a ‘T’-shaped tetromino pattern aT near the top left corner if y = 0 and an 
‘L’-shaped tetromino pattern aL near the bottom-right corner if y = 1 , leading to the binary 
classification problem. Each pattern is encoded such that aT/Li,j = 1 for each pixel in the tetro-
mino pattern, positioned at the i-th row and j-th column of aT/L , and zero otherwise.

Translations and rotations (RIGID)
In this scenario, aT/L defining each class are no longer in fixed positions but are ran-

domly translated and rotated by multiples of 90 degrees according to a rigid body trans-
form R(n) , constrained such that the entire tetromino is contained within the image. In con-
trast to the other scenarios, we use a 4-pixel thick tetromino here to enable a larger set 
of transformations, and thus increase the complexity of the problem. This is an additive 
manipulation in accordance with (1).

XOR The final scenario is that of an additive XOR problem, where we use both tetro-
mino variants aT/L in every sample. Transformation R(n) is, once again, the identity trans-
form here. Class membership is defined such that members of the first class, where y = 0 , 
combine both tetrominoes with the background of the image either positively or negatively, 

(2)x
(n) =

(
1 − �

(
R(n)

◦(H(n)
◦a

(n))
))(

G◦�(n)
)
,
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such that aXOR++ = a
T + a

L and aXOR-- = −aT − a
L . Members of the opposing class, where 

y = 1 , imprint one shape positively, and the other negatively, such that aXOR+- = a
T − a

L 
and aXOR-+ = −aT + a

L . Each of the four XOR cases are equally frequently represented 
across the dataset.

Figure 2 shows two examples from each class of each classification problem and for the 
three background types—Gaussian white noise (WHITE), smoothed Gaussian white noise 
(CORR), and ImageNet samples (IMAGENET). Figure  3 in the supplementary material 
shows examples of each of the 12 scenarios across four signal-to-noise ratios (SNRs).

With each classification scenario defined, we can form the ground truth feature set of 
important pixels for a given input based on the positions of tetromino pixels as

For the LIN and MULT scenarios, each sample either contains a ‘T’ or an ‘L’ tetromino at 
a fixed position, corresponding to the fixed patterns aT and aL . Since the absence of a tetro-
mino at one location is just as informative as the presence of the other at another location, 
we augment the set of important pixels for these two settings as

Note that this definition is equivalent to Eq.  (3) for the XOR scenario. Moreover, it is 
equivalent to an operationalization of feature importance put forward by Wilming et  al. 
(2022) for the three static scenarios LIN, MULT, and XOR. Wilming et al. (2022) define 
any feature as important if it has a statistical dependency to the prediction target across the 
studied sample. In all cases, an ideal explanation method should attribute importance only 
to members of the set F+(x(n)).

For training each model and the subsequent analyses, we divide each dataset three-fold 
by a 90/5/5 split into a training set Dtrain , a validation set Dval , and a test set Dtest.

2.2 � Classifiers

We use three architectures to model each classification problem. Firstly, a Linear Logis-
tic Regression (LLR) model, which is a single-layer neural network with two output 
neurons and a softmax activation function. Secondly, a Multi-Layer Perceptron (MLP) 

(3)F+(x(n))∶=
{
d ∣

(
R(n)

◦(H◦a
(n))

)
d
≠ 0, d ∈ {1,… , 4096}

}
.

(4)F+(x(n))∶=
{
d ∣ H◦a

T
d
≠ 0 ∨ H◦a

L
d
≠ 0, d ∈ {1,… , 4096}

}
.

Fig. 2   Examples of data for each scenario, showing differences between samples of each class
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with four fully-connected layers, where each of the hidden layers uses Rectified Linear 
Unit (ReLU) activations. The two-neuron output layer is once again softmax-activated. 
Finally, we define a Convolutional Neural Network (CNN) with four blocks of ReLU-
activated convolutional layers followed by a max-pooling operation, with a softmax-
activated two-neuron output layer. The convolutional layers are specified with a progres-
sively increasing amount of filters per layer [4, 8, 16, 32], a kernel size of four, a stride 
of one, and zero-padding. The max-pooling layers are defined with a kernel size of two 
and a stride of one.

We train a given classifier f � ∶ ℝ
D
→ Y over parameterization � and Dtrain . Each net-

work is trained over 500 epochs using the Adam optimizer without regularization, with 
a learning rate of 0.0005. The validation dataset Dval is used at each step to get a sense of 
how well the model is generalizing the data. Validation loss is calculated at each epoch and 
used to judge when the classifier has reached optimal performance, by storing the model 
state with minimum validation loss. This also prevents using an overfit model. Finally, the 
test dataset Dtest is used to calculate the resulting model performance, and is used in the 
evaluation of XAI methods. We consider a classifier to have generalized the given classifi-
cation problem when the resulting test accuracy is at or above a threshold of 80%.

Each network is implemented in PyTorch, and also in Keras with a TensorFlow back-
end, so to experiment over a wider variety of XAI methods implemented using either 
the Captum (Kokhlikyan et al., 2020) or iNNvestigate (Alber et al., 2018) frameworks. 
The main text focuses on the former.

2.3 � XAI methods and performance baselines

Given a trained machine learning model, we now look to apply post-hoc XAI methods 
to test data to produce explanations, and we also define several performance baselines 
as a reference point for comparison during analyses. We compare sixteen popular XAI 
methods in our analysis. The main text focuses on the results of four: Local Interpret-
able Model Explanations (LIME) (Ribeiro et al., 2016), Layer-wise Relevance Propaga-
tion (LRP) (Bach et  al., 2015), SHapley Additive exPlanations (SHAP) (Lundberg & 
Lee, 2017) and Integrated Gradients (Sundararajan et al., 2017).

Fig. 3   Examples of generated data samples for each scenario, showing how a generated sample of Class #0 
(where y=0) for each scenario varies across four signal-to-noise ratios (SNRs) �
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Table 1   XAI Methods used with a brief description of each method and the implementation details, includ-
ing the software framework used and any specific parameterization including the baseline input used, if 
applicable

XAI method Description Implementation frame-
work, parameterization

References

Permutation feature 
importance (PFI)

Measures the change in 
prediction error of the 
model after permuting 
each feature’s value

Captum, default Fisher et al. (2019)

Integrated gradients Computes gradients along 
the path from a baseline 
input to the input sam-
ple, and cumulates these 
through integration to 
form an explanation

Captum, default, zero 
input baseline

Sundararajan et al. (2017)

Saliency Computes the gradients 
with respect to each 
input feature

Captum, default Simonyan et al. (2014)

Guided backpropagation Computes the gradient of 
the output with respect 
to the input, but ensures 
only non-negative gradi-
ents of ReLU functions 
are backpropagated

Captum, default Springenberg et al. (2015)

Guided GradCAM Computes the element-
wise product of guided 
backpropagation attribu-
tions with respect to 
a class-discriminative 
localization map in the 
final convolution layer of 
a CNN. This produces a 
coarse importance map 
for the target class as an 
explanation, the same 
size as the convolutional 
feature map, rather than 
pixel-wise over the 
whole image

Captum, default Selvaraju et al. (2017)

Deconvolution Uses a deconvolutional 
network to map features 
to pixels. An explana-
tion is produced by 
computing the gradient 
of the target output, 
only backpropagating 
non-negative gradients 
of ReLU functions

Captum, default Zeiler and Fergus (2014)

DeepLift Compares the difference 
between the activation of 
each neuron and its ‘ref-
erence activation’, and 
produces an explanation 
based on this difference

Captum, default, zero 
input baseline

Shrikumar et al. (2017)
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Table 1   (continued)

XAI method Description Implementation frame-
work, parameterization

References

Shapley value sampling Approximates shapley 
values by repeatedly 
sampling random 
permutations of input 
features and calculating 
the contribution of each 
feature to the prediction. 
An explanation is pro-
duced across an average 
of many samplings

Captum, default, zero 
input baseline

Castro et al. (2009)

Gradient SHAP Approximates shapley 
values by computing 
the expected values of 
gradients when ran-
domly sampled from the 
distribution of baseline 
samples

Captum, default, zero 
input baseline

Lundberg and Lee (2017)

Kernel SHAP Approximates shapley 
values through the use 
of LIME, setting the loss 
function, weighting ker-
nel, and regularization 
term in accordance with 
the SHAP framework

Captum, default, zero 
input baseline

Lundberg and Lee (2017)

Deep SHAP Approximates shapley 
values through the use of 
DeepLift. Computes the 
DeepLift attribution for 
each input sample with 
respect to each baseline 
sample, in accordance 
with the SHAP frame-
work

Captum, default, zero 
input baseline

Lundberg and Lee (2017)

Locally-interpretable 
model agnostic explana-
tions (LIME)

Learns a linear surrogate 
model locally to an 
individual prediction, 
perturbing and weight-
ing the dataset in the 
process, and then builds 
an explanation by inter-
preting this local model

Captum, default Ribeiro et al. (2016)

Layer-wise relevance 
propagation (LRP)

Propagates the model 
output back through the 
network as a measure of 
relevance, decomposing 
this score for each model 
in each layer based on 
their trained weight and 
activation

Captum, default Bach et al. (2015)
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The full list is detailed in Table 1. This briefly summarizes each method, and pro-
vides the details of which library was used for implementation, Captum (Kokhlikyan 
et al., 2020) or iNNvestigate (Alber et al., 2018), as well as the specific parameterization 
for each method. Generally, we follow the default parameterization for each method. 
Where necessary, we specify the baseline b as the zero input b = 0 , a common choice in 
the field (Mamalakis et al., 2022).

The input to an XAI method is a model f � ∶ ℝ
D
→ ℝ , trained according to param-

eterization � over Dtrain , the n-th test sample to be explained x(n)
test

 , as well as the base-
line reference point b = 0 for relevant methods. The method produces an ‘explanation’ 
s(f �, x

(n)
test

, b) ∈ ℝ
D.

We include four model-ignorant methods to generate ‘baseline’ importance maps for 
comparison with the aforementioned XAI methods. Firstly, we consider the Sobel filter, 
which uses both a horizontal and a vertical filter kernel to approximate first-order deriv-
atives of data. Secondly, we use the Laplace filter, which uses a single symmetrical ker-
nel to approximate second-order derivatives of data. Both are edge detection operators, 
and are given for each test sample as an input. Thirdly, we use a sample from a random 
uniform distribution U((−1, 1)D) . Finally, we use the rectified test data sample x(n)

test
 itself 

as an importance map.

Table 1   (continued)

XAI method Description Implementation frame-
work, parameterization

References

Deep Taylor decomposi-
tion (DTD)

Applies a Taylor decom-
position from a specified 
root point to approxi-
mate the sub-functions 
of a network, building 
explanations by applying 
this backward from the 
network output to input 
variables

iNNvestigate, default Montavon et al. (2017)

PatternNet Estimates activation pat-
terns per neuron through 
signal estimator S

a+− 
and back-propagates this 
through the network. 
The explanation is given 
as a projection of the 
signal in input space

iNNvestigate, default Kindermans et al. (2018)

PatternAttribution Utilises the theory of 
PatternNet to estimate 
the root point of the data 
for DTD, and yields 
the attribution w⊙ a+ 
for weight vector w and 
positive activation pat-
terns a+ . The explana-
tion is given as the 
neuron-wise contribu-
tion of the signal to the 
classification score

iNNvestigate, default Kindermans et al. (2018)
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2.4 � Explanation performance metrics

Based on the well-defined ground truth set of class-dependent features for a given sample 
F+(x(n)) , we can readily form quantitative metrics to evaluate the quality of an explanation.

2.4.1 � Precision

Omitting the sample-dependence in the notation, we define precision as the fraction of the 
k = |F+| features of s with the highest absolute-valued importance scores contained within 
the set F+ itself, over the total number of important features |F+| in the sample. We con-
strain these results to the submitted appendices, and focus on the results and analyses for 
the next two defined metrics.

2.4.2 � Earth mover’s distance (EMD)

The Earth mover’s distance (EMD), also known as the Wasserstein metric, measures the 
optimal cost required to transform one distribution to another. We can apply this to the 
cost required to transform a continuous-valued importance map s into F+ , where both are 
normalized to have the same mass. The Euclidean distance between pixels is used as the 
ground metric for calculating the EMD, with OT(s,F+) denoting the cost of the optimal 
transport from explanation s to ground truth F+ . This follows the algorithm proposed by 
Bonneel et  al. (2011) and the implementation of the Python Optimal Transport library 
(Flamary et al., 2021). We define a normalized EMD performance score as

where �max is the maximum Euclidean distance between any two pixels.

Remark  Note that the ground truth F+(x) defines the set of important pixels based on the 
data generation process. It is conceivable, though, that a model uses only a subset of these 
for its prediction, which must be considered equally correct. The above explanation perfor-
mance metrics do not fully achieve invariance in that respect. However, both are designed 
to de-emphasize the impact of false-negative omissions of features in the ground truth on 
performance, while emphasizing the impact of false-positive attributions of importance to 
pixels not contained in the ground truth.

2.4.3 � Importance mass accuracy (IMA)

Because of this, we consider a third metric, Importance Mass Accuracy (IMA). Calculated 
as the sum of importance attributed to the ground truth features over the total attribution 
in the image, this metric is akin to ‘Relevance mass accuracy’ as defined by Arras et al. 
(2022). We calculate

(5)EMD = 1 −
OT(s,F+)

�max

,

(6)IMA =

|F+|∑

i=1

si∈F
+

si∕

|s|∑

i=1

si.
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This metric achieves invariance for not penalizing false negative attribution to a subset of 
pixels in F+(x) , whilst also utilizing the whole attribution instead of a ‘top-k’ metric such 
as Precision. Not only this, but it is a direct measure of false-positive attribution, where a 
score of 1 signals a perfect explanation highlighting only ground truth features as impor-
tant. We use this metric to complement the strengths of EMD whilst also presenting an 
alternative perspective to quantifying explanation performance.

3 � Experiments

Our experiments aim to answer four main questions: 

1.	 Which XAI methods are best at identifying truly important features as defined by the 
sets F+(x) ? We do not expect that any method would achieve perfect performance for 
our metrics, as this may be unrealistic due to the aforementioned ways that our metrics 
interact with F+(x) . We hypothesize, however, that performance trends are consistent 
between scenarios. With this in mind, we do not aim to explicitly rank methods for the 
purpose of handing out recommendations for XAI methods to use in practice. Our focus 
is more toward comparing XAI method performance to baseline methods to identify 
performance weaknesses to guide future development of improved methods. With that 
in mind, the past study of Wilming et al. (2022) showed that the PatternNet and Pattern-
Attribution (Kindermans et al., 2018) methods perform best in a linear problem setting, 
so we would expect to see the same here for LIN. How this performance transitions to 
non-linear methods is yet to be seen, motivating the following experiments.

2.	 Does explanation performance for each method remain consistent when moving from 
explaining a linear classification problem to problems with different degrees of non-lin-
earity? No prior studies exist on this comparison between linear and non-linear problem 
settings, however we anticipate that it is difficult to directly compare between different 
scenarios. One difficulty is that each method requires a different trained model, and 
while our implementations are aimed to be as equivalent as possible, it has been shown 
that explanation performance is affected by classification performance (Arras et al., 
2022; Oliveira et al., 2024). Another aspect complicating comparisons across scenarios 
is due to properties of the scenarios themselves. Some XAI methods may perform better 
in the scenarios with a fixed ground truth position over the RIGID scenario.

3.	 Does adding correlations to the background noise, through smoothing with the Gaussian 
convolution filter, negatively impact explanation performance? Suppressor variables 
have been shown to negatively impact explanation performance (Haufe et al., 2014; 
Wilming et al., 2022; Oliveira et al., 2024). Here, the correlation between background 
pixels overlapping with tetromino features and background pixels near the tetromino 
invokes the presence of suppressor variables (those neighboring pixels). Knowledge 
of these background pixels may be useful to the machine learning models, for instance 
for denoising the correlated background to make the underlying classification easier. 
We therefore expect that performance for CORR scenarios will be worse than WHITE 
equivalents, although this performance difference also will likely depend on the strength 
of the correlation of the smoothing operation.

4.	 How does the choice of model architecture impact explanation performance? XAI 
methods may perform differently for different architectures. For example, GradCAM 
(Selvaraju et al., 2017) is only applicable to Convolutional Neural Network (CNN) 
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architectures, but others applicable to some or all models studied here may prefer prop-
erties of one model architecture over another. CNNs may perform better than MLPs for 
the RIGID scenario, as the invariance of translation and rotation operations is one of 
the main desirable properties of CNNs. We expect that such differences between model 
architecture will also be seen when considering the downstream task of model explana-
tion. We generate a dataset for each scenario across a range of 20 choices of � , finding 
the ‘sweet spot’ where average test accuracy over 10 trained models is at or above 80%. 
Table 2 shows the resulting � values as well as the average test accuracy for each sce-
nario, over five model trainings for datasets of size N = 40, 000 of each scenario. What 
can be seen is that a wide range of SNRs are required to model each problem, and it is 
difficult to exactly model each scenario and background type to the 80% performance 
threshold. CORR scenarios, perhaps aided by the suppressing correlated background 
pixels, achieve the best performance on average while requiring the lowest SNRs when 
compared to WHITE and IMAGENET variants. The MULT WHITE scenario is par-
ticularly difficult to model, requiring a much higher SNR to model than the CORR and 
IMAGENET variants. For training each model and the subsequent analyses, we divide 
each dataset three-fold by an 90/5/5 split into a training set Dtrain , a validation set Dval , 
and a test set Dtest . From this, we compute absolute-valued importance maps |s| for the 
intersection of test data Dtest correctly predicted by every appropriate classifier. The full 
table of training results for finding appropriate SNRs can be seen in Fig. 4 in Appendix 
B.5. Experiments are run on an internal CPU and GPU cluster, with total runtime in the 
order of a matter of hours.

4 � Results

With data generated, models trained, and experiments defined, we move to analyzing the 
explanations produced by the given set of post-hoc XAI methods. We first start with qual-
itative analysis, looking at example explanations produced for given samples in Figs.  5, 
B.7.1, and 8. Such analysis is commonly used in XAI methods papers (for example, Bach 
et al. (2015); Ribeiro et al. (2016); Lundberg and Lee (2017)), with authors assessing the 
visual quality of explanations for a chosen example, and little to no quantitative analysis 
being done to verify explanation performance empirically. As such, we focus on quantita-
tive analysis afterwards, showing boxplots of explanation performance for the EMD and 
IMA metrics in Fig. 6 and in Appendix B.7.2.

4.1 � Qualitative analysis

Figure 5 depicts examples of absolute-valued importance maps produced for a random 
correctly-predicted sample for each scenario and model. Shown are results for four XAI 
methods (Gradient SHAP, LIME, LRP, and PatternNet respectively) for each of the 
three models (LLR, MLP, CNN respectively) followed by the model-ignorant Laplace 
filter. Qualitative recovery of the signal tetromino patterns is mixed across all scenarios, 
models, and XAI methods, with no single method looking to perform the best. LIME, 
however, fails to produce sensical explanations in all cases. While for no method the 
importance is predominantly contained within the ground truth pattern, the tetrom-
ino patterns can be recognized in many cases, even at low signal-to-noise ratios. The 
MLP tends to produce noisier explanations than the CNN, especially for the complex 
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structures in the background of the ImageNet examples. We can often see noisy false-
positive attribution to statistically irrelevant features related to the image background. In 
many of the explanations for the scenarios with the CORR background using the LLR 
and MLP, we can see ‘halos’ of importance attributed to features outside, but nearby, 
the ground truth. This points to the potential use of suppressor variables by the models, 
in this case pixels outside the ground truth that are correlated with pixels inside the 
ground truth due to overlapping structures in the image background. Appendix B.7.1 
expands on the qualitative results of the main text, and Fig. 8 shows the absolute-valued 
global importance heatmaps for the LIN, MULT, and XOR scenarios, given as the mean 
of all explanations for every correctly-predicted sample of the given scenario and XAI 
method. As the RIGID scenario has no static ground truth pattern, calculating a global 
importance map is not possible.

4.2 � Quantitative analysis

Figure  6 shows explanation performance of individual sample-based importance maps 
produced by the selected XAI and baseline methods, across five models trained for each 
scenario-architecture parameterization, in terms of the EMD and IMA metrics. Appendix 
B.7.2 expands on the quantitative results of the main text, detailing results for all 16 meth-
ods studied and for our Precision metric.

We can now answer the experimental questions laid out in Sect. 3:
1. Which XAI methods are best at identifying truly important features as defined by the 

sets F+(x)?
Within most scenario-architecture parameterizations, the performances of the studied 

XAI methods are relatively homogeneous. Baseline methods also tend to perform similarly 
to one another. Interestingly, their performance is on par or even superior to various XAI 
methods in certain scenarios. Most notably, a simple Laplace edge detection filter outper-
forms nearly all other methods in the RIGID as well as the XOR scenarios, when used in 

Table 2   Results of the model training process for each classification setting, model architecture, and back-
ground type

These results are depicted as chosen Signal-to-noise ratios (SNRs), parameterized by � , as well as the aver-
age test accuracy (ACC, %)

White Corr Imagenet

� ACC​ � ACC​ � ACC​

LLR 0.03 89.7 0.02 100.0 0.1 87.5
LIN MLP 0.03 87.9 0.02 100.0 0.1 86.2

CNN 0.03 90.1 0.02 99.9 0.1 93.9
MULT MLP 0.64 85.8 0.04 89.2 0.3 91.2

CNN 0.64 100.0 0.04 98.5 0.3 91.3
RIGID MLP 0.575 88.9 0.375 99.5 0.6 92.0

CNN 0.575 100.0 0.375 100.0 0.6 99.9
XOR MLP 0.1 99.9 0.1 100.0 0.2 99.9

CNN 0.1 100.0 0.1 100.0 0.2 100.0
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Fig. 4   Average test accuracy over 10 model trainings for each problem scenario and model architecture, for 
a fixed range of signal-to-noise ratios (SNRs). As expected, the Linear Logistic Regression (LLR) model 
cannot perform above chance level for non-linear scenarios. The Convolutional Neural Network (CNN) out-
performs the Multi-Layer Perceptron (MLP) for the RIGID (translations and rotations of tetrominoes) sce-
narios as expected, perhaps due to the invariance under these properties for this architecture

Fig. 5   Absolute-valued importance maps obtained for a random correctly-predicted data sample, for 
selected XAI methods and baselines. Recovery of the ground truth pattern across all scenarios is best 
shown by XAI methods applied to a Linear Logistic Regression (LLR) model. The Multi-Layer Perceptron 
(MLP) tends to focus on noise in the case of ImageNet backgrounds, and LIME often fails to produce sensi-
cal explanations across all model architectures (Color figure online)



6886	 Machine Learning (2024) 113:6871–6910

1 3

combination with correlated backgrounds (CORR). IMA results for baseline methods in 
the RIGID scenario show a lot less variance in the boxplots of Fig. 6b than for the EMD 
equivalents in Fig. 6a.

The results show massive variability in performance for all methods across different 
problems and model architectures, so we cannot necessarily declare one specific ‘best’ 
method. For the linear case, we can recommend PatternNet and PatternAttribution as being 
able to recover signal optimally in the presence of suppressor variables, however this prop-
erty does not translate well to non-linear cases. Looking at Fig.  6, no method performs 
consistently near the, perhaps impossible, perfect EMD or IMA score. In many cases, 

Fig. 6   Quantitative explanation performance of individual sample-based feature importance maps produced 
by various XAI approaches and baseline methods on correctly-predicted test samples, as per the EMD (top) 
and IMA (bottom) metrics. Depicted are boxplots of median explanation performance, with upper and 
lower quartiles as well as outliers shown. The white areas (left) show results for white background noise 
(WHITE), whereas the light gray shaded areas (middle) shows results for the correlated background noise 
(CORR) scenarios and the darker gray areas (right) for ImageNet (IMAGENET) backgrounds (Color figure 
online)
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particularly for IMA, the scores are low ( ≤ 0.5 ) across the board, signaling around or less 
than half of the total image attribution going to truly important features. Four exceptions 
are for CNN results in the RIGID case, where LRP for WHITE and IMAGENET, GradS-
HAP for WHITE, and Integrated Gradients for WHITE achieved an average above 0.8.

LIME fails in all cases at this dimensionality, so may be unsuitable for a user looking to 
implement explainability on higher dimensional image data. Plotting results without LIME 
may help to improve visual spread of results, however as such a popular method of the 
field, it is important to study it. From Figs. 9, 10, and 11, we can see that gradient-based 
methods tend to perform similarly to one another, as well as SHAP variants to one another. 
While this may not be a surprise, when each of these variants and formulations are sup-
posed by their creators to possess benefits over other XAI methods, the reality shows a 
different story. For example, one might hope that DeepSHAP shows stronger performance 
for deeper architectures such as the CNN than GradSHAP, however this is not necessarily 
the case. It is also possible that the CNN architecture studied here is not deep enough to 
provide benefit to such a method like DeepSHAP.

We also observe that comparison in terms of the EMD metric are made difficult by the 
metrics comparably narrow range of values, with the rand method (sampling from a uni-
form distribution) averaging between 0.7 for RIGID and 0.875 otherwise being evidence 
for this.

In answer to experimental question 1, for the purposes of this study - assessing the false-
positive attribution of feature importance to non-important variables such as suppressors - 
it is not clear which individual XAI method can be considered the ‘best’, however we have 
shown that the random performance baselines can achieve competitive or even improved 
explanation performance scores over many XAI methods. It is important for strong XAI 
methods to outperform such baselines to justify their use in practice, and future methods 
should be developed with such baselines in mind.

2. Does explanation performance for each method remain consistent when mov-
ing from explaining a linear classification problem to problems with different degrees of 
non-linearity?

Here we can see again that some methods vary in performance depending on the type of 
non-linearity (most perform better for MULT with the fixed position non-linearity than for 
RIGID), with a larger spread of EMD and IMA scores (seen in the size of boxes and whisk-
ers of Fig. 6) for non-linear scenarios than for LIN.

The results for PatternNet and PatternAttribution (Kindermans et  al., 2018) shown in 
the appendix (Figs. 9, 1011, 17, and 18) were proposed in part for solving the suppressor 
problem, and we can see how this is not necessarily always the case. These methods show 
strong performance for LIN as proposed, and as was seen in Wilming et al. (2022), but do 
not look to generalize as well in most non-linear scenarios. Notably when the pattern signal 
is not in a fixed position (i.e., RIGID), these methods perform worse than when the signal 
is in a fixed position (i.e., MULT and XOR). More specifically, they also look to learn the 
complete pattern signal (i.e., the tetromino shapes for both classes), so in the XOR case 
where both shapes are present and fixed in each sample, they do outright perform the best 
as one might expect.

The results for the RIGID scenarios may be taken with a pinch of salt, as the high sig-
nal-to-noise ratios (SNRs) lead to highly salient tetrominoes in sample images. Notably, 
explanations produced for CNNs in this case tend to perform very well for both the EMD 
and IMA metrics compared to most results for any other model architecture and problem 
scenario. While this problem itself (identifying a pattern with rotation and scaling invari-
ance) is the most realistic of the four presented here, particularly when applied to CNNs, 
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the high saliency of tetrominoes is perhaps not wholly akin to realistic problem settings, 
where the relative saliency of individual objects of interest is usually far lower. The high 
saliency of the tetrominoes derives from our experimental choice to adjust SNRs to achieve 
a predefined minimal classification performance threshold, which required high SNR in 
this setting. An alternative approach could be to reverse this and fix the SNR for all sce-
narios and background types.

3. Does adding correlations to the background noise, through smoothing with the 
Gaussian convolution filter, negatively impact explanation performance?

When looking at results from WHITE to CORR, we can spot a decrease in performance 
and increase in spread in most cases. This can be attributed to the fact that the imposed 
correlations (induced through Gaussian smoothing) between background pixels correlated 
with those overlapping with F+ cause background pixels to act as suppressor variables. 
One can control the strength of this effect by increasing/decreasing the strength of the 
Gaussian smoothing’s sigma parameter. This effect can be most strongly observed when 
comparing RIGID WHITE to RIGID CORR for the IMA metric, suggesting that correla-
tions in the background do indeed increase false-positive attribution in model explanations.

4. How does the choice of model architecture impact explanation performance?
For LIN, explanation performance of all methods for all architectures is similar in most 

cases. When moving to non-linear scenarios, we can see little consistency in how archi-
tectures perform - the CNN can be seen to perform best in the RIGID case, but the MLP 
performs relatively better for the fixed tetromino position cases of MULT and XOR.

In a few cases, performance tends to decrease as model complexity increases (from the 
simple LLR to the complex CNN architecture). One notable exception is for the RIGID 
scenario, where the CNN outperforms other models. This can perhaps be explained by the 
CNN architecture tending itself well to rotation/translation invariance, whereas the proper-
ties of the MLP work better for a fixed-position ground-truth class-conditional distribu-
tion. However, in the RIGID setting nearly all XAI methods are outperformed by a simple 
Laplace edge detection filter for correlated backgrounds results. In this case, the discrep-
ancy between the MLP and CNN performance is amplified for the IMA metric, with the 
CNN performing relatively better for a few XAI methods. The CNN also performs well in 
the case of the more-complicated IMAGENET backgrounds.

We can also note that when multiple models present similar classification performance 
for a task, a user may assume or just not realize that explanation performance could be 
vastly different, as seen in the MLP vs CNN results of RIGID in Fig. 6, and qualitatively in 
Fig. 5 across all architectures.

5 � Discussion

Experimental results confirm our main hypothesis that explanation performance is lower 
in cases where the class-specific signal is combined with a highly auto-correlated class-
agnostic background (CORR) compared to a white noise background (WHITE). The dif-
ficulty of XAI methods to correctly highlight the truly important features in this setting 
can be attributed to the emergence of suppressor variables. Importantly, the misleading 
attribution of importance by an XAI method to suppressors can lead to misinterpretations 
regarding the functioning of the predictive model, which could have severe consequences 
in practice. Such consequences could be unjustified mistrust in the model’s decisions, 
unjustified conclusions regarding the features related to a certain outcome (e.g., in the 



6889Machine Learning (2024) 113:6871–6910	

1 3

context of medical diagnosis), and a reinforcement of such false beliefs in human-computer 
interaction loops. It is therefore important that future XAI methods be developed to either 
highlight only truly important features, or to inform the user of whether an importantly-
attributed variable is truly important, a suppressor, or otherwise.

We have also seen that when multiple ML architectures can be used interchangeably to 
appropriately solve a classification problem – here with classification accuracy required 
to be above 80% – they may still produce disparate explanations. Architectures not only 
differed with respect to the selection of pixels within the correct set of important features, 
but also showed different patterns of false-positive attributions of importance to unimpor-
tant background features. If one cannot produce consistent and sensical results for multi-
ple seemingly appropriate ML architectures, the risk of model mistrust may be especially 
pronounced.

A recent survey showed that one in three XAI papers evaluate methods exclusively with 
anecdotal evidence, and one in five with user studies (Nauta et al., 2023). Other work in the 
field tends to focus on secondary criteria (such as stability and robustness (Rosenfeld et al., 
2021; Hedström et al., 2022)) or subjective or potentially circular criteria (such as fidel-
ity and faithfulness (Gevaert et al., 2022; Nauta et al., 2023)). It was shown in Wilming 
et al. (2023) that faithfulness as a concept, when treated as an XAI method in itself, pro-
motes the attribution of importance to suppressor variables. We therefore doubt that such 
secondary validation approaches can fully replace metrics assessing objective notions of 
‘correctness’ of explanations, considering that XAI methods are widely intended to be used 
as means of quality assurance for machine learning systems in critical applications. Thus, 
the development of specific formal problems to be addressed by XAI methods, and the 
theoretical and empirical validation of respective methods to address specific problems, is 
necessary. In practice, a stakeholder may often (explicitly or implicitly) expect that a given 
XAI method identifies features that are truly related to the prediction target. If suppressors 
are present in the data and are highlighted as important by an XAI method, the user may 
seek to use these variables as a target for intervention (e.g. as a genetic manipulation or 
drug target in the context of a genome wide association experiment). However, any attempt 
to manipulate suppressor features to influence the prediction target would be futile. In the 
worst case, time and money would be wasted, and in any case, the false-positive attribution 
of importance to suppressor features has provided no value to the user. In contrast to other 
notions of faithfulness, the expectation that an XAI method identifies features truly related 
to the target is an objectively quantifiable property of an XAI method, and we here pro-
pose various linear and non-linear types of ground-truth data along with appropriate met-
rics to directly measure explanation performance according to this definition. While our 
work is not the first to provide quantitative XAI benchmarks (see, Tjoa and Guan, 2020; Li 
et al, 2021; Zhou et al, 2022; Arras et al, 2022; Gevaert et al, 2022; Agarwal et al, 2022), 
our work differs from most published papers in that it allows users to quantitatively assess 
potential misinterpretations caused by the presence of suppressor variables in data.

One potential limitation of the EMD metric is the strictness of limiting the ground truth 
feature set F+ to the specific pixels of tetrominoes aT/L compared to, say, the set of features 
outlining aT/L . Alternative definitions of F+ could be conceived to more flexibly adapt to 
different potential ‘explanation strategies’. Figure 7 in the appendices outlines four ‘expla-
nation strategies’ and how the EMD metric varies with each. Notably, an ‘outline’ explana-
tion performs worse than an explanation highlighting a subset of F+ . This highlights two 
interesting features of our novel metric. Firstly, a strongly performing ‘subset’ explanation 
shows that EMD does not penalize false negatives (not attributing high importance to some 
truly important features) as harshly as Precision and other ‘top-k’ metrics do. Secondly, the 
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‘outline’ explanation functions in a presumably similar way to some model-ignorant edge 
detection methods, and performs the worst of any explanation strategy shown in Fig. 7. Yet, 
we have shown such edge detection methods to be capable of outperforming many XAI 
methods in some problem scenarios. Our IMA metric also complements this potential limi-
tation of EMD , where it does not matter if the attribution of importance to features of F+ is 
spread across all features, or just more intensely attributed to a subset. This metric directly 
measures false-positive attribution of importance to features outside of F+ , and assists the 
user in understanding the role that suppressors play in model explanations. We have also 
seen that the EMD metric produces scores over quite a small range, where a ‘low’ EMD 
score is hard to achieve, even for a truly random explanation (rand). This contributes to 
the close distribution of results of Figs. 6a and 9, making experimental question 1 tougher 
to answer. Future work will look into the development of improved metrics to quantita-
tively evaluate XAI methods more robustly. For example, we can use the null distribu-
tion to normalize/standardize the EMD metric, either by subtracting the null mean or by 
subtracting the mean and dividing by the null standard deviation, thus widening the range 
of realistically attainable scores. This benchmark focuses on the issue of ‘correctness’ of 
explanations, so we will also unify the XAI-TRIS benchmarks and (improved) metrics with 
‘secondary’ quality metrics such as robustness and, potentially, faithfulness/fidelity. Doing 
so will widen the characteristics studied by each given metric, and will provide a more 
comprehensive overview of the performance of XAI methods beyond ‘correctness’.

While we compare a total of 16 XAI methods, the space of possible neural network 
architectures is too vast to be represented; therefore we only compared one MLP and one 
CNN architecture here. However, our experiments hopefully serve as a showcase for our 
benchmarking framework, which can be easily extended to other architectures. Finally, 
our framework serves much needed validation purposes for methods that are conceived to 
themselves play a role in the quality assurance of AI. As such, we expect that the benefits 
of our work far outweigh potential negative implications on society, if any. A possible risk, 
even if far-fetched, would be that one may reject a fit-for-purpose XAI method based on 
empirical benchmarks such as ours, which do not necessarily reflect the real-world setting 
and may hence be too strict.

Future work will also focus on integration of the XAI-TRIS benchmarks with other 
related benchmarks (Wilming et al., 2022; Oliveira et al., 2024) into one platform, aiming 
to test the performance of XAI methods across a suite of domains and problems. We also 
plan to extend this with the creation of more realistic benchmarks in the domains of medi-
cal imaging and natural language processing. With the availability of such a unified bench-
mark suite, the possibility of developing fit-for-purpose and goal-driven XAI methods is 
open to researchers.

6 � Conclusion

We have used a data-driven generative definition of feature importance to create XAI-
TRIS, synthetic datasets with well-defined ground truth explanations, and have used these 
to provide an objective assessment of XAI methods when applied to various classifica-
tion problems. Furthermore, we have defined new quantitative metrics of explanation per-
formance and demonstrated that many popular XAI methods do not behave in an ideal 
way when moving from linear to non-linear scenarios. Our results have shown that XAI 
methods can even be outperformed by simple model-ignorant edge detection filters in the 
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RIGID use case, in which the object of interest is not located in a static position. Finally, 
we have shown that XAI methods may provide inconsistent explanations when using dif-
ferent model architectures under equivalent conditions. Future work will be to develop ded-
icated performance benchmarks in more complex and application-specific problem settings 
such as medical imaging.

Appendix A: MLJ contribution information sheet

What is the main claim of the paper? Why is this an important contribution to the machine 
learning literature?

We claim that many post-hoc explanation methods consistently and reproducibly high-
light certain input features that have no statistical dependency to the target variable pre-
dicted by the model. The existence of such so-called suppressor variables, and the false 
positive attribution of such variables as important, can lead to severe misinterpretations, 
which raises concerns regarding the correctness and utility of â€˜explanationsâ€™ pro-
vided by explanation methods.

We create benchmark image datasets for one linear and three non-linear classification 
scenarios, in which the important class-conditional features are known by design. These 
scenarios are based on different types and combinations of tetrominoes (Golomb, 1996), 
overlaid on one of three types of noisy backgrounds. One of these background types, white 
noise smoothed by a Gaussian filter, induces the presence of suppressor variables through 
the correlation of background pixels overlapping the tetromino with those just of the noisy 
background. In all cases, ground truth explanations are explicitly known through the loca-
tion of the tetrominoes in the sample.

we develop novel performance metrics, one based on the Earth mover’s distance of 
transforming the ‘energy’ of a given explanation into the ground truth explanation, and 
use this to show that in many cases, the presence of induced suppressor variables hinders 
explanation performance for many popular XAI methods. Another metric directly meas-
ures the false positive attribution of model explanations through the proportion of impor-
tance attributed to ground truth features over the total attribution of the explanation. These 
two metrics complement each other well.

Through our experimental results we draw other conclusions, including that explana-
tions produced for different equally performing ML architectures can be very inconsistent. 
We show that popular explanation methods are sometimes unable to outperform random 
performance baselines and edge detection methods. We highlight that secondary metrics 
such as faithfulness are currently not sufficient to assess ML explanation quality compared 
to objective metrics focused on the ‘correctness’ of explanations, such as those presented 
here.

The importance of these claims is that machine learning model explanations are prone 
to misinterpretation under such inconsistencies. For example, one may assume that equally 
performing models would produce equally performing explanations, however this is not 
always true. One may have chosen a particular architecture based on other properties of it, 
and end up with misleading or nonsensical explanations. We necessitate that for XAI to be 
deployed in high-stakes fields, such risks should be mitigated. Our approach is a rigorous 
and objective evaluation of the performance of current explanation methods, which can 
lead to the development of stronger and more reliable methods in the future.

What is the evidence you provide to support your claim? Be precise.
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We conduct an extensive set of empirical experiments across 4 image classification 
problem scenarios, 3 background types, 3 model architectures, 16 explanation methods, 
4 performance baselines, and 3 metrics. We carefully construct the important class-condi-
tional features in each problem, which can serve as ground truth explanations. We assess 
many popular post-hoc XAI methods and quantify their ‘explanation performance’ using 
metrics from signal detection theory such as Earth mover’s distance, IMA , and precision, 
and show that such methods attribute importance to suppressor variables and can lead to 
misleading interpretations.

Through our experimental results we observe behavior including that explanations pro-
duced for different equally performing ML architectures can be very inconsistent. We show 
that popular explanation methods are sometimes unable to outperform random perfor-
mance baselines and edge detection methods for our developed performance metrics. We 
discuss, using related literature, that secondary metrics such as faithfulness are currently 
not sufficient to assess ML explanation quality compared to objective metrics focused on 
the ‘correctness’ of explanations, such as those presented here.

What papers by other authors make the most closely related contributions, and how is 
your paper related to them?

Several works in the XAI field have moved towards quantitative evaluation of XAI 
methods using ground truth data (Tjoa & Guan, 2020; Li et al., 2021; Zhou et al., 2022; 
Arras et al., 2022; Gevaert et al., 2022; Agarwal et al., 2022). However, these studies are 
limited in the extent to which they perform quantitative assessment, and many such stud-
ies do not construct their benchmark datasets in a way that realistic correlations between 
class-dependent and class-agnostic features (i.e., the foreground/object in an image vs. the 
background) are included. In practice, these correlations can give rise to features acting as 
suppressor variables. These works do not focus on such variables and our previous work is 
the only such work to do so.

Wilming et al. (2022), published in ECML 2022, took a similar approach to that shown 
here, yet focused on a linear problem for one model architecture, and did not make use of 
random performance baselines to compare XAI methods to. Wilming et  al. (2023) also 
looked into quantifying explanation performance in the presence of suppressors using a 
two-dimensional linear example, however the focus there was on analytically deriving the 
exact influence of suppressors on produced explanations.

Have you published parts of your paper before, for instance in a conference? If so, give 
details of your previous paper(s) and a precise statement detailing how your paper pro-
vides a significant contribution beyond the previous paper(s).

The content of this paper is entirely original. Some ideas discussed in this paper have 
already been voiced in our prior work (Haufe et  al., 2014; Wilming et  al., 2022, 2023). 
However, our current paper goes beyond these through focusing on an extensive set of 
empirical experiments across 4 image classification problem scenarios, 3 background 
types, 3 model architectures, 16 explanation methods, 4 performance baselines, and 3 
metrics.

Suggested Reviewers Pieter-Jan Kindermans (pikinder@google.com): Author of Pat-
ternNet and PatternAttribution.

Moritz Grosse-Wentrup (moritz.grosse-wentrup@univie.ac.at): Expert in XAI and 
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Max Welling (M.Welling@uva.nl): Esteemed machine learning expert with interest in 
XAI.

Robert Jenssen (robert.jenssen@uit.no): Professor of machine learning with track record 
in XAI.
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Appendix B

The authors confirm that we bear all responsibility in case of violation of rights of any kind 
in the data and results shown in this work.

ImageNet

We sample data from the ImageNet-1k subset (Deng et  al., 2009), following the license 
specified here https://​image-​net.​org/​downl​oad.​php.

In the ImageNet-1k subset, there are only three people categories (scuba diver, bride-
groom, and baseball player) included in the 1,000 classes, versus 2,832 people categories 
in the full set. There is also the possibility of people-related images co-existing in images 
of other classes, which has been noted (Prabhu & Birhane, 2020). Data from these classes 
can be discarded if necessary.

Alternatives can be used directly as a background type here to replace ImageNet, for 
example PASS (Asano et al., 2021), published in the NeurIPS Datasets and Benchmarks 
track in 2021. This ImageNet replacement dataset only contains images with a CC-BY 
license, as well as containing no images of humans. Replacement of ImageNet images in 
our work is as simple as placing images in the respective folder for the data generation step 
to handle, following the instructions outlined in the next sub-section and the corresponding 
GitHub repository.

Code and data

All code for generating data and performing model training and XAI analysis is available 
on GitHub: https://​github.​com/​brain​datal​ab/​xai-​tris. There, we provide instructions on how 
to run each step of the analysis pipeline as well as detailing corresponding configuration 
fields.

To download the ImageNet data, we made an account and agreed the license terms on 
https://​huggi​ngface.​co/​datas​ets/​image​net-​1k and subsequently downloaded the data. Here, 
we used the validation set as the N = 40, 000 set suited the volume requirement for our 
analysis. We of course advise anyone planning to do similar analysis on a model pre-
trained with ImageNet data to use the N = 100, 000 test set instead.

Each N = 40, 000 dataset generated for a given classification scenario and background 
type pair is 1.52 GB in size. For the lower-dimensional 8 × 8-px data and experiments 
shown in supplementary materials Sect. B.8, generating N = 10, 000 datasets for all eight 
scenario and background type pairs is around 62 MB in total size, and was combined in 
one file due to this much lower volume requirement. Each scenario’s dataset is saved as a 
file 

 containing a python dictionary

 where 

https://image-net.org/download.php
https://github.com/braindatalab/xai-tris
https://huggingface.co/datasets/imagenet-1k
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 and 

. Image scale 

 is the scaling of the image dimensionality d from the original 8 × 8-px images to the 
64 × 64-px images shown in the main text, pattern scale 

 is the scaling of the tetromino pattern (width in pixels), and 0.0 ≤ � ≤ 1.0 parameter-
izes the signal-to-noise ratio.

 is a Python

 collection specified as 

 Each field can be accessed programmatically via the name, for example

 returns the test data xtest of the dataset. The

 fields are the tetromino pattern masks which form the ground truth for explanations.

Compute

Experiments were run on a cluster consisting of four Nvidia A40 GPUs, where each model 
training took roughly between three and twenty minutes to complete, depending on archi-
tecture. Time estimation for running XAI methods is more rough to calculate and depends 
on each method, but in total for all models and methods for a given scenario’s N = 2000 
test set, this took between 24 and 48 h of compute time per GPU on the cluster. Quantita-
tive analysis took roughly a further 24  h of compute per scenario on a cluster of AMD 
EPYC 7702 CPUs, with six threads used for each of the 12 scenarios.
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Fig. 7   EMD scores for the 8 × 8 ground truth as well as four ‘explanation strategies’. Here, we can see that 
the EMD metric does not penalize an explanation highlighting a subset of truly important features com-
pared to an explanation highlighting the outline of the ground truth. This shows that the EMD penalizes 
false negatives (not attributing high importance to truly important features) less than a ‘top-k’ metric like 
Precision would. The ‘outline’ strategy in the third column produces an explanation presumably similar to a 
model-ignorant edge detector, which has the lowest EMD score of the strategies shown, yet we have shown 
such edge detectors can outperform many XAI methods in some problem scenarios

Due to smaller compute requirements, we can also recommend that if one wants to 
explore the code and data with smaller compute requirements, the 8 × 8-px data shown in 
supplementary materials Sect. B.8 is also representative of a strong benchmark for XAI 
methods. Code and instructions to run it have also been provided in the GitHub repository 
linked in the above supplementary materials Sect. Appendix B.2.

Data

Here, we expand on Fig. 2 with Fig. 5, which shows an example of each scenario across 
four choices of signal-to-noise ratio (SNR), parameterized by �.

Explanation methods and model training

Here, we detail the full suite of 16 XAI methods used in our analysis, with a brief descrip-
tion along with the reference and any parameterization details. In the main text, we focus 
on XAI methods available with the Captum (Kokhlikyan et  al., 2020) framework for 
explaining PyTorch models. We also make use of methods available in the iNNvestigate 
(Alber et al., 2018) library, through training equivalent models for the Keras framework.

Earth mover’s distance

Explanation performance

This section further elaborates results of our experiments on validating the performance of 
XAI methods. In Figs. 9 and 11 we also show methods available in the iNNvestigate (Alber 
et al., 2018) library, through training equivalent models for the Keras framework. We note 
that there were some issues in convergence for CNN models for the XOR scenarios with 
the required Keras framework, even under seemingly equivalent conditions such as fixed 
random seeds and He-normal weight initialization. Our model architectures have been cho-
sen as a showcase of the datasets and benchmarks of this work, and other architectures may 
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have better or worse performance on the same XAI methods, but this was not a focus of 
this work. As such, we do not show the corresponding results for these methods (Pattern-
Net, PatternAttribution, Deep Taylor Decomposition) in the XOR-CNN problem setting, so 
to promote a fair comparison of methods.

Qualitative results

In Fig. 8, we can see absolute-valued global importance maps for selected XAI methods 
and baselines, calculated as the mean importance value over all correctly predicted sam-
ples. RIGID scenarios involving translations and rotations of the tetromino signal pattern 
are not included as they have no fixed ground truth position.

Quantitative results

In Figs. 9, 10, and 11 we can see the full quantitative results for the EMD , IMA , and Preci-
sion metrics respectively, across all XAI methods and baselines. We can also see results 
for the PatternNet, PatternAttribution, and Deep Taylor Decomposition (DTD) methods, 
which are part of the Keras-based iNNvestigate framework (Alber et al., 2018).

8x8 Benchmarks

The benchmark was originally designed around 8 × 8-px tetromino images, scaled up to 
64 × 64-px with the inclusion of the ImageNet data as a third background type. This was 
done to improve the robustness and real-world applicability of the datasets and benchmarks 
present in this work. The original results for the 8 × 8-px data with 1-px thick tetrominoes 
can be seen in this section. Figure 12 shows example data for both classes and also across a 
range of four � values. For CORR backgrounds, we set �smooth = 3.0 for the smoothing fil-
ter, and no pattern smoothing was incorporated. Here, each scenario was constructed with 
sample size N = 10, 000 and with an 80/10/10 train/val/test split, with 25 datasets per sce-
nario being used for analyses.

The Linear Logistic Regression (LLR) model in these experiments was the same sin-
gle-layer neural network with two output neurons and a softmax activation function. The 
Multi-Layer Perceptron (MLP) similarly has four fully-connected layers and Rectified 
Linear Unit (ReLU) activations, and each of the fully-connected hidden layers halves 
the input size, i.e. [64, 32, 16, 8]. The two-neuron output layer was once again softmax-
activated. Finally, the Convolutional Neural Network (CNN) was defined as four blocks 
of ReLU-activated convolutional layers followed by a max-pooling operation, with a 
softmax-activated two-neuron output layer. The convolutional layers are specified with 
four filters, a kernel size of two, a stride of one, and padding such that the input and out-
put shapes match. This padding technique was used to improve pixel utilization across 
each convolution, as well as to mitigate shrinking outputs of the already relatively small 
images, by adding extra filler pixels (set to values of zero) around the edge of each 
image. The max-pooling layers are defined with a kernel size of two and a stride of two. 
As with the CNN architecture of the main text, some popular CNN architecture features 
(such as batch normalization) are unavailable here due to lack of implementation sup-
port by some XAI methods.
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Fig. 8   Absolute-valued global importance maps calculated as the mean importance value over all correctly pre-
dicted samples, for selected XAI methods and baselines. RIGID scenarios involving translations and rotations of 
the tetromino signal pattern are not included as they have no fixed ground truth position. CORR scenarios with 
correlated background can be seen to produce noisier global importance maps, suggesting that this setting induces 
suppressor variables in the background, which are difficult for XAI methods to distinguish from the true signal 
pattern. Results for the ImageNet background also tend to show noisier global explanations, suggesting that the 
complicated and variable features of this background type present a challenge to the models and corresponding 
XAI methods. LIME fails to produce any meaningful explanations yet again, suggesting an issue with this scale of 
image. The results of supplementary materials Sect. B.8 show better performance for LIME with the smaller 8 × 8

-px image benchmark
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Fig. 9   EMD metric based on the Earth Mover’s Distance (EMD) for every XAI method tested, separated by 
model architecture and depicted as boxplots of median and quartile performance scores. Guided GradCAM 
is only implemented for CNN architectures, and Keras models required for PatternNet, PatternAttribution, 
and Deep Taylor Decompostion (DTD) struggled to converge for the XOR scenarios as stated above, so 
these are excluded from the corresponding sub-plots. Some methods see a drop in explanation performance 
as model complexity increases, from the Linear Logistic Regression (LLR) model to a Convolutional Neu-
ral Network (CNN). In the RIGID CORR case, the model-ignorant Laplace filter outright performs the best 
for explanations of MLP decisions and nearly so for the CNN. SHAP variants DeepSHAP, GradSHAP, and 
Shapley Value Sampling perform very similarly to one another in most cases across all model types, despite 
being formulated to target particular problems. No XAI method performs outright the best across all sce-
narios
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Fig. 10   IMA metric results for every XAI method tested, separated by model architecture and depicted 
as boxplots of median and quartile performance scores. Guided GradCAM is only implemented for CNN 
architectures, and Keras models required for PatternNet, PatternAttribution, and Deep Taylor Decompostion 
(DTD) struggled to converge for the XOR scenarios as stated above, so these are excluded from the cor-
responding sub-plots. For the most part, results are relatively consistent with the above EMD results of 
Fig. 9. Some methods see a drop in explanation performance as model complexity increases, from the Lin-
ear Logistic Regression (LLR) model to a Convolutional Neural Network (CNN). In the RIGID CORR 
case, the model-ignorant Laplace filter outright performs the best for explanations of MLP decisions and 
nearly so for the CNN. SHAP variants DeepSHAP, GradSHAP, and Shapley Value Sampling perform very 
similarly to one another in most cases across all model types, despite being formulated to target particu-
lar problems. One noticeable difference between the EMD results of Fig. 9 and the results shown here is 
that PatternAttribution performs outright best for LIN WHITE under the LLR and MLP, and XOR WHITE 
under the MLP. In contrast, PFI performs strongly for many scenarios under the CNN, but poorly under the 
MLP. No XAI method performs outright the best across all scenarios
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Fig. 11   Precision score for every XAI method tested, separated by model architecture and depicted as box-
plots of median and quartile performance scores. Most methods outperform the baseline methods for most 
model-scenario parameterization pairs. The ‘x’ method, using input data as reference point of explanation, 
performs better for scenarios with higher signal-to-noise ratio (SNR), as the tetromino patterns will, on 
average, be more salient in the data there, thus present higher precision on average. Namely, the RIGID 
WHITE and IMAGENET scenarios generally require a higher SNR to be appropriately modeled. Pattern-
Net and PatternAttribution, designed to nullify the influence of suppressor variables, generally perform well 
in the LIN and XOR WHITE cases, similar to the results shown by Wilming et al. (2022), however these 
methods struggle in various other non-linear problem scenarios. LIME struggles across all scenarios, but 
performs better in the results shown in supplementary materials Sect. B.8, with the smaller 8 × 8-px image 
benchmark. Similarly to the results of 9, no XAI method performs outright the best across all scenarios
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Fig. 12   Examples of generated 8 × 8-px data samples for each scenario, showing how an example for each 
scenario varies across four signal-to-noise ratios (SNRs) � (top)
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Fig. 13   Average test accuracy over 10 model trainings for each problem scenario and model architecture 
of the 8 × 8-px setting, for a fixed range of signal-to-noise ratios (SNRs). As expected, the Linear Logistic 
Regression (LLR) model cannot perform above chance level for non-linear scenarios. The Convolutional 
Neural Network (CNN) would be expected to outperform the Multi-Layer Perceptron (MLP) for the RIGID 
(translations and rotations of tetrominoes) scenarios due to the invariance under these properties for this 
architecture. However, performance is comparable, with the MLP obtaining an average test accuracy above 
the 80% threshold at a lower SNR than the CNN. This may be partially due to the compromise in the archi-
tecture of the CNN, where we were not able to use Batch Normalization due to incompatibility with some 
XAI frameworks and methods

Table 3   Results of the model 
training process for each 
classification setting, model 
architecture, and background 
type in the 8 × 8-px setting

These results are depicted as chosen Signal-to-noise ratios (SNRs), 
parameterized by � , as well as the average test accuracy (ACC, %)

White CORR

� ACC​ � ACC​

LLR 0.1800 88.9 0.0125 99.9
LIN MLP 0.1800 87.9 0.0125 99.9

CNN 0.1800 83.0 0.0125 86.4
MULT MLP 0.7000 93.6 0.1000 99.4

CNN 0.7000 83.1 0.1000 90.6
RIGID MLP 0.6500 91.9 0.2000 99.9

CNN 0.6500 93.7 0.2000 88.8
XOR MLP 0.3500 99.5 0.1500 100.0

CNN 0.3500 95.2 0.1500 99.5
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Fig. 14   Absolute-valued importance maps obtained for a random correctly-predicted 8 × 8-px data sample, 
for selected XAI methods and baselines. Recovery of the ground truth pattern across all scenarios is best 
shown by XAI methods applied to a Linear Logistic Regression (LLR) model
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Fig. 15   Absolute-valued global 
importance maps calculated as 
the mean importance value over 
all correctly predicted 8 × 8-px 
scenario samples, for selected 
XAI methods and baselines. 
RIGID scenarios involving 
translations and rotations of the 
tetromino signal pattern are not 
included as they have no fixed 
ground truth position. CORR 
scenarios with correlated back-
ground can be seen to produce 
noisier global importance maps, 
suggesting that this setting 
induces suppressor variables 
in the background, which are 
difficult for XAI methods to 
distinguish from the true signal 
pattern
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Fig. 16   EMD metric based on the Earth Mover’s Distance (EMD) for every XAI method tested in the 8 × 8

-px setting, separated by model architecture and depicted as boxplots of median and quartile performance 
scores. Consistent with the results of Fig. 18, explanation performance tends to decrease as model complex-
ity increases, from the Linear Logistic Regression (LLR) model to a Convolutional Neural Network (CNN). 
An exception is seen for RIGID scenarios where most XAI methods outperform the Multi-Layer Perceptron 
(MLP) equivalent. In this case, the model-ignorant Laplace filter performs the best across both architectures
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Fig. 17   Precision score for every XAI method tested in the 8 × 8-px setting, separated by model architec-
ture and depicted as mean and standard deviation performance scores. Most methods outperform the base-
line methods for most model-scenario parameterization pairs. The ‘x’ method, using input data as reference 
point of explanation, performs better for scenarios with higher signal-to-noise ratio (SNR), as the tetro-
mino patterns will, on average, be more salient in the data there, thus present higher precision on average. 
Namely, the RIGID and WHITE scenarios generally require a higher SNR to be appropriately modeled. 
Outside of this, performance for XAI methods for the Convolutional Neural Network (CNN) is comparable 
to baseline methods
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Fig. 18   Quantitative explanation performance of individual sample-based feature importance maps pro-
duced by various XAI approaches and baseline methods on correctly-predicted 8 × 8-px scenario test sam-
ples, as per the EMD metric. Depicted are boxplots of median explanation performance, with upper and 
lower quartiles as well as outliers shown. The white area (left) shows results for white background noise 
(WHITE), whereas the gray shaded area (right) shows results for the correlated background noise (CORR) 
scenarios. Explanation performance decreases as model complexity (from LLR to MLP to CNN) increases, 
with the exception of the RIGID scenarios, where the CNN is better suited to the non-static ground truth 
patterns present. Unlike results seen for linear data (Wilming et al., 2022), PatternNet and PatternAttribu-
tion do not outright outperform other XAI methods for most configurations
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Figure 13 shows the training results across ten � values along with Table 3 which shows 
the chosen � values used for analysis. Each network was trained over 500 epochs using the 
Adam optimizer without regularization, with a learning rate of 0.004 for the LIN, MULT, 
and XOR scenarios, and 0.0004 for the RIGID scenario.

Figures 14 and 15 show qualitative results for local and global explanations respectively, 
and Figs. 16 and 17 show quantitative results for the EMD and Precision metrics respectiv
ely.
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