
Vol.:(0123456789)

Machine Learning (2024) 113:7011–7053
https://doi.org/10.1007/s10994-024-06568-1

1 3

Towards efficient AutoML: a pipeline synthesis approach 
leveraging pre‑trained transformers for multimodal data

Ambarish Moharil1,2 · Joaquin Vanschoren1 · Prabhant Singh1 · Damian Tamburri2

Received: 4 December 2023 / Revised: 7 May 2024 / Accepted: 9 May 2024 /  
Published online: 19 July 2024 
© The Author(s) 2024

Abstract
This paper introduces an Automated Machine Learning (AutoML) framework specifically 
designed to efficiently synthesize end-to-end multimodal machine learning pipelines. Tra-
ditional reliance on the computationally demanding Neural Architecture Search is mini-
mized through the strategic integration of pre-trained transformer models. This innovative 
approach enables the effective unification of diverse data modalities into high-dimensional 
embeddings, streamlining the pipeline development process. We leverage an advanced 
Bayesian Optimization strategy, informed by meta-learning, to facilitate the warm-start-
ing of the pipeline synthesis, thereby enhancing computational efficiency. Our methodol-
ogy demonstrates its potential to create advanced and custom multimodal pipelines within 
limited computational resources. Extensive testing across 23 varied multimodal datasets 
indicates the promise and utility of our framework in diverse scenarios. The results contrib-
ute to the ongoing efforts in the AutoML field, suggesting new possibilities for efficiently 
handling complex multimodal data. This research represents a step towards developing 
more efficient and versatile tools in multimodal machine learning pipeline development, 
acknowledging the collaborative and ever-evolving nature of this field.
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1  Introduction

The evolution of Automated Machine Learning (AutoML) has been pivotal in addressing 
the complexity of developing specialized, end-to-end machine learning pipelines. However, 
existing AutoML frameworks often face a critical challenge: Efficiently and accurately 
handling multimodal data (Liu et al., 2021; Wistuba et al., 2019). The lack of generalised 
frameworks for multi-modality processing (Baevski et  al., 2022) and dearth of systemic 
comparisons between varying information fusion techniques (Liang et al., 2021), prove to 
be the current hurdles for multimodal AutoML. Multimodal Neural Architecture Search 
(NAS) is notably resource-intensive, creating a barrier to efficient pipeline development 
(Elsken et al., 2018; Liu et al., 2018). This paper addresses this challenge by proposing a 
novel approach that leverages the power of pre-trained Transformer models, renowned for 
their effectiveness in diverse domains such as Natural Language Processing and Computer 
Vision (Du et al., 2022; Öztürk et al., 2022; Qiu et al., 2020).

Our approach aims to minimize the reliance on NAS for processing multimodal data. By 
integrating pre-trained Transformer models, we efficiently bridge the gap between different 
data modalities, transferring knowledge and reducing the computational overhead com-
monly associated with NAS. Furthermore, we enhance this integration with warm-started 
Bayesian Optimization technique which is an intelligent mechanism to guide the search 
process for optimal pipeline configurations. It leverages historical data and prior experi-
ences, akin to the adaptability observed in human cognitive processes (Van Ackeren et al., 
2018). By initiating the search from a promising region within the configuration space, we 
substantially lower computational demands, providing a practical and effective solution for 
multimodal AutoML tasks.

This research presents a comprehensive solution to the dual challenges of multimodal 
data processing in AutoML: reducing the dependency on expensive NAS methods (Wis-
tuba et  al., 2019) and effectively integrating pre-trained Transformer models (Liu et  al., 
2021; Zöller & Huber, 2019). Our approach not only streamlines the development of 
multimodal ML pipelines but also ensures their adaptability and efficiency, representing 
an advancement in AutoML for handling complex data modalities such as tabular-text, 
text-vision, and vision-text-tabular configurations. The major contributions of this paper 
include the design of a versatile search space (pipeline) for multimodal data, the strategic 
incorporation of pre-trained models within the pipeline architectures, and the implementa-
tion of warm-starting for SMAC using metadata derived from prior evaluations. This novel 
methodology underscores our commitment to enhancing AutoML’s capability to navigate 
and optimize multimodal data processing efficiently.

2 � Related works

2.1 � Automated machine learning (AutoML)

Automated Machine Learning has become a crucial component in data-driven decision-
making, enabling domain experts to utilize machine learning without needing extensive 
statistical expertise. AutoML primarily revolves around the Combined Algorithm Selection 
and Hyperparameter Optimization (CASH) concept, focusing on scalability and computa-
tional efficiency (Zöller & Huber, 2019). While frameworks like the Tree-Based Pipeline 
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Optimization Tool (TPOT) have showcased the potential for sophisticated pipelines in 
AutoML (Olson & Moore, 2016), challenges persist, especially in Neural Architecture 
Search (NAS) and hyperparameter optimization.

NAS, essential for customizing architectures, struggles with computational demands 
and optimization complexities (Wistuba et  al., 2019). Meanwhile, advancements in 
Bayesian optimization have enhanced hyperparameter space navigation (Zöller & Huber, 
2019). However, an integrated framework harnessing both NAS and hyperparameter tun-
ing remains elusive. This research responds to this need by proposing a unified AutoML 
framework that synergizes NAS with hyperparameter optimization for efficient pipeline 
creation and tuning. A key focus of our approach is the concept of warm-starting, drawing 
parallels with human cognitive processes to efficiently adapt to new tasks through meta-
learning (Barrett, 2017; Vanschoren, 2020). This involves using meta-features and prior 
evaluations to guide the configuration search, employing a meta-learner to predict perfor-
mance and expedite the convergence to optimal solutions (Hospedales et al., 2020; Nguyen 
et al., 2014). Such an approach not only speeds up the optimization process but also imbues 
AutoML systems with cognitive-like adaptability, enhancing their capability to handle 
diverse and novel tasks.

2.2 � AutoML and pre‑trained transformer models

In the AutoML domain, CLIP’s integration in AutoGluon marks a pivotal shift towards 
multimodal learning (Erickson et  al., 2020; Radford et  al., 2021). Despite its innova-
tive approach to image-text pairings, CLIP’s limitations in handling text-only or image-
only data highlight a need for more versatile models (Radford et  al., 2021). Transform-
ers, known for their success in NLP tasks (Devlin et al., 2018; Lan et al., 2019; Liu et al., 
2019), and Vision Transformers (ViT) for vision tasks (Dosovitskiy et al., 2020), offer a 
promising solution with their efficient handling of long input sequences.

Pre-trained vision-language transformer models in AutoML can significantly enhance 
automatic pipeline synthesis by adeptly handling multimodal data (Du et al., 2022). Recent 
developments in transformer architectures have produced single and dual-stream mod-
els, each with unique strengths in processing multimodal inputs. Single-stream models 
like OSCAR, VisBERT, and VLBERT offer a unified approach but face challenges with 
intra-modal interactions (Li et al., 2020, 2019; Su et al., 2019), while dual-stream models 
like LXMERT and ALBEF excel in cross-modal attention (Li et al., 2021; Tan & Bansal, 
2019). Our research explores the impact of various transformer model architectures and 
pre-training objectives on AutoML systems. We focus on models such as FLAVA, a dual-
stream architecture generating cross-modal embeddings (Singh et al., 2021), Albef, align-
ing modalities before feeding them to a multimodal Transformer (Li et al., 2021), and Dat-
a2Vec, a modality-agnostic model (Baevski et al., 2022).

2.3 � Configuration space 2

The construction of a structured configuration space remains central to our inquiry into 
integrating pre-trained Transformer models within AutoML systems. The configura-
tion space of an AutoML system forms an integral and fundamental part of gener-
ating automated pipelines. The configuration space is a space that any search algo-
rithm explores to find specific elements of a Machine Learning Pipeline (Hutter et al., 
2019). This space is structured and parameterized to confine the search of a search 



7014	 Machine Learning (2024) 113:7011–7053

1 3

algorithm (Hutter et  al., 2019; Öztürk et  al., 2022). Current AutoML systems like 
AutoWEKA(Thornton et al., 2012), AutoGluon(Erickson et al., 2020) and AutoSklearn 
(Feurer et al., 2020) construct these spaces as a hierarchical space to enable a guided 
search strategy. Given n hyperparameters (continuous or categorical) �1, �2 ⋯ �n with 
domains Λ1,Λ2 ⋯Λn , the configuration space Θ is a subset of the crossproduct of these 
domains: Θ ⊂ Λ1 ×⋯ × Λn ∪ 𝜆r , where �r is a root-level hyperparameter. This subset 
is strict, such as when certain settings of one hyperparameter render other hyperpa-
rameters inactive, inducing a hierarchical structure within the configuration space 
(Thornton et al., 2012). This hierarchical structure of the configuration space remains 
critical as it prevents the sampling of incompatible hyperparameters. Incompatibility 
or a negative transfer can occur two-fold. The configuration space might sample hyper-
parameters that do not align with the sampled pre-trained model or the sampled pre-
trained model, also as a hyperparameter does not align with the said task ( �r ), leading 
to a negative transfer. More formally, following (Thornton et  al., 2012), we say that 
a hyperparameter �i is conditional on another hyperparameter �j , such that �i is only 
active if hyperparameter �j takes values from a given set Vi(j) ⊊ Λj in this case, we call 
�j a parent of �i . Conditional hyperparameters can in turn be parents of other condi-
tional hyperparameters, giving rise to a tree-structured space (Thornton et al., 2012).

Any selected search strategy to explore the structured hierarchical configuration 
space should handle the exploration-exploitation trade-off i.e. finding well-performing 
algorithms while avoiding premature convergence to a region of sub-optimal algo-
rithms (Elsken et al., 2018). According to Vanschoren (Hospedales et al., 2020), a con-
figuration space Θ∗ (continuous, categorical or mixed) consisting of hyperparameter 
settings, pipeline components and/or network architecture components can be learned 
by meta-learning from evaluations of algorithms on some set of prior evaluations P.

2.4 � Multimodal learning and fusion techniques

In light of the developments in Automated Machine Learning (AutoML), particu-
larly in Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO), 
this section focuses on the fusion strategy for integrating multimodal information. 
The motivation stems from the challenges in multimodal representation learning, as 
detailed by Liang et al. through MULTIBENCH, a comprehensive benchmark for mul-
timodal learning spanning diverse datasets and modalities (Liang et al., 2021). Among 
various fusion paradigms like Early Fusion, Multiplicative Interactions, and Temporal 
Attention Models, Late Fusion (LF) emerges as notably effective. LF demonstrates a 
favorable balance between performance and robustness, outperforming more complex 
methods like MFAS or MuLT (Liang et al., 2021).

Furthermore, LF’s adaptability across various domains is highlighted by Shi et al. 
(2021), who demonstrate its efficacy in synthesizing end-to-end ML pipelines for 
combined tabular and text modalities (Erickson et  al., 2022). They also show LF’s 
high accuracy in different AutoML strategies. Based on this empirical evidence and 
the need for robust, adaptable fusion methods in multimodal learning, Late Fusion is 
selected as the fusion strategy in our pipeline architecture. This choice aligns with the 
current research trends and promises enhanced performance and adaptability in han-
dling multimodal datasets within our AutoML framework.
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3 � Problem formulation

In this subsection, we shall formally describe and present the problem studied in the scope 
of this work. To better understand the formalism, a list of all the mathematical notations 
can be found in Table 1.

3.1 � Combined algorithm selection and hyperparameter optimization (CASH)

Our objective for incorporating pre-trained (Transformer) models in AutoML systems is to 
enable AutoML over unimodal as well as multimodal data. For that, we formulate a Com-
bined Algorithm Selection and Hyperparameter Optimization (CASH) problem. CASH 
entails selecting optimal learning algorithms from a set A , which includes pre-trained deep 
models ( A(i)

ptm ) and classical machine learning models ( A(i)
m

 ), and fine-tuning their hyperpa-
rameters ( � ) for peak performance.

Formally:

•	 Algorithm set  A : Comprises m pre-trained models ( A(1)
ptm,… ,A

(m)
ptm ) and n classical ML 

models ( A(1)
m
,… ,A(n)

m
).

•	 Hyperparameter space  Λ : A subset of the Cartesian product of individual hyperparam-
eter domains, Λ ⊂

∏m

i=1
Λ

(i)
ptm ×

∏n

j=1
Λ

(j)
m .

Table 1   Mathematical Notations and Their Representations

Notation Representation

A Set of learning algorithms
� Hyperparameters of algorithms
Λ Hyperparameter space
M Meta-dataset containing vectors of configuration settings and performance
m(j, i) Vectors encapsulating configuration settings and their performance
�L Meta-learner that predicts performance metrics
�ji Predicted mean performance by the meta-learner
�ji Predicted standard deviation of performance by the meta-learner
aMl Acquisition function used in selecting initial setups
�w Initial configuration selected by warm-starting
�r Root-level hyperparameter
R Performance measure
D Dataset
g Pipeline structures
P Pipeline configuration
L Loss function
E Expected value
h(X) Hypothesis or model prediction function
Y Target variable
Ŷ Outcome
k Number of folds in cross-validation
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•	 Pipeline structures set  G : All valid combinations of one pre-trained model and one 
classical ML model. The abstraction of a valid pipeline structure g′ can be seen in Fig 1.

Embeddings ( ̂e ) from the pre-trained model lie in a high-dimensional space ℝE and are 
inputs to classical ML models for mapping to the target domain �  . The goal is to identify 
the optimal pipeline configuration g′ , which comprises a pre-trained model ( Aptm ) and a 
classical ML model ( Am ), each with its tuned hyperparameters ( �∗

i
 and �∗

j
 , i ≠ j ). The true 

performance of a pipeline configuration is given by:

with the true distribution P(X, Y) being unknown, we approximate performance with a 
dataset D:

where L is the loss function and h() is the approximation function used to describe the 
true process. The objective is to minimize this estimated performance over k-fold 
cross-validation:

Optimization occurs across a hierarchical hyperparameter space, including a root-level 
hyperparameter ( �r ) for algorithm and pipeline structure selection. It is important to note 
that our approach does not assume that all pre-trained models will align with the specific 
learning tasks. Instead, we manage this issue through a structured hierarchical configura-
tion space where the selection of a pre-trained model is analogous to choosing a hyperpa-
rameter. This configuration space is designed to activate certain pre-trained models only if 
the task-specific root-level hyperparameter �r permits their inclusion. This method ensures 
that only relevant and task-appropriate models are considered, thereby minimizing the risk 
of negative transfer.

3.2 � The problem of warm‑starting

In the context of AutoML’s CASH problem, warm-starting is the process of initiating the opti-
mization with informed configurations derived from prior knowledge, as opposed to random 

(1)R̂
(
Pg� ,Â∗,𝜆∗,P,P

)
= �[L(h(�),� )] = ∫ L(h(�),� ) dP(�,� )

(2)R̂
(
Pg�,Â∗,𝜆∗,D,D

)
=

1

m

m∑

i=1

L(h(xi), yi)

(3)
(
g�, Â∗, 𝜆∗

)∗
= argmin

Â∗∈A|g� | ,g�∈G,𝜆∗∈Λ

1

k

k∑

i=1

R̂
(
P
g�,Â∗,𝜆∗,D

(i)

train

,D
(i)

valid

)

Fig. 1   Overview of the pipeline structure g′ whose components need to be generated and hyperparameters 
need to be optimised in a combined fashion. Aptm is the selected pre-trained model which generates the 
embedding ê , which is fed to a classical ML model Am for mapping ê to the target domain �
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initial configurations in cold-starting. We define warm-starting as the idea to leverage his-
torical data or results from related tasks to jump-start the current optimization task, aiming 
to reduce the time and computational resources required to reach an optimal solution. The 
assumptions that encompass the above definition are: sufficient availability of meta-data for 
initial configuration selection is presumed. Additionally, warm-starting presupposes a bal-
ance between exploiting known effective configurations and exploring new possibilities within 
the configuration space to prevent local optima, thus assuming a vast complex search space. 
Finally, it operates on the premise that beginning the optimization process near potentially 
optimal solutions incrementally enhances efficiency and effectiveness, favoring steady pro-
gress over random breakthroughs.

To facilitate the warm-starting process, we introduce a meta-dataset M, illustrated in Fig. 2, 
formalized as follows:

•	 The meta-datset M encompasses scalar performance metrics Pj,i , each derived from evalu-
ating the ith configuration of an ML pipeline for a task tj from a set of tasks T. Such con-
figurations integrate a pre-trained model A(m)

ptm and a traditional ML model A(n)
m

 , alongside 
their aggregate hyperparameters �j,i ∈ Λ , on a given task tj ∈ T in a pipeline structure g′ . 
The meta-dataset M thus incorporates Pj,i as real-valued outcomes or targets, juxtaposing a 
variety of categorical and numerical hyperparameters �j,i ∈ Λ as the features within M for 
a task tj , where �j,i ∈ ℝ

k.

Utilizing a meta-learner �L we project performance indicators (�j,i, �j,i) for these configura-
tions ( �L ∶ Λ ↦ ℝ ). Furthermore, by segregating M into distinct sets for training ( Mtrain ) 
and evaluation ( Meval ), we employ an acquisition function aMl , to accurately identify an ini-
tial configuration �w . This configuration �w is aimed at finding an initial configuration that 
strikes a balance between predicted efficacy and potential for further exploration, formalized 
as follows:

The ultimate goal in a warm-started Bayesian Optimization (BO) framework is to ascertain 
the optimal machine learning pipeline Pg� ,�∗ . This pipeline is composed of a combination 

(4)�w ∈ argmax
�w,m(j

�,i�)∈Meval

K∑

i=1

1

K
aMl

(
�L,Mtrain

(
m
(
j�, i�

)))

Fig. 2   Diagrammatic representation of the meta-learner �L facilitated process for selecting the initial con-
figuration �w to initiate the BO search
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of pre-trained and classical models denoted by �∗ , configured within a valid structural form 
g′ , where g� ∈ G . The optimization seeks to minimize the empirical risk R̂ over the pipe-
line configurations and structure:

This is complemented by the meta-learning strategy, where a meta-learner �L forecasts 
the mean and standard deviation of the performance for given configurations. The acquisi-
tion function is subsequently optimized across the evaluation set to select an initial con-
figuration �w that maximizes the expected performance. This initial configuration �w is then 
employed to commence the BO search procedure. Figure 2 provides an abstract overview 
of the formulated process.

3.3 � Configuration space ( 2 ) complexity

The Configuration Space, denoted as Θ , is delineated as a complex hybrid space composed 
of learning algorithms A , the hyperparameter space Λ , and the pipeline structures G . Ele-
ments within Θ are categorized as either numerical or categorical. The diversity, Dnumerical , 
across n numerical hyperparameters in Θ , where Hi,max and Hi,min signify the maximum and 
minimum allowable values for the i th numerical parameter, is defined as:

For hyperparameters scaled logarithmically (e.g., weight decay and layer normalization � ), 
the term (Hi,max − Hi,min) is substituted by log(Hi,max

Hi,min

) . Conversely, the diversity for m cate-
gorical hyperparameters, Dcategorical , within Θ is the product of available categories for each 
hyperparameter:

where Cj represents the number of categories for the j th categorical hyperparameter. The 
overall complexity of Θ is thus a function of both numerical and categorical diversity, 
alongside the aggregate possible configurations ( Tc ), formulated as:

Incorporating values from Table 2:

•	 For categorical hyperparameters: Pretraining Model (8 options), Pretraining Processors 
(3 options), Downstream model (12 options), and Downstream processor (1 option).

•	 For numerical hyperparameters: Totaling 8, with their respective ranges considered for 
computation.

•	 The Θ space encompasses two subsets related to pre-trained models Θptm and Neural 
Architecture Search (NAS) algorithms ΘNAS.

Hence, the complexity, TC , is determined as:

(5)
(
g�, 𝜆∗

)∗
∈ argmin

𝜆∗∈Λ,g�∈G

1

k

k∑

i=1

R̂
(
P
g� ,𝜆∗,D

(i)

train

,D
(i)

valid

)

(6)Dnumerical =

n∏

i=1

(Hi,max − Hi,min)

(7)Dcategorical =

m∏

j=1

Cj

(8)Tc = Dnumerical × Dcategorical
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with TC,Θptm
 and TC,ΘNAS

 indicating the complexities of the spaces comprising hyperparame-
ters associated with pre-trained models and NAS algorithms, respectively. Consequently, 
the estimated complexity of our constructed configuration space Θ approximates 938 tril-
lion possible configurations, emphasizing the computational challenge in optimizing within 
this extensive space.

4 � Pretrained transformer‑based AutoML (PTA) methodology

4.1 � Overall methodology

Our research integrates pre-trained deep neural models into Automated Machine Learn-
ing (AutoML) Systems to efficiently process multimodal data. Our methodology can be 
divided into 4 sequential steps namely: Prior Evaluation and Meta-Dataset Construction, 
Configuration Space ( Θ ) Construction, SMAC Setup and Execution, Evaluating the Opti-
misation. The rest of this section intends to explain each of the above-mentioned steps in 
detail. Figure 3 describes the overall workflow of our proposed Pre-Trained Transformer 
Based AutoML (PTA) framework. Meta-dataset M is constructed as a result of extensive 
prior (to the SMAC optimisation) evaluations across diverse pipeline configurations, tasks 

(9)|Tc| = Tc,Θptm
+ Tc,ΘNAS

= 9.38 × 1014

Fig. 3   Detailed overview of the Pretrained Transformer-based AutoML (PTA) system for warm-starting 
AutoML over multimodal data. LF denotes Late-Fusion
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as well as datasets following some pipeline structure g′ . Moreover, Θ represented in the 
diagram is the constructed search space after building the meta-dataset M. Encoder, Meta-
Model ( �L ), acquisition function, decoder, objective function, intensifier, and configuration 
selector are all components within SMAC. We shall understand the interactions of these 
components in detail in Sect. 4.4.

4.2 � Prior evaluations and meta‑dataset construction

4.2.1 � Prior evaluations: pipeline variants of multimodal AutoML

In this step, we evaluate task-specific variants of multimodal pipeline architectures con-
structed in a specific pipeline structure g′ across datasets belonging to the tabular-text, text-
vision and tabular-text-vision modalities. Furthermore, we evaluate these variants of pipe-
line architectures across tasks like classification, regression, Image Text Matching (ITM), 
and Visual Question Answering (VQA). Our framework includes 3 specific pipeline vari-
ants, each designed for a specific modality-task combination.

Pipeline Variant 1

•	 Tabular-Text Modality This variant, focusing on classification and regression tasks, uti-
lizes FLAVA and Data2Vec models for text data processing and NAS-derived MLP 
(multimodal-net) for tabular data. The late fusion strategy combines these embeddings, 
which are then processed by AutoGluon’s Tabular Predictor. The pipeline architecture, 
as shown in Fig. 4a, is optimized for handling both binary (multi-label) classification 
as well as regression tasks. The AutoGluon Tabular Predictor explores various tabular 
architectures, including ensemble tree-based models, and records model performance 
to inform future meta-learning.

•	 Tabular-Text-Vision Modality For this modality, the pipeline employs FLAVA and Albef 
models to encode image-text data, and the multimodal-net for tabular data. The encoded 
data from all three modalities is mapped into a unified latent space, implementing late 
fusion and downsampling using translation invariant methods like MaxPool. The com-

Fig. 4   Architectural Designs of the Pipeline Variant 1 for the Tabular-Text and Tabular-Text-Vision Modal-
ity
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bined embeddings are then processed by AutoGluon’s Tabular Predictor for task-specific 
execution, as depicted in Fig. 4b. This variant aims to record pipeline performance over 
multimodal datasets, enriching the meta-dataset for future optimization strategies.

Pipeline Variant 2
Focused on the ITM task, this variant processes unlabelled image-text data using 

FLAVA and Albef models. Data from datasets like Flickr30k and SBU image captioning 
is batch-processed and encoded into unified latent embeddings. A regression task maps 
these embeddings to contrastive scores obtained from the pre-trained models, optimizing 
the mapping using AutoGluon Tabular, as shown in Fig. 5a. This approach aims to assess 
model performance and optimize pipeline configurations for the ITM task.

Pipeline Variant 3
Figure 5b designed for the VQA task, this variant focuses on labeled vision-language 

data from the VQA2.0 dataset. FLAVA and Albef models are used for encoding images 
and questions. Batch processing is conducted via a PyTorch class object, with the encoded 
data forming a unified latent space. The combined embeddings and answer targets create a 
new dataset, processed by AutoGluon Tabular for the VQA task. The focus is on deriving 
insights from visual-textual interplay and optimizing model selection for the VQA task. 
We record the performance evaluations (AUC scores) of the multi-label classification task 
conducted by AutoGluon’s Tabular Predictor using different tree-based ensemble models. 
This prior knowledge is further incorporated in the form of the meta-dataset M.

Each variant demonstrates a unique approach to multimodal data processing, leveraging 
the capabilities of pre-trained models and the exploratory power of AutoGluon Tabular.

4.2.2 � Meta‑dataset construction

After designing the above 3 pipeline variants, a meta-dataset M is constructed by recording 
scalar performances Pj,i corresponding to each of these 3 pipeline variants, across vari-
ous tasks tj selected from the set comprising of classification, regression, ITM and VQA 
tasks. Given the ith pipeline configuration �j,i (pre-processing, pre-trained, traditional ML 
algorithm names as well as hyperparameters) for the jth task, M records �j,i and their cor-
responding Pj,i . M is realized as a nested python dictionary object, where the keys of the 

Fig. 5   Architectural Designs of the Pipeline Variant 2 and 3 respectively
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dictionary are the hyperparameters or algorithm names and the values for the respective 
keys are the recorded experimental values (numerical or categorical). M also records the 
names of the pre-trained model along with the names of the traditional ML models used in 
the pipeline in a string format. The list of hyperparameters corresponding to different pre-
trained as well as traditional ML models included within M can be found in Table 2.

4.3 � Construction of configuration space 2

The construction of the configuration space Θ is crucial for synthesizing effective machine-
learning pipelines in our AutoML system. Θ serves as a search space for the Sequential 
Model-Based Optimization (SMBO) algorithm, containing various components such as 
pre-trained models, feature processors, and classical ML models, structured hierarchically. 
This hybrid space includes both categorical and numerical hyperparameters described in 
Table  2.The inclusion of pre-trained models like FLAVA, Albef, and Data2Vec in Θ is 
motivated by their distinct capabilities and performance metrics (Du et  al., 2022; Khan 
et  al., 2021). FLAVA, for instance, excels in various multimodal tasks and language 
benchmarks, making it a valuable inclusion for its broad applicability. Data2Vec’s modal-
ity-agnostic nature is pivotal for generating universal representations, while Albef adds 
diversity with its specific strengths. In addition to these models, Θ encompasses conven-
tional tree-based models, classical ML classification and regression models, and various 
preprocessing algorithms. This configuration space is designed to be a hybrid of categori-
cal choices (such as selecting specific pre-trained models) and numerical hyperparameters 
(like layer normalization epsilon and dropout probabilities). The space is conditioned on 
the task type ( �r ), with hyperparameters rendered inactive based on the relevance to the 

Table 2   Selected hyperparameters and their corresponding ranges in Θ

Hyperparameters in Θ

 Hyperparameters Range

Attention drop-out [0.0, 0.5]
Hidden drop-out [0.0, 0.5]
Layer normalisation � [10e−12, 10e−2]

Pretraining model [‘FlavaText’, ‘Data2VecText’, ‘FlavaVQA’, ‘AlbefVQA’, 
‘Flava’, ‘Albef’, ‘FlavaITM’, ‘AlbefITM’]

Pretraining processors [‘FlavaProcessor’, ‘Data2VecProcessor’, ‘AlbefProcessor’]
Linear hidden size [256, 512]
MaxPooling kernel [2, 6]
Weight decay [10e−8, 10e−2]

Downstream model [‘CatBoost’, ‘XGBoost’..]
Downstream processor [‘AutoMLPipelineFeatureProcessor’]
Iterations [50, 100]
Max depth [2, 10]
Number of boost rounds [100, 500]
Max leaves [50, 300]
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task at hand, ensuring efficient and targeted search during optimization (Refer Sects. 2.3 
and 3.1).

4.4 � SMAC setup and execution: warm starting PTA

Upon the assembly of the hybrid configuration space Θ , we initialise and warm-start the 
Sequential Model-Based Algorithm Configuration (SMAC) procedure. This process 
encompasses the meta-dataset M, meta-model �L , acquisition function aMl , objective func-
tion f� , intensifier I  , and the configuration selector, aimed at addressing the Combined 
Algorithm Selection and Hyperparameter Optimization (CASH) challenge. The meta-data-
set M, compiled during the preceding evaluation phase, encapsulates data on the pipeline 
configurations � alongside their scalar performance evaluations P.

Following the creation of meta-dataset M, we establish the Scenario S for optimisation, 
which delineates the optimisation landscape, specifying iterations, budget, and the explo-
ration bounds within Θ . The intricacies of our optimisation scenario S will be elaborated 
upon in the experiments and results segment. Post the configuration of S , the meta-learner 
�L is trained on M1 employing 3-fold cross-validation. Having defined the modality and the 
task as a root level hyperparameter �r , the configuration selector samples only the hyper-
parameters activated under the defined subset of the structured configuration space. Fur-
thermore, to ascertain the validity of the pipeline, a conditional logic is designed to check 
whether the sampled choice of the pre-trained model (hyperparameter) lies within the per-
mitted zoo of models for the given type of input task and modality. With these we prevent 
incompatibility or negative-transfer. The configuration selector begins the optimization 
process by identifying a set of n random initial samples confined within the hierarchy and 
boundaries of our defined configuration space. These n configurations’ performance met-
rics are predicted using the trained meta-learner �L . The RandomForest meta-learner �L 
then undertakes a regression task, mapping the hyperparameter configurations Λ , within a 
high-dimensional space � ∈ ℝ

k , to a real value in ℝ , i.e., �L ∶ Λ ↦ ℝ . With the mean pre-
dictive performance and uncertainty estimates derived from �L , we maximize the Expected 
Improvement (EI) acquisition function aMl to pinpoint the initial configuration with the 
highest potential for achieving optimal performance. The selected initial configuration �w , 
boasting the highest EI score, is extracted from the configuration space for actual assess-
ment by the objective function. This function, f� , correlates the input features X ∈ ℝ

d with 
a real-valued performance metric p, expressed as f� ∶ ℝ

d
↦ ℝ . At this juncture, the pipe-

line, integrating the chosen configurations, is applied to the input data to fulfil the desig-
nated task objective. f� appraises this pipeline’s efficacy for the specific configuration � , 
including hyperparameters and models, converting these into a scalar metric such as AUC 
for classification or R2 for regression tasks. Designed to accommodate multimodal data, f� 
adjusts its evaluations based on the data modality and the precise task, engaging diverse 
pre-trained models like FLAVA, Albef, and Data2Vec to ensure its assessments are both 
accurate and pertinent. Consequently, f� evaluates �w , updating the performance metric in 
M. �w is thus acknowledged as the initial incumbent configuration.

To select the subsequent configuration �w+1 , �L undergoes re-training with the refreshed 
M. The configuration selector then extracts m random configurations, applying a 10–12% 
perturbation rate around the incumbent configuration ( �w ), facilitating the exploration of 
well-performing setups. The configuration with the maximal expected improvement is 

1  �
L
 is trained on M by partitioning it into two disjoint subsets Mtrain and Meval
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earmarked for actual evaluation through f� . Should this configuration yield a performance 
metric surpassing that of the incumbent, it is incorporated into the intensifier queue, updat-
ing the incumbent and M concurrently. The intensifier I  adopts an Aggressive Racing 
Strategy, probing the vicinities of promising incumbent configurations by instructing the 
configuration object to sample m configurations with the specified perturbation rate around 
these incumbents. The evaluations of these sampled configurations proceed in parallel, 
with the evaluation records continually refreshed in M, and �L being re-trained prior to 
each sampling iteration. This cycle repeats until the optimisation budget depletes. Figure 3 
furnishes a graphical representation of this warm-started SMAC optimisation procedure.

4.5 � Evaluating the optimization: any‑time learning metric

In our AutoML framework, evaluating the optimization process post-convergence of the 
SMAC loop is crucial. To achieve this, we adopt the ’any-time’ learning metric, taking 
inspiration from Liu et al. (2021), emphasizing efficiency under time and data constraints. 
This is quantified through the Area Under Learning Curve (ALC), expressed as:

where s(t) is the scoring function. For classification tasks, we make use of the Normalised 
Area Under the Curve (NAUC)2 as the scoring function. Moreover, for regression tasks, 
R2 score of the model acts as the scoring function in the above equation. The ALC metric 
captures the learning trajectory over time, especially in the initial phases, reflecting the 
system’s rapid learning efficiency. By computing the ALC for each dataset, we compre-
hensively evaluate the AutoML system’s optimization process, focusing on its ability to 
adapt and learn effectively within limited time frames. This methodological approach thor-
oughly assesses the framework’s learning behavior and operational efficiency in resource-
constrained environments. Additionally, the hierarchical nature of the configuration space 
ensures the activation of only task-related hyperparameters, rendering task-unrelated 
hyperparameters including pre-trained models as well as their corresponding hyperparam-
eters inactive. Thus, given this hierarchy, our evaluation function carefully evaluates sce-
narios where the pipeline components are entirely compatible with the learning task given 
a task and a dataset. The configuration sampler strives to avoid incompatibility and the 
hypothetical occurrence of any would result in consistent crashing and low ALC values. A 
high ALC value indicates consistent performance and effective sampling of learning algo-
rithms by the AutoML framework, suggesting that the configurations chosen are generally 
well-suited to the tasks. In case a trial (sampled pipeline configuration) fails to complete 
its training within the trial budget, we record the performance of such a sample as −inf  or 
CRASH. Incompatible samples are handled similarly.

(10)ALC =
1

log
(
1 +

T

t0

) ∫
T

0

s(t)

t + t0
dt

2  NAUC = 2 ∗ AUC − 1 , where AUC stands for Area Under RO Curve.
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5 � Experiments and results

5.1 � Experimental settings

Experiment 1: Prior evaluations of multimodal pipeline architectures
This experiment aims to collect prior insights by evaluating various pipeline configu-

rations across 23 multimodal datasets, documenting the configurations �j,i and their per-
formance estimates Pj,i in a meta-dataset M. We explore three variants of our proposed 
multimodal pipeline architectures that employ Late Fusion to integrate multiple modalities 
for tasks including classification, regression, image-text matching (ITM), and visual ques-
tion answering (VQA). The experimental setup involves selecting a pre-trained multimodal 
vision-language transformer to represent vision-language data within a unified latent space. 
Additionally, we employ Neural Architecture Search (NAS) via AutoGluon to construct a 
dynamic multilayer perceptron (MLP) for tabular data, aligning it within the same latent 
space. The Late Fusion process linearizes the final embeddings, which are then utilized by 
AutoGluon Tabular to predict the respective targets.

For classification and regression tasks, we utilize the 18 AutoMM Benchmark Data-
sets introduced by Shi et  al. (2021). To evaluate classification tasks we make use of the 
NAUC metric and for regression tasks we study thr R2 score. The ITM task evaluations are 
conducted using the Flickr30k (Plummer et al., 2015) and SBU Image Captioning Dataset 
(Ordonez et  al., 2011), while VQA task performance is assessed on the VQA 2.0 Data-
set (Agrawal et al., 2015). Additionally, the PetFinder and CD-18 Datasets are employed 
to evaluate classification and regression tasks within the tabular-text-vision modality. The 
first variant of our pipeline architecture, as depicted in Figs. 4a, b, is utilized for evaluating 
tabular-text and tabular-text-vision modalities in classification and regression tasks, respec-
tively. The second pipeline variant, shown in Fig. 5a, is used for ITM tasks, while the third 
variant addresses the VQA task. Each evaluation session spans ≈ 5–6 h to ensure optimal 
or near-optimal pipeline configurations are achieved. It is important to note that the pre-
trained models’ weights are kept frozen, with only the downstream ML models’ weights 
being fine-tuned. This implies that the variation in performance observed during the opti-
mization process arises solely from the adjustments in the hyperparameters (of the pre-
trained models) rather than any changes in the model’s weights. Freezing the pre-trained 
weights enables us to study the variation in the model performance especially when the 
pre-trained models are kept the same and the hyperparameters are varied and also when we 
vary the pre-trained models along with their hyperparameters altogether for a given task-
modality and dataset.

Experiment 2: Assessing the efficacy of warm-started PTA
This experiment evaluates the SMAC optimization curve across varied pipeline variants 

for multimodal tasks, using the ALC metric that utilizes a scoring function s(t)3 for config-
uration performance at times t . We focus on assessing our warm-started PTA framework’s 
optimization quality by studying the ALC and s(t) scores through the learning curves, iden-
tifying promising configurations for further analysis within a 45 min limit, as suggested 
by Liu et al. (2021). This Scenario S is set up, with trials capped at 20 min and overall 
optimization limited to 45 min. With this specific budget, we aim to highlight the efficiency 

3  NAUC for classification tasks and R2 for regression tasks.
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of our warm-started PTA framework in sampling optimal incumbent candidate/s within a 
vast search space under a limited budget. Unsuccessful trials are marked as -inf or CRASH, 
with successful ones 𝛾 ⊆ Γ being evaluated for consistent exploration of high-performing 
candidates, represented by high ALC scores ( ≈ 1 ). We address the challenge of inappro-
priately chosen pre-trained models by including their evaluation in the ALC and mark-
ing mismatches or negative transfers with a performance score of “-inf,” thereby avoiding 
their impact on the system’s learning curve. This approach ensures that frequent incom-
patibilities lead to fewer evaluations and lower ALC scores, indicating areas for potential 
improvement. Then we analyze the learning curves across 23 multimodal datasets, plotting 
the scoring function s(t)-NAUC for classification and R2 for regression-against log-scaled 
time (Fig. 6a, b) and compute the Area Under the Learning Curve (ALC) as an any-time 
learning metric to evaluate the consistency of optimization efforts for all the 23 multimodal 
datasets.

Moreover, we compare the efficacy of our warm-started PTA, leveraging pre-trained 
models, against an inherently cold-started NAS (multimodal-net) method implemented 
by Autogluon for handling multiple modalities. The main reason for this comparison is to 
showcase an efficient exploration of a complex search space under budgeted constraints, 
based on a hybrid pipeline approach (pre-trained transformers + NAS) infused with prior 
knowledge as compared to a computationally expensive cold-started, NAS method. Fur-
thermore, we implement Late Fusion (LF) for integrating modalities as suggested by Shi 
et al. (2021), Liang et al. (2021), a method performing the best across 18 real-world data-
sets as showcased by Shi et al. (2021) with their experiments on Autogluon. Furthermore, 
the only pre-trained multimodal model implemented by Autogluon is CLIP, apart from 
its NAS methods for handling multimodal data, we intend to compare autogluon’s perfor-
mance against a set of a hybrid AutoML architecture, incorporating more sophisticated 
multimodal models.

For tabular-text modality, we benchmark against the AutoMM Benchmark by Shi et al. 
(2021), using a cold-started NAS-based multimodal-net over 5–6 h. Absent a public bench-
mark for vision-language tasks, we assess the warm-started PTA’s (under 45 min budget 
constraint) performance against Autogluon’s NAS-based multimodal-net to evaluate 
incumbent scores on a similar budget of 45 min. With this comparison, we aim to show 
that by reducing the dependency on NAS for multimodal processing, the efficiency of pipe-
line generation under a constrained budget could be significantly improved.

5.1.1 � Results: experiment 1

In this section, we report some observed average metrics for the datasets and tasks selected 
for prior evaluations. For the AutoMM Benchmark datasets, we report the average AUC 
and R2 scores ( � in Table  3) obtained by the FLAVA and Data2Vec pipeline variants 
across the classification and regression datasets from the AutoMM benchmark respectively. 
For the Flickr30k, SBU, VQA, Petfinder and CD-18 datasets, we report the average scores 
( � ) obtained across different pipeline hyperparameters and downstream traditional ML 
models fitted through Autogluon Tabular, after fixating a pre-trained multimodal model 
within the multimodal pipeline.

Tabular + Text modality
FLAVA demonstrates an average AUC score of 0.354 across the classification data-

sets and an average R2 score of 0.415 across the regression datasets, with a minimal 
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variance of 0.001 and 0.003 respectively, indicating consistent handling of tabular and 
text data. This performance is 23% and 55% higher than Data2Vec’s average AUC and 
R2 scores of 0.272 and 0.236 respectively. However, it’s important to note that FLAVA 
requires a higher average prediction time across both classification and regression data-
sets compared to Data2Vec. Despite this longer prediction time, FLAVA’s scores are not 
significantly higher than the ones obtained on the relatively faster Data2Vec pipelines.

Text + Vision modality
For the Visual Question Answering task over the VQA2.0 dataset, Albef and FLAVA 

give ≈ similar performances, an AUC score of 0.933 and 0.931 respectively, with Albef 
pipelines performing slightly better on average across different downstream models. The 
observed difference in the average prediction and fit times across Albef and FLAVA 
pipelines appears to be relatively small, with both pipeline configurations showing con-
sistent performances ( ≈ 0 �2 ) across different downstream ML models. In the ITM task, 
Albef slightly outperforms FLAVA on the Flickr30k (0.216 vs. 0.205) and SBU data-
sets (0.181 vs. 0.177). However, Albef pipelines are extremely efficient than the FLAVA 
pipelines for prediction on ITM tasks. The average prediction time across the VQA 
dataset is approximately the same for the pipeline configurations consisting of FLAVA 
and Albef models.

Table 3   FLAVA, Albef, and Data2Vec prior evaluation results across 23 Datasets (18 AutoMM, Flickr30k, 
SBU, PetFinder, and CD-18) for the 3 modalities, over classification, regression, ITM, and VQA tasks

Variance ( �2 ) and mean ( � ) are shown for scores, where �2 denotes the variance in score across different 
downstream ensemble models. A star (*) indicates R2 scores values for regression tasks. Scores without the 
star (*) indicate the AUC scores

Modality Data �2 �∗ Pred time (s) Fit time (s)

FLAVA pipelines: avg performance (classification tasks)
Txt-Vis VQA2.0 0.026 0.931* 1535.239 4876.595
Tab-Txt AutoMM clf 0.001 0.354 248.238 3282.349
Tab-Txt-Vis PetFinder 0.101 0.373 1927.186 1387.345
FLAVA pipelines: avg performance (regression tasks)
Tab-Txt AutoMM reg 0.003 0.415* 164.497 4643.201
Txt-Vis Flickr30k 0.042 0.205* 3691.097 7499.211
Txt-Vis SBU 0.012 0.177* 4447.424 14814.139
Tab-Txt-Vis CD-18 0.139 0.412*  215.790 906.433
Albef pipelines: avg performance (classification tasks)
Txt-Vis VQA2.0 0.001 0.933* 1927.186 4651.606
Tab-Txt-Vis PetFinder 0.108 0.393 207.764 1464.711
Albef pipelines: Avg Performance (Regression Tasks)
Txt-Vis Flickr30k 0.052 0.216* 3.983 5139.134
Txt-Vis SBU 0.013 0.181* 4.265 2886.672
Tab-Txt-Vis CD-18 0.122 0.424* 178.171 816.697
Data2Vec pipelines: avg performance (classification and regression tasks)
Tab-Txt AutoMM clf 0.002 0.272 0.187 2105.509
Tab-Txt AutoMM reg 0.001 0.236* 0.146 1607.344
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Tabular + Text + Vision modality
Albef’s performance in the complex multimodal scenarios of PetFinder and CD-18 

datasets (0.393 and 0.424, respectively) edges out FLAVA’s scores (0.373 and 0.412), 
showing a 5% to 3% improvement. Albef also shines in computational efficiency, par-
ticularly in the CD-18 dataset, where its average prediction time is 178.171  s, nearly 
20% faster than FLAVA’s 215.790 s.

Fig. 6   Learning curves depicting the obtained R2 scores for the Flickr30k, SBU (6a) and CD-18 datasets 
(6b) and the NAUC scores for the PetFinder dataset (6b), as a function of time across different pipeline 
configurations evaluated during the SMAC optimisation process for the ITM and VQA tasks respectively. 
x-axis: log(t), y-axis: s(t)

Fig. 7   ALC scores obtained using our warm-started PTA for the 3 studied modalities under a budget T (45 
mins). x-axis: datasets, y-axis: ALC scores. blue: classification data, orange: regression data
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Stability Across Models
The stable performance of FLAVA and Albef, as indicated by low variance scores �2 , 

highlights their reliability in AutoML strategies. Despite Data2Vec’s modest performance, 
its modality-agnostic feature stands out. Our evaluation compares pipeline performances 
with pre-trained models such as FLAVA, Albef, and Data2Vec, underpinning the belief 
that high-quality, higher-dimensional representations are crucial for predictive accuracy. 
These representations are vital for the success of downstream models, with the optimiza-
tion and quality of embeddings significantly impacting performance outcomes. High-qual-
ity embeddings from these pre-trained models are key to strong performance, underscor-
ing their importance in our AutoML framework. The performances of FLAVA, Albef, and 
Data2Vec across various modalities offer insights into their distinct strengths, informing 
future AutoML model selection and strategy enhancements.

Fig. 8   Comparison of the NAUC/R2 scores obtained using our PTA framework with AutoGluon for the 
Tabular-Text, Text-Vision and Tabular-Text-Vision modalities respectively (y-axis: 0 to 1). x-axis: datasets, 
y-axis: NAUC or R2 (s(t)) scores. blue: classification data, orange: regression data
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5.1.2 � Results: experiment 2

Figures 7a–c illustrate the ALC values from the 23 multimodal datasets, highlighting the 
efficiency and efficacy of our warm-started PTA framework through high ALC scores of 
0.762, 0.803, 0.815, and 0.693 for the Petfinder, VQA2.0, Flickr30k, and SBU datasets, 
respectively, across tabular-text-vision and text-vision modalities. The learning curves 
depicted in Fig. 6a, b, representing the Flicker30K, SBU, Petfinder, and CD-18 datasets, 
underscore the ALC values, with scores nearing 1 signifying the generation of incumbents 
with optimal s(t) values throughout the 45 min optimization period.

For the tabular-text classification task, the salary dataset achieved the highest ALC 
score of 0.819 (Fig. 7c). The average ALC score for the classification datasets within the 
AutoMM benchmark is 0.711, as shown in Fig.  7c, indicating substantial performance 
despite budget limitations. Additionally, an average ALC score of 0.702 was noted for 
regression datasets (Fig. 7c), demonstrating our framework’s capability to produce effec-
tive pipeline configurations under time constraints. Comparing the incumbents synthe-
sized by our warm-started PTA framework against those from a cold-started NAS method 
over a similar budget of 45 min, Fig.  8 contrasts the s(t) scores across both approaches 
for selected datasets. The PTA incumbents for tabular-text classification datasets averaged 
higher performance (0.7521) compared to the NAS-based multimodal-net by Autogluon 
(0.530) (Fig.  8a, b), and for tabular-text regression tasks, PTA incumbents also outper-
formed (0.695 R2 ) against the NAS-based approach ( 0.196R2 , Fig. 8a, b). Specifically, for 

Fig. 9   Warm-Started SMAC Results for the AutoMM Benchmark (Shi et al., 2021)
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Fig. 10   Warm-Started SMAC Results for the AutoMM Benchmark (Shi et al., 2021)
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the VQA2.0 dataset, the warm-started PTA framework achieved a NAUC score of approxi-
mately 0.820 (Fig. 8c), surpassing the NAS-based approach’s score of approximately 0.433 
(Fig. 8d). Similarly, ITM tasks on the Flickr30k and SBU datasets resulted in incumbent 
R2 scores of 0.912 and 0.810 (Fig. 8c), respectively, demonstrating superior performance 
over the Autogluon MLP (Fig.  8d). For tabular-text-vision modalities, like the Petfinder 
and CD-18 datasets (Fig. 8e, f), the performance of PTA incumbents closely matched the 
NAS-based incumbents. Based on these results and additional results stated in the Appen-
dix (Figs. 9, 10), we could infer that it takes Autogluon considerable amount of resources, 
both computational and temporal to construct a complex Neural Architecture from scratch, 
especially for non-tabular modalities. The high ALC values obtained for our approach 
across 23 datasets underscore the efficiency of an approach, utilising NAS only for the 
tabular modality and leveraging prior experiences for an informed search across a com-
plex search space, tends to consistently generate well-performing pipeline configurations, 
under a constrained computational budget. Moreover,the combined cross and intra modal 
interactions facilitated by our pre-trained models, preserve and capture complex non-linear 
interactions ( ̂e ), which turn out to be more informative than the representations constructed 
by Autogluon’s multimodal-net.

6 � Conclusion and discussion

This study advances the Automated Machine Learning (AutoML) field, emphasizing mul-
timodal data processing across visual, textual, and tabular inputs. By incorporating pre-
trained models, meta-learning, and optimization strategies, we’ve explored innovative 
approaches for complex pipeline configurations. Our experiments demonstrate the frame-
work’s rapid convergence to optimal configurations across various modalities, highlighted 
by its performance on text-vision tasks using datasets like Flickr30k and SBU Image Cap-
tioning. The high NAUC scores and Area Under the Learning Curve (ALC) scores across 
23 datasets attest to our framework’s efficiency in crafting effective multimodal pipeline 
architectures within computational constraints in a consistent manner. Our comparisons 
with traditional NAS methods reveal our framework’s superior efficiency, especially in 
time-limited scenarios, showcasing the strength of warm-starting and partial dependence 
on NAS along with potential areas for improvement. The framework’s success in resource-
limited settings indicates its potential applicability in real-world scenarios, when searching 
for well-performing architectures, laying a foundation for further research and the need for 
broader testing and validation in diverse environments.

Recognizing the limitations of our work, in our AutoML framework, we utilize a warm-
start approach where pre-trained models are incorporated with their weights frozen. This 
ensures that performance variations during optimization arise solely from hyperparameter 
adjustments, not changes in model (pre-trained) weights. Our study focuses on how these 
hyperparameters impact the efficacy of a static, pre-trained model architecture. We do not 
fine-tune the pre-trained model weights; instead, we assess how different hyperparameter 
settings exploit the pre-trained models to generate and use latent representations of data 
across vision, text, or combined modalities. This method isolates performance variations to 
hyperparameter effects, ensuring clear attribution in our findings. Due to the complexity of 
the configuration space, this study does not examine the parameter manifold of pre-trained 
models, focusing instead on distinguishing between models that can still improve and those 
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that cannot. Future work will focus on expanding the framework’s application in various 
settings, including sampling of parameters from parameter-spaces and further refining its 
capabilities to meet the evolving demands of AutoML solutions.

Appendix

A: Problem formulation

A.1: General algorithm selection problem

Let A be the given set of learning algorithms along with limited training data as D = 
{ (x1, y1)⋯ (xn, yn) }. The goal is to find a pipeline Pg,Â,𝜆̂ , where A ∈ A such that A is a 
set of learning algorithms, � is the set of corresponding hyperparameters and g ∈ G is set 
of valid pipeline structures, with an optimal generalization performance. The generaliza-
tion performance of such a pipeline can be evaluated by splitting D into the disjoint sets 
D

(i)

train
 and D(i)

valid
 by applying A∗ (more than one learning algorithms) to D(i)

train
 and evaluating 

the performance based on some empirical metric on D(i)

valid
 . Here L(A,D(i)

train
,D

(i)

valid
) where 

L⇐ւ⇔ւ⇒ is some loss. Thus, the general model selection problem becomes (Thornton 
et al., 2012; Zöller & Huber, 2019):

where k represents k-fold cross validation that splits D into k equal-sized partitions4.

A.2: Hyperparameter optimisation (HPO) problem

Let Λ be the hyperparameter space such that � ∈ Λ for a given algorithm A. Hyperpa-
rameter spaces are often high-dimensional and the hyperparameter � is often continuous. 
Hence, given n hyperparameters �1, �2 ⋯ �n with domains Λ1,Λ2 ⋯Λn , the hyperparam-
eter space Λ is a strict subset of the cross product of these domains: Λ ⊂ Λ1 × Λ2 × Λn 
(Thornton et al., 2012). The subset of the hyperparameter space is strict, as in some set-
tings certain hyperparameters may render others inactive. For instance, hyperparameters 
of a classification pre-processor should render hyperparameters of regression algorithms 
inactive. Hence, we can formally state this problem as:

(11)A∗ ∈ argmin
A∈A

1

k

k∑

i=i

L
(
A,D

(i)

train
,D

(i)

valid

)

(12)�∗ ∈ argmin
�∈Λ

1

k

k∑

i=1

L
(
A�,D

(i)

train
,D

(i)

valid

)

4  D(i)

train
= D − D

(i)

valid
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B: Additional related works

B.1: Pipeline synthesis as a regression problem

In the realm of Automated Machine Learning (AutoML), the Challenge of AutoML 
Systems (CASH) problem, particularly the task of selecting optimal hyperparameters 
and pipeline configurations, has garnered substantial attention. To address this chal-
lenge, various model-based algorithms have been employed to optimize the selection 
process effectively. One noteworthy AutoML tool, AutoWEKA (Thornton et al., 2012), 
has demonstrated state-of-the-art performance in tackling the algorithm selection prob-
lem by utilizing Sequential Model-Based Optimization (SMBO) techniques, specifically 
Sequential Model-based Algorithm Configuration (SMAC) and Tree-structured Parzen 
Estimator (TPE) (Thornton et al., 2012).

The essence of solving the CASH problem can be conceptualized as a regression 
problem. We aim to model the relationship between hyperparameter configurations 
and the corresponding loss function values. This modeling process enables us to pre-
dict the most promising configurations that minimize the loss function. To achieve this, 
AutoWEKA and similar SMBO algorithms follow a systematic iterative approach: 

1.	 Model construction The first step involves constructing a predictive model, denoted as 
ML , which captures the dependence of the loss function L on hyperparameter settings 
� . This model serves as the cornerstone for making informed decisions about which 
hyperparameter configurations to evaluate.

2.	 Loss evaluation With the model ML in place, the algorithm proceeds to evaluate a loss 
value c for a given hyperparameter and pipeline configuration � . This evaluation is based 
on the loss function L associated with the selected configuration.

3.	 Model updating Following the loss evaluation, the algorithm updates the predictive 
model ML with the newly acquired data point (�, c) . This iterative learning process 
allows the model to adapt and improve its predictions over time.

4.	 Acquisition function To select the next hyperparameter and pipeline configuration � 
for evaluation, an acquisition function aML

 is employed. This function, aML
∶ Λ → ℝ , 

quantifies the expected utility of evaluating a specific � based on the predictive distribu-
tion of model ML . In essence, it helps determine which configuration is likely to yield 
the most valuable information.

Two widely used acquisition functions in SMBO are Sequential Model-based Algorithm 
Configuration (SMAC) and Tree-structured Parzen Estimator (TPE). SMAC employs the 
“positive expected improvement” (EI) function, which measures the improvement in per-
formance over a given error rate threshold cmin for each configuration. The EI function is 
defined as:

While we may not have direct access to c(�) , we can estimate its expectation with respect 
to the model ML . AutoWEKA often employs random forest models as ML to predict �� 
(mean) and �2

�
 (variance) of p(c|�) as frequentist estimates, effectively modeling pML

 as a 
Gaussian distribution N(��, �

2
�
) . This Gaussian distribution enables the closed-form com-

putation of the expected improvement as:

Icmin (�) ∶= max{cmin − c(�), 0}



7035Machine Learning (2024) 113:7011–7053	

1 3

where � =
cmin−��

��
 , and Φ and Ψ represent the probability and cumulative density functions 

of a standard normal distribution, respectively (Thornton et al., 2012).
TPE, on the other hand, uses separate models for p(c) and p(�|c) . It distinguishes 

between configurations that perform well ( l(⋅) ) and those that perform poorly ( g(⋅) ) with 
respect to a chosen threshold c∗ . TPE estimates the expected improvement as:

here � is a predefined quantile value (often set to 0.15), and c∗ is chosen as the �-quantile of 
observed losses (Thornton et al., 2012).

Adoption in our methodology

The concept of treating pipeline synthesis as a regression problem, as demonstrated by 
model-based algorithms like SMAC and TPE, aligns with our approach in tackling the 
challenge of AutoML. In our methodology, we draw inspiration from these regression-
based techniques to optimize the selection and configuration of hyperparameters and pipe-
lines. By leveraging regression models and predictive modeling, we aim to enhance the 
efficiency and effectiveness of our AutoML framework, ultimately advancing the state of 
the art in automated machine learning.

B.2: Objective function

We provide the algorithm for the objective function constructed for warm-starting the 
search of pipeline configurations consisting of a pre-trained model for processing multi-
modal input data. The Algorithm 1 depicts the pseudo-code of the objective function used 
to evaluate the vision-language modality. By extending the if statements in the following 
function, we tackle the other two modalities. Additionally, within each modality by extend-
ing the if statements, we evaluate other pre-trained models (Albef, Data2Vec). As Data-
2Vec is not a multimodal model, we use Data2Vec for evaluating only the tabular + text 
modality. The objective function always returns a real-valued scalar value.

�ML
[Icmin (�)] = �� ⋅ [� ⋅Φ(�) + Ψ(�)]

�ML
[Icmin (�)] ∝

(
� +

g(�)

l(�)
⋅ (1 − �)

)
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Algorithm 1   Algorithm for Objective Function

B.3: Warm starting PTA

Previously, we provided an overview of the SMAC workflow (Fig  3) as mentioned in 
Sect. 4. Several, questions arise during understanding this optimisation process, we lay out 
some fundamental questions to provide a better understanding to the reader:

•	 Q1: What happens if the actual evaluation over the objective function is lower than that 
of the meta-learner �l prediction?
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	   Ans: Configurations that seem to perform worse than the prediction of �l are tackled 
using a queuing strategy that is implemented by the Intensifier component of SMAC. 
Configurations that perform worse than predicted are added to the intensifier queue. 
The intensifier then chooses to re-evaluate and intensify these configurations, giving 
them another chance to prove their potential after the meta-learner �l has been re-
trained with a set of actual evaluations.

•	 Q2: How does the encoding of the configurations from the meta-dataset take place?
	   Ans: Hyperparameter configurations need to be encoded into a format that can be 

used as input for the meta-learner �l . SMAC3 provides different ways to encode con-
figurations based on their types:

	   Categorical Hyperparameters: Categorical hyperparameters are typically one-hot 
encoded. Each category becomes a binary feature, with one indicating the presence of 
the category and zero for other categories.

	   Numerical Hyperparameters: Numerical hyperparameters are usually used as-is after 
normalization or scaling. They are represented as continuous values.

•	 Q3: How does the decoding of the configurations take place once the EI acquisition 
function selects a particular configuration for evaluation?

	   Ans: For categorical hyperparameters that were one-hot encoded, SMAC3 identifies 
the active binary feature(s) in the encoded representation. These active features indicate 
the selected category for each categorical hyperparameter. Numerical hyperparameters, 
which were scaled or normalized during the encoding process, are decoded back to 
their original scale using the inverse of the normalization or scaling transformation.

	   Once the categorical and numerical hyperparameters are decoded, SMAC3 con-
structs a valid configuration object. This involves setting the categorical hyperparam-
eters to their selected categories and the numerical hyperparameters to their decoded 
values. Furthermore, it is possible that the decoded configuration doesn’t satisfy the 
constraints defined by the configuration space like falling outside the allowed range. In 
such cases, SMAC3 applies constraint handling mechanisms to ensure that the configu-
ration is valid. This might involve clipping the values to the valid range and rounding 
them.

	   The Algorithm 2 provides an overview of the SMAC procedure for obtaining opti-
mal pipeline configurations for multimodal inputs.

	   The Algorithm 2 provides an overview of the SMAC procedure for obtaining optimal 
pipeline configurations for multimodal inputs. 
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Algorithm 2   SMAC Optimization with Intensification

B.4: Multimodal datasets in consideration

This appendix focuses on the analysis and selection of datasets integral to our research 
in multimodal machine learning, considering both unimodal and multimodal datasets. We 
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delve into various publicly available datasets, assess their characteristics and relevance, and 
justify their inclusion in our study.

B.4.1: Multimodal datasets: tabular + text

•	 Shi et al. Benchmark: Shi et al. compiled 18 multimodal datasets (Fig. 11) focusing on 
tabular + text modalities, primarily derived from real-world applications. These data-
sets exhibit diversity in sample size, problem types, and feature categories.

•	 Dataset characteristics: Each dataset in this collection offers a mix of categorical, 
numerical, and text features, with varying lengths and types of text.

•	 Use in research The versatility and comprehensive nature of these datasets make them 
ideal for developing and testing multimodal AutoML systems, particularly for tabular + 
text tasks.

B.4.2: Multimodal datasets: image + text, image + text + tabular

•	 Empirical analysis by Ferraro et  al. An extensive survey by Ferraro et  al. (Fig.  12) 
presents a thorough evaluation of major vision-language datasets. They assess datasets 
based on various quality metrics like vocabulary size, syntactic complexity, and per-
plexity.

•	 Datasets for vision-language tasks We have included datasets such as VQA (Agrawal 
et  al., 2015), SBU (Ordonez et  al., 2011), Flickr30k (Plummer et  al., 2015), and 
Flickr8k (Plummer et al., 2015) for tasks in visual question answering and image-text 
retrieval, aligning with our goal of generalizing over vision-language tasks.

•	 Public access and empirical rigor Despite a scarcity of datasets integrating tabular, 
text, and vision modalities, the PetFinder5 dataset (focused on pet adoption prediction) 
and CD-18 dataset (Zehtab-Salmasi et  al., 2021) (for mobile phone price prediction) 
stand out. These datasets provide a rich blend of multimodal data and have been uti-
lized in AutoML frameworks like AutoGluon, underscoring their utility and relevance 
to our study.

Fig. 11   An overview of the 18 datasets proposed by Erickson et  al. (2022) that form their public bench-
mark. ’#CAT’, ’#NUM’ and ’#Text’ count the categorical, numerical and text features in each of those 18 
datasets. ’#Train’, and ’#Test’ show the number of training and test samples in each of those 18 datasets

5  https://www.kaggle.com/competitions/petfinder-adoption-prediction/data.
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The datasets selected for this research were chosen based on their empirical evaluation, 
diversity, and applicability to real-world scenarios. They provide a solid foundation for 
investigating and developing robust machine-learning models across various modalities 
and tasks.

C: Additional results

C.1: Warm‑started SMAC procedure

In this subsection, we report detailed results for each of the 23 evaluated datasets. Along 
with the performance graphs, we also present the incumbent �optimal configurations for 
some of the datasets.

C.1.1: Best incumbents

Here we will list some of the best-observed pipeline configurations or incumbents �optimal 
for the AutoMM Benchmark (Shi et  al., 2021), VQA2.0, Flickr30k, SBU, Petfinder and 
CD-18 datasets. The obtained incumbents as a result of our PTA framework for the 
AutoMM Benchmark (product sentiment and cloth), VQA2.0, Flickr30k, SBU Image 
Captioning, Petfinder and CD-18 Datasets are provided in Tables 4, 5, 6, 7, 8, 9, and 10 
respectively.

Fig. 12   Summary statistics and quality metrics of a sample of major datasets provided by Ferraro et  al. 
(2015)
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Table 4   Best incumbent for the product machine data (AutoMM Benchmark (Shi et al., 2021))

Best incumbent �optimal

Components and hyperparameters Choices

Pre-training model ‘Data2VecText’
Pre-training task ‘Classification’
Layer normalisation � 3.799405790636786e−06

Attention dropout 0.31379225175619446
Hidden droput 0.2555013087915553
Pretraining processors ‘AutoTokenizer’
Linear hidden size 349
Weight decay 1.45657361e − 04

Downstream model ‘StackedEnsemble_ExtraTress_L2’
Downstream processor ‘AutoMLPipelineFeatureProcessor’
Iterations 87
Max depth 2
Number of boost rounds 8
Max leaves 159

Table 5   Best incumbent for the cloth data [AutoMM Benchmark (Shi et al., 2021)]

Best incumbent �optimal

Components and hyperparameters Choices

Pre-training model ‘Data2VecText’
Pre-training task ‘Regression’
Layer normalisation � 1.2816543313722326e−06

Attention dropout 0.030392025869493244
Hidden droput 0.008490381184591556
Pretraining processors ‘AutoTokenizer’
Linear hidden size 344
Weight decay 1.57842627e − 03

Downstream model ‘WeightedEnsemble_r_LGB_L2’
Downstream processor ‘AutoMLPipelineFeatureProcessor’
Iterations 64
Max depth 2
Number of boost rounds 7
Max leaves 128
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Table 6   Best incumbent for the VQA2.0 data

Best incumbent �optimal

Components and hyperparameters Choices

Pre-training model ‘AlbefVQA’
Pre-training task ‘Classification’
, Downstream task ‘Classification’
, Layer normalisation � 1.2816543313722326e−06

Attention dropout 0.40062137440149
Hidden droput 0.39124685464340725
Pretraining processors ‘AutoTokenizer’
Linear hidden size 438
Weight decay 1.23562410e−04

Downstream model ‘WeightedEnsemble_ExtraTrees_L2’
Downstream processor ‘AutoMLPipelineFeatureProcessor’
Iterations 53
Max depth 4
Number of boost rounds 6
Max leaves 138

Table 7   Best incumbent for the Flickr30k data

Best incumbent �optimal

Components and hyperparameters Choices

Pre-training model ‘AlbefFeatureProcessor’
Pre-training task ‘ITM’
Layer normalisation � 3.421060173004536e−06

Attention dropout 0.40062137440149
Hidden droput 0.39124685464340725
Pretraining processors ‘AutoTokenizer’
Linear hidden size 438
Weight decay 1.45330165e−05

Downstream model ‘WeightedEnsemble_r_ExtraTrees_L2’
Downstream processor ‘AutoMLPipelineFeatureProcessor’
Iterations 82
Max depth 4
Number of boost rounds 7
Max leaves 158
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Table 8   Best incumbent for the SBU Image Captioning data

Best incumbent �optimal

Components and hyperparameters Choices

Pre-training model ‘AlbefFeatureProcessor’
Pre-training task ‘ITM’
Layer normalisation � 1.2268910169581294e−06

Attention dropout 0.32449508667965
Hidden droput 0.008490381184591556
Pretraining processors ‘AutoTokenizer’
Linear hidden size 517
Weight decay 3.56890021e−04

Downstream model ‘StackedEnsemble_r_CAT_L1’
Downstream processor ‘AutoMLPipelineFeatureProcessor’
Iterations 93
Max depth 2
Number of boost rounds 7
Max leaves 153

Table 9   Best incumbent for the PetFinder data

Best incumbent �optimal

Components and hyperparameters Choices

Pre-training model ‘FlavaFeatureProcessor’
Pre-training task ‘Classification’
Layer normalisation � 5e−06

Attention dropout 0.2493445102
Hidden droput 0.25
Pretraining processors ‘FlavaProcessor’
Linear hidden size 456
Weight decay 1e−05

Downstream model ‘WeightedEnsemble_L2’
Downstream processor ‘AutoMLPipelineFeatureProcessor’
Iterations 150
Max depth 5
Number of boost rounds 8
Max leaves 128
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C.2: Prior evaluations

In this sub-section of the Appendix, we will provide detailed results of our experimenta-
tion. Tables 11, 12, 13, 14, 15, 16, and 17 enlists the obtained AUC scores over the 18 
AutoMM benchamrk datasets released by Shi et  al. (2021). Prior Evaluations over the 

Table 10   Best incumbent for the CD-18 data

Best incumbent �optimal

Components and hyperparameters Choices

Pre-training model ‘AlbefFeatureProcessor’
Pre-training task ‘ITM’
Layer normalisation � 1.532967907935182e−06

Attention dropout 0.18588839010002423
Hidden droput 0.23541206938552428
Pretraining processors ‘AutoTokenizer’
Linear hidden size 389
Weight decay 2.4674356e−04

Downstream model ‘WeightedEnsemble_r_RF_L1’
Downstream processor ‘AutoMLPipelineFeatureProcessor’
Iterations 93
Max depth 2
Number of boost rounds 9
Max leaves 268

Table 11   Pipeline evaluations comprising of FlavaTextModel, Data2VecTextModel and several down-
stream models, on the channel and pop data from the AutoMM Benchmark

Score represents the NAUC score for the classification tasks and R2 for the regression tasks

FlavaTextModel Data2VecTextModel

Score Pred_time (s) Fit_time (s) Score Pred_time (s) Fit_time (s)

Data: channel
WeightedEnsemble_L3⋆ 0.442 26.105 590.098 0.437 57.330 2658.636
LightGBM_BAG_L2 0.440 13.692 346.585 0.437 30.691 2347.787
RFMSE_BAG_L2 0.439 12.055 270.667 0.436 28.294 1324.257
WeightedEnsemble_L2 0.434 1.480 73.270 0.435 2.301 1014.782
LightGBM_BAG_L1 0.396 24.458 510.932 0.359 54.925 1631.612
LightGBM_BAG_L2 0.357 10.568 195.668 0.318 25.988 307.675
Data: pop
StackedEnsemble_L2 0.423 176.564 1278.900 0.446 486.345 2460.963
WeightedEnsemble_L3 0.420 183.786 1387.634 0.443 434.231 5478.935
LightGBMXT_BAG_L1 0.416 89.783 3416.620 0.432 256.780 3462.446
StackedEnsemble_L2 0.384 273.678 2461.119 0.406 315.889 6365.458
LightGBMXT_BAG_L2 0.377 32.489 6258.921 0.927 371.167 11,467.700
RFMSE_BAG_L1 0.362 107.512 3844.022 0.927 590.493 18,794.570
XGBoost⋆ 0.358 1152.318 14,604.284 0.928 315.603 10,984.844
LightGBM_BAG_L2 0.372 1249.579 17,855.008 0.927 3.134 1133.980
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Table 12   Pipeline evaluations comprising of FlavaTextModel, Data2VecTextModel and several down-
stream models, on the product and salary data from the AutoMM Benchmark

Score represents the NAUC score for the classification tasks and R2 for the regression tasks

FlavaTextModel Data2VecTextModel

Score Pred_time (s) Fit_time (s) Score Pred_time (s) Fit_time (s)

Data: product
WEns_L2⋆ 0.258 34.223 6094.538 0.3673 63.955 3890.093
ETMSE_BAG_L1⋆ 0.288 13.287 77.712 0.369 87.545 103.432
WEns_L3⋆ 0.256 1128.574 20,340.757 0.367 1061.557 18,765.396
RFMSE_BAG_L1 0.290 266.354 920.093 0.350 330.742 881.680
LightGBM_BAG_L2 0.281 574.719 19,221.342 0.321 617.396 22,389.342
XT_BAG_L2 0.260 574.879 1266.841 0.349 620.545  1381.093
RFMSE_BAG_L2 0.258 847.312 17,277.004 0.345 728.986 16,452.985
ETMSE_BAG_L2 0.257 835.327 16,345.931 0.357 745.634 18,437.789
Data: salary
WEns_L2⋆ 0.423 43.189 731.896 0.413 59.380 643.140
WEns_L3⋆ 0.439 87.261 1480.172 0.431 123.986 1874.641
LightGBM_BAG_L2 0.426 46.520 975.922 0.421 120.820 1557.680
ETMSE_BAG_L2 0.428 83.923 1233.944 0.422 65.590 1229.150
LightGBM_BAG_L1 0.349 3.138 237.770 0.360 3.069 290.304
XT_BAG_L2 0.360 40.040 493.010 0.411 62.453 934.743

Table 13   Pipeline evaluations comprising of FlavaTextModel, Data2VecTextModel and several down-
stream models, on the cloth and wine data from the AutoMM Benchmark

Score represents the AUC score for the classification tasks and R2 for the regression tasks

FlavaTextModel Data2VecTextModel

Score Pred_time (s) Fit_time (s) Score Pred_time (s) Fit_time (s)

Data: cloth
LightGBM_BAG_L2 0.599 8.354 4244.582 0.562 20.46 684.204
ExtraTreesMSE_BAG_L1 0.566 105.487 46.383 0.569 287.024 4339.216
RandomForestMSE_BAG_L1 0.577 104.184 46.566 0.590 130.421 7886.433
WeightedEnsemble_L2⋆ 0.621 218.020 4339.216 0.659 163.955 2970.863
LightGBM_BAG_L2 0.594 236.360 7887.643 0.594 217.696 5798.055
Data: wine
ExtraTreesMSE_BAG_L2⋆ 0.562 7.744 7859.070 0.512 234.449 1259.750
WeightedEnsemble_L3⋆ 0.566 105.785 7744.040 0.531 189.521 1784.941
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Table 14   Pipeline evaluations comprising of FlavaTextModel, Data2VecTextModel and several down-
stream models, on the fake job and imdb data

Score represents the NAUC score for the classification tasks and R2 for the regression tasks. Prediction and 
fit times are mentioned in seconds

FlavaTextModel Data2VecTextModel

Score Pred_time (s) Fit_time (s) Score Pred_time (s) Fit_time (s)

Data: fake job
StackedEnsemble_L2 0.237 176.876 1345.874 0.267 189.980 2456.986
LightGBMXT_BAG_L1 0.228 223.867 9821.567 0.253 176.523 1345.789
LightGBM_CAT_L2 0.213 234.879 7689.645 0.253 183.45 1298.563
RandomForestMSE_BAG_L2 0.210 456.345 12398.756 0.219 231.096 4562.512
CatBoost_BAG_L1 0.198 112.534 1246.453 0.214 124.466 5679.948
LightGBM_BAG_L2 0.187 7.080 2152.598 0.197 474.826 4586.376
RandomForestMSE_BAG_L1 0.177 1560.574 46.566 0.124 136.471 844.172
ExtraTreesMSE_BAG_L1 0.162 2432.172 46.383 0.121 287.762 2735.361
Data: imdb
WeightedEnsemble_L2 0.346 125.384 12450.477 0.198 433.761 16321.556
WeightedEnsemble_L3 0.332 237.344 10485.536 0.192 200.60 14575.254
LightGBM_BAG_L2 0.315 119.342 5222.209 0.137 217.728 12671.667
StackedEnsemble_L2 0.313 123.756 1346.266 0.121 127.041 7269.032
ExtraTreesMSE_BAG_L2 0.309 280.233 2246.343 0.214 167.724 5679.948

Table 15   Pipeline evaluations comprising of FlavaTextModel, Data2VecTextModel and several down-
stream models, on the jigsaw and kick data

Score represents the NAUC score for the classification tasks and R2 for the regression tasks. Prediction and 
fit times are mentioned in seconds

FlavaTextModel Data2VecTextModel

Score Pred_time (s) Fit_time (s) Score Pred_time (s) Fit_time (s)

Data: jigsaw
StackedEnsemble_L2 0.367 567.345 1257.567 0.456 163.475 2345.987
LightGBMXT_BAG_L1 0.358 443.973 2542.292 0.453 334.856 1245.846
LightGBM_CAT_L2 0.342 354.567 4563.236 0.345 464.353 1298.563
RandomForestMSE_BAG_L2 0.339 678.398 945.836 0.334 635.447 3866.335
WeightedEnsemble_CAT_L2 0.315 234.678 778.953 0.302 402.465 4735.255
WeightedEnsemble_RF_L2 0.308 134.578 1356.642 0.264 223.577 3756.375
StackedEnsemble_CAT_L1 0.288 421.934 889.755 0.234 345.684 2445.467
ExtraTreesMSE_CAT_L1 0.263 643.945 1534.673 0.211 416.788 3453.344
Data: kick
WeightedEnsemble_L2 0.346 125.384 12450.477 0.198 433.761 16321.556
WeightedEnsemble_L3 0.332 237.344 10485.536 0.192 200.60 14575.254
LightGBM_BAG_L2 0.315 119.342 5222.209 0.137 217.728 12671.667
StackedEnsemble_L2 0.313 123.756 1346.266 0.121 127.041 7269.032
StackedEnsemble_L3 0.309 280.233 2246.343 0.214 167.724 5679.948
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Flickr30k, SBU Image Captioning, VQA2.0, Petfinder and CD-18 Datasets are provided in 
Tables 18, 19, 20, and 21 respectively.

Table 17   Pipeline evaluations comprising of FlavaTextModel, Data2VecTextModel and several down-
stream models, on the california and jcpenny data from the AutoMM Benchmark

Score represents the NAUC score for the classification tasks and R2 for the regression tasks

FlavaTextModel Data2VecTextModel

Score Pred_time (s) Fit_time (s) Score Pred_time (s) Fit_time (s)

Data: california
WeightedEnsemble_L3 0.434 567.867 2345.677 0.369 373.476 2546.578
ExtraTreesMSE_BAG_L2 0.413 563.467 1346.344 0.342 383.387 4567.788
RandomForestMSE_BAG_L2 0.367 445.346 2356.352 0.303 476.336 2345.567
StackedEnsemble_CAT_L2 0.324 134.578 2654.335 0.234 373.487 2344.557
LightGBMXT_BAG_L2 0.298 108.323 3227.663 0.224 336.443 7835.397
LightGBM_BAG_L2 0.264 87.432 4635.334 0.219 483.457 3365.386
StackedEnsemble_CAT_L1 0.243 92.664 3345.356 0.206 263.486 3753.263
WeightedEnsemble_L2 0.241 512.423 3354.325 0.192 234.632 4342.346
Data: jcpenny
WeightedEnsemble_L3 0.287 288.387 3245.886 0.345 645.346 2573.475
ExtraTreesMSE_BAG_L2 0.261 344.398 2353.466 0.334 373.873 2763.397
StackedEnsemble_XT_L1 0.234 374.578 975.922 0.261 465.678 2357.340
WeightedEnsemble_L2 0.403 173.240 731.896 0.242 444.443 3433.443
StackedEnsemble_CAT_L2 0.374 234.318 2493.010 0.232 232.456 3454.563
LightGBM_BAG_L1 0.345 334.245 3366.3365 0.231 573.498 4570.451
WeightedEnsemble_CAT_L1 0.374 344.463 7456.338 0.201 9466.345 10934.743
LightGBM_BAG_L1 0.345 454.304 1345.332 0.198 836.373 9266.498
StackedEnsemble_XT_L2 0.374 387.345 3873.345 0.169 483.354 9864.836
LightGBM_BAG_L1 0.345 377.498 8763.448 0.127 374.356 8863.235

Table 18   Pipeline evaluations comprising of FlavaModel, AlbefModel and several downstream models, on 
the Flickr30k data

Score represents the NAUC score for the classification tasks and R2 for the regression tasks. Prediction and 
fit times are mentioned in seconds

FlavaITM AlbefITM

Score Pred_time (s) Fit_time (s) Score Pred_time (s) Fit_time (s)

Data: Flickr30k
WeightedEnsemble_L2 0.187 339.057 11372.849 0.212 429.275 15428.518
LightGBMXT_BAG_L2 0.174 319.159 10485.536 0.212 20.460 11155.774
LightGBM_BAG_L2 0.190 59.803 5222.209 0.213 217.696 14576.774
RandomForestMSE_BAG_L1 0.233 10605.230 46.566 0.214 130.421 7233.592
ExtraTreesMSE_BAG_L1 0.253 8.246 46.383 0.215 287.024 4979.938
LightGBM_BAG_L2 0.209 7.080 5212.965 0.218 217.696 2426.696
RandomForestMSE_BAG_L1 6.082 2056.751 46.566 0.223 130.421 823.182
ExtraTreesMSE_BAG_L1 0.225 2432.172 46.383 0.260 50.217 724.991
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Table 19   Pipeline evaluations comprising of FlavaModel, AlbefModel and several downstream models, on 
the SBU Image Captioning data

Score represents the NAUC score for the classification tasks and R2 for the regression tasks. Prediction and 
fit times are mentioned in seconds

FlavaITM AlbefITM

Score Pred_time (s) Fit_time (s) Score Pred_time (s) Fit_time (s)

Data: SBU
WeightedEnsemble_L2 0.156 345.687 12450.477 0.198 433.761 16321.556
LightGBMXT_BAG_L2 0.132 327.863 10485.536 0.192 200.60 14575.254
LightGBM_BAG_L2 0.152 69.422 5222.209 0.137 217.728 12671.667
RandomForestMSE_BAG_L1 0.134 12398.756 46.566 0.121 127.041 7269.032
ExtraTreesMSE_BAG_L1 0.198 80.462 46.383 0.214 167.724 5679.948
LightGBM_BAG_L2 0.1388 7.080 2152.598 0.198 474.826 4586.376
RandomForestMSE_BAG_L1 0.162 1560.574 46.566 0.222 266.471 934.172
ExtraTreesMSE_BAG_L1 0.202 2432.172 46.383 0.201 87.762 798.541

Table 20   Pipeline evaluations comprising of FLAVA, ALBEF and several downstream models, on the 
VQA2.0 dataset

The score represents the NAUC score for the classification tasks and R2 for the regression tasks

FlavaVQA AlbefVQA

Score Pred_time (s) Fit_time (s) Score Pred_time (s) Fit_time (s)

Data: VQA2.0
LightGBMXT_BAG_L2 0.862 3657.670 4494.950 0.952 6332.752 7116.29
WeightedEnsemble_L3 0.862 3657.700 4494.900 0.952 6333.195 7133.968
LightGBM_BAG_L2 0.843 3656.579 2577.151 0.945 5709.193 7560.163
LightGBMXT_BAG_L1 0.841 7.526 635.346 0.943 5723.687 8440.646
WeightedEnsemble_L2 0.841 7.556 639.464 0.942 1444.840 1437.269
LightGBM_BAG_L1 0.841 7.896 722.845 0.941 715.837 147.628
KNeighborsUnif_BAG_L1 0.826 108.743 43.880 0.941 705.919 142.511
ExtraTreesEntr_BAG_L1 0.813 852.282 65.708 0.939 1304.944 31.675
LightGBM_BAG_L2 0.843 3656.579 2577.151 0.939 1315.104 36.180
LightGBMXT_BAG_L1 0.841 7.526 635.346 0.926 619.605 386.650
RandomForestEntr_BAG_L1 0.813 843.022 166.568 0.926 680.374 543.421
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Table 21   Pipeline evaluations comprising of FLAVA, ALBEF and several downstream models, on the Pet-
finder and CD-18 data

Score represents the NAUC score for the classification tasks and R2 for the regression tasks

FLAVA Albef

Score Pred_time (s) Fit_time (s) Score Pred_time (s) Fit_time (s)

Data: PetFinder
WeightedEnsemble_L2 0.390 135.525 1360.635 0.398 243.831 1121.246
LightGBMXT_BAG_L2 0.386 237.567 1283.252 0.389 220.42 1566.822
LightGBM_BAG_L2 0.384 269.865 442.403 0.373 113.528 1633.654
CatBoost_BAG_L1 0.381 238.567 436.634 0.366 127.241 2769.032
ExtraTreesMSE_BAG_L1 0.372 280.332 446.433 0.364 167.724 1739.484
LightGBM_BAG_L2 0.356 127.370 352.690 0.359 554.525 1586.267
RandomForestMSE_BAG_L1 0.334 1560.574 46.566 0.222 266.471 934.172
ExtraTreesMSE_BAG_L1 0.329 2432.172 46.383 0.201 87.762 798.541
Data: CD-18
StackedEnsemble_L2 0.423 176.564 778.90 0.446 186.345 460.983
WeightedEnsemble_L3 0.420 183.786 887.634 0.443 434.231 478.985
LightGBMXT_BAG_L1 0.416 89.783 516.620 0.432 256.78 562.456
StackedEnsemble_L2 0.384 273.678 961.119 0.406 315.889 765.458
LightGBMXT_BAG_L2 0.377 324.678 630.456 0.390 123.967 672.107
LightGBM_BAG_L2 0.372 1249.579 765.678 0.388 334.102 706.431
ExtraTreesMSE_BAG_L1 0.358 123.459 456.782 0.325 167.674 956.383
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