
Vol.:(0123456789)

Machine Learning (2024) 113:4487–4522
https://doi.org/10.1007/s10994-024-06565-4

1 3

Classification with costly features in hierarchical deep sets

Jaromír Janisch1 · Tomáš Pevný1 · Viliam Lisý1

Received: 16 December 2022 / Revised: 13 February 2024 / Accepted: 2 May 2024 /
Published online: 22 May 2024
© The Author(s) 2024

Abstract
Classification with costly features (CwCF) is a classification problem that includes the
cost of features in the optimization criteria. Individually for each sample, its features are
sequentially acquired to maximize accuracy while minimizing the acquired features’ cost.
However, existing approaches can only process data that can be expressed as vectors of
fixed length. In real life, the data often possesses rich and complex structure, which can be
more precisely described with formats such as XML or JSON. The data is hierarchical and
often contains nested lists of objects. In this work, we extend an existing deep reinforce-
ment learning-based algorithm with hierarchical deep sets and hierarchical softmax, so
that it can directly process this data. The extended method has greater control over which
features it can acquire and, in experiments with seven datasets, we show that this leads to
superior performance. To showcase the real usage of the new method, we apply it to a real-
life problem of classifying malicious web domains, using an online service.

Keywords Classification with costly features · Deep reinforcement learning · Deep sets ·
Hierarchical multiple-instance learning · Hierarchical softmax · Policy decomposition ·
Application programming interface · Budget · Classification · Structured data

1 Introduction

The online world around us is composed of structured relational data. For example, users
of a social network can be described by a set of their friends, posts they published or com-
mented on, likes they received and from whom. This data is often not available as a whole,
but rather provided on request by a paid service. Application Programming Interfaces

Editor: Steven Schockaert.

 * Jaromír Janisch
 jaromir.janisch@fel.cvut.cz

 Tomáš Pevný
 tomas.pevny@fel.cvut.cz

 Viliam Lisý
 viliam.lisy@fel.cvut.cz

1 Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, Czech Republic

http://orcid.org/0000-0002-4165-6503
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06565-4&domain=pdf

4488 Machine Learning (2024) 113:4487–4522

1 3

(APIs) are specific examples. Google search, maps, Youtube, social networks such as Face-
book or Twitter, and more provide rich information that may be free in low volumes but is
charged as soon as you consider using it commercially. Even if the complete data is avail-
able, one can still save substantial resources by using only its fraction, e.g., when analyzing
a large number of users. Recently, we see that sustainability and ecology have started to
play an increasingly larger role and the interest could lie in lowering electricity consump-
tion or CO2 production.

In the social network example, the use of the data may be targeted advertising. As
another example, let us consider the field of computer security. One may be interested in
whether a particular web domain is legitimate or malicious. Specialized services provide
rich sets of features about the requested domain, such as known malware binaries commu-
nicating with the domain, WHOIS information, DNS resolutions, subdomains, associated
email addresses, and, in some cases, a flag that the domain is known to be malicious. The
user can further probe any detail, e.g., after acquiring a list of subdomains, the user can
focus on one of them and request more information about it. Again, access to the service
may be charged, therefore there is a natural pressure to limit the number of requests.

The problem at hand has multiple names—classification with costly features (CwCF)
(Janisch et al., 2020), active feature acquisition and classification (Shim et al., 2018) or
datum-wise classification (Dulac-Arnold et al., 2012). In essence, the problem is to sequen-
tially gather features, in a unique order for each sample, and stop optimally when ready to
classify. Optimality is usually defined as one of the two: (1) a trade-off between the total
cost of the features and the classification accuracy or (2) maximal accuracy with the condi-
tion that the total per-sample cost cannot exceed a specified budget. We emphasize that a
potentially different feature subset acquired in different order is retrieved for each sample.
For example, with some samples, the classification may be made after a single feature is
acquired. Other samples may require multiple or all features, and the decision which is
made sequentially, based on the values revealed so far. Note that the number of possible
ways to process a sample is exponential in its size.

Over the years, many different algorithms have been developed for this problem. Some
employ decision trees (Xu et al., 2012; Kusner et al., 2014; Xu et al., 2013, 2014; Nan
et al., 2015, 2016; Nan & Saligrama, 2017), recurrent neural networks (Contardo et al.,
2016), linear programming (Wang et al., 2014a, b) or partially observable Markov deci-
sion processes (Ji & Carin, 2007). There are multiple reinforcement learning (RL) methods
based on Dulac-Arnold et al. (2012), e.g., by Janisch et al. (2019, 2020), Shim et al. (2018).
The problem itself, or its variations, appears across multiple fields: medicine (Peng et al.,
2018; Lee et al., 2020a; Song et al., 2018; Vivar et al., 2020; Lee et al., 2020b; Shpakova &
Sokolovska, 2021; Zhu & Zhu, 2020; Goldstein et al., 2020; Erion et al., 2022), meteorol-
ogy (Banerjee et al., 2020), data analysis (Ali et al., 2020), surveillance (Xu et al., 2021;
Liu et al., 2018) or network security (Badr, 2022).

Despite the clear spread of the problem and its applications, we identified a substantial
lack on the side of available algorithms. As we have shown in the introductory examples,
a data sample is often provided in a complex structure, not a fixed-length vector. Formats
such as XML or JSON, to which newly acquired information is sequentially added, are
better suited. These formats commonly contain lists of elements with a priori undefined
lengths and nested objects. For example, imagine a list of a user’s posts (see Fig. 1). How-
ever, the common requirement of the available algorithms, which we surveyed above, is a
flat structure of the samples. In other words, it is assumed that the samples can be described
as fixed-size vectors, with their slices allocated to predefined features.

4489Machine Learning (2024) 113:4487–4522

1 3

If we want to apply the existing algorithms to this structured data, we need to process
the samples so they can be described as fixed-size vectors. However, as we show in this
article, this approach leads to sub-optimal results. It is much better to provide a means
for the algorithm to select individual features anywhere in the structure. Eventually, this
is what we expect—the algorithm that can request a few relevant features for one of
the user’s posts can be much more efficient than an algorithm that uses an aggregated
version of all posts with pre-selected features. Note that a pre-selected feature ordering
based on their importance is difficult because the number of features differs in every
sample. E.g., in the social network example, it is difficult to statically determine the
importance of a post’s title, because each sample has a different number of posts.

In this article, we extend the original CwCF framework to naturally work with the
structured data, which presents two main challenges. First, we need a way to process the
data at the input. Deep Sets (Zaheer et al., 2017) is a technique to process variable-sized
input and Hierarchical Multiple-Instance Learning (HMIL) is its extension for hierar-
chically nested data (Pevný & Somol, 2016). It defines a special neural network archi-
tecture that accommodates to the specified data and creates its embedding. The second
challenge lies in the fact that the original CwCF framework assumes a fixed number of
features to select from and that the action space is static. However, this assumption does
not hold in our case—the data contains lists of (possibly nested) objects, and only a part
of the complete sample is visible at any moment. Since we map visible features with
unknown values to actions, there is a different number of actions available to the algo-
rithm at any moment. Moreover, there is no a priori known upper bound for the number
of actions. Inspired by a technique from natural language processing (Morin & Bengio,
2005), we take advantage of the hierarchical composition of the features and propose to
decompose the policy analogically to their structure.

Finally, we demonstrate the extended CwCF framework with a set of experiments.
First, we design a synthetic dataset which we use to analyze the algorithm’s behavior.
Second, we demonstrate the detection of malicious web domains with a real-world ser-
vice. For this purpose, we created an offline dataset by collecting information about
around 1200 domains using the service’s API. This dataset enables us to perform the
experiments efficiently and credibly imitates real communication with the service.
Third, we quantitatively test the methods in five more datasets adapted from public
sources.

Let us summarize the contributions of this manuscript:

Fig. 1 A pruned data sample from our stats dataset, which is extracted from Stats StackExchange online
service. The variable number of badges, posts, and their tags and comments means that each sample con-
tains a different number of features. Application of existing techniques (e.g., original CwCF) would require
alteration of the data. As a better alternative, we present a modified method that naturally works with the
structured data and can select individual features in the hierarchy

4490 Machine Learning (2024) 113:4487–4522

1 3

1. We formalize and bring the community’s attention to a novel variant of an important
problem (Sect. 4).

2. We extend the existing CwCF framework to work with structured data containing lists
and nesting, which was not possible before. This includes processing the data on input
and factorizing the dynamic action space to select individual features (Sect. 5). Other
minor contributions include:

• We provide a formula to estimate the gradient of the policy entropy (required for the
A2C algorithm) when only the probability of single action is known.

• We split the classifier and feature selection policy, leading to better sample com-
plexity.

• We provide an unbiased loss for the classifier, weighted by the terminal action prob-
ability.

3. We evaluate our algorithm empirically and compare it to several alternatives, showing
its superior performance. We execute the model with data from a real online service,
proving its usefulness in a real-life scenario (Sect. 6).

4. We release seven datasets in a unified format to benchmark algorithms for this problem
(five datasets are adapted from existing public sources, and two are completely new).
We also release the complete code with scripts to reproduce the experiments.

This article is organized as follows. A detailed overview of the related work is presented
in Sect. 2. Next, we describe the basic blocks we build upon in Sect. 3. Then we formalize
the problem and formal changes to CwCF in Sect. 4. Section 5 focus on the algorithm and
which practical changes are required. Experiments are presented in Sect. 6. Finally, Sect. 7
provides answers to a few common questions and 8 concludes the manuscript. Supplemen-
tary Material provides auxiliary information that did not fit the main text, such as dataset
details, hyperparameters, visualizations, and training graphs.

2 Related work

This work is a direct extension of the Classification with Costly Features (CwCF) frame-
work, originally defined by Dulac-Arnold et al. (2012) and lately advanced by Janisch et al.
(2020, 2019). All these algorithms are based on reinforcement learning (RL) but work only
with fixed-length vectors. Shim et al. (2018) proposes a method for sets of features, but
cannot cope with nesting. We have covered some of the existing approaches (Xu et al.,
2012, 2013, 2014; Kusner et al., 2014; Nan et al., 2015, 2016; Nan & Saligrama, 2017;
Contardo et al., 2016; Wang et al., 2014a, b; Ji & Carin, 2007; Dulac-Arnold et al., 2012;
Janisch et al., 2019, 2020; Shim et al., 2018) and applications (Peng et al., 2018; Lee et al.,
2020a; Song et al., 2018; Vivar et al., 2020; Lee et al., 2020b; Shpakova & Sokolovska,
2021; Zhu & Zhu, 2020; Goldstein et al., 2020; Erion et al., 2022; Banerjee et al., 2020;
Ali et al., 2020; Xu et al., 2021; Liu et al., 2018; Badr, 2022) for the CwCF problem in
Introduction.

Aside from the references mentioned above, multiple papers focus on a similar class of
problems or improve the algorithms somehow. Wang et al. (2015) creates macro-features
from different disjoint subsets of features. Trapeznikov and Saligrama (2013) and Liyanage
et al. (2021) use a fixed order of features, while the latter provides an analytical solution to
select them optimally. Tan (1993) analyzes a similar problem but requires memorization

4491Machine Learning (2024) 113:4487–4522

1 3

of all training examples. Li and Oliva (2021) uses RL with a generative surrogate model
that provides intermediary rewards by assessing the information gain of newly acquired
features and other side information. Bayer-Zubek and Dietterich (2005) presents multi-
ple approaches based on the AO* algorithm that searches the policy space, applicable in
domains with discrete feature values. A case with a hard budget was explored in Kapoor
and Greiner (2005). Deng et al. (2007) approached the problem with multi-armed bandit
techniques. Cesa-Bianchi et al. (2011), Zolghadr et al. (2013) analyze the problem theoreti-
cally. Kachuee et al. (2019) uses heuristic reward to guide an RL-based algorithm.

A related problem is feature selection (Guyon & Elisseeff, 2003) which pre-selects a
fixed set of features for all samples. However, in CwCF and similar approaches, the fea-
tures are selected dynamically and sequentially. That is, for any particular sample, features
are acquired one by one, and each decision is guided by the information gathered so far.
This way, a different set of features is acquired for any particular sample. This approach
requires more resources to train and execute but can provide higher performance (i.e.,
higher accuracy with the same average cost). Several approaches extend the feature selec-
tion to include costs of the features (Maldonado et al., 2017; Bolón-Canedo et al., 2014).
Still, they are designed to find a set of features common for the whole dataset and cannot
work with structured data.

In this work, we use Hierarchical Multiple-Instance Learning (HMIL) to process the
structured data (Pevný & Somol, 2017, 2016; Pevný & Kovařík, 2019; Mandlík et al.,
2022), which is an extension of Deep Sets (Zaheer et al., 2017). In some deep RL prob-
lems, the action space is composed of orthogonal dimensions and existing techniques can
be used to factorize it (Tang & Agrawal, 2020; Chen et al., 2019; Metz et al., 2017). In our
case, the features are arranged in a tree-like structure and we factorize the corresponding
action space with hierarchical softmax, a technique similar to the one used in natural lan-
guage processing (Morin & Bengio, 2005; Goodman, 2001).

We optimize our model with the A2C algorithm derived from (Mnih et al., 2016),
which belongs to a class of policy gradient RL algorithms (Sutton & Barto, 2018). It can
be replaced with another algorithm from its class that works with discrete actions (e.g.,
TRPO (Schulman et al., 2015) or PPO (Schulman et al., 2017)). While the use of the A2C
algorithm is enough for the purposes of this paper, we note that any recent or future algo-
rithm from the RL community may result in improved performance and better sample
complexity.

The problem is distantly related to graph classification algorithms (e.g., (Zhou et al.,
2018; Hamilton et al., 2017; Perozzi et al., 2014; Kipf & Welling, 2016)). These algo-
rithms either aim to classify graph nodes or the graph itself as a whole. In our case, we
assume that the data is structured in a tree, constructed around a point of interest (e.g., a
particular web domain). For this kind of data, the HMIL algorithm is better suited and less
expensive than the general message-passing. Moreover, the graph classification algorithms
do not involve sequential feature acquisition, nor account for the costs of features.

3 Preliminaries

This section describes the methods we build upon in this work. Our method is based on the
Classification with Costly Features (CwCF) (Janisch et al., 2019, 2020) framework to set
the objective and reformulate the problem as an MDP. However, structured data pose non-
trivial challenges due to their variable input size and the variable number of actions. To

4492 Machine Learning (2024) 113:4487–4522

1 3

create an embedding of the hierarchical input, we use an extension of Deep Sets (Zaheer
et al., 2017) called Hierarchical Multiple-Instance Learning (HMIL) (Pevný & Somol,
2016; Mandlík et al., 2022). To select the performed actions, we use hierarchical softmax
(Morin & Bengio, 2005; Goodman, 2001). To train our agent, we use Advantage Actor
Critic (A2C) (Mnih et al., 2016), a reinforcement learning algorithm from the policy gradi-
ent family.

3.1 Classification with costly features

Let us start by explaining the core concept of the Classification with Costly Features
(CwCF) (Janisch et al., 2019, 2020). In CwCF, a data sample consists of features (e.g., a
user’s name, reputation, etc.), each of which has a defined cost. Initially, the sample’s fea-
ture values are unknown. The algorithm proceeds sequentially, and at each step, it decides
whether to acquire another feature and which, or classify the sample. Note that the order of
features is not fixed, but chosen dynamically. The objective is to optimally balance the total
cost of features and classification accuracy, averaged over the dataset. Compared to feature
selection (Guyon & Elisseeff, 2003), this approach can achieve higher accuracy with the
same cost because it can select a different set of features for each sample. The limitation of
the framework is that it assumes that every sample contains exactly the same features and
that they can be converted to a fixed-length vector. However, if the sample contains “a list
of user’s posts”, the original CwCF does not provide a way to process it.

The following paragraph defines the problem formally. Let D be a dataset containing
data points (x, y), where x is the sample and y is its label. Let X be the input space and Y
the set of all labels. We willingly do not define the X more precisely to allow a wider inter-
pretation of what a feature value is (the CwCF framework defined it as X ⊆ R

n). Let F be
the set of all possible features. Each feature has a predefined real-valued cost and the cost
function c ∶ ℘(F) → R returns their sum, where the ℘ symbol denotes a power set. Let the
tuple (y� , k�) denote a model parametrized with � , where y� ∶ X → Y returns the label and
k� ∶ X → ℘(F) returns the features used. The objective is:

Here, �rl denotes a classification loss, commonly defined as binary (0 in case of mismatch,
-1 otherwise). � ∈ R is a trade-off factor between the accuracy and the cost. Minimizing
this objective means minimizing the expected classification loss together with the �-scaled
per-sample cost.

Alternatively, CwCF provides (Janisch et al., 2020) two other possible objectives. First,
the algorithm can be modified to allow the user to specify directly a per-sample average
budget b ∈ R and avoid � . The objective then becomes:

Finally, it is possible to set a hard per-sample budget that cannot be exceeded for any sam-
ple. The objective is then:

(1)min
�

�
(x,y)∈D

[
�rl(y�(x), y) + �c(k�(x))

]

(2)min
�

�
(x,y)∈D

[
�rl(y�(x), y)

]
, s.t. �

(x,y)∈D

[
c(k�(x))

]
≤ b

(3)min
�

�
(x,y)∈D

[
�rl(y�(x), y)

]
, s.t. ∀x ∶ c(k�(x)) ≤ b

4493Machine Learning (2024) 113:4487–4522

1 3

We chose to build our extensions with the objective in Eq. (1), as it corresponds to the
vanilla algorithm, and the rest of the paper will mention only this one. If the application
demands it, the other two objectives are also possible. We included them for completeness
and reference. The interested reader can find more details about their implementation in
Janisch et al. (2020).

The way to solve Eq. (1) is to construct a special Markov decision process (MDP),
in which a single sample (x, y) is analyzed per episode and the total episode reward R
is:

Finding an optimal policy parametrized with � equals to maximizing the expected reward,
thus solving Eq. (1). The MDP is constructed as follows. In a particular episode with a
sample (x, y), the state space S consists of states s = (x, y, F̄) , where F̄ ⊆ F is the set of
currently observed features. The agent only sees an observation o(x, F̄) , which denotes only
the parts of x corresponding to features F̄ . It also does not know the label y. Each epi-
sode starts with an initial state s0 = (x, y, �) . The action space A corresponds to features
and class labels, A = Af ∪At , where Af = F,At = Y (t in At as terminal). Typically, the
already acquired features are removed from the selection, hence Af (s) = F⧵F̄ . After per-
forming an action selecting a feature, the reward is proportional to its negative cost, and
the feature value is disclosed. After a classifying action, the episode terminates, and the
reward is the negative loss of classification. Formally, the reward function r ∶ S ×A → R
and transition function t ∶ S ×A → S are defined as follows:

Here, T denotes the terminal state. When the episode terminates, the final action is a class
prediction, and it is used as the model output y� . Finally, the set of all acquired features is
used as k𝜃 = F̄ .

The MDP defined above is solved with a deep reinforcement learning algorithm.
The result is a policy �� that prescribes which actions to take in which states. In the
original CwCF implementation, the RL algorithm was DQN (Mnih et al., 2015) with
several improvements (Van Hasselt et al., 2016; Wang et al., 2016; Munos et al., 2016).
However, the method does not hinge on a particular algorithm, and another one can be
easily used.

The Eq. (1) poses a multi-criterial optimization problem that balances the classi-
fication accuracy in �rl and the cost of used features in �c , for a fixed � . The optimal
behavior for � → ∞ is to refrain from acquiring any features and immediately classify
with the most populous class, given the statistics of the training dataset. With the other
extreme, � = 0 , a classifier that uses all features can be used to estimate a lower bound
of the accuracy. Still, it is only a lower bound, since a different model may provide a
better accuracy. For the points between, i.e., � ∈ (0,∞) , the issue is the same—we can
only find a lower bound (e.g., with baseline methods). Finally, note that Eq. (1) focuses
on the training set performance, but the ultimate goal is to find a model that general-
izes to unseen data points.

R = −
[
�rl(y�(x), y) + �c(k�(x))

]

r(s, a) =

{
−𝜆c(a) if a ∈ Af

−�rl(a, y) if a ∈ At

t(s, a) =

{
(x, y, F̄ ∪ a) if a ∈ Af

T if a ∈ At

4494 Machine Learning (2024) 113:4487–4522

1 3

3.2 A2C algorithm

The method presented in this paper depends on hierarchical policy decomposition
(explained in Sect. 5.5), which is possible if the policy is probabilistic. However, the
original CwCF uses the DQN algorithm that outputs a deterministic policy that can-
not be easily factored. Therefore, we propose to use the Advantage Actor-Critic algo-
rithm (A2C) (Mnih et al., 2016), a basic policy gradient algorithm to find the policy
�� . However, we note that any other algorithm from the policy gradient family with
discrete actions (e.g., (Schulman et al., 2015, 2017)) could be used in its place. This
is an advantage of RL-based methods—any recent or future improvement in deep RL
algorithms can be immediately used with this method to improve its performance or
sample complexity.

A detailed description of the A2C algorithm follows. An MDP is a tuple (S,A, t, r, �) ,
where S represents the state space, A is a set of actions, t(s, a) is a transition func-
tion returning a distribution of states after taking an action a in a state s, r(s, a, s�) ∈ R
is a reward function that returns a reward for a transition from a state s to s′ through
an action a, and � ∈ (0, 1] is a discount factor. The A2C algorithm iteratively opti-
mizes a policy �� ∶ S → P(A) , where P(A) denotes a probability distribution over
actions, and a value estimate V� ∶ S → R with model parameters � to achieve the
best cumulative reward in a given MDP. Let us define a state-action value function
Q(s, a) = �s�∼t(s,a)[r(s, a, s

�) + �V�(s
�)] and an advantage function A(s, a) = Q(s, a) − V�(s) .

Then, the policy gradient ∇�J and the value function loss LV are:

where �′ is a fixed copy of parameters � and ��(a ∣ s) denotes the probability of action a
under policy �� in state s.

To prevent premature convergence, a regularization term LH in the form of the aver-
age policy entropy is used:

The total loss is computed as Lpg = −J + �vLV − �hLH , with �v, �h learning coefficients.
The algorithm iteratively gathers sample runs according to a current policy �� , and the
traces are used as samples for the above expectations. Then, an arbitrary gradient descent
method is used with the gradient ∇�Lpg . Often, multiple environments are run in parallel to
get a better gradient estimate. Note that while (Mnih et al., 2016) used asynchronous gradi-
ent updates, A2C performs the updates synchronously.

(4)∇�J = �
s,a∼�� ,t

[
A(s, a) ⋅ ∇� log��(a ∣ s)

]

(5)LV = �
s,a,s�∼�� ,t

[
q(s, a, s�) − V�(s)

]2

(6)q(s, a, s�) =r(s, a, s�) + �V�� (s
�)

(7)LH = �
s∼�� ,t

[
H��

(s)
]
; H�(s) = − �

a∼�(s)

[
log�(a ∣ s)

]

4495Machine Learning (2024) 113:4487–4522

1 3

3.3 Hierarchical multiple‑instance learning

In our method, we need a way to process structured data. Our data samples are trees of
features and they can contain nested lists of objects, similar to XML and JSON formats.
To process this data on input, we use an extension of Deep Sets (Zaheer et al., 2017)
for hierarchical data, called Hierarchical Multiple-Instance Learning (HMIL) (Pevný &
Somol, 2016; Mandlík et al., 2022). For an illustration of how HMIL works, see Fig. 2.

Let us start with MIL (Pevný & Somol, 2017), which presents a neural network archi-
tecture to learn an embedding of an unordered set (called a bag) B , composed of m items
v{1..m} ∈ R

n . The items are simultaneously processed into their embeddings zvi = f�B (vi) ,
where f�B is a non-linear function with parameters �B , shared for the bag B . All embed-
dings are processed by an aggregation function g, commonly defined as an element-wise
mean or max operator. The whole process creates a bag’s embedding zB = gi=1..m(zvi) , and
is differentiable.

HMIL extends the framework so that it works with nested bags. In MIL, features are
real scalars or vectors. In HMIL, a feature can also be a bag of items with the restriction
that all the items share the same feature types. Different bags B have different parameters
�B and are recursively processed as in MIL, starting from the hierarchy’s leaves and pro-
ceeding to the root. The resulting intermediary embeddings zB are used as feature values
(see Fig. 2). The soundness of the hierarchical approach is theoretically studied by Pevný
and Kovařík (2019).

4 Problem

In this paper, we extend the CwCF framework (see Sect. 3.1) to work with the structured
data. This kind of data can be naturally processed with the HMIL architecture (Sect. 3.3).
In this section, we describe what structured data means and how the problem formulation
changes.

4.1 Structured data

Compared to the data usually processed in machine learning, structured data, as we
define it, cannot be described by fixed-length vectors. The main difference is that
the samples can contain nested sets with a priori unknown cardinality. However, the

Fig. 2 Illustration of the bag
embedding in HMIL. Objects
in the bag B are processed with
f�B and aggregated. The result is
used as the feature value for the
parent object. The process recur-
sively embeds the whole sample

4496 Machine Learning (2024) 113:4487–4522

1 3

structure of the samples is strictly defined. Below, we define the structured data with
terms schema and sample.

Dataset schema recursively describes the structure, features, their types, and costs.
Formally, let an object schema be a collection of tuples (name, type, cost, children_
schema), where each tuple describes a single feature with its name, data-type, and non-
negative real-valued cost. For features with type=set, the children_schema is an object
schema describing the objects in this set. For other features, children_schema=∅ . A
dataset schema ΣD is an object schema describing the whole sample.

Data sample is a collection of feature values, composed in a tree, and its structure
strictly follows the schema ΣD . Formally, let an object be a collection of feature values
with types described by the corresponding object schema. We call each feature with
type=set a set feature, and it is a collection of objects whose features are typed by the
corresponding children_schema. Other features are called value features.

Fig. 3 The schema and a partial sample for the threatcrowd dataset. a The schema shows the feature names,
their types, and their cost in parentheses. A set type denotes that this feature contains a set of objects, whose
features are described in the level below. b A partial sample. The full circles and lines denote features with
known feature values. Among other information, the example shows that a list of domains was acquired for
one of the IP addresses (46..55) with a reverse lookup

4497Machine Learning (2024) 113:4487–4522

1 3

Both the schema and sample can be visualized as a tree. Figure 3a shows an exam-
ple of a schema threatcrowd dataset. The schema specifies that each sample contains a
free feature domain with type string and sets of ips, emails, and hashes. Objects in
these sets have their own features (e.g., each IP address has a set of reversely translated
domains). Figure 3b shows an incomplete sample as it would be seen by the augmented
CwCF algorithm (only some of the features were acquired). Objects and their features
are composed into a tree, according to the schema.

Note that our definition assumes that the cost of a particular feature across all samples
is constant. While this assumption decreases the framework’s flexibility, we argue that it is
reasonable for real-world data where the cost of features can be usually precisely quantified
upfront (e.g., the cost of an API request).

Last, it is useful to define a path and prefix of a feature in a particular sample. Let a
path of a feature denote feature names and object positions in sets as a sequence from the
root of the sample to the corresponding feature. We use the common programming syntax
to denote the path. For example, we can write the path of features from the example in
Fig. 3b as ips[0].ip (the value of the first IP address), or ips[1].domains[0].domain (the
first domain of the second IP address). Let a prefix pre(�) of a feature � be its path without
the last item. For example, pre(ips[0].ip) = ips[0]).

Note that while we address individual objects in a set by their index, we do this solely
for the purposes of definitions and implementation. We assume that the order of objects
does not have any predictive value.

4.2 CwCF with structured data

The original CwCF method (see Sect. 3.1) worked with samples x ∈ R
n . However, the data

discussed in this paper cannot be easily converted to this Euclidean space. To accommo-
date for the issue, we present the following changes.

First, in CwCF, F denotes a set of all features. However, with structured data, the num-
ber of features is no longer constant across samples, as each sample can contain multiple
objects in its sets. Therefore, let F(x) be a sample-dependent set of all features for a par-
ticular sample.

Second, a feature can be acquired only if its prefix has been obtained. For example,
ips[0].ip cannot be acquired before the set ips or the object ips[0] is obtained. Formally,
we modify the available feature-selecting actions to Af (s) = {𝜅 ∈ (F(x)⧵F̄) ∣ pre(𝜅) ∈ F̄} .
These actions correspond to features whose values are unknown, hence we call these fea-
tures unobserved. As a minor optimization that facilitates training, we propose recursively
processing the corresponding subtree and acquiring all features with zero cost, whenever a
set feature is acquired.

Third, we decouple the classifier y� from the policy �� . This change is not related to
the structured data but results in improved performance and sample complexity. This is
because the classifier can now be trained independently in every state and the policy is not
burdened by the classification. Formally, we modify the set of terminal actions to include
only a single terminal action at , At = {at} . The classifier y� is now separately trained on
observations o(x, F̄) (remember that the observation discloses the parts of x corresponding

4498 Machine Learning (2024) 113:4487–4522

1 3

to features F̄). To simplify notation, let x̄ = o(x, F̄) . The final prediction y𝜃(x̄) is used when
the episode terminates. The reward function needs to reflect this change:

Note that we use parameters � for both �� and y� . Commonly, both of these functions are
implemented as a neural network with shared layers and as such, their parameters overlap.

The original CwCF method solved a finite horizon MDP, since, for any dataset, there
was a fixed number of features to acquire. To preserve this property in the modified frame-
work, we need to add two assumptions. First, we assume that the dataset schema is finite,
i.e., the feature hierarchy is limited in depth. The second assumption is that the number of
objects in any set of any data sample is finite. These two assumptions together limit the
number of features of any sample, therefore the modified method still operates within a
finite horizon MDP.

Given these simple changes, the CwCF framework is formally ready to work with struc-
tured data. However, the situation is more difficult implementation-wise, which is dis-
cussed in the following section.

r(s, a) =

{
−𝜆c(a) if a ∈ Af

−�rl(y𝜃(x̄), y) if a ∈ At

Fig. 4 a The input x̄ is recursively processed to create embeddings zv for each object v in the tree and the
sample-level embedding zx̄ . c The embedding zx̄ is used to compute class probabilities � , value estimate V,
and the terminal action potential at . b An unobserved leaf feature is chosen with a sequence of stochastic
decisions. Probabilities are determined by f𝜑B

(zx̄, zv) . The whole architecture is end-to-end differentiable

4499Machine Learning (2024) 113:4487–4522

1 3

5 Method

This section systematically introduces key details of our method to solve CwCF with struc-
tured data. The result is a model that is trained to solve Eq. (1). It is composed of several
parts, as displayed in Fig. 4 and described by Algorithms 1 and 2. First, the input is pro-
cessed with HMIL to create item-level and sample-level embeddings. Second, the sample-
level embedding is used to create a class prediction, a value function estimate, and a termi-
nal action value. Third, the action space is semantically factored with hierarchical softmax
that creates a complete probability distribution over all actions. Our model is a specialized
end-to-end differentiable neural network, and we denote it with Θ and its parameters with
� (this includes parameters � in HMIL, � in action selection and �,V , � output heads). To
keep down the overall complexity of the final model, we minimize the number of layers
used in each component. For example, we define the classifier � as a single neural network
layer. However, this is not a limitation, since it uses the embeddings computed previously
in the HMIL phase, and the whole network is updated end-to-end. When using our method,
one may try to experiment with the number of layers to tune its performance for a concrete
application. To declutter notation in the following text, we avoid using � when describ-
ing gradients in ∇� , �� ,V� , and �� . For reference, important symbols are summarized in
Table 1.

Table 1 Selected important symbols

Symbol Description

� Accuracy versu cost trade-off factor
y� , k� Outputs of the model—class and all acquired features
c Cost function
x, y Sample and class
F(x) All features of the sample x
F̄ Set of acquired features
x̄ = o(x, F̄) Observation and observation function
ΣD Schema of a dataset D
at Terminal action
�rl Classification loss for RL (binary)
�cls Classifier loss (cross-entropy)
� A feature
pre(�) Prefix of the feature �
f�B HMIL embedding function for the bag B
f�B

Pre-softmax embedding function for action selection for the bag B
zv, zx̄ Embeddings of an object v and observation x̄
� Action selection policy
� Classification probabilities
V Value function
�at Pre-softmax value of terminal action at

4500 Machine Learning (2024) 113:4487–4522

1 3

Algorithm 1 HMIL-CwCF training

5.1 Input pre‑processing

The features in an observation x̄ can be of different data types. Before processing with
a neural network, they have to be converted into real vectors (only the features holding
a value, not set features). For strings, we observed good performance with character
tri-gram histograms (Damashek, 1995). This hashing mechanism is simple, fast, and
conserves similarities between strings. We used it for its simplicity and acknowledge

4501Machine Learning (2024) 113:4487–4522

1 3

that any other string processing mechanism is possible. One-hot encoding is used with
categorical features.

Algorithm 2 HMIL-CwCF model

For effectivity, the pre-processing step can take place before the training for the
whole dataset. When the complete dataset is unavailable and the features are directly
streamed upon request (e.g., during real-world inference), the values are converted on
the fly.

During inference, the feature values can be unknown. In this case, a zero vector
of the appropriate size is used. To help the model differentiate between observed and
unobserved features, each feature in x is augmented with a mask. It is a single real
value, either 1 if the feature is observed or 0 if not. In sets, the mask is the fraction of
the corresponding branch that is observed, computed recursively.

4502 Machine Learning (2024) 113:4487–4522

1 3

5.2 Input embedding

(Figure 4a, Algorithm 2 HMIL) To process and embed the input, the first part of our fully
differentiable model is HMIL (see Sect. 3.3). Its structure is determined by the dataset
schema ΣD . Each set feature corresponds to a bag and the set of all such bags is
{B� ∶ ∀� ∈ ΣD ∣ type(�) = set} . Before training, parameters �B�

 are initialized for each
bag B� , which are later used for embedding items with the function f�B� . We implement
this function as one fully connected layer with LeakyReLU activation.

Let us clarify how HMIL is applied in our particular case to process an observation x̄ .
The process starts with the leaves of the feature hierarchy and recursively proceeds toward
the root. Each feature � with type=set consists of a set of unordered objects v, collected in
the bag B� . All of these objects share the same type (enforced by the schema), i.e., they
have the same features (however, not their values). The feature values of each object can be
concatenated to Rn , where n is the size of the vector for the particular set � . This is possible
because the feature values are pre-processed, unknown features are replaced with zero vec-
tors of the appropriate size, and the value of the set features is taken from the HMIL
embedding of their contents. Each object v ∈ B� is processed by the embedding function
f�B�

(v) = zv , and the embeddings are saved to be used later. All items in the bag are mean-
aggregated, and this value is used as the feature value of the parent object. Finally, when
the whole tree is processed, the result is the root-level embedding zx̄.

5.3 Classifier

(Figure 4c, Algorithm 1 lines 8, 9, 13, 20) The sample-level embedding zx̄ encodes the
necessary information about the whole observation x̄ , and it is enough to compute the class
probability distribution 𝜚(zx̄) and the final decision y𝜃(x̄) = argmax 𝜚(zx̄) . We implement �
as a single linear layer followed by softmax that converts the output to probabilities, and
the classifier is trained parallelly to the policy �.

However, if we simply used every encountered state during training with the same
weight, it would result in a biased classifier. This is because the classification is required
only in terminal states and their reach probabilities need to be respected. Let P𝜋(x̄) denote a
probability that the agent reaches x̄ and terminates under policy � . The unbiased classifica-
tion loss is then:

To estimate the expectation in Eq. (8), we can either train the classifier only when the agent
terminates, or we can use every encountered state weighted by the terminal action prob-
ability 𝜋(at ∣ x̄) . We use the latter because it provides an estimate with a lower variance.
For �cls , we use cross-entropy loss.

5.4 Value function and terminal action

(Figure 4c, Algorithm 2 line 3) The embedding zx̄ is also used to compute the value func-
tion estimate V(zx̄) (required by the A2C algorithm) and pre-softmax value of the termi-
nal action 𝜈at (zx̄) . Both functions are implemented as a single linear layer without any

(8)Lcls = �
x̄∼P𝜋

[
�cls(𝜚(x̄), y)

]

4503Machine Learning (2024) 113:4487–4522

1 3

activation. The activation is not used in the value function, because its output should be
unbounded, and it is commonly implemented in deep RL algorithms this way (Mnih et al.,
2015). The output of 𝜈at (zx̄) is converted to probability during the action selection.

5.5 Action selection

(Figures 4b and 5, Algorithm 2 SeLectActIon) Let us describe the process of selecting an
action. Remember that the observation x̄ can be viewed as a tree, where value features are
leaves and set features branch further. Note that this hierarchy is semantical, i.e., each set
feature groups similar objects related to their parent. Therefore, it makes sense to use this
semantical hierarchy for feature selection. We call the method below hierarchical softmax
and note that a similar technique was used in natural language processing (Morin & Ben-
gio, 2005; Goodman, 2001).

For visualization, see Figs. 4b and 5. Oppositely to the input embedding procedure, the
action selection starts at the root of x̄ and a series of stochastic decisions are made at each
node, continuing down the tree. The root node is regarded as a set with a single object. For
each bag B ∈ � , let the probability of selecting a feature � of an object v be:

Here, f�B
∶ R

n
→ R

m is a function that transforms the embeddings zx̄ and zv into a vector
R

m , where n = |zx̄| + |zv| and m is the number of features for the object v. The bag-specific
parameters �B are initialized prior training with the knowledge of the dataset schema for
every possible bag B ∈ � . In plain words, Eq. (9) means that all items in the bag B are
processed with f�B

 , the outputs are concatenated are passed through the softmax function.
This results in a single probability value for each feature in every object of B , which are
resolved at once.

Note that the function f�B
 is a different function from f�B . Its parameters are bag-spe-

cific, and it is implemented as a single fully connected layer with no activation function,
since the output is later passed through softmax. Observed features and parts of the tree
that are fully expanded (the mask of the corresponding features is 1) are excluded from the
softmax. We enforce this by setting the corresponding outputs of f�B

 to −∞ , so the softmax
returns 0. At the root level, the terminal action potential 𝜈at (x̄) is added to the softmax.

(9)ℙ(v, 𝜅 ∣ x̄) = softmax
v,𝜅

(
f𝜑B

(zx̄, zv) ∶ v ∈ B
)

Fig. 5 Visualization of how an action is selected. Sequentially, a path is created from the root to a leaf
unobserved feature (or the terminal action) by a series of stochastic decisions. In set features, all items and
their features are resolved at once. The probability of the performed action is a product of the partial prob-
abilities on the path. In this example, the chosen action a selects the posts[0].comments[0].text feature with
probability 𝜋(a ∣ x̄) =

∏3

i=1
𝜛i

4504 Machine Learning (2024) 113:4487–4522

1 3

Now, remember that the action selection starts at the root of x̄ , iteratively samples from
ℙ(v, 𝜅 ∣ x̄) and proceeds down the tree, until it reaches a leaf feature (also, see Algorithm 2
SeLectActIon). Let us define an action a = [a1, ..., an] as a list of the specific choices,
a1 = (v1, �1) or at, a2 = (v2, �2), ..., an = (vn, �n) , where n is the length of the path. We can
write the probability of selecting the action a, given the observation x̄ , as a product of
choice probabilities made on its path:

Hence, any action a ∈ Af ∪ at (i.e., any currently unobserved leaf feature, or the terminal
action) can be sequentially sampled from Eq. (10).

The � is a probability distribution of actions, hence it is a policy. The decomposition
according to Eq. (10) has several benefits. First, it was shown that a sensible policy decom-
position introduces inductive biases to the model and speeds up the learning (Tang &
Agrawal, 2020). Our decomposition is logical because the decision on each level is made
for objects that are semantically related. Second, it is interpretable, because it reveals which
objects and features contributed to the decision. Third, it saves computational resources as
only the probabilities on the selected path need to be computed. A drawback of the hier-
archical softmax is that the decisions are made sequentially for each sample, which limits
the parallel computation capabilities of modern GPUs. In our implementation, most of the
time is spent on simulating the environment, and hence this drawback is negligible.

5.6 Training

(Algorithm 1 trAIn and A2c) We use the A2C algorithm (see Sect. 3.2) to optimize the
policy � with its parameters � , with the following changes. Note that we cannot train the
model with value-based methods that were used with the original CwCF (e.g., DQN (Mnih
et al., 2015)), because they cannot optimize the policy itself.

First, we use the fact that the maximal Q value is 1.0 (the reward for correct predic-
tion is 1.0 and every other step has a negative reward) and clip the target q in Eq. (6) into
(−∞, 1.0):

This reduces a maximization bias that occurs when learning a value function with neural
networks (Van Hasselt et al., 2016).

Second, the computation of the policy entropy LH in Eq. (7) requires knowledge of all
action probabilities. However, the sequential nature of the hierarchical softmax means that
only the 𝜋(a ∣ x̄) for the actually performed action a is computed. As the computation and
gathering of probabilities for all actions are troublesome and unnecessary, we propose to
estimate the entropy as follows. In the A2C algorithm, only the gradient ∇LH is needed,
and basic algebra shows that the correct way to estimate it is (Zhang et al., 2018):

Here, we use only the performed action to sample the expectation with zero bias, and the
variance is decreased through large batches. For completeness, the derivation of Eq. (12) is
in the Supplementary Material A.

(10)𝜋(a ∣ x̄) =

n∏

i=1

ℙ(ai ∣ x̄)

(11)q(s, a, s�) = clip(r(s, a, s�) + �V�� (s
�),−∞, 1.0)

(12)∇�H��
(s) = − �

a∼�� (s)

[
log��(a ∣ s) ⋅ ∇� log��(a ∣ s)

]

4505Machine Learning (2024) 113:4487–4522

1 3

The A2C algorithm returns the loss Lpg at each step. Simultaneously, the classification
loss Lcls is computed. Multiple parallel samples are processed at once to create a larger
batch (see Supplementary Material C for further details). After each step, the model’s
parameters are updated in the direction of −∇(Lpg + Lcls) . We believe that the A2C algo-
rithm sufficiently demonstrates the method but note that any recent or future RL enhance-
ment is likely to improve its performance.

5.7 Pretraining classifier

The RL part of the algorithm optimizes Eq. (1), which assumes a trained classifier. How-
ever, the classifier is trained simultaneously by minimizing Eq. (8). As the classifier output
appears in (1) and Eq. (8) is based on the probability P� , this introduces nonstationarity in
both problems. To mitigate the issue and speed up convergence, we pretrain the classifier
� with random observations (pruned samples). We cannot target a specific budget, since it
is unknown before the training (only a tradeoff parameter � is specified). Hence, we cover
the whole state space by generating observations x̄ ranging from almost empty to complete.
The exact details are in Supplementary Material C.

6 Experiments

In this section, we describe several experiments that show the behavior of our algorithm
and other tested methods. First, we describe the tested algorithms and the experiment
setup. Then, we continue with a synthetic dataset designed to demonstrate the differences
in algorithms’ behaviors. Next, we apply the algorithm to a real-world problem of identify-
ing malicious web domains. Finally, we gathered five more datasets for a quantitative eval-
uation. The complete code for all described algorithms and all datasets is shared publicly
at https:// github. com/ jarom iru/ rcwcf. For the reproducibility of our results, we also include
the scripts to run the experiments and produce the plots.

6.1 Tested algorithms

To our knowledge, there is no other method dealing specifically with costly hierarchical
data. We constructed the following algorithms for comparison. Each of them represents
certain class of algorithms and they can also be perceived as ablations of the main algo-
rithm presented in this manuscript.

HMIL represents algorithms that disregard the costs and always use all available fea-
tures. Alternatively, it can be seen as an ablation of the main algorithm, where we leave
only the input embedding and classification parts. This method uses the complete informa-
tion available, processes it directly with the HMIL algorithm and is trained in a supervised
manner. This approach provides an estimate of achieveable accuracy, but also with the
highest cost. In practice, using all features at once makes the algorithm prone to overfitting,
which we mitigated by using aggressive weight decay regularization (Loshchilov & Hutter,
2018).

RandFeats represents a naive approach to the hierarchical composition of features,
which are now selected randomly. With this, we can estimate the influence of the informed
feature selection. It is an ablation of the full algorithm, implemented by replacing the pol-
icy with a random sampling. The algorithm acquires features randomly until a specified

https://github.com/jaromiru/rcwcf

4506 Machine Learning (2024) 113:4487–4522

1 3

budget is exceeded. All other parts of the algorithm are kept the same. Since this algo-
rithm is uninformed, we expect it to underperform the complete algorithm and give a lower
bound estimate for accuracy.

Flat-CwCF: In this case, we demonstrate the original CwCF algorithm, which requires
a fixed number of features. We achieve this by flattening the data—only the root-level fea-
tures are selectable, and the algorithm observes the complete sub-tree (embedded with
HMIL) whenever such a feature is selected. This algorithm behaves the same as the full
algorithm on the root level but lacks fine control over which features it requests deeper in
the structure. Because of that, we expect the method to underperform the full algorithm
with lower budgets, but to reach the performance of HMIL gradually.

One could argue that we could also engineer a fixed set of features for each dataset
and apply the original CwCF or a similar algorithm. For example, the engineered features
for the threatcrowd dataset (see Fig. 10-right for its schema) could include its domain and
aggregated hashes of five random IP addresses, emails, and malware hashes. However,
there can be more or fewer of these objects in the actual data sample. Given the variability
of individual samples, the automatic selection of a static set of features is difficult, and the
standard approaches to feature selection do not work with structured data.

In the original CwCF paper (Janisch et al., 2020), the authors proposed a heuristic base-
line method that acquired features in a precomputed order sorted by their importance. For
each subset, a specific classifier was trained to estimate the accuracy at this point, resulting
in a point in the accuracy vs cost plane. The original CwCF method was shown to outper-
form this baseline, due to its ability to select per-sample specific features in a unique order.
In our case, it is unclear how to apply this baseline to the hierarchical data where each sam-
ple has a different number of objects in its sets and a different number of features overall.

Finally, we refer to the full method described in this paper as HMIL-CwCF. We
searched for the optimal set of hyperparameters for each algorithm and dataset using vali-
dation data, and the complete table with all settings is in Supplementary Material C.

6.2 Experiment setup

For each dataset, we ran HMIL with ten different seeds, RandFeats with 30 different budg-
ets linearly covering either [0, 10], [0, 20] or [0, 40] range (depending on the dataset) and
Flat-CwCF and HMIL-CwCF with 30 different values of � , logarithmically spaced in
[10−4, 1.0] range. For each run, we selected the best epoch based on the validation data (for
more details, see convergence graphs in Supplementary Material F).

To visualize the results, we select the best runs that are on the Pareto front of the vali-
dation dataset, using the cost and accuracy criteria. We plot the best runs as a scatter plot
with the average cost on the x-axis and accuracy on the y-axis and also visualize their
Pareto front with the testing set. To estimate variance, all other runs are visualized with
faint color. For better comparison, we show the mean performance (± one standard devia-
tion) of HMIL across the whole x-axis.

Apart from the graph form, the results are also reported as normalized Area Under the
Trade-off Curve (AUTC). The AUTC metric describes the overall performance across the
whole range of budgets. It is computed as the area under the visualized Pareto front, nor-
malized by the total area of the graph, and the area below the prior of the most populous
class is subtracted. The AUTC would return 0 for an algorithm that always predicts the

4507Machine Learning (2024) 113:4487–4522

1 3

most populous class and 1 for an algorithm with perfect classification. See Supplementary
Material D for more details.

6.3 Experiment A: synthetic dataset

This experiment is aimed to demonstrate the behavior of our and other tested algorithms
on purposefully crafted data. Note that this synthetic dataset is designed to demonstrate the
differences between the algorithms and therefore our method (HMIL-CwCF) performs the
best.

Let us first explain the dataset’s structure (follow its schema in Fig. 6). A sample con-
tains two sets (set_a and set_b), each with ten items. Each item has two features—free
feature item_key with a value 0 and item_value containing a random label. Randomly, a
single item in one of the sets is chosen, and its item_key is changed to 1 and its item_value
to the correct sample label. Further, the feature which_set contains the information about
which set contains the indicative item. The idea is that the algorithm can learn a correct
label by retrieving the which_set feature, opening the correct set, and retrieving the value
for the item with item_key=1. Uniquely for this dataset, we test the algorithms directly on
the training data.

Figure 7-right shows the performance of the tested algorithms in this dataset and
Table 3 shows the AUTC metric. HMIL (the ablation with complete data) reaches 100%
accuracy with a total cost of 31 (cost of all features). The Flat-HMIL is able to reduce the
cost by acquiring only the correct set, but it has to retrieve all of its objects. Hence, it also
reaches 100% accuracy, but with a cost of 16 (1 for which_set feature, 5 for one of the sets,
and 10 for all values inside). Contrarily, the complete HMIL-CwCF method reaches 100%
accuracy with only the cost of 7, since it can retrieve only the single indicative value from
the correct set. Moreover, it is able to reduce the cost even further by sacrificing accuracy,
as seen in the clustering around the cost of 6 and 0.75 accuracy, something that Flat-HMIL
cannot do. This is one of the strengths of the proposed method—because it has greater con-
trol over which features it acquires, the user can choose to sacrifice the accuracy for a lower
cost. Lastly, the RandFeats method selects the features randomly, and hence, its accuracy
is well below HMIL-CwCF for corresponding budgets. The accuracy is influenced by the
probability of getting the indicative item, which raises with the allocated budget and would
reach 100% with the cost of 31 (we run the method with budgets from [0, 20]).

We selected one of the HMIL-CwCF models that was trained to reach 100% accuracy
and examined how it behaves (see Fig. 7-left). We see that it indeed learned to acquire

Fig. 6 The schema of the syn-
thetic dataset. The numbers in
parentheses denote the costs of
the corresponding features

4508 Machine Learning (2024) 113:4487–4522

1 3

which_set feature, open the corresponding set_a or set_b and select the item_value of the
item with item_key=1 to learn the right label.

This experiment validates the correct behavior of our method and demonstrates the need
for all its parts. Compared to HMIL and Flat-CwCF, the complete method reaches com-
parable accuracy with lower cost. Moreover, compared to Flat-CwCF, it has better con-
trol over which features it requests, achieving better accuracy even in the low-cost region.
Finally, the order in which the features are acquired matters, as shown in comparison with
RandFeats.

6.4 Experiment B: threatcrowd

Let us focus on one of the real-world cases that motivated this work. Threatcrowd is a ser-
vice providing rich security-oriented information about domains, such as known malware
binaries communicating with the domain (identified by their hashes), WHOIS information,
DNS resolutions, subdomains, associated email addresses, and, in some cases, a flag that
the domain is known to be malicious (see an example of its interface in Fig. 8). This infor-
mation is stored in a graph structure, but only a part around the current query is visible
to the user. However, the user can easily request more information about the connected
objects. For example, after probing the main domain google.com, the user can focus
on one of its multiple IP addresses to analyze its reverse DNS lookups, or which other
domains are involved with a particular malware. To make the queries, Threatcrowd pro-
vides an API with a limited number of requests per unit of time, which makes it a scarce

Fig. 7 Results in the synthetic dataset. (left) The process of feature selection. In this example, the algorithm
optimally requests the which_set feature, opens set_a, and learns the label in the indicative item. (right)
Performance of all algorithms across different budget settings (x-axis). We show our method (HMIL-
CwCF), its ablation with a random policy (RandFeats), ablation with flattened data (Flat-CwCF), and the
HMIL algorithm trained with complete information. We train 30 instances per each algorithm (HMIL-
CwCF, RandFeats, and Flat-CwCF), each targeting a different budget. We plot the best runs and their
Pareto front. We also show the results of all runs as faint points for information about variance. Uniquely
for this dataset, the train, validation and test sets are the same

4509Machine Learning (2024) 113:4487–4522

1 3

resource. We are interested in the following task: Classify a specified domain using the
information provided through the API, minimizing the number of requests.

To make the experimentation easier and reproducible, we sourced an offline data-
set directly from the Threatcrowd service through their API, with their permission. Pro-
grammatically, we gathered information about 1171 domains within a depth of three API
requests (including one request for the domain itself) around the original domain and
split them into training, validation, and test sets. We chose three API requests because we
assume that most of the indicative information is located in the close neighborhood of the
root object. Each domain contains its URL as a free feature and a list of associated IP
addresses, emails, and malware hashes. These objects can be further reverse-looked up for
other domains. This offline dataset perfectly simulates real-life communication with the
original service but in a swift and error-free manner. The dataset’s schema can be viewed
in Fig. 10-right.

We ran all of the algorithms with the sourced data, and the results of the experiment are
shown in Fig. 9a and Table 3. The HMIL reaches the mean accuracy of 0.83 with a cost of
15 (on average, one needs to make 15 requests to gather all information within the depth
of three). Other algorithms reach the same accuracy with a lower cost—Flat-CwCF with
11, RandFeats with 5, and HMIL-CwCF with only 2 (results are rounded). That means
that our method needs only two API requests on average to reach the same accuracy as
HMIL (which uses complete information), resulting in 7.5× savings. To better understand
what these two requests on average mean, we analyzed a single trained model and plotted
a histogram of API requests across the whole test set in Fig. 9b. For example, with a single
request, the algorithm can learn a list of all IP addresses (without further details) or a list
of associated malware hashes. The histogram shows that in about 36% of samples, a single
request is enough for classification, 29% requires two, 23% three, and 12% four requests or
more.

Surprisingly, RandFeats performs better than Flat-CwCF, indicating that only a fraction
of information is required, even if randomly sampled. The Flat-CwCF algorithm always

Fig. 8 Threatcrowd interface. The left side shows a part of the information graph, unfolded to a limited
depth. Various information is available for each node, and the right side displays the information about the
currently focused node

4510 Machine Learning (2024) 113:4487–4522

1 3

acquires a complete sub-tree for a specific feature (e.g., a complete list of IP addresses with
their reverse lookups, up to the defined depth), resulting in unnecessarily high cost.

To get better insight into our algorithm’s behavior and to showcase its explainability, we
visualize how a trained model works with a single sample in Fig. 10-left. Initially, only the
domain name itself is known, without any additional details and the classification would be
malware if the model decided to terminate at this point. However, the terminal action prob-
ability is low, and the model requests a list of malware hashes (there are not any) and a list
of IP addresses instead (steps 0 and 1). The prediction changes to benign, likely because no
malware communicates with the domain nor any malicious IP address is in the list. Still,
the model performs a reverse DNS lookup for two IP addresses, which does not change
the prediction (steps 2 and 3). Finally, the algorithm finishes with a correct classification
benign. With four requests, the method was able to probe and classify an unknown domain.

To conclude, this experiment shows that the complete method leads to substantial sav-
ings while achieving the same accuracy. When deployed to production, this could mean
that the method can classify much more samples with the same budget, or that the budget
can be lowered, leading to monetary savings. To apply the model in a real-life scenario,
the only thing required is an interface connecting the model’s input and decisions with the
Threatcrowd API. After that, the model would be able to perform the classification online.
The experiment also verifies that all parts of the algorithm are required. Specifically, the
comparison with the Flat-CwCF and RandFeats baselines showed that flattening the fea-
tures results in degraded performance and that selecting features based on the knowledge
gathered so far is crucial.

6.5 Experiment C: other datasets

To further evaluate our method, how it scales with small and large datasets and how it
performs in binary and multi-class settings, we sourced five more datasets from var-
ious domains. Because our method targets a novel problem, we did not find datasets

Fig. 9 a Results in threatcrowd dataset. The shaded area shows ± one standard deviation around the mean
performance of HMIL (10 runs), across the whole x-axis for comparison. b Histogram of used API requests
for a trained model that uses two requests on average

4511Machine Learning (2024) 113:4487–4522

1 3

in appropriate format—i.e., datasets with hierarchical structure and cost information.
Therefore, we transformed existing public relational datasets into hierarchical forms
by fixing the root object (different for each sample) and expanding its neighborhood
into a defined depth. We also manually added costs to the features in a non-uniform
way, respecting that in reality, some features are more costly than others (e.g., getting a
patient’s age is easier than doing a blood test). In practice, the costs would be assigned
to the real value of the required resources. The depth of the datasets was chosen so that
they completely fit into the memory.

6.5.1 Dataset descriptions

We provide brief descriptions of the used datasets below. The statistics are summa-
rized in Table 2. For reproducibility, we published the processed versions, along with a
library to load them. More details on how we obtained and processed the datasets, their
splits, structure, and feature costs are in Supplementary Material B.

Fig. 10 (left) Classification of a potentially malicious domain (threatcrowd dataset). At each step, acquired
features (full circles) and possible actions (empty circles; unobserved features and terminal action) are
shown. The policy is visualized as line thickness and the selection with a green line. The method sequen-
tially requests features: First, it retrieves (step 0) a list of known malware hashes communicating with
the domain, then (step 1) a list of associated IP addresses, and finally (steps 2 and 3) performs reverse
IP lookups. The correct class is highlighted with a dot. Note that the number of actions differs at each
step and the size of sets (IPs, hashes, and emails) differs between samples. (right) The dataset’s schema in
feature:type(cost) format. In this dataset, the costs represent API requests

4512 Machine Learning (2024) 113:4487–4522

1 3

Hepatitis: A relatively small medical dataset containing patients infected with hepatitis,
types B or C. Each patient has various features (e.g., sex, age, etc.) and three sets of indica-
tions. The task is to determine the type of disease.

Mutagenesis: Extremely small dataset (188 samples) consisting of molecules that were
tested on a particular bacteria for mutagenicity. The molecules themselves have several fea-
tures and consist of atoms with features and bonds.

Ingredients: Large dataset containing recipes with a single list of ingredients. The task
is to determine the type of cuisine of the recipe. The main challenge is to decide when to
stop analyzing the ingredients optimally.

SAP: In this large artificial dataset, the task is to determine whether a particular cus-
tomer will buy a new product based on a list of past sales. A customer is defined by various
features and a list of sales.

Stats: An anonymized content dump from a real website Stats StackExchange. We
extracted a list of users to become samples and set an artificial goal of predicting their
age category. Each user has several features, a list of posts, and a list of achievements. The
posts also contain their own features and a list of tags and comments.

6.5.2 Results

The results are shown in Fig. 11 and in Table 3. Let us select interesting facts and describe
them below. The HMIL algorithm shows what accuracy is possible to achieve when using
all features at once. The variance of its results indicates what should be considered normal
in the corresponding dataset. Especially in hepatitis and mutagenesis (Fig. 11ae), the vari-
ance of the results is high, which is given by the datasets’ small sizes.

The results in sap (Fig. 11c) are noteworthy. Here, the top accuracy of HMIL is exceeded
by HMIL-CwCF and Flat-CwCF. We investigated what is happening and concluded that
HMIL overfits the training data, despite aggressive regularization—we tuned the weight
decay to maximize the validation accuracy. Surprisingly, HMIL-CwCF and Flat-CwCF do
not suffer from this issue, with fewer features. We hypothesize that the sap dataset contains
some features deep in the hierarchy that are very informative on the training set, but do not
translate well to the test set. The well-performing methods are able to circumvent the issue
by selecting fewer features, which results in less overfitting.

Generally, the HMIL-CwCF is among the best-performing algorithms in all datasets,
i.e., it reaches the same accuracy with lower cost (in sap and mutagenesis, it performs

Table 2 Statistics of the used datasets. The features column shows the number of features (tree leaves)
across all completely observed samples in the corresponding dataset

Dataset Samples Class distribution Features Depth
(all splits) (min/mean/max)

Synthetic 12 0.5/0.5 43/43.0/43 2
Threatcrowd 1171 0.27/0.73 4/701.7/3706 3
Hepatitis 500 0.41/0.59 7/121.7/1065 2
Mutagenesis 188 0.34/0.66 173/332.2/517 3
Ingredients 39774 0.01–0.20 2/11.8/66 2
SAP 35602 0.5/0.5 16/31.8/52 2
Stats 8318 0.49/0.38/0.13 9/52.5/21979 3

4513Machine Learning (2024) 113:4487–4522

1 3

comparatively to Flat-CwCF). Compared to HMIL, the cost is reduced about 26× in hepa-
titis, 1.2× in ingredients, 8× in sap, 6× in stats and 15× in mutagenesis, which are signifi-
cant savings. Flat-CwCF generally exhibits low performance in the low-cost region, due to
its limited control over which features it gathers.

Fig. 11 The performance of the algorithms in five datasets, shown in the cost versus accuracy plane. We
show our method (HMIL-CwCF), its ablation with a random policy (RandFeats), ablation with flattened
data (Flat-CwCF) and the HMIL algorithm trained with complete information. We train 30 instances per
each algorithm (HMIL-CwCF, RandFeats and Flat-CwCF), each targeting a different budget. We plot the
best runs, selected using validation sets and their Pareto front. For information about variance, we also
show the results of all runs as faint points. The HMIL is run 10 times, and we plot the mean ± one standard
deviation (the bar visualizes the metrics across the whole range of budgets for comparison)

Table 3 Normalized area under
the trade-off curve (AUTC; see
Sect. 6.2 for description)

The highest values in the corresponding rows are given in bold

Dataset HMIL-CwCF Flat-CwCF RandFeats HMIL

Synthetic 0.88 0.75 0.32 0.50
Hepatitis 0.74 0.70 0.69 0.38
Mutagenesis 0.71 0.68 0.60 0.36
Ingredients 0.47 0.19 0.44 0.31
SAP 0.24 0.23 0.11 0.11
Stats 0.03 0.02 0.03 0.02
Threatcrowd 0.36 0.25 0.36 0.18

4514 Machine Learning (2024) 113:4487–4522

1 3

Lastly, let us point out the result of HMIL-CwCF compared to RandFeats in ingredients
(Fig. 11b). This dataset contains a single set of ingredients, which are objects with a single
feature. The best any algorithm can do is to randomly sample the ingredients and stop opti-
mally. While RandFeats always uses the given budget, HMIL-CwCF can acquire more fea-
tures in some cases and compensate for that with other samples. Hence, it can reach higher
accuracy with the same average cost as RandFeats.

The Flat-CwCF algorithm can either acquire the whole set of ingredients, or nothing. It
achieves different points in Fig. 11b by randomization, i.e., it discloses the list of ingredi-
ents for some samples, or not for others. Note that the number of ingredients in each recipe
varies and ranges from 1 to 65. One could argue that we could use a different encoding of
the ingredients—e.g., one-hot encoding of the ingredients that are in a recipe. However,
there are 6707 unique ingredients, while the mean number of ingredients in a recipe is
around 11. Flattening the data this way would result in a very sparse and long binary fea-
ture vector. Applying the original CwCF method with such data would not work very well,
since most of the features would encode a missing ingredient. This was already exemplified
in Janisch et al. (2020), where training in a dataset with categorical values encoded to mul-
tiple one-hot encoded features (with a length of 40, compared to the required 6707 in case
of ingredient) took an order of magnitude longer time to train, compared to similarly-sized
dataset without such features.

To conclude, the results in Fig. 11 show that our method consistently performs better
or comparatively to other methods—i.e., achieves a similar accuracy with much fewer fea-
tures. The AUTC metric in Table 3 aggregates the performance for the whole range of
costs and confirms the conclusion.

6.6 Remarks

6.6.1 Explainability

Unlike the standard classification algorithms (e.g., HMIL), the sequential nature of HMIL-
CwCF enables easier analysis of its behavior. Figures 10 and 7 present two examples of
the feature acquisition process and give insight into the agent’s decisions. The weights the
model assigns to different features in different samples and steps can be used to assess the
agent’s rationality or learn more about the dataset. We present more visualizations in Sup-
plementary Material E.

6.6.2 Classifier pretraining

The positive role of pretraining was already established in the original CwCF paper
(Janisch et al., 2019). However, as we separate the classifier from the RL algorithm, it is
worth to assess how the situation changes. We performed an ablation experiment with the
sap dataset and a fixed � , where we ran the experiment 10 times with and without pretrain-
ing. The results in Fig. 12 show that the pretraining improves the speed of convergence and
the performance on validation data.

6.6.3 Computational requirements

We measured the training times using a single core of Intel Xeon Gold 6146 3.2 GHz
and 4 GB of memory. We used only CPU because the most time-consuming part of the

4515Machine Learning (2024) 113:4487–4522

1 3

training was the environment’s simulation and it cannot benefit from the use of GPU.
The measured times are displayed in Table 4. We show the synthetic dataset separately
because it was much faster to learn. Note that the training times are for a single run
(i.e., a single point in Fig. 11), but the runs are independent and are easily parallelized.
After training, the inference time is negligible for all methods.

Note that while the training time of HMIL-CwCF is much longer than in the case
of HMIL, it is easily compensated by the fact that our method can save a large amount
of resources if correctly deployed. Moreover, computational power rises exponentially

Fig. 12 Training of a model, with and without the classifier pretraining. Performed on the sap dataset with
� = 0.00108264 ; an average of 10 runs

Table 4 Training times for a single instance (i.e., single setting of � in HMIL-CwCF). Note that most of the
time is spent on simulating the environment

Dataset HMIL-CwCF RandFeats Flat-CwCF HMIL

Synthetic 1 h 30 min 1 h 1 min
Other (average) 19 h 14 h 9 h 1 h

4516 Machine Learning (2024) 113:4487–4522

1 3

every year (resulting in faster training), while resources like CO2 production, patients’
discomfort, or response time of an antivirus software only gain importance.

7 Discussion

Comparison with graph neural networks (GNNs)
Instead of HMIL, we could use a GNN to perform the input embedding. However, note

that the data we work with are hierarchical and constructed around a central root. Hence
it makes sense to model the data as trees, not as general graphs, and use a method tai-
lored to work with trees. In our case, generic message passing is unnecessary, and a single
pass from leaves to the tree’s root is sufficient to embed all information correctly. Man-
dlík (2020) provides a deeper discussion about using HMIL and GNNs in sample-centric
applications.

In some special cases, the same object could be located in multiple places (e.g., the
same IP address accessible by multiple paths). In our method, we still handle the sample
as a tree. If such a situation occurs, the data have to be unrolled, i.e., different places of the
same object are considered to be different objects.

Is the depth of the tested datasets sufficient?
We argue that most of the relevant information is within the near neighborhood of the

central object of interest. Increasing the depth exponentially increases the available feature
space and space requirements and slows down training. As the experiments showed that
there are substantial differences between the methods, we conclude that the used depth is
sufficient.

How to obtain credible cost assignment?
In a real-life application, it should be possible to measure the costs of features up front.

For example, the time required to perform an experiment, electricity consumed to retrieve
a piece of data, or, as in the Threatcrowd experiment, every feature can represent a single
API request.

Advantages and disadvantages of the proposed method
Our solution provides the following advantages, some of which are inherited from the

original CwCF framework:

• It directly optimizes the objective in Eq. (1) and although the deep RL has not the same
theoretical guarantees as tabular RL, it searches for the optimal solution. In contrast,
some related work used heuristics (e.g., proxy rewards (Kachuee et al., 2019) in the flat
CwCF case)—such algorithms are not guaranteed to aim for the optimal solution.

• The used HMIL algorithm used to process the hierarchical input is theoretically
sound—Pevný and Kovařík (2019) generalizes the universal approximation theorem
(Hornik, 1991; Leshno et al., 1993) to HMIL networks.

• As our method is based on a standard deep RL technique, its performance is likely to
be improved with advancements in the RL field itself, since it is an actively developed
area.

• The novel method can directly utilize many of the extensions developed for CwCF.
This includes (1) problems with hard budget, (2) specifying the budget directly and
automatic search for an optimal � , (3) missing features (e.g., features of some objects
may be inaccessible, possibly because the training data is incomplete), and (4) using an

4517Machine Learning (2024) 113:4487–4522

1 3

external high-performance classifier as one of the features. Points (1–3) are discussed
in Janisch et al. (2020), (4) is explored in Janisch et al. (2019).

• The original CwCF paper (Janisch et al., 2020) has already established the competitive
performance of the method in the flat data case. Therefore, we believe that the novel
algorithm serves as a highly competitive baseline as well.

Below, we state the drawbacks of our algorithm we are aware of:

• Being RL-based, the algorithm is sample inefficient, i.e., it requires a long training.
As mentioned, training in the more complicated datasets took about 19 h on average.

• Data must be hierarchical, e.g., it must not contain references to the same object in
different places in the hierarchy, nor cycles. As mentioned in the discussion about
GNNs, if such structures appear in the data, it must be unrolled (e.g., the same
object would have to be copied to different places) so that the result is hierarchical.

• With some datasets, there could be non-negligible variance in the performance of
trained models. The user is advised to repeat training several times and select the
best-performing model, based on validation data.

Alternative approaches
Generally, there are two ways to make the existing algorithms work with the hierar-

chical data: (a) modifying the data, (b) modifying the algorithm. Below, we suggest sev-
eral different approaches to these options. Keep in mind that each of these suggestions
would require substantial research to implement, and might not be possible at all.

(a) Modifying the data can be done in the way we did in the case of Flat-CwCF, but there
could be other ways, for example:

• It may be possible to decrease the granularity of choice to the set level by con-
sidering each path in the schema as a separate feature. While this approach would
result in a fixed number of features for all samples, it brings several issues. For
example, since sets can contain multiple objects, it is unclear how to choose one
of them. An algorithm selecting the objects randomly would have inherently
lesser control over which objects to select, and would not be able to utilize pos-
sible conditional dependencies between objects’ features. In the RandFeats base-
line, we have already shown that such loss of control results in degraded perfor-
mance. Second, if it is allowed to get the same feature multiple times (to cover
different objects in a set), it is unclear how to aggregate and process these multi-
ple values.

• Another way could be to treat all features in the tree as a set of tuples (path, type,
value), each encoded into a Rn space, and use algorithms designed to process
sets (Shim et al., 2018). While this approach would preserve all information, it is
unclear how to efficiently encode paths of various lengths that can branch in sets,
or values of different types.

• Also, one could manually engineer features based on the known data struc-
ture. However, this step is laborious, suboptimal, and may be difficult to apply,
because the individual samples vary in size of their sets. Note that the standard
approaches to feature selection do not work with hierarchical data.

4518 Machine Learning (2024) 113:4487–4522

1 3

(b) Let us also discuss the possible modification of the existing algorithms, where the
problem is twofold. First, the algorithm needs to be modified to accept hierarchical data
with varying size. In some cases, it could be solved by embedding the data sample into
a smaller, fixed space, e.g., with the HMIL algorithm, as we did in our case. However,
many algorithms for the CwCF problem depend on access to the actual feature values,
such as decision trees (Maliah & Shani, 2018), random forests (Nan et al., 2015, 2016;
Nan & Saligrama, 2017) or cascade classifiers (Xu et al., 2014) and may not work with
such transformations. Second, the modified algorithm needs to be able to select features
within the hierarchy. This could be done through direct selection of the corresponding
output (as we do in our method, or as the (Shim et al., 2018) would do with the formerly
proposed modification), or through some other way of identifying the specific feature
(possibly by returning its encoded path).

Again, while believe that many of these problems are solvable, they would require non-
trivial further research.

8 Conclusion

We presented an augmented Classification with Costly Features framework that can pro-
cess hierarchically structured data. Contrarily to existing algorithms, our method can pro-
cess this kind of data in its natural form and select features directly in the hierarchy. In sev-
eral experiments, we demonstrated that our method substantially outperforms an algorithm
that uses complete information, in terms of the cost of used features. We also showed how
the original CwCF would work if the data was flattened so the method could process it. As
our augmented HMIL-CwCF model has the ability to choose features with greater preci-
sion, it leads to superior performance. In a separate experiment, we applied our method to
a real-life problem of classification of malicious web domains, where it also outperformed
the other algorithms. The sequential nature of our algorithm and its hierarchical action
selection contribute to its explainability, as the features are semantically grouped, and the
user can view which of them are considered important at different time steps.

Supplementary Information The online version contains supplementary material available at https:// doi.
org/ 10. 1007/ s10994- 024- 06565-4.

Acknowledgements The GPU used for this research was donated by the NVIDIA Corporation. Some com-
putational resources were supplied by the Project “e-Infrastruktura CZ” (e-INFRA LM2018140) provided
within the program Projects of Large Research, Development and Innovations Infrastructures.

Author contributions JJ designed and implemented the method, performed the experiments and wrote the
manuscript. TP and VL supervised and consulted the work.

Funding Open access publishing supported by the National Technical Library in Prague. The authors
acknowledge the support of the OP VVV funded Project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research
Center for Informatics”. This research was supported by The Czech Science Foundation (Grant Nos.
22-32620S and 22-26655S).

Data availability All prepared datasets are published at https:// github. com/ jarom iru/ rcwcf.

Code availability The complete code for the presented algorithm and baselines is published at https:// github.
com/ jarom iru/ rcwcf.

https://doi.org/10.1007/s10994-024-06565-4
https://doi.org/10.1007/s10994-024-06565-4
https://github.com/jaromiru/rcwcf
https://github.com/jaromiru/rcwcf
https://github.com/jaromiru/rcwcf

4519Machine Learning (2024) 113:4487–4522

1 3

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of this
article.

Consent to participate Not applicable.

Consent for publication Not applicable.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ali, B., Moriyama, K., Kalintha, W., Numao, M., & Fukui, K.-I. (2020). Reinforcement learning based met-
ric filtering for evolutionary distance metric learning. Intelligent Data Analysis, 24(6), 1345–1364.

Badr, Y. (2022). Enabling intrusion detection systems with dueling double deep Q-learning. Digital Trans-
formation and Society (ahead-of-print).

Banerjee, S., Pratiher, S., Chattoraj, S., Gupta, R., Patra, P., Saikia, B., Thakur, S., Mondal, S., & Mukher-
jee, A. (2020) Deep reinforcement learning for variability prediction in latent heat flux from low-cost
meteorological parameters. In Optics and photonics for advanced dimensional metrology, 11352 (pp.
305–311). SPIE.

Bayer-Zubek, V., & Dietterich, T. G. (2005). Integrating learning from examples into the search for diagnos-
tic policies. Journal of Artificial Intelligence Research, 24, 263–303.

Bolón-Canedo, V., Porto-Díaz, I., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2014). A framework for
cost-based feature selection. Pattern Recognition, 47(7), 2481–2489.

Cesa-Bianchi, N., Shalev-Shwartz, S., & Shamir, O. (2011). Efficient learning with partially observed attrib-
utes. Journal of Machine Learning Research, 12(Oct), 2857–2878.

Chen, Y.-E., Tang, K.-F., Peng, Y.-S., & Chang, E. Y. (2019). Effective medical test suggestions using deep
reinforcement learning. arXiv preprint arXiv: 1905. 12916.

Contardo, G., Denoyer, L., & Artieres, T. (2016). Recurrent neural networks for adaptive feature acquisition.
In International conference on neural information processing (pp. 591–599). Springer.

Damashek, M. (1995). Gauging similarity with n-grams: Language-independent categorization of text. Sci-
ence, 267(5199), 843–848.

Deng, K., Bourke, C., Scott, S., Sunderman, J., & Zheng, Y. (2007). Bandit-based algorithms for budgeted learn-
ing. In Seventh IEEE international conference on data mining (ICDM 2007) (pp. 463–468). IEEE.

Dulac-Arnold, G., Denoyer, L., Preux, P., & Gallinari, P. (2012). Sequential approaches for learning datum-
wise sparse representations. Machine Learning, 89(1–2), 87–122.

Erion, G., Janizek, J. D., Hudelson, C., Utarnachitt, R. B., McCoy, A. M., Sayre, M. R., White, N. J., & Lee,
S.-I. (2022). A cost-aware framework for the development of AI models for healthcare applications.
Nature Biomedical Engineering, 6, 1384–1398.

Goldstein, O., Kachuee, M., Karkkainen, K., & Sarrafzadeh, M. (2020). Target-focused feature selection using
uncertainty measurements in healthcare data. ACM Transactions on Computing for Healthcare, 1(3), 1–17.

Goodman, J. (2001) Classes for fast maximum entropy training. In 2001 IEEE international conference on
acoustics, speech, and signal processing. Proceedings (Cat. No. 01CH37221) (Vol. 1, pp. 561–564).
IEEE.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine
Learning Research, 3(Mar), 1157–1182.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1905.12916

4520 Machine Learning (2024) 113:4487–4522

1 3

Hamilton, W., Ying, Z., & Leskovec, J. (2017) Inductive representation learning on large graphs. In
Advances in neural information processing systems (pp. 1024–1034).

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2),
251–257.

Janisch, J., Pevný, T., & Lisý, V. (2019). Classification with costly features using deep reinforcement learn-
ing. In Proceedings of 33rd AAAI conference on artificial intelligence.

Janisch, J., Pevný, T., & Lisý, V. (2020). Classification with costly features as a sequential decision-making
problem. Machine Learning, 109(8), 1587–1615.

Ji, S., & Carin, L. (2007). Cost-sensitive feature acquisition and classification. Pattern Recognition, 40(5),
1474–1485.

Kachuee, M., Goldstein, O., Karkkainen, K., Darabi, S., & Sarrafzadeh, M. (2019). Opportunistic learning: Budg-
eted cost-sensitive learning from data streams. In International conference on learning representations.

Kapoor, A., & Greiner, R. (2005). Learning and classifying under hard budgets. In European conference on
machine learning (pp. 170–181). Springer.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv: 1609. 02907.

Kusner, M., Chen, W., Zhou, Q., Xu, Z., Weinberger, K., & Chen, Y. (2014). Feature-cost sensitive learning
with submodular trees of classifiers. In AAAI conference on artificial intelligence (pp. 1939–1945).

Lee, M. H., Siewiorek, D. P., Smailagic, A., Bernardino, A., & Bermúdez i Badia, S. (2020a). Interactive hybrid
approach to combine machine and human intelligence for personalized rehabilitation assessment. In Pro-
ceedings of the ACM conference on health, inference, and learning (pp. 160–169).

Lee, M. H., Siewiorek, D. P., Smailagic, A., Bernardino, A., & Bermúdez i Badia, S. (2020b). Co-design and
evaluation of an intelligent decision support system for stroke rehabilitation assessment. Proceedings of
the ACM on Human-Computer Interaction, 4(CSCW2), 1–27.

Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward networks with a nonpolyno-
mial activation function can approximate any function. Neural Networks, 6(6), 861–867.

Li, Y., & Oliva, J. (2021). Active feature acquisition with generative surrogate models. In International confer-
ence on machine learning (pp. 6450–6459). PMLR.

Liu, X., Kumar, B., Yang, C., Tang, Q., & You, J. (2018). Dependency-aware attention control for unconstrained
face recognition with image sets. In Proceedings of the European conference on computer vision (ECCV)
(pp. 548–565).

Liyanage, Y. W., Zois, D.-S., & Chelmis, C. (2021). Dynamic instance-wise joint feature selection and classifi-
cation. IEEE Transactions on Artificial Intelligence.

Loshchilov, I., & Hutter, F. (2018). Decoupled weight decay regularization. In International conference on
learning representations.

Maldonado, S., Pérez, J., & Bravo, C. (2017). Cost-based feature selection for support vector machines: An
application in credit scoring. European Journal of Operational Research, 261(2), 656–665.

Maliah, S., & Shani, G. (2018). Mdp-based cost sensitive classification using decision trees. In AAAI conference
on artificial intelligence (pp. 3746–3753).

Mandlík, Š. (2020) Mapping the internet—Modelling entity interactions in complex heterogeneous networks.
Master’s thesis, Czech Technical University in Prague.

Mandlík, Š, Račinský, M., Lisý, V., & Pevný, T. (2022). JsonGrinder.jl: Automated differentiable neural archi-
tecture for embedding arbitrary JSON data. Journal of Machine Learning Research, 23(298), 1–5.

Metz, L., Ibarz, J., Jaitly, N., & Davidson, J. (2017) Discrete sequential prediction of continuous actions for deep
rl. arXiv preprint arXiv: 1705. 05035.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learning. In International conference on machine learning
(pp. 1928–1937).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning.
Nature, 518(7540), 529–533.

Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language model. Aistats, 5, 246–252.
Munos, R., Stepleton, T., Harutyunyan, A., & Bellemare, M. (2016). Safe and efficient off-policy reinforcement

learning. In Advances in neural information processing systems (pp. 1054–1062).
Nan, F., & Saligrama, V. (2017). Adaptive classification for prediction under a budget. In Advances in neural

information processing systems (pp. 4730–4740).
Nan, F., Wang, J., & Saligrama, V. (2015). Feature-budgeted random forest. In International conference on

machine learning (pp. 1983–1991).
Nan, F., Wang, J., & Saligrama, V. (2016). Pruning random forests for prediction on a budget. In Advances in

neural information processing systems (pp. 2334–2342).

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1705.05035

4521Machine Learning (2024) 113:4487–4522

1 3

Peng, Y.-S., Tang, K.-F., Lin, H.-T., & Chang, E. (2018). Refuel: Exploring sparse features in deep reinforce-
ment learning for fast disease diagnosis. In Advances in neural information processing systems (pp.
7322–7331).

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014) Deepwalk: Online learning of social representations. In Proceed-
ings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (pp.
701–710). ACM.

Pevný, T., & Kovařík, V. (2019). Approximation capability of neural networks on spaces of probability meas-
ures and tree-structured domains. arXiv preprint arXiv: 1906. 00764.

Pevný, T., & Somol, P. (2016). Discriminative models for multi-instance problems with tree structure. In Pro-
ceedings of the 2016 ACM workshop on artificial intelligence and security (pp. 83–91). ACM.

Pevný, T., & Somol, P. (2017). Using neural network formalism to solve multiple-instance problems. In Interna-
tional symposium on neural networks (pp. 135–142). Springer.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization. In Inter-
national conference on machine learning (pp. 1889–1897). PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algo-
rithms. arXiv preprint arXiv: 1707. 06347.

Shim, H., Hwang, S. J., & Yang, E. (2018). Joint active feature acquisition and classification with variable-size
set encoding. In Advances in neural information processing systems (pp. 1375–1385).

Shpakova, T., & Sokolovska, N. (2021). Probabilistic personalised cascade with abstention. Pattern Recognition
Letters, 147, 8–15.

Song, C., Chen, C., Li, Y., & Wu, X. (2018). Deep reinforcement learning apply in electromyography data clas-
sification. In 2018 IEEE international conference on cyborg and bionic systems (CBS) (pp. 505–510). IEEE.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). Cambridge, MA: MIT
Press.

Tan, M. (1993). Cost-sensitive learning of classification knowledge and its applications in robotics. Machine
Learning, 13(1), 7–33.

Tang, Y., & Agrawal, S. (2020). Discretizing continuous action space for on-policy optimization. In Proceed-
ings of the AAAI conference on artificial intelligence (Vol. 34, pp. 5981–5988).

Trapeznikov, K., & Saligrama, V. (2013). Supervised sequential classification under budget constraints. In Arti-
ficial intelligence and statistics (pp. 581–589).

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double Q-learning. In AAAI
conference on artificial intelligence (pp. 2094–2100).

Vivar, G., Mullakaeva, K., Zwergal, A., Navab, N., & Ahmadi, S.-A. (2020). Peri-diagnostic decision support
through cost-efficient feature acquisition at test-time. In International conference on medical image com-
puting and computer-assisted intervention (pp. 572–581). Springer.

Wang, J., Bolukbasi, T., Trapeznikov, K., & Saligrama, V. (2014). Model selection by linear programming. In
European conference on computer vision (pp. 647–662). Springer.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016). Dueling network architectures
for deep reinforcement learning. In International conference on machine learning (pp. 1995–2003).

Wang, J., Trapeznikov, K., & Saligrama, V. (2014). An lp for sequential learning under budgets. In Artificial
intelligence and statistics (pp. 987–995).

Wang, J., Trapeznikov, K., & Saligrama, V. (2015). Efficient learning by directed acyclic graph for resource
constrained prediction. In Advances in neural information processing systems (pp. 2152–2160).

Xu, J., Sun, Z., & Ma, C. (2021). Crowd aware summarization of surveillance videos by deep reinforcement
learning. Multimedia Tools and Applications, 80(4), 6121–6141.

Xu, Z., Kusner, M., Weinberger, K., & Chen, M. (2013). Cost-sensitive tree of classifiers. In International con-
ference on machine learning (pp. 133–141).

Xu, Z., Kusner, M., Weinberger, K., Chen, M., & Chapelle, O. (2014). Classifier cascades and trees for mini-
mizing feature evaluation cost. Journal of Machine Learning Research, 15(1), 2113–2144.

Xu, Z., Weinberger, K., & Chapelle, O. (2012). The greedy miser: Learning under test-time budgets. In Pro-
ceedings of the 29th international conference on international conference on machine learning (pp. 1299–
1306). Omnipress.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets. In
Advances in neural information processing systems (pp. 3391–3401).

Zhang, Y., Vuong, Q. H., Song, K., Gong, X.-Y., & Ross, K. W. (2018). Efficient entropy for policy gradient
with multidimensional action space. arXiv preprint arXiv: 1806. 00589.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., & Sun, M. (2018). Graph neural networks: A review of methods
and applications. arXiv preprint arXiv: 1812. 08434.

Zhu, M., & Zhu, H. (2020) Learning a cost-effective strategy on incomplete medical data. In International con-
ference on database systems for advanced applications (pp. 175–191). Springer.

http://arxiv.org/abs/1906.00764
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1806.00589
http://arxiv.org/abs/1812.08434

4522 Machine Learning (2024) 113:4487–4522

1 3

Zolghadr, N., Bartók, G., Greiner, R., György, A., & Szepesvári, C. (2013). Online learning with costly features
and labels. In Advances in neural information processing systems (pp. 1241–1249).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Classification with costly features in hierarchical deep sets
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Classification with costly features
	3.2 A2C algorithm
	3.3 Hierarchical multiple-instance learning

	4 Problem
	4.1 Structured data
	4.2 CwCF with structured data

	5 Method
	5.1 Input pre-processing
	5.2 Input embedding
	5.3 Classifier
	5.4 Value function and terminal action
	5.5 Action selection
	5.6 Training
	5.7 Pretraining classifier

	6 Experiments
	6.1 Tested algorithms
	6.2 Experiment setup
	6.3 Experiment A: synthetic dataset
	6.4 Experiment B: threatcrowd
	6.5 Experiment C: other datasets
	6.5.1 Dataset descriptions
	6.5.2 Results

	6.6 Remarks
	6.6.1 Explainability
	6.6.2 Classifier pretraining
	6.6.3 Computational requirements

	7 Discussion
	8 Conclusion
	Acknowledgements
	References

