
Vol.:(0123456789)

Machine Learning (2024) 113:6341–6371
https://doi.org/10.1007/s10994-024-06572-5

1 3

Kalt: generating adversarial explainable chinese legal texts

Yunting Zhang1 · Shang Li1 · Lin Ye1 · Hongli Zhang1 · Zhe Chen1 · Binxing Fang1

Received: 21 June 2023 / Revised: 11 March 2024 / Accepted: 28 May 2024 /  
Published online: 21 June 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2024

Abstract
Deep neural networks (DNNs) are vulnerable to adversarial examples (AEs), which are 
well-designed input samples with imperceptible perturbations. Existing methods generate 
AEs to evaluate the robustness of DNN-based natural language processing models. How-
ever, the AE attack performance significantly degrades in some verticals, such as law, due 
to overlooking essential domain knowledge. To generate explainable Chinese legal adver-
sarial texts, we introduce legal knowledge and propose a novel black-box approach, knowl-
edge-aware law tricker (KALT), in the framework of adversarial text generation based on 
word importance. Firstly, we invent a legal knowledge extraction method based on Key-
BERT. The knowledge contains unique features from each category and shared features 
among different categories. Additionally, we design two perturbation strategies, Strengthen 
Similar Label and Weaken Original Label, to selectively perturb the two types of features, 
which can significantly reduce the classification accuracy of the target model. These two 
perturbation strategies can be regarded as components, which can be conveniently inte-
grated into any perturbation method to enhance attack performance. Furthermore, we pro-
pose a strong hybrid perturbation method to introduce perturbation into the original texts. 
The perturbation method combines seven representative perturbation methods for Chinese. 
Finally, we design a formula to calculate interpretability scores, quantifying the interpreta-
bility of adversarial text generation methods. Experimental results demonstrate that KALT 
can effectively generate explainable Chinese legal adversarial texts that can be misclassi-
fied with high confidence and achieve excellent attack performance against the powerful 
Chinese BERT.
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1 Introduction

Deep neural networks (DNNs) are widely applied in various fields, such as natural lan-
guage processing (NLP) (Devlin et  al., 2019; Liu et  al., 2019), computer vision (CV) 
(Zeiler & Fergus, 2014; Jin et al., 2021), and cyber security (Wu et al., 2023; Luo et al., 
2023). However, recent studies (Szegedy et al., 2014; Goodfellow et al., 2015) have found 
that DNNs are vulnerable in the face of adversary attacks. Adversarial examples (AEs) are 
well-designed input samples with imperceptible perturbations, which can confuse DNNs. 
Research on AE generation methods can grasp the weaknesses of current mainstream mod-
els and lay the foundation for designing corresponding defense measures and robustness 
assessment methods for deep learning (DL) models (Chen et al., 2023).

The majority of current research on AEs is focused on the field of CV (Szegedy 
et  al., 2014; Goodfellow et  al., 2015). However, Gao et  al. (2018), Alzantot et  al. 
(2018), Li et  al. (2020), Chen et  al. (2022) show that DNNs are also vulnerable to 
AEs in NLP. Unlike continuous image data, text is discrete, rendering the AE gen-
eration methods used in the CV field not directly transferable to the domain of NLP. 
Existing token-level adversarial text generation methods are typically designed in a 
framework based on word importance (Gao et al., 2018; Jin et al., 2020; Zhang et al., 
2023). The framework includes two stages: the ranking stage and the perturbation 
stage. In the ranking stage, we calculate word importance scores and sort the words 
in descending order based on the scores. In the perturbation stage, we introduce per-
turbations sequentially into the important words. Based on various word importance 
scoring methods (Xu & Du, 2020; Gao et  al., 2018; Wang et  al., 2019) and pertur-
bation methods (Li et  al., 2019; Jin et  al., 2020; Garg & Ramakrishnan, 2020; Li 
et al., 2020, 2021) proposed for English texts, the work of Wang et al. (2019), Zhang 
et  al. (2020), Cheng et  al. (2020), Zhang et  al. (2023) designs adversarial text gen-
eration methods for Chinese texts, taking into account the linguistic characteristics of 
Chinese.

However, relatively few studies on verticals are available. In recent years, the 
development of smart justice has increasingly popularized the application of artifi-
cial intelligence in the judicial domain. Charge classification is a fundamental and 
core task in smart justice. Recent studies have shown that this task can be accom-
plished through DL models (Li et al., 2019, 2020), significantly enhancing the work 
efficiency of judges and lawyers. However, the susceptibility of DNNs to legal adver-
sarial text attacks may lead to severe consequences such as misjudgments. Research 
on adversarial text generation in the legal domain can provide AEs for adversarial 
training, thereby enhancing the robustness of the target model through retraining. 
Consequently, there is an urgent need for research on legal adversarial text generation 
methods. Adversarial text generation methods designed for common domains often 
overlook domain knowledge, resulting in generated adversarial texts that considerably 
differ in meaning from the original texts. Therefore, we need to devise an adversar-
ial text generation method that produces adversarial texts that are understandable to 
humans in their original intent but trigger errors in DL models.

To address this issue, we propose the Knowledge-Aware Law Tricker (KALT) in the 
frame of adversarial text generation based on word importance. KALT employs legal 
knowledge to improve the generation of Chinese adversarial texts and advance the attack 
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to DL models of charge classification. Firstly, we invent a knowledge extraction method 
based on KeyBERT (Grootendorst, 2020). After extracting the legal knowledge of each 
label, we apply the extracted knowledge to the perturbation stage. In addition, we design 
two perturbation strategies: Strengthen Similar Label (SSL) and Weaken Original Label 
(WOL). The SSL strategy aims to strengthen the unique features of the similar category. 
Meanwhile, the WOL strategy aims to weaken the unique features of the original cate-
gory so that the shared features take effect. These two perturbation strategies can be inte-
grated into any adversarial text generation method based on word importance designed for 
common domains, endowing KALT with high scalability. These strategies also render the 
adversarial text generation process interpretable, facilitating human understanding of the 
original intent of the text. Furthermore, we propose a novel hybrid perturbation method 
named Hybrid-7, which includes seven Chinese perturbation methods. The seven pertur-
bation methods are Shuffle, Splitting-Character (SC), Tradition, Pinyin, Synonyms, Word 
Embedding, and BERT-MLM. Hybrid-7 introduces various perturbations into the original 
texts and significantly reduces the classification accuracy of the target model. Finally, to 
more intuitively demonstrate the interpretability of the proposed KALT, we introduce a 
formula for calculating interpretability scores to quantify interpretability.

Figure  1 presents an example of a Chinese legal adversarial text generated with 
KALT. This adversarial text incorporates legal knowledge into the generation process 
by replacing the keywords “knife” and “death” in the charge of intentional homicide 
with their synonyms “blade” and “perish”, which are not in the predefined vocabu-
lary. At this point, the keyword “slightly injured” in the charge of intentional injury 
would cause the target model to misclassify the adversarial text as intentional injury. 
At the same time, humans can still understand the original intent of the text. It dem-
onstrates that introducing legal knowledge makes the adversarial text generation pro-
cess interpretable, misleading deep learning models without affecting human under-
standing of its original intent.

We have conducted experiments on a real-world law dataset called CAIL (Xiao 
et  al., 2018), containing 2,676,075 criminal cases in Mainland China. The experimental 
results demonstrate that KALT generates effective and readable adversarial texts that can 

Fig. 1  An example of an AE attack on the Chinese legal text classification model: after the knowledge-
aware perturbation, the case of intentional homicide is misclassified as intentional injury by the DL classi-
fier. Meanwhile, humans can understand the original intent of the adversarial text. “OOV” means out of the 
predefined vocabulary
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significantly reduce the performance of the powerful Chinese BERT model with good 
interpretability.

Our contributions of this work are summarized as follows: 

(1) We propose an innovative knowledge-aware Chinese adversarial text generation method 
named KALT for the charge classification task. We design a KeyBERT-based legal 
knowledge extraction method and employ domain knowledge to advance Chinese legal 
adversarial text generation.

(2) We propose two perturbation strategies, SSL and WOL, which are beneficial for select-
ing meaningful keywords in the context of law and constructing effective and interpret-
able adversarial texts. These two strategies can be incorporated as components into any 
adversarial text generation method based on word importance, enhancing the scalability 
and flexibility of KALT. In addition, we introduce a novel hybrid perturbation method 
that combines seven perturbation methods for Chinese. Finally, we devise a formula 
for calculating interpretability scores to quantify the interpretability of adversarial text 
generation methods.

(3) We have performed experiments on a real-world dataset of Chinese criminal cases. 
The powerful pre-trained Chinese BERT is attacked as a target model with KALT. The 
results show the effectiveness of KALT in the charge classification task, and adversarial 
texts generated by KALT can deceive the target model with high confidence.

The rest of this paper is organized as follows. Section 2 briefly reviews the related work. 
Section 3 describes the problem formalization and threat model. Section 4 proposes the 
overall KALT framework and describes the details of the different perturbation methods 
and two perturbation strategies. Section 5 presents the experimental results and analyses. 
Finally, Sect. 6 contains the concluding remarks.

2  Related work

In this section, we provide a brief review of the adversarial text generation methods based 
on word importance. We describe the approaches adopted in the ranking stage and the per-
turbation stage, respectively.

In the ranking stage, various word importance scoring methods are proposed. Gao 
et  al. (2018) propose four scoring methods: Temporal Score, Temporal Tail Score, 
Combined Score, and Delete Score (DS). The first three methods are applied to recur-
rent neural networks (RNNs), while DS is a universal method for all models. On this 
basis, Wang et al. (2019) utilize two of the four scoring methods and improve them by 
introducing the TF-IDF score. Jin et  al. (2020) incorporate the label changes before 
and after the deletion of words to improve the DS method. Xu and Du (2020) transfer 
a method for image data, layer-wise relevance propagation, to the ranking stage to 
calculate word importance scores.

In the perturbation stage, various perturbation methods are designed for differ-
ent languages. Li et  al. (2019) propose five perturbation methods to generate Eng-
lish adversarial texts. These methods include Insert, Delete, Swap, Substitute-C, and 
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Substitute-W. The first four methods consist of character-level operations, including 
insertion, deletion, swapping, and replacement, while the last method involves word-
level substitution in the word embedding space. BAE, BERT-ATTACK, and CLARE 
(Garg & Ramakrishnan, 2020; Li et  al., 2020, 2021) employ the masked language 
model (MLM) in BERT to introduce perturbation into English texts. These methods 
generate contextually appropriate words to replace the original words. In addition to 
the perturbation methods for English texts, there are also perturbation methods tai-
lored for Chinese texts. Zhang et  al. (2020) propose five perturbation methods for 
Chinese by transferring those for English according to the work in Li et  al. (2019). 
These methods consist of Synonyms, Shuffle, SC, Glyph, and Pinyin. The first two 
methods are transferred from Substitute-W and Swap. The remaining three methods 
are unique methods for Chinese according to the linguistic characteristics. Among 
them, SC splits a Chinese character into radicals, while Glyph and Pinyin perturb the 
original Chinese character and word based on similar appearance and pronunciation, 
respectively. Based on Zhang et al. (2020), Cheng et al. (2020) propose a new pertur-
bation method, and the method involves inserting special characters into words. Based 
on Zhang et al. (2020) and Cheng et al. (2020), Tong et al. (2020) propose two novel 
perturbation methods: replacing simplified characters with traditional characters and 
substituting all original Chinese characters with their pinyin equivalents in a word. 
Ou et  al. (2022) improve the pinyin rewriting in Tong et  al. (2020) and introduce 
a multi-strategy to combine five perturbation methods, which include Synonyms, 
Glyph, Pinyin, special character insertion, and pinyin rewriting. Zhang et  al. (2023) 
improve the perturbation methods based on BERT-MLM (Garg & Ramakrishnan, 
2020; Li et al., 2020, 2021) by considering the characteristics of word length in Chi-
nese, and they successfully adapt it to Chinese texts.

In summary, although previous methods have contributed to textual adversarial 
attacks, few studies have explored adversarial text generation methods in the legal 
domain. Our work aims to fill this gap. For this purpose, we propose KALT, which 
introduces the legal knowledge to generate explainable Chinese legal adversarial 
texts. Compared with other methods, KALT attacks Chinese legal text classifiers 
more effectively and can fool the target model with higher confidence.

3  Problem definition

In this section, we formalize adversarial texts and the knowledge-adding process. Subse-
quently, a threat model setting is described.

3.1  Problem formulation

Consider a set of n documents � =
{
x1, x2,… , xn

}
 , with each document associated with one 

label from a label set � =
{
y1, y2,… , ym

}
 , where m represents the total number of labels. We 

have a text classification model F ∶ � → �  that maps the input space � to the output space 
�  . In a document xi ∈ � , we can generate the corresponding adversarial text x′

i
 by adding 

perturbation Δxi into xi . We introduce a function H , which can measure the gap in similarity 
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between xi and x′
i
 . A successful adversarial text should satisfy the constraint conditions as 

follows:

where � is the upper bound of the difference between xi and x′
i
.

We introduce legal knowledge in the perturbation stage. The generation process of the 
adversarial text x′

i
 can be formally expressed as follows:

where K(⋅) represents the perturbation strategy that leverages legal knowledge.

3.2  Threat model

In this work, we consider that the attack occurs in the black-box setting. In such a set-
ting, the adversary does not have access to any specific details inside the model, such 
as the model structure and the weight of each neuron. The adversary is only allowed to 
query the model with a meticulously crafted input and obtain the output that consists of 
labels and the corresponding confidence scores.

(1)
F
(
xi

)
≠ F

(
x
′
i

)

s.t. H
(
xi, x

′
i

)
≤ �

,

(2)x
�
i
= K

(
xi + Δxi

)
,

Fig. 2  The overview of KALT: KALT consists of four components, which include knowledge extraction, 
word importance scoring, perturbation strategies, and perturbation methods. Among these, the aspects of 
knowledge extraction, perturbation strategies, and the Hybrid-7 perturbation method are unique to KALT, 
distinguishing it from other adversarial text generation methods
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4  Method

In this section, we describe the proposed KALT in detail. Figure 2 shows an overview 
of KALT according to the basic framework of adversarial text generation based on 
word importance. The framework consists of the ranking stage and the perturbation 
stage. Before the ranking stage, we extract legal knowledge, adopting a method based 
on KeyBERT (Grootendorst, 2020). In the ranking stage, the improved DS (Jin et al., 
2020) is applied to calculate word importance scores. In the perturbation stage, the 
extracted knowledge is utilized to implement the two perturbation strategies, SSL and 
WOL. In the adversarial text generation framework based on word importance, these 
two perturbation strategies can be integrated into any perturbation method. Our work 

Fig. 3  The process of knowledge extraction: KeyBERT (Grootendorst, 2020) is adopted to extract the 
top k

1
 keywords of a legal text in the dataset. During the extraction process, we apply linear normaliza-

tion to standardize the weights of keywords extracted from each text. The weights of the identical keyword 
across different texts in the same category are accumulated to obtain the weight of the keyword in the cat-
egory. After removing legal stopwords, we choose the top k

2
 keywords from each category. Among these 

keywords, we select some biased words. These top k
2
 keywords and the biased words are regarded as the 

knowledge of each category
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primarily employs the nine perturbation methods, including our proposed Hybrid-7, 
displayed in Fig. 2.

The details of knowledge extraction, word importance scoring, perturbation strate-
gies, and perturbation methods will be elucidated in Sects. 4.1–4.4, respectively.

4.1  Knowledge extraction

We design a method based on KeyBERT (Grootendorst, 2020) to extract knowledge 
from the dataset. KeyBERT is one of the most outstanding methods for keyword 
extraction. Unlike keyword extraction methods based on the bag-of-words model, 
DL-based KeyBERT leverages BERT embeddings and cosine similarity to identify 
sub-phrases most similar to the original text. This approach ingeniously transforms 
the task of keyword extraction into one of text similarity calculation. Relying on the 
powerful BERT model, we can extract keywords more accurately. Figure  3 displays 
the process of knowledge extraction.

As illustrated in Fig. 3, there are three important steps during the knowledge extraction 
process: normalizing weights, removing legal stopwords, and selecting biased keywords. 
The aims of these three steps are sequentially introduced below.

KeyBERT employs cosine similarity to measure the resemblance between sub-phrases 
and the original text, assigning a weight in the range (− 1, 1) for each word. In order to 
identify representative keywords for each category, it is necessary to eliminate words with 
negative weights and map the weights of keywords from a single article to all texts in the 
category. During the process, weight standardization is required. Consequently, the appli-
cation of linear normalization facilitates the subsequent accumulation of word weights in 
the category.

Legal stopwords are the words that appear in most legal texts and contain little critical 
information, such as “court” and “happen”. These words may interfere with the effect of 
KALT to some extent. Therefore, we need to remove these words to obtain more accurate 
knowledge.

The selection of biased words facilitates the implementation of subsequent perturba-
tion strategies. We carry out the SSL or WOL strategy in the perturbation stage. Different 
perturbation strategies correspond to different types of biased words, and the selection of 
biased words is related to the extracted knowledge. The knowledge that we obtain from 
each category contains shared and unique keywords. The former are keywords present in 
the original category and its similar category. In contrast, the latter are other keywords 
excluding the shared keywords in the original category or the similar category. SSL biased 
words typically appear in pairs and are selected from the unique keywords of two simi-
lar categories. However, not all unique keywords of a category can serve as SSL biased 
words. The selection criteria will be detailed in Sect. 4.1.3. WOL biased words are shared 
keywords that lean toward one of two similar categories. For example, though “slightly 
injured" is a shared keyword of the charges of intentional injury and intentional homicide, 
it occurs much more frequently in the charge of intentional injury than in the charge of 
intentional homicide. Therefore, “slightly injured” is more representative of the charge of 
intentional injury, and it is a biased keyword for the charge of intentional injury. The details 
regarding the selection of WOL biased words are described in Sect. 4.1.4.
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Algorithm 1 exhibits details of the knowledge extraction process and the components of 
� . In this work, N is set to 500, � is set to 1.0, and both k1 and k2 are set to 50. The param-
eters N and � will be elaborated on in Sects. 4.1.2 and 4.1.4, respectively.

In Algorithm 1, Steps 3, 4, 8, and 9 are critical, as they determine the quality of the 
knowledge set � . We sequentially introduce the details of these steps in Sects. 4.1.1–4.1.4.

4.1.1  Weight normalization

As mentioned above, after conducting preliminary keyword extraction on each text 
with KeyBERT, it is necessary to perform linear normalization on the weights to 
facilitate the accumulation of weights for the keywords at the category level. For each 
document, we extract the top k1 words with the highest weights, where the range of 
the weights of these words is (-1, 1). If the extracted keywords have negative weights, 
these words are removed. Subsequently, the weights of the remaining words are stand-
ardized, employing linear normalization. Assuming that in a given document, the 
extracted words with positive weights w1,w2,… ,wp (p ≤ k1) with their corresponding 
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weights given by �1, �2,… , �p , the normalized weight �i of the word wi can be repre-
sented by the following formula:

We extend the calculation of keyword weights from the document level to the category 
level. Assume there is a keyword wi in a category. For a document xj , the weight of wi can 
be denoted as �ij . We introduce Lj(wi) to denote the position of wi in xj . The weight �ij can 
be calculated using the following formula:

where xj represents the set of words with positive weights in xj . Notably, due to the exten-
sion of weights from the document level to the category level, the weight �i in Eq. 3 has 
acquired an additional dimension in Eq. 4.

The weight of wi in the category, denoted as �i , can be determined by the following 
formula:

where q represents the number of documents in the category.

4.1.2  Legal stopword selection

In the process of legal stopword selection, we introduce a new parameter, N, which should 
satisfy the following condition:

where k2 is the number of selected keywords for each category. We extract the top N key-
words with the highest weights of each category to build a keyword set �′ ( |��| = m × N ). 
In the set �′ , if a keyword of a category is also in all the remaining categories, we regard 
the keyword as a legal stopword. The details of the process are exhibited in Algorithm 2.

(3)�i =
�i∑p

l=0
�l
.

(4)�ij =

{
�hj, if h = Lj

(
wi

)
∧ wi ∈ xj

0, if wi ∉ xj
,

(5)�i =
∑q

j=0
�ij,

(6)N ≥ 2k2,
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4.1.3  SSL biased word selection

As mentioned above, SSL biased words typically appear in pairs. When we extract 
a pair of SSL biased words from two similar categories that are suitable for the SSL 
perturbation strategy, the pair of SSL biased words should satisfy the following con-
ditions: (1) The meaning of the two words should be similar; (2) The part of speech of 
the two words should be consistent.

Based on the above two conditions, we first extract word pairs with an edit dis-
tance of 1 from the unique keywords of the two similar categories. Subsequently, we 
filter out word pairs with different parts of speech. Finally, a simple manual selection 
is conducted to obtain the final pairs of SSL biased words.

In addition, to ensure that the word pairs we extract have similar meanings, we uti-
lize a million law data to train a Word2Vec (Mikolov et al., 2013) model and calculate 
the similarities between these selected word pairs on the model. Among the 1,481,300 
words, the similarities of the chosen word pairs almost rank in the top 20.
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4.1.4  WOL biased word selection

We select WOL biased words based on weights that are normalized and accumulated. 
We introduce a new parameter, � , to measure the bias of a keyword. For a shared key-
word wsk of category ya and its similar category yb , �a and �b denote the weights of wsk 
in ya and yb , respectively. If �a and �b satisfy:

we regard wsk as a biased word of ya . Algorithm 3 displays the details of the process.

4.2  Word importance scoring method

We employ the improved DS (Jin et al., 2020) to calculate word importance scores. The 
calculation process can be formalized as follows. In the context of the problem defini-
tion described in Sect. 3.1, for a given document x , its predicted label is denoted as y. In 
this work, we assume that the predicted label is consistent with the ground truth. For a 
given label y′ , we represent the confidence of x on y′ with Fy� (x) . We assume that wi is a 
word in x . The importance score of wi can be calculated as follows:

(7)�a ∕ �b � ,

(8)s
wi

=

⎧
⎪⎨⎪⎩

Fy(x) − Fy

�
x�wi

�
, if F(x) = F

�
x�wi

�
= y

Fy(x) − Fy

�
x�wi

�
+
�
Fy�

�
x�wi

�
− Fy� (x)

�
,

if F(x) = y ∧ F
�
x�wi

�
= y� ∧ y ≠ y�

,
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where x∖wi denotes the removal of wi from x.
If s

wi
> 0 , then wi has a positive effect on label y, and vice versa. We only select words 

whose importance scores are larger than zero. We arrange these words in descending order 
according to their importance scores to perturb them in order in the perturbation stage.

4.3  Perturbation strategy

In the perturbation stage, we provide two perturbation strategies: SSL and WOL. The SSL 
strategy aims to strengthen the unique features of the label, which are similar to the origi-
nal one. We substitute the SSL biased words of the original label with the ones of its simi-
lar label to implement the SSL strategy. Meanwhile, the WOL strategy aims to weaken the 
unique features of the original label. To execute the WOL strategy, we replace the unique 
keywords of the original label with words that are out of the predefined vocabulary so that 
the shared features take effect. The replacement process employs various perturbation 
methods described in Sect. 4.4. In this work, if the shared keyword number of the original 
and another label is the highest, we regard the latter as the most similar label to the original 
one. Figure 4 demonstrates the process of the two perturbation strategies.

The selection of SSL and WOL biased words has been elaborately described in 
Sects.  4.1.3 and 4.1.4, respectively. Beyond the process described above, there are three 
details to note regarding the SSL and WOL strategies: (1) Because selecting SSL biased 
word pairs needs to meet relatively strict constraints, not all categories are suitable for the 
SSL strategy. In this work, the categories applicable to the SSL strategy are the charges of 
larceny, robbery, and forcible seizure. The WOL strategy is applicable to all categories, 
but its attack effectiveness is slightly inferior to that of the SSL strategy; (2) In addition 
to the WOL biased words, the words requiring perturbation in �� also include the most 
important words selected by the improved DS method in each text; (3) Some important 
words selected by the improved DS are sometimes outside the keyword set we extract in 
the knowledge extraction stage. Under these circumstances, we can ignore the two strate-
gies and directly add perturbation into the selected word with perturbation methods.

The details of SSL and WOL strategies are shown in Algorithm 4. In Algorithm 4, we 
employ fit_to_SSL() to determine whether a label is applicable to SSL (line 4). We choose 
the SSL strategy if the label is applicable to it (lines 6–16); otherwise, we adopt the WOL 
strategy (lines 19–30). Various perturbation methods are applied to perturb words(lines 13 
and 27), whose details are shown in Sect. 4.4.
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Fig. 4  The process of the SSL and WOL strategies: for the SSL strategy, we replace the words in �� with 
the words in �� . For the WOL strategies, we first select the WOL biased words from �� . Subsequently, we 
substitute the words in �� and � with the words that are out of the predefined vocabulary. “OOV” means 
out of the predefined vocabulary
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Figures 5 and 6 display two examples of the SSL and WOL strategies, respectively.
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4.4  Perturbation method

We comprehensively adopt nine representative token-level perturbation methods for Chi-
nese while ensuring the readability of adversarial texts. The details of these perturbation 
methods are presented below. 

(1) Shuffle (Cheng et al., 2020): Shuffle is a character-level perturbation method that intro-
duces perturbations into a word by scrambling the order of Chinese characters in the 
word.

(2) Splitting-Character (SC) (Cheng et al., 2020): SC is a character-level perturbation 
method that adds perturbation into a Chinese character with a left-right structure by 
decomposing the character into its constituent radicals.

(3) Tradition (Tong et al., 2020): Tradition is a character-level perturbation method that 
replaces a simplified Chinese character with its traditional counterpart. This method 
is applicable in cases where the traditional and simplified forms of a character differ.

Fig. 5  An example of the SSL strategy: “盗得” (“steal” in English) is an SSL biased word for the charge of 
larceny, while “劫得” (“rob” in English) is an SSL biased word for the charge of robbery. The two words 
have similar meanings. When we replace “盗得” with “劫得”, the label changes the charge of larceny to the 
charge of robbery

Fig. 6  An example of the WOL strategy: “数刀” (“several times with a knife” in English) and “死亡” 
(“death” in English) are unique keywords for the charge of intentional homicide. “轻伤” (“slightly injured” 
in English) and “重伤” (“seriously injured” in English) are the shared keywords between the charges of 
intentional homicide and intentional injury. When we introduce perturbations into the two unique keywords, 
the shared keywords begin to take effect. Accordingly, the label changes the charge of intentional homicide 
to the charge of intentional injury. “OOV” means out of the predefined vocabulary
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(4) Glyph (Zhang et al., 2020): Glyph is a character-level perturbation method that involves 
replacing a Chinese character with another Chinese character that has a similar visual 
appearance to the original one.

(5) Pinyin (Zhang et al., 2020): Pinyin is a word-level perturbation method that involves 
replacing a word with another word that has a similar pronunciation to the original 
word.

(6) Synonyms (Ou et al., 2022): Synonyms is a word-level perturbation method that selects 
synonyms for the original word based on a thesaurus and replaces the original word 
with its synonym.

(7) Word Embedding (Jin et al., 2020): Word Embedding is a word-level perturbation 
method that finds the top k words closest to the original word in the word embed-
ding space and obtains a candidate word list for replacement. This method employs 
the Word2Vec word vector model, which is consistent with the model mentioned in 
Sect. 4.1.3.

(8) BERT-MLM (Zhang et al., 2023): BERT-MLM is a word-level perturbation method 
that utilizes the MLM mechanism of the BERT model to predict words for masked 
positions based on context, thereby generating a list of candidate replacement words 
for the original word. Notably, to enhance the fluency of the adversarial texts, we 
make minor modifications to the perturbation methods proposed in Chinese BERT 
Tricker (Zhang et al., 2023). Considering the linguistic characteristics of Chinese, 
we ensure that the replacement words generated for original words with a length of 
one character also have a length of one character, and the replacement words gener-
ated for original words with a length greater than one character have a length of two 
characters.

(9) Hybrid-7: We propose a novel and strong hybrid perturbation method called Hybrid-7. 
To ensure the efficiency of adversarial text generation, we combine the aforementioned 
perturbation methods, excluding Glyph, into Hybrid-7. This method constructs a list 
of replacement words generated through various perturbation methods for the original 
words to expand the range of perturbation types available for selection, thereby con-
siderably reducing the classification accuracy of the target model.

Word-level perturbation methods typically generate a candidate word list for replacing the 
original word, from which we select the most appropriate word for substitution. In this work, 
we replace the original word with the one that results in the most remarkable change in label 
confidence before and after replacement. Assuming a word w in a text x has a candidate word 
list ℂ , where the confidence change Δc

ci
 for any candidate word ci in ℂ can be calculated using 

the following formula:

where x̂ denotes the text resulting from the substitution of w with ci . The final replacement 
word w′ can be expressed as:

(9)Δc
ci
=

⎧
⎪⎨⎪⎩

Fy(x) − Fy(x̂), if F(x) = F(x̂) = y

Fy(x) − Fy(x̂) +
�
Fy� (x̂) − Fy� (x)

�
,

if F(x) = y ∧ F(x̂) = y� ∧ y ≠ y�
,

(10)w
� = argmax

ci∈ℂ

Δc
ci
.
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5  Experiments

5.1  Experimental setup

5.1.1  Dataset

In this study, we utilize the largest publicly available Chinese law dataset, CAIL2018 
(Xiao et al., 2018), which encompasses 2,676,075 criminal cases, 183 criminal law arti-
cles, and 202 distinct charges. Our research focuses on 11 categories of charges: lar-
ceny, robbery, forcible seizure, dangerous driving, traffic accident, smuggling, selling, 
trafficking, and producing drugs, providing venues for drug users, illegal possession of 
drugs, intentional injury, intentional homicide, and negligent homicide. For each cat-
egory, we select 4,500 cases to constitute the training set and 500 cases for the valida-
tion set. Concurrently, we randomly choose 1,100 cases that are not in the training data 
to generate adversarial texts.

5.1.2  Target model and training details

We employ the powerful Transformer-based Chinese BERT model as the target model. We 
fine-tune the bert-base-chinese model to adapt it for the Chinese criminal charge classifica-
tion task. The hidden size is set to 768. During training, the padding size, batch size, and 
epochs are configured to 256, 16, and 3, respectively. We adopt an Adam optimizer with a 
learning rate of 5 × 10−5 for training, and the GPU utilized is the NVIDIA GeForce RTX 
3080.

5.1.3  Baselines and our methods

To control for variables, we consistently employ the word importance scoring method, 
improved DS (Jin et al., 2020), as the word importance scoring method for all baselines 
and our methods. For a detailed introduction to the improved DS, please refer to Sect. 4.2. 
We combine the improved DS with various perturbation methods introduced in Sect. 4.4, 
which serve as the baselines utilized in this experiment. We incorporate the proposed 
KALT as an extension component into these baselines to constitute our methods. The base-
lines and our methods are as follows.

5.1.4  Baselines
(1) WordChange-Sh (Cheng et al., 2020): WordChange-Sh combines Shuffle with the 

improved DS.
(2) WordChange-SC (Cheng et al., 2020): WordChange-Sh combines SC with the improved 

DS.
(3) CWordAttacker-T (CWA-T) (Tong et al., 2020): CWA-T combines Tradition with the 

improved DS.
(4) Argot-G (Zhang et al., 2020): Argot-G combines Glyph with the improved DS.
(5) Argot-P (Zhang et al., 2020): Argot-P combines Pinyin with the improved DS.
(6) GreedyAttack-S (Ou et al., 2022): GreedyAttack-S combines Synonyms with the 

improved DS.
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(7) TextFooler (Jin et al., 2020): TextFooler combines Word Embedding with the improved 
DS.

(8) Chinese BERT Tricker (CBT) (Zhang et al., 2023): CBT combines BERT-MLM with 
the improved DS.

5.1.5  Our Methods

 (1) Attack-7: Attack-7 combines Hybrid-7 with the improved DS.
 (2) Attack-7+KALT: Attack-7+KALT combines Attack-7 with KALT.
 (3) WordChange-Sh+KALT: WordChange-Sh+KALT combines WordChange-Sh with 

KALT.
 (4) WordChange-SC+KALT: WordChange-SC+KALT combines WordChange-SC with 

KALT.
 (5) CWA-T+KALT: CWA-T+KALT combines CWA-T with KALT.
 (6) Argot-G+KALT: Argot-G+KALT combines Argot-G with KALT.
 (7) Argot-P+KALT: Argot-P+KALT combines Argot-P with KALT.
 (8) GreedyAttack-S+KALT: GreedyAttack-S+KALT combines GreedyAttack-S with 

KALT.
 (9) TextFooler+KALT: TextFooler+KALT combines TextFooler with KALT.
 (10) CBT+KALT: CBT+KALT combines CBT with KALT.

5.2  Experimental results

In this section, we evaluate the attack performance of our proposed KALT from four 
dimensions: effectiveness, text similarity, interpretability, and the proportion of high-con-
fidence adversarial texts. Finally, adversarial training is employed to examine the effective-
ness of KALT against defensive measures.

5.2.1  Effectiveness

The attack effectiveness of adversarial text generation methods aimed at text classification 
tasks is typically assessed by two metrics: the change in the classification accuracy of the 
target model before and after the attack and the attack success rate on the target model. A 
lower classification accuracy and a higher attack success rate indicate higher attack effec-
tiveness. In this work, the former is adopted as the evaluation measure for attack effec-
tiveness. Table 1 displays the classification accuracy of the target model after attacks by 
the baselines and our methods. In Table  1, “Initial” denotes the original method, while 
“+KALT” denotes the method combined with KALT. The bold values indicate the classifi-
cation accuracy of the target model after being attacked by more effective methods.

From Table 1, it is observed that with the increase in perturbation rate, the classifi-
cation accuracy of the target model decreases. Concurrently, our method demonstrates 
varying degrees of enhancement in the attack effectiveness for all character-level adver-
sarial text generation methods, as well as some word-level adversarial text generation 
methods, such as Argot-P. Among these, the effectiveness improvement provided by 
our proposed KALT is more significant for character-level adversarial text generation 
methods and less so for Argot-P. KALT does not improve attack effectiveness for some 
word-level and hybrid perturbation-based adversarial text generation methods, such as 
TextFooler, CBT, and Attack-7. This is attributed to the rich candidate word selection 
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of these methods, which compensates for the lack of knowledge to some extent. How-
ever, these methods fail to capture knowledge accurately, resulting in adversarial texts 
generated by them being inferior in text similarity, interpretability, and the propor-
tion of high-confidence adversarial texts compared to those that incorporate KALT. A 
detailed analysis of these three aspects is provided in Sects. 5.2.2 to 5.2.4.

5.2.2  Text similarity

This work adopts four evaluation metrics to comprehensively assess the similarity between 
adversarial texts generated using various methods and the original texts. These four evalu-
ation metrics are cosine similarity, word mover’s distance (WMD), edit distance, and Jac-
card similarity coefficient. A brief introduction to each is provided below. 

(1) Cosine similarity: Cosine similarity is a common method for calculating text simi-
larity. The closer the cosine similarity of word or sentence vectors is to 1, the more 
similar the words or sentences are. Consider a vector a =

(
a1, a2,… , an

)
 and a vector 

b =
(
b1, b2,… , bn

)
 in the word embedding space. The cosine similarity C(a, b) can be 

expressed by the following equation: 

(2) WMD: In the word vector space generated by Word2Vec (Mikolov et al., 2013), the 
WMD calculates text similarity using the Euclidean distance. For specific details, 
please refer to (Kusner et al., 2015). The smaller the WMD, the more similar the texts 
are.

(3) Edit distance: Edit distance is the minimum number of character changes required to 
transform one string into another, with the condition that only one character can be 
modified at a time. This work adopts the Levenshtein distance to calculate text similar-
ity. The permitted operations are insertion, deletion, and substitution. The smaller the 
edit distance, the more similar the texts are.

(4) Jaccard similarity coefficient: The Jaccard similarity coefficient measures the similar-
ity between two sets of words. The closer the Jaccard similarity coefficient is to 1, the 
higher the similarity between the two sets of words. After processing two texts into set 
� and set � of words, the Jaccard similarity coefficient J(�,�) between � and � can be 
calculated using the following formula: 

Figure  7 presents a comparison of the similarity between adversarial texts generated by 
baselines and our methods and the original texts across the aforementioned four evaluation 
metrics. As the perturbation rate increases, the similarity between adversarial texts gener-
ated by various methods and the original texts exhibits a decreasing trend. Simultaneously, 
as can be observed from Fig. 7, in terms of the WMD and edit distance, the adversarial 
texts generated by incorporating our proposed KALT exhibit significantly higher similar-
ity to the original texts compared to those generated by methods without KALT. However, 

(11)C(a, b) =

∑n

i=1
ai × bi�∑n

i=1

�
ai
�2

×

�∑n

i=1

�
bi
�2 .

(12)J(�,�) =
|� ∩ �|
|� ∪ �| =

|� ∩ �|
|�| + |�| − |� ∩ �| .
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in terms of the cosine similarity and Jaccard similarity coefficient, the baselines and our 
methods perform similarly on text similarity. Particularly for the cosine similarity, the dif-
ference between the highest and lowest points on the vertical axis is only 0.014. This could 

Fig. 7  Text similarity evaluation
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be attributed to the predominance of longer texts in legal documents, where perturbed con-
tent is little within a perturbation rate of 0.15 or less.

5.2.3  Interpretability

In this work, the interpretability of an adversarial text generation method is concretely demon-
strated through the proportion of the adversarial texts misclassified into other categories simi-
lar to the original one. The higher the similarity between the labels after misclassification and 
the original label, the stronger the interpretability of the adversarial text generation method. 
Figure 8 illustrates the three labels most similar to each original label. In this work, we posit 
that the greater the number of shared keywords, the higher the similarity between two labels. 
In Fig. 8, the symbol “/” denotes that these categories share the same number of keywords as 
the original category and are ranked equally.

To more intuitively demonstrate the interpretability of each method, we propose an inter-
pretability score formula for quantifying interpretability. When calculating the interpretabil-
ity scores, we introduce two parameters: a grading coefficient, � , and a reduction coefficient, 
� . The former controls the grading system used for scoring, while the latter assigns different 
weights to labels with varying degrees of similarity to the original label. This work employs 
the 100-point scale, and we set � to 100. Additionally, we set � to 2, meaning that the weight 
assigned to the label most similar to the original label is twice that of the second most similar 
label, and so on. We categorize the labels similar to the original label into different levels 
based on varying degrees of similarity. The number of levels is denoted by v. The higher the 
level, the lower the similarity to the original label. In this work, the value of v is set to 3, indi-
cating that we only focus on the categories in the top three levels of similarity to the original 
category. In contrast, other categories are assigned a weight of 0. If there are multiple labels 
in a level, these labels equally share the weight allocated to the level. Assuming there are m 
categories, the interpretability score Ik for the kth category (k = 1, 2, ...,m) can be calculated 
using the following formula:

Fig. 8  The three labels most similar to the original label. The symbol “/” denotes an equal number of 
shared keywords among multiple labels
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where pij represents the percentage of misclassified adversarial texts corresponding to the 
jth category in the ith level, while ui denotes the number of categories contained in the ith 
level. When calculating the interpretability score for a method, we compute the mean of 
the interpretability scores across all categories after attacks by the method. The average 
interpretability score Ī of the method can be computed employing the following formula:

(13)Ik = �
∑v

i=1

∑ui

j=1

pij

�i−1ui
,

(14)Ī =
1

m

∑m

k=1
Ik.

Table 2  Percentage (%) of misclassified adversarial texts for each category after attacks by WordChange-
SC

L R FS DD TA SSTPD PVDU IPD II IH NH Score

L – 66.67 33.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 83.34
R 50.00 – 0.00 0.00 0.00 0.00 0.00 0.00 14.29 35.71 0.00 58.93
FS 33.33 16.67 – 0.00 0.00 16.67 0.00 0.00 0.00 33.33 0.00 43.75
DD 35.00 15.00 0.00 – 25.00 0.00 0.00 5.00 0.00 5.00 15.00 32.50
TA 12.50 12.50 0.00 0.00 – 0.00 0.00 0.00 12.50 12.50 50.00 34.38
SSTPD 0.00 0.00 0.00 0.00 0.00 – 50.00 50.00 0.00 0.00 0.00 75.00
PVDU 0.00 0.00 0.00 0.00 0.00 66.67 – 33.33 0.00 0.00 0.00 66.66
IPD 0.00 0.00 0.00 0.00 0.00 0.00 100.00 – 0.00 0.00 0.00 50.00
II 0.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 – 80.00 10.00 85.00
IH 16.67 16.67 0.00 0.00 0.00 0.00 0.00 0.00 33.33 – 33.33 49.99
NH 0.00 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 80.00 – 20.00
Average interpretability score 54.50

Table 3  Percentage (%) of misclassified adversarial texts for each category after attacks by WordChange-
SC+KALT

L R FS DD TA SSTPD PVDU IPD II IH NH Score

L – 96.15 3.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.08
R 70.00 – 0.00 0.00 0.00 0.00 0.00 0.00 10.00 20.00 0.00 75.00
FS 52.63 44.74 – 0.00 0.00 0.00 0.00 0.00 0.00 2.63 0.00 75.00
DD 36.84 15.79 0.00 – 26.32 0.00 0.00 5.26 0.00 5.26 10.53 31.59
TA 14.29 14.29 0.00 0.00 – 0.00 0.00 0.00 14.29 14.29 42.86 32.15
SSTPD 0.00 0.00 0.00 0.00 0.00 – 66.67 33.33 0.00 0.00 0.00 66.66
PVDU 0.00 0.00 0.00 0.00 0.00 66.67 – 33.33 0.00 0.00 0.00 66.66
IPD 0.00 0.00 0.00 0.00 0.00 0.00 100.00 – 0.00 0.00 0.00 50.00
II 0.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 – 80.00 10.00 85.00
IH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50.00 – 50.00 75.00
NH 0.00 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 80.00 – 20.00
Average interpretability score 61.38
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We set the perturbation rate to 0.05 and exemplify interpretability using character-level 
WordChange-SC and the word-level GreedyAttack-S, presenting the results of the misclas-
sification proportions and the interpretability scores before and after the incorporation of 
KALT for the two methods in Tables  2, 3, 4, 5, respectively. In Tables  2, 3, 4, 5, each 
row represents the original category, and each column indicates the category into which 
the adversarial texts are misclassified after attacks. We represent each category using the 
initials of the words that constitute the name of each charge. The bold values represent the 
proportion of adversarial texts corresponding to the misclassified labels with the highest 
number of adversarial texts.

Combining the analysis of Tables  2, 3, 4, 5 with Fig. 8, the following four conclusions 
can be drawn: (1) Even without incorporating our proposed KALT, the initial WordChange-
SC and GreedyAttack-S tend to classify the original category into similar categories, indi-
cating that the initial WordChange-SC and GreedyAttack-S possess a certain degree of 

Table 4  Percentage (%) of misclassified adversarial texts for each category after attacks by GreedyAttack-S

L R FS DD TA SSTPD PVDU IPD II IH NH Score

L – 78.26 21.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 89.13
R 4.76 – 2.38 0.00 0.00 0.00 0.00 0.00 0.00 92.86 0.00 29.16
FS 1.56 71.88 – 0.00 0.00 0.00 0.00 0.00 0.00 25.00 1.56 37.50
DD 7.14 35.71 0.00 – 35.71 0.00 0.00 0.00 0.00 7.14 14.29 42.86
TA 7.14 14.29 0.00 11.90 – 0.00 0.00 0.00 2.38 14.29 50.00 35.71
SSTPD 0.00 0.00 0.00 0.00 0.00 – 28.57 57.14 0.00 14.29 0.00 71.42
PVDU 0.00 12.50 0.00 0.00 0.00 25.00 – 62.50 0.00 0.00 0.00 75.00
IPD 0.00 0.00 0.00 0.00 0.00 33.33 66.67 – 0.00 0.00 0.00 66.66
II 0.00 5.26 0.00 0.00 0.00 0.00 0.00 0.00 – 78.95 15.79 86.84
IH 8.33 33.33 0.00 0.00 0.00 0.00 0.00 0.00 50.00 – 8.33 54.16
NH 3.85 0.00 0.00 11.54 23.08 0.00 0.00 0.00 7.69 53.85 – 29.81
Average interpretability score 56.20

Table 5  Percentage (%) of misclassified adversarial texts for each category after attacks by GreedyAttack-
S+KALT

L R FS DD TA SSTPD PVDU IPD II IH NH Score

L – 87.50 12.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 93.75
R 18.18 – 4.55 0.00 0.00 0.00 0.00 0.00 4.55 72.73 0.00 38.64
FS 21.21 57.58 – 0.00 0.00 0.00 0.00 0.00 0.00 19.70 1.52 50.00
DD 8.33 33.33 0.00 – 41.67 0.00 0.00 0.00 0.00 8.33 8.33 45.84
TA 7.14 14.29 0.00 11.90 – 0.00 0.00 0.00 2.38 14.29 50.00 35.71
SSTPD 0.00 0.00 0.00 0.00 0.00 – 28.57 57.14 0.00 14.29 0.00 71.42
PVDU 0.00 12.50 0.00 0.00 0.00 25.00 – 62.50 0.00 0.00 0.00 75.00
IPD 0.00 0.00 0.00 0.00 0.00 33.33 66.67 – 0.00 0.00 0.00 66.66
II 0.00 5.26 0.00 0.00 0.00 0.00 0.00 0.00 – 78.95 15.79 86.84
IH 9.09 36.36 0.00 0.00 0.00 0.00 0.00 0.00 45.45 – 9.09 50.00
NH 4.17 0.00 0.00 12.50 25.00 0.00 0.00 0.00 4.17 54.17 – 30.21
Average interpretability score 58.55
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interpretability; (2) After incorporating our proposed KALT, WordChange-SC and Greedy-
Attack-S are more prone to misclassifying adversarial texts into the labels most similar to 
the original label. Compared to the initial methods without KALT, the methods with KALT 
exhibit higher average interpretability scores, implying that KALT is capable of enhanc-
ing interpretability; (3)The increase in interpretability scores for WordChange-SC is sig-
nificantly greater than that for GreedyAttack-S before and after the incorporation of KALT, 
suggesting that the improvement in interpretability by KALT for character-level Word-
Change-SC is more significant than that for word-level GreedyAttack-S; (4) The interpret-
ability scores for categories of larceny, robbery, and forcible seizure applicable to the SSL 
perturbation strategy are remarkably higher than those for other categories applicable to the 
WOL perturbation strategy, revealing that the SSL perturbation strategy enhances the inter-
pretability of the methods more effectively than the WOL perturbation strategy.

5.2.4  High confidence percentage

The proportion of adversarial texts misclassified with high confidence can reflect the extent 
to which the target model is confused. The higher the proportion of adversarial texts mis-
classified with high confidence, the deeper the degree of confusion in the target model. 
The proportion of adversarial texts misclassified with high confidence can further reflect 
the interpretability of adversarial text generation methods. Adversarial texts generated by 
methods with high interpretability tend to be misclassified with high confidence. In this 
work, we set 0.8 as the threshold for high confidence, meaning that adversarial texts mis-
classified with confidence greater than 0.8 are considered misclassified with high confi-
dence. Table 6 displays the percentage of adversarial texts misclassified with high confi-
dence after attacks by baselines and our methods. In Table 6, “Initial” denotes the original 
method, while “+KALT” denotes the method combined with KALT. The bold values rep-
resent the proportion of adversarial texts misclassified with high confidence after the target 
model is attacked by methods that more effectively confuse the target model.

From Table 6, it is evident that incorporating our proposed KALT into all adversarial 
text generation methods leads to varying degrees of increase in the proportion of adver-
sarial texts misclassified with high confidence. Combining Sect. 5.2.3, it becomes apparent 
that including KALT can guide the target model in misclassifying adversarial texts into 
categories similar to the original one with high confidence, further substantiating the abil-
ity of KALT to enhance the interpretability of adversarial text generation methods. Simul-
taneously, as can be seen from Table  6, KALT considerably elevates the proportion of 
adversarial texts misclassified with high confidence for all character-level methods and the 
word-level Argot-P, while the increase is less pronounced for other word-level methods and 
hybrid perturbation-based Attack-7.

5.2.5  Adversarial training

Adversarial training is one of the widely employed defense measures against adversarial 
attacks (Jin et al., 2020; Li et al., 2019, 2020, 2021). In this section, we adopt adversarial 
training to investigate the attack effectiveness of our proposed KALT in the face of defense 
mechanisms. We take the character-level WordChange-SC with KALT and the word-level 
TextFooler with KALT as examples to study this issue. We mix the original texts with the 
adversarial texts generated by the two methods and retrain the target models, respectively. 
Subsequently, we generate adversarial texts using texts not included in the training set to 
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attack the retrained target models. After being attacked by the two methods, the changes 
in the classification accuracy of the original target model and the retrained target models 
are shown in Table 7. In Table 7, “Initial” represents the original target model, and “+AT” 
denotes the target models after adversarial training.

From Table 7, it is evident that even after the adversarial training, the target models can-
not defend against the attacks from WordChange-SC and TextFooler enhanced with KALT. 
Although adversarial training provides defense against attacks by WordChange-SC enhanced 
with KALT to some extent, the classification accuracy of the retrained target model decreases 
continuously with the increase in the perturbation rate. This indicates that WordChange-SC 
with KALT retains a degree of attack effectiveness on the retrained target model. Compared 
to WordChange-SC with KALT, adversarial training exhibits suboptimal defensive efficacy 
against attacks by TextFooler with KALT. After being attacked by TextFooler with KALT, 
the classification accuracy of the retrained target model is even lower than that of the original 
target model. This phenomenon can be attributed to two main reasons. On the one hand, mix-
ing the original texts with adversarial texts inevitably introduces noise data, decreasing the 
classification accuracy of the target model that is not attacked. On the other hand, the attack 
effectiveness of TextFooler with KALT is excellent, indicating that it can successfully attack 
the target model despite the defensive measure of adversarial training.

6  Conclusion

We propose a novel adversarial text generation method incorporating legal knowledge, 
KALT, for the charge classification task in the legal domain. KALT leverages KeyBERT to 
extract legal knowledge and integrates the knowledge into our proposed perturbation strate-
gies: SSL and WOL. By incorporating legal knowledge, KALT can guide the target model in 
misclassifying adversarial texts into categories similar to the original one, thereby enhanc-
ing the interpretability of the adversarial text generation process. To more vividly demon-
strate the improvement in interpretability offered by KALT, we formulate a computational 
formula for the interpretability score to assess interpretability quantitatively. Furthermore, 
KALT can serve as a component to be integrated into any adversarial text generation method 
based on word importance, thereby effortlessly enhancing the adversarial attack performance 
of approaches designed for common domains when applied to the legal field. The attack per-
formance of KALT is evaluated based on the attack effectiveness, textual similarity, interpret-
ability, and the proportion of adversarial texts misclassified with high confidence. The experi-
mental results indicate that the majority of adversarial text generation methods augmented 
with KALT outperform their original counterparts in terms of attack effectiveness. Concur-
rently, KALT also increases the similarity between adversarial and original texts. Addition-
ally, the high interpretability often allows adversarial texts enhanced by KALT to mislead the 
target model with high confidence, inducing a deeper level of confusion for the target model 
than methods without KALT. In future research, we plan to extend our investigation to other 
verticals, aiming to devise adversarial text generation methods tailored to these areas, thereby 
laying a foundation for developing subsequent defensive measures.
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