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Abstract
Classification with costly features (CwCF) is a classification problem that includes the 
cost of features in the optimization criteria. Individually for each sample, its features are 
sequentially acquired to maximize accuracy while minimizing the acquired features’ cost. 
However, existing approaches can only process data that can be expressed as vectors of 
fixed length. In real life, the data often possesses rich and complex structure, which can be 
more precisely described with formats such as XML or JSON. The data is hierarchical and 
often contains nested lists of objects. In this work, we extend an existing deep reinforce-
ment learning-based algorithm with hierarchical deep sets and hierarchical softmax, so 
that it can directly process this data. The extended method has greater control over which 
features it can acquire and, in experiments with seven datasets, we show that this leads to 
superior performance. To showcase the real usage of the new method, we apply it to a real-
life problem of classifying malicious web domains, using an online service.

Keywords Classification with costly features · Deep reinforcement learning · Deep sets · 
Hierarchical multiple-instance learning · Hierarchical softmax · Policy decomposition · 
Application programming interface · Budget · Classification · Structured data

1 Introduction

The online world around us is composed of structured relational data. For example, users 
of a social network can be described by a set of their friends, posts they published or com-
mented on, likes they received and from whom. This data is often not available as a whole, 
but rather provided on request by a paid service. Application Programming Interfaces 
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(APIs) are specific examples. Google search, maps, Youtube, social networks such as Face-
book or Twitter, and more provide rich information that may be free in low volumes but is 
charged as soon as you consider using it commercially. Even if the complete data is avail-
able, one can still save substantial resources by using only its fraction, e.g., when analyzing 
a large number of users. Recently, we see that sustainability and ecology have started to 
play an increasingly larger role and the interest could lie in lowering electricity consump-
tion or  CO2 production.

In the social network example, the use of the data may be targeted advertising. As 
another example, let us consider the field of computer security. One may be interested in 
whether a particular web domain is legitimate or malicious. Specialized services provide 
rich sets of features about the requested domain, such as known malware binaries commu-
nicating with the domain, WHOIS information, DNS resolutions, subdomains, associated 
email addresses, and, in some cases, a flag that the domain is known to be malicious. The 
user can further probe any detail, e.g., after acquiring a list of subdomains, the user can 
focus on one of them and request more information about it. Again, access to the service 
may be charged, therefore there is a natural pressure to limit the number of requests.

The problem at hand has multiple names—classification with costly features (CwCF) 
(Janisch et  al., 2020), active feature acquisition and classification (Shim et  al., 2018) or 
datum-wise classification (Dulac-Arnold et al., 2012). In essence, the problem is to sequen-
tially gather features, in a unique order for each sample, and stop optimally when ready to 
classify. Optimality is usually defined as one of the two: (1) a trade-off between the total 
cost of the features and the classification accuracy or (2) maximal accuracy with the condi-
tion that the total per-sample cost cannot exceed a specified budget. We emphasize that a 
potentially different feature subset acquired in different order is retrieved for each sample. 
For example, with some samples, the classification may be made after a single feature is 
acquired. Other samples may require multiple or all features, and the decision which is 
made sequentially, based on the values revealed so far. Note that the number of possible 
ways to process a sample is exponential in its size.

Over the years, many different algorithms have been developed for this problem. Some 
employ decision trees (Xu et  al., 2012; Kusner et  al., 2014; Xu et  al., 2013, 2014; Nan 
et  al., 2015, 2016; Nan & Saligrama, 2017), recurrent neural networks (Contardo et  al., 
2016), linear programming (Wang et  al., 2014a, b) or partially observable Markov deci-
sion processes (Ji & Carin, 2007). There are multiple reinforcement learning (RL) methods 
based on Dulac-Arnold et al. (2012), e.g., by Janisch et al. (2019, 2020), Shim et al. (2018). 
The problem itself, or its variations, appears across multiple fields: medicine (Peng et al., 
2018; Lee et al., 2020a; Song et al., 2018; Vivar et al., 2020; Lee et al., 2020b; Shpakova & 
Sokolovska, 2021; Zhu & Zhu, 2020; Goldstein et al., 2020; Erion et al., 2022), meteorol-
ogy (Banerjee et al., 2020), data analysis (Ali et al., 2020), surveillance (Xu et al., 2021; 
Liu et al., 2018) or network security (Badr, 2022).

Despite the clear spread of the problem and its applications, we identified a substantial 
lack on the side of available algorithms. As we have shown in the introductory examples, 
a data sample is often provided in a complex structure, not a fixed-length vector. Formats 
such as XML or JSON, to which newly acquired information is sequentially added, are 
better suited. These formats commonly contain lists of elements with a priori undefined 
lengths and nested objects. For example, imagine a list of a user’s posts (see Fig. 1). How-
ever, the common requirement of the available algorithms, which we surveyed above, is a 
flat structure of the samples. In other words, it is assumed that the samples can be described 
as fixed-size vectors, with their slices allocated to predefined features.
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If we want to apply the existing algorithms to this structured data, we need to process 
the samples so they can be described as fixed-size vectors. However, as we show in this 
article, this approach leads to sub-optimal results. It is much better to provide a means 
for the algorithm to select individual features anywhere in the structure. Eventually, this 
is what we expect—the algorithm that can request a few relevant features for one of 
the user’s posts can be much more efficient than an algorithm that uses an aggregated 
version of all posts with pre-selected features. Note that a pre-selected feature ordering 
based on their importance is difficult because the number of features differs in every 
sample. E.g., in the social network example, it is difficult to statically determine the 
importance of a post’s title, because each sample has a different number of posts.

In this article, we extend the original CwCF framework to naturally work with the 
structured data, which presents two main challenges. First, we need a way to process the 
data at the input. Deep Sets (Zaheer et al., 2017) is a technique to process variable-sized 
input and Hierarchical Multiple-Instance Learning (HMIL) is its extension for hierar-
chically nested data (Pevný & Somol, 2016). It defines a special neural network archi-
tecture that accommodates to the specified data and creates its embedding. The second 
challenge lies in the fact that the original CwCF framework assumes a fixed number of 
features to select from and that the action space is static. However, this assumption does 
not hold in our case—the data contains lists of (possibly nested) objects, and only a part 
of the complete sample is visible at any moment. Since we map visible features with 
unknown values to actions, there is a different number of actions available to the algo-
rithm at any moment. Moreover, there is no a priori known upper bound for the number 
of actions. Inspired by a technique from natural language processing (Morin & Bengio, 
2005), we take advantage of the hierarchical composition of the features and propose to 
decompose the policy analogically to their structure.

Finally, we demonstrate the extended CwCF framework with a set of experiments. 
First, we design a synthetic dataset which we use to analyze the algorithm’s behavior. 
Second, we demonstrate the detection of malicious web domains with a real-world ser-
vice. For this purpose, we created an offline dataset by collecting information about 
around 1200 domains using the service’s API. This dataset enables us to perform the 
experiments efficiently and credibly imitates real communication with the service. 
Third, we quantitatively test the methods in five more datasets adapted from public 
sources.

Let us summarize the contributions of this manuscript: 

Fig. 1  A pruned data sample from our stats dataset, which is extracted from Stats StackExchange online 
service. The variable number of badges, posts, and their tags and comments means that each sample con-
tains a different number of features. Application of existing techniques (e.g., original CwCF) would require 
alteration of the data. As a better alternative, we present a modified method that naturally works with the 
structured data and can select individual features in the hierarchy



4490 Machine Learning (2024) 113:4487–4522

1 3

1. We formalize and bring the community’s attention to a novel variant of an important 
problem (Sect. 4).

2. We extend the existing CwCF framework to work with structured data containing lists 
and nesting, which was not possible before. This includes processing the data on input 
and factorizing the dynamic action space to select individual features (Sect. 5). Other 
minor contributions include:

• We provide a formula to estimate the gradient of the policy entropy (required for the 
A2C algorithm) when only the probability of single action is known.

• We split the classifier and feature selection policy, leading to better sample com-
plexity.

• We provide an unbiased loss for the classifier, weighted by the terminal action prob-
ability.

3. We evaluate our algorithm empirically and compare it to several alternatives, showing 
its superior performance. We execute the model with data from a real online service, 
proving its usefulness in a real-life scenario (Sect. 6).

4. We release seven datasets in a unified format to benchmark algorithms for this problem 
(five datasets are adapted from existing public sources, and two are completely new). 
We also release the complete code with scripts to reproduce the experiments.

This article is organized as follows. A detailed overview of the related work is presented 
in Sect. 2. Next, we describe the basic blocks we build upon in Sect. 3. Then we formalize 
the problem and formal changes to CwCF in Sect. 4. Section 5 focus on the algorithm and 
which practical changes are required. Experiments are presented in Sect. 6. Finally, Sect. 7 
provides answers to a few common questions and 8 concludes the manuscript. Supplemen-
tary Material provides auxiliary information that did not fit the main text, such as dataset 
details, hyperparameters, visualizations, and training graphs.

2  Related work

This work is a direct extension of the Classification with Costly Features (CwCF) frame-
work, originally defined by Dulac-Arnold et al. (2012) and lately advanced by Janisch et al. 
(2020, 2019). All these algorithms are based on reinforcement learning (RL) but work only 
with fixed-length vectors. Shim et  al. (2018) proposes a method for sets of features, but 
cannot cope with nesting. We have covered some of the existing approaches (Xu et  al., 
2012, 2013, 2014; Kusner et  al., 2014; Nan et al., 2015, 2016; Nan & Saligrama, 2017; 
Contardo et al., 2016; Wang et al., 2014a, b; Ji & Carin, 2007; Dulac-Arnold et al., 2012; 
Janisch et al., 2019, 2020; Shim et al., 2018) and applications (Peng et al., 2018; Lee et al., 
2020a; Song et al., 2018; Vivar et al., 2020; Lee et al., 2020b; Shpakova & Sokolovska, 
2021; Zhu & Zhu, 2020; Goldstein et al., 2020; Erion et al., 2022; Banerjee et al., 2020; 
Ali et al., 2020; Xu et al., 2021; Liu et al., 2018; Badr, 2022) for the CwCF problem in 
Introduction.

Aside from the references mentioned above, multiple papers focus on a similar class of 
problems or improve the algorithms somehow. Wang et al. (2015) creates macro-features 
from different disjoint subsets of features. Trapeznikov and Saligrama (2013) and Liyanage 
et al. (2021) use a fixed order of features, while the latter provides an analytical solution to 
select them optimally. Tan (1993) analyzes a similar problem but requires memorization 
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of all training examples. Li and Oliva (2021) uses RL with a generative surrogate model 
that provides intermediary rewards by assessing the information gain of newly acquired 
features and other side information. Bayer-Zubek and Dietterich (2005) presents multi-
ple approaches based on the AO* algorithm that searches the policy space, applicable in 
domains with discrete feature values. A case with a hard budget was explored in Kapoor 
and Greiner (2005). Deng et al. (2007) approached the problem with multi-armed bandit 
techniques. Cesa-Bianchi et al. (2011), Zolghadr et al. (2013) analyze the problem theoreti-
cally. Kachuee et al. (2019) uses heuristic reward to guide an RL-based algorithm.

A related problem is feature selection (Guyon & Elisseeff, 2003) which pre-selects a 
fixed set of features for all samples. However, in CwCF and similar approaches, the fea-
tures are selected dynamically and sequentially. That is, for any particular sample, features 
are acquired one by one, and each decision is guided by the information gathered so far. 
This way, a different set of features is acquired for any particular sample. This approach 
requires more resources to train and execute but can provide higher performance (i.e., 
higher accuracy with the same average cost). Several approaches extend the feature selec-
tion to include costs of the features (Maldonado et al., 2017; Bolón-Canedo et al., 2014). 
Still, they are designed to find a set of features common for the whole dataset and cannot 
work with structured data.

In this work, we use Hierarchical Multiple-Instance Learning (HMIL) to process the 
structured data (Pevný & Somol, 2017, 2016; Pevný & Kovařík, 2019; Mandlík et  al., 
2022), which is an extension of Deep Sets (Zaheer et al., 2017). In some deep RL prob-
lems, the action space is composed of orthogonal dimensions and existing techniques can 
be used to factorize it (Tang & Agrawal, 2020; Chen et al., 2019; Metz et al., 2017). In our 
case, the features are arranged in a tree-like structure and we factorize the corresponding 
action space with hierarchical softmax, a technique similar to the one used in natural lan-
guage processing (Morin & Bengio, 2005; Goodman, 2001).

We optimize our model with the A2C algorithm derived from (Mnih et  al., 2016), 
which belongs to a class of policy gradient RL algorithms (Sutton & Barto, 2018). It can 
be replaced with another algorithm from its class that works with discrete actions (e.g., 
TRPO (Schulman et al., 2015) or PPO (Schulman et al., 2017)). While the use of the A2C 
algorithm is enough for the purposes of this paper, we note that any recent or future algo-
rithm from the RL community may result in improved performance and better sample 
complexity.

The problem is distantly related to graph classification algorithms (e.g., (Zhou et  al., 
2018; Hamilton et  al., 2017; Perozzi et  al., 2014; Kipf & Welling, 2016)). These algo-
rithms either aim to classify graph nodes or the graph itself as a whole. In our case, we 
assume that the data is structured in a tree, constructed around a point of interest (e.g., a 
particular web domain). For this kind of data, the HMIL algorithm is better suited and less 
expensive than the general message-passing. Moreover, the graph classification algorithms 
do not involve sequential feature acquisition, nor account for the costs of features.

3  Preliminaries

This section describes the methods we build upon in this work. Our method is based on the 
Classification with Costly Features (CwCF) (Janisch et al., 2019, 2020) framework to set 
the objective and reformulate the problem as an MDP. However, structured data pose non-
trivial challenges due to their variable input size and the variable number of actions. To 



4492 Machine Learning (2024) 113:4487–4522

1 3

create an embedding of the hierarchical input, we use an extension of Deep Sets (Zaheer 
et  al., 2017) called Hierarchical Multiple-Instance Learning (HMIL) (Pevný & Somol, 
2016; Mandlík et al., 2022). To select the performed actions, we use hierarchical softmax 
(Morin & Bengio, 2005; Goodman, 2001). To train our agent, we use Advantage Actor 
Critic (A2C) (Mnih et al., 2016), a reinforcement learning algorithm from the policy gradi-
ent family.

3.1  Classification with costly features

Let us start by explaining the core concept of the Classification with Costly Features 
(CwCF) (Janisch et al., 2019, 2020). In CwCF, a data sample consists of features (e.g., a 
user’s name, reputation, etc.), each of which has a defined cost. Initially, the sample’s fea-
ture values are unknown. The algorithm proceeds sequentially, and at each step, it decides 
whether to acquire another feature and which, or classify the sample. Note that the order of 
features is not fixed, but chosen dynamically. The objective is to optimally balance the total 
cost of features and classification accuracy, averaged over the dataset. Compared to feature 
selection (Guyon & Elisseeff, 2003), this approach can achieve higher accuracy with the 
same cost because it can select a different set of features for each sample. The limitation of 
the framework is that it assumes that every sample contains exactly the same features and 
that they can be converted to a fixed-length vector. However, if the sample contains “a list 
of user’s posts”, the original CwCF does not provide a way to process it.

The following paragraph defines the problem formally. Let D be a dataset containing 
data points (x, y), where x is the sample and y is its label. Let X  be the input space and Y 
the set of all labels. We willingly do not define the X  more precisely to allow a wider inter-
pretation of what a feature value is (the CwCF framework defined it as X ⊆ R

n ). Let F  be 
the set of all possible features. Each feature has a predefined real-valued cost and the cost 
function c ∶ ℘(F) → R returns their sum, where the ℘ symbol denotes a power set. Let the 
tuple (y� , k�) denote a model parametrized with � , where y� ∶ X → Y returns the label and 
k� ∶ X → ℘(F) returns the features used. The objective is:

Here, �rl denotes a classification loss, commonly defined as binary (0 in case of mismatch, 
-1 otherwise). � ∈ R is a trade-off factor between the accuracy and the cost. Minimizing 
this objective means minimizing the expected classification loss together with the �-scaled 
per-sample cost.

Alternatively, CwCF provides (Janisch et al., 2020) two other possible objectives. First, 
the algorithm can be modified to allow the user to specify directly a per-sample average 
budget b ∈ R and avoid � . The objective then becomes:

Finally, it is possible to set a hard per-sample budget that cannot be exceeded for any sam-
ple. The objective is then:

(1)min
�

�
(x,y)∈D

[
�rl(y�(x), y) + �c(k�(x))

]

(2)min
�

�
(x,y)∈D

[
�rl(y�(x), y)

]
, s.t. �

(x,y)∈D

[
c(k�(x))

]
≤ b

(3)min
�

�
(x,y)∈D

[
�rl(y�(x), y)

]
, s.t. ∀x ∶ c(k�(x)) ≤ b
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We chose to build our extensions with the objective in Eq.  (1), as it corresponds to the 
vanilla algorithm, and the rest of the paper will mention only this one. If the application 
demands it, the other two objectives are also possible. We included them for completeness 
and reference. The interested reader can find more details about their implementation in 
Janisch et al. (2020).

The way to solve Eq. (1) is to construct a special Markov decision process (MDP), 
in which a single sample (x, y) is analyzed per episode and the total episode reward R 
is:

Finding an optimal policy parametrized with � equals to maximizing the expected reward, 
thus solving Eq.  (1). The MDP is constructed as follows. In a particular episode with a 
sample (x, y), the state space S consists of states s = (x, y, F̄) , where F̄ ⊆ F  is the set of 
currently observed features. The agent only sees an observation o(x, F̄) , which denotes only 
the parts of x corresponding to features F̄  . It also does not know the label y. Each epi-
sode starts with an initial state s0 = (x, y, �) . The action space A corresponds to features 
and class labels, A = Af ∪At , where Af = F,At = Y (t in At as terminal). Typically, the 
already acquired features are removed from the selection, hence Af (s) = F⧵F̄  . After per-
forming an action selecting a feature, the reward is proportional to its negative cost, and 
the feature value is disclosed. After a classifying action, the episode terminates, and the 
reward is the negative loss of classification. Formally, the reward function r ∶ S ×A → R 
and transition function t ∶ S ×A → S are defined as follows:

Here, T  denotes the terminal state. When the episode terminates, the final action is a class 
prediction, and it is used as the model output y� . Finally, the set of all acquired features is 
used as k𝜃 = F̄ .

The MDP defined above is solved with a deep reinforcement learning algorithm. 
The result is a policy �� that prescribes which actions to take in which states. In the 
original CwCF implementation, the RL algorithm was DQN (Mnih et al., 2015) with 
several improvements (Van Hasselt et al., 2016; Wang et al., 2016; Munos et al., 2016). 
However, the method does not hinge on a particular algorithm, and another one can be 
easily used.

The Eq.  (1) poses a multi-criterial optimization problem that balances the classi-
fication accuracy in �rl and the cost of used features in �c , for a fixed � . The optimal 
behavior for � → ∞ is to refrain from acquiring any features and immediately classify 
with the most populous class, given the statistics of the training dataset. With the other 
extreme, � = 0 , a classifier that uses all features can be used to estimate a lower bound 
of the accuracy. Still, it is only a lower bound, since a different model may provide a 
better accuracy. For the points between, i.e., � ∈ (0,∞) , the issue is the same—we can 
only find a lower bound (e.g., with baseline methods). Finally, note that Eq. (1) focuses 
on the training set performance, but the ultimate goal is to find a model that general-
izes to unseen data points.

R = −
[
�rl(y�(x), y) + �c(k�(x))

]

r(s, a) =

{
−𝜆c(a) if a ∈ Af

−�rl(a, y) if a ∈ At

t(s, a) =

{
(x, y, F̄ ∪ a) if a ∈ Af

T if a ∈ At
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3.2  A2C algorithm

The method presented in this paper depends on hierarchical policy decomposition 
(explained in Sect.  5.5), which is possible if the policy is probabilistic. However, the 
original CwCF uses the DQN algorithm that outputs a deterministic policy that can-
not be easily factored. Therefore, we propose to use the Advantage Actor-Critic algo-
rithm (A2C) (Mnih et  al., 2016), a basic policy gradient algorithm to find the policy 
�� . However, we note that any other algorithm from the policy gradient family with 
discrete actions (e.g., (Schulman et  al., 2015, 2017)) could be used in its place. This 
is an advantage of RL-based methods—any recent or future improvement in deep RL 
algorithms can be immediately used with this method to improve its performance or 
sample complexity.

A detailed description of the A2C algorithm follows. An MDP is a tuple (S,A, t, r, �) , 
where S represents the state space, A is a set of actions, t(s,  a) is a transition func-
tion returning a distribution of states after taking an action a in a state s, r(s, a, s�) ∈ R 
is a reward function that returns a reward for a transition from a state s to s′ through 
an action a, and � ∈ (0, 1] is a discount factor. The A2C algorithm iteratively opti-
mizes a policy �� ∶ S → P(A) , where P(A) denotes a probability distribution over 
actions, and a value estimate V� ∶ S → R with model parameters � to achieve the 
best cumulative reward in a given MDP. Let us define a state-action value function 
Q(s, a) = �s�∼t(s,a)[r(s, a, s

�) + �V�(s
�)] and an advantage function A(s, a) = Q(s, a) − V�(s) . 

Then, the policy gradient ∇�J and the value function loss LV are:

where �′ is a fixed copy of parameters � and ��(a ∣ s) denotes the probability of action a 
under policy �� in state s.

To prevent premature convergence, a regularization term LH in the form of the aver-
age policy entropy is used:

The total loss is computed as Lpg = −J + �vLV − �hLH , with �v, �h learning coefficients. 
The algorithm iteratively gathers sample runs according to a current policy �� , and the 
traces are used as samples for the above expectations. Then, an arbitrary gradient descent 
method is used with the gradient ∇�Lpg . Often, multiple environments are run in parallel to 
get a better gradient estimate. Note that while (Mnih et al., 2016) used asynchronous gradi-
ent updates, A2C performs the updates synchronously.

(4)∇�J = �
s,a∼�� ,t

[
A(s, a) ⋅ ∇� log��(a ∣ s)

]

(5)LV = �
s,a,s�∼�� ,t

[
q(s, a, s�) − V�(s)

]2

(6)q(s, a, s�) =r(s, a, s�) + �V�� (s
�)

(7)LH = �
s∼�� ,t

[
H��

(s)
]
; H�(s) = − �

a∼�(s)

[
log�(a ∣ s)

]
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3.3  Hierarchical multiple‑instance learning

In our method, we need a way to process structured data. Our data samples are trees of 
features and they can contain nested lists of objects, similar to XML and JSON formats. 
To process this data on input, we use an extension of Deep Sets (Zaheer et al., 2017) 
for hierarchical data, called Hierarchical Multiple-Instance Learning (HMIL) (Pevný & 
Somol, 2016; Mandlík et al., 2022). For an illustration of how HMIL works, see Fig. 2.

Let us start with MIL (Pevný & Somol, 2017), which presents a neural network archi-
tecture to learn an embedding of an unordered set (called a bag) B , composed of m items 
v{1..m} ∈ R

n . The items are simultaneously processed into their embeddings zvi = f�B (vi) , 
where f�B is a non-linear function with parameters �B , shared for the bag B . All embed-
dings are processed by an aggregation function g, commonly defined as an element-wise 
mean or max operator. The whole process creates a bag’s embedding zB = gi=1..m(zvi ) , and 
is differentiable.

HMIL extends the framework so that it works with nested bags. In MIL, features are 
real scalars or vectors. In HMIL, a feature can also be a bag of items with the restriction 
that all the items share the same feature types. Different bags B have different parameters 
�B and are recursively processed as in MIL, starting from the hierarchy’s leaves and pro-
ceeding to the root. The resulting intermediary embeddings zB are used as feature values 
(see Fig. 2). The soundness of the hierarchical approach is theoretically studied by Pevný 
and Kovařík (2019).

4  Problem

In this paper, we extend the CwCF framework (see Sect. 3.1) to work with the structured 
data. This kind of data can be naturally processed with the HMIL architecture (Sect. 3.3). 
In this section, we describe what structured data means and how the problem formulation 
changes.

4.1  Structured data

Compared to the data usually processed in machine learning, structured data, as we 
define it, cannot be described by fixed-length vectors. The main difference is that 
the samples can contain nested sets with a priori unknown cardinality. However, the 

Fig. 2  Illustration of the bag 
embedding in HMIL. Objects 
in the bag B are processed with 
f�B and aggregated. The result is 
used as the feature value for the 
parent object. The process recur-
sively embeds the whole sample
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structure of the samples is strictly defined. Below, we define the structured data with 
terms schema and sample.

Dataset schema recursively describes the structure, features, their types, and costs. 
Formally, let an object schema be a collection of tuples (name, type, cost, children_
schema), where each tuple describes a single feature with its name, data-type, and non-
negative real-valued cost. For features with type=set, the children_schema is an object 
schema describing the objects in this set. For other features, children_schema=∅ . A 
dataset schema ΣD is an object schema describing the whole sample.

Data sample is a collection of feature values, composed in a tree, and its structure 
strictly follows the schema ΣD . Formally, let an object be a collection of feature values 
with types described by the corresponding object schema. We call each feature with 
type=set a set feature, and it is a collection of objects whose features are typed by the 
corresponding children_schema. Other features are called value features.

Fig. 3  The schema and a partial sample for the threatcrowd dataset. a The schema shows the feature names, 
their types, and their cost in parentheses. A set type denotes that this feature contains a set of objects, whose 
features are described in the level below. b A partial sample. The full circles and lines denote features with 
known feature values. Among other information, the example shows that a list of domains was acquired for 
one of the IP addresses (46..55) with a reverse lookup
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Both the schema and sample can be visualized as a tree. Figure 3a shows an exam-
ple of a schema threatcrowd dataset. The schema specifies that each sample contains a 
free feature domain with type string and sets of ips, emails, and hashes. Objects in 
these sets have their own features (e.g., each IP address has a set of reversely translated 
domains). Figure 3b shows an incomplete sample as it would be seen by the augmented 
CwCF algorithm (only some of the features were acquired). Objects and their features 
are composed into a tree, according to the schema.

Note that our definition assumes that the cost of a particular feature across all samples 
is constant. While this assumption decreases the framework’s flexibility, we argue that it is 
reasonable for real-world data where the cost of features can be usually precisely quantified 
upfront (e.g., the cost of an API request).

Last, it is useful to define a path and prefix of a feature in a particular sample. Let a 
path of a feature denote feature names and object positions in sets as a sequence from the 
root of the sample to the corresponding feature. We use the common programming syntax 
to denote the path. For example, we can write the path of features from the example in 
Fig. 3b as ips[0].ip (the value of the first IP address), or ips[1].domains[0].domain (the 
first domain of the second IP address). Let a prefix pre(�) of a feature � be its path without 
the last item. For example, pre(ips[0].ip) = ips[0]).

Note that while we address individual objects in a set by their index, we do this solely 
for the purposes of definitions and implementation. We assume that the order of objects 
does not have any predictive value.

4.2  CwCF with structured data

The original CwCF method (see Sect. 3.1) worked with samples x ∈ R
n . However, the data 

discussed in this paper cannot be easily converted to this Euclidean space. To accommo-
date for the issue, we present the following changes.

First, in CwCF, F  denotes a set of all features. However, with structured data, the num-
ber of features is no longer constant across samples, as each sample can contain multiple 
objects in its sets. Therefore, let F(x) be a sample-dependent set of all features for a par-
ticular sample.

Second, a feature can be acquired only if its prefix has been obtained. For example, 
ips[0].ip cannot be acquired before the set ips or the object ips[0] is obtained. Formally, 
we modify the available feature-selecting actions to Af (s) = {𝜅 ∈ (F(x)⧵F̄) ∣ pre(𝜅) ∈ F̄} . 
These actions correspond to features whose values are unknown, hence we call these fea-
tures unobserved. As a minor optimization that facilitates training, we propose recursively 
processing the corresponding subtree and acquiring all features with zero cost, whenever a 
set feature is acquired.

Third, we decouple the classifier y� from the policy �� . This change is not related to 
the structured data but results in improved performance and sample complexity. This is 
because the classifier can now be trained independently in every state and the policy is not 
burdened by the classification. Formally, we modify the set of terminal actions to include 
only a single terminal action at , At = {at} . The classifier y� is now separately trained on 
observations o(x, F̄) (remember that the observation discloses the parts of x corresponding 
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to features F̄  ). To simplify notation, let x̄ = o(x, F̄) . The final prediction y𝜃(x̄) is used when 
the episode terminates. The reward function needs to reflect this change:

Note that we use parameters � for both �� and y� . Commonly, both of these functions are 
implemented as a neural network with shared layers and as such, their parameters overlap.

The original CwCF method solved a finite horizon MDP, since, for any dataset, there 
was a fixed number of features to acquire. To preserve this property in the modified frame-
work, we need to add two assumptions. First, we assume that the dataset schema is finite, 
i.e., the feature hierarchy is limited in depth. The second assumption is that the number of 
objects in any set of any data sample is finite. These two assumptions together limit the 
number of features of any sample, therefore the modified method still operates within a 
finite horizon MDP.

Given these simple changes, the CwCF framework is formally ready to work with struc-
tured data. However, the situation is more difficult implementation-wise, which is dis-
cussed in the following section.

r(s, a) =

{
−𝜆c(a) if a ∈ Af

−�rl(y𝜃(x̄), y) if a ∈ At

Fig. 4  a The input x̄ is recursively processed to create embeddings zv for each object v in the tree and the 
sample-level embedding zx̄ . c The embedding zx̄ is used to compute class probabilities � , value estimate V, 
and the terminal action potential at . b An unobserved leaf feature is chosen with a sequence of stochastic 
decisions. Probabilities are determined by f𝜑B

(zx̄, zv) . The whole architecture is end-to-end differentiable
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5  Method

This section systematically introduces key details of our method to solve CwCF with struc-
tured data. The result is a model that is trained to solve Eq. (1). It is composed of several 
parts, as displayed in Fig. 4 and described by Algorithms 1 and 2. First, the input is pro-
cessed with HMIL to create item-level and sample-level embeddings. Second, the sample-
level embedding is used to create a class prediction, a value function estimate, and a termi-
nal action value. Third, the action space is semantically factored with hierarchical softmax 
that creates a complete probability distribution over all actions. Our model is a specialized 
end-to-end differentiable neural network, and we denote it with Θ and its parameters with 
� (this includes parameters � in HMIL, � in action selection and �,V , � output heads). To 
keep down the overall complexity of the final model, we minimize the number of layers 
used in each component. For example, we define the classifier � as a single neural network 
layer. However, this is not a limitation, since it uses the embeddings computed previously 
in the HMIL phase, and the whole network is updated end-to-end. When using our method, 
one may try to experiment with the number of layers to tune its performance for a concrete 
application. To declutter notation in the following text, we avoid using � when describ-
ing gradients in ∇� , �� ,V� , and �� . For reference, important symbols are summarized in 
Table 1.

Table 1  Selected important symbols

Symbol Description

� Accuracy versu cost trade-off factor
y� , k� Outputs of the model—class and all acquired features
c Cost function
x, y Sample and class
F(x) All features of the sample x
F̄ Set of acquired features
x̄ = o(x, F̄) Observation and observation function
ΣD Schema of a dataset D
at Terminal action
�rl Classification loss for RL (binary)
�cls Classifier loss (cross-entropy)
� A feature
pre(�) Prefix of the feature �
f�B HMIL embedding function for the bag B
f�B

Pre-softmax embedding function for action selection for the bag B
zv, zx̄ Embeddings of an object v and observation x̄
� Action selection policy
� Classification probabilities
V Value function
�at Pre-softmax value of terminal action at
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Algorithm 1  HMIL-CwCF training

5.1  Input pre‑processing

The features in an observation x̄ can be of different data types. Before processing with 
a neural network, they have to be converted into real vectors (only the features holding 
a value, not set features). For strings, we observed good performance with character 
tri-gram histograms (Damashek, 1995). This hashing mechanism is simple, fast, and 
conserves similarities between strings. We used it for its simplicity and acknowledge 
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that any other string processing mechanism is possible. One-hot encoding is used with 
categorical features.

Algorithm 2  HMIL-CwCF model

For effectivity, the pre-processing step can take place before the training for the 
whole dataset. When the complete dataset is unavailable and the features are directly 
streamed upon request (e.g., during real-world inference), the values are converted on 
the fly.

During inference, the feature values can be unknown. In this case, a zero vector 
of the appropriate size is used. To help the model differentiate between observed and 
unobserved features, each feature in x is augmented with a mask. It is a single real 
value, either 1 if the feature is observed or 0 if not. In sets, the mask is the fraction of 
the corresponding branch that is observed, computed recursively.
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5.2  Input embedding

(Figure 4a, Algorithm 2 HMIL) To process and embed the input, the first part of our fully 
differentiable model is HMIL (see Sect.  3.3). Its structure is determined by the dataset 
schema ΣD . Each set feature corresponds to a bag and the set of all such bags is 
{B� ∶ ∀� ∈ ΣD ∣ type(�) = set} . Before training, parameters �B�

 are initialized for each 
bag B� , which are later used for embedding items with the function f�B� . We implement 
this function as one fully connected layer with LeakyReLU activation.

Let us clarify how HMIL is applied in our particular case to process an observation x̄ . 
The process starts with the leaves of the feature hierarchy and recursively proceeds toward 
the root. Each feature � with type=set consists of a set of unordered objects v, collected in 
the bag B� . All of these objects share the same type (enforced by the schema), i.e., they 
have the same features (however, not their values). The feature values of each object can be 
concatenated to Rn , where n is the size of the vector for the particular set � . This is possible 
because the feature values are pre-processed, unknown features are replaced with zero vec-
tors of the appropriate size, and the value of the set features is taken from the HMIL 
embedding of their contents. Each object v ∈ B� is processed by the embedding function 
f�B�

(v) = zv , and the embeddings are saved to be used later. All items in the bag are mean-
aggregated, and this value is used as the feature value of the parent object. Finally, when 
the whole tree is processed, the result is the root-level embedding zx̄.

5.3  Classifier

(Figure  4c, Algorithm  1 lines  8, 9, 13, 20) The sample-level embedding zx̄ encodes the 
necessary information about the whole observation x̄ , and it is enough to compute the class 
probability distribution 𝜚(zx̄) and the final decision y𝜃(x̄) = argmax 𝜚(zx̄) . We implement � 
as a single linear layer followed by softmax that converts the output to probabilities, and 
the classifier is trained parallelly to the policy �.

However, if we simply used every encountered state during training with the same 
weight, it would result in a biased classifier. This is because the classification is required 
only in terminal states and their reach probabilities need to be respected. Let P𝜋(x̄) denote a 
probability that the agent reaches x̄ and terminates under policy � . The unbiased classifica-
tion loss is then:

To estimate the expectation in Eq. (8), we can either train the classifier only when the agent 
terminates, or we can use every encountered state weighted by the terminal action prob-
ability 𝜋(at ∣ x̄) . We use the latter because it provides an estimate with a lower variance. 
For �cls , we use cross-entropy loss.

5.4  Value function and terminal action

(Figure 4c, Algorithm 2 line 3) The embedding zx̄ is also used to compute the value func-
tion estimate V(zx̄) (required by the A2C algorithm) and pre-softmax value of the termi-
nal action 𝜈at (zx̄) . Both functions are implemented as a single linear layer without any 

(8)Lcls = �
x̄∼P𝜋

[
�cls(𝜚(x̄), y)

]
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activation. The activation is not used in the value function, because its output should be 
unbounded, and it is commonly implemented in deep RL algorithms this way (Mnih et al., 
2015). The output of 𝜈at (zx̄) is converted to probability during the action selection.

5.5  Action selection

(Figures 4b and 5, Algorithm 2 SeLectActIon) Let us describe the process of selecting an 
action. Remember that the observation x̄ can be viewed as a tree, where value features are 
leaves and set features branch further. Note that this hierarchy is semantical, i.e., each set 
feature groups similar objects related to their parent. Therefore, it makes sense to use this 
semantical hierarchy for feature selection. We call the method below hierarchical softmax 
and note that a similar technique was used in natural language processing (Morin & Ben-
gio, 2005; Goodman, 2001).

For visualization, see Figs. 4b and 5. Oppositely to the input embedding procedure, the 
action selection starts at the root of x̄ and a series of stochastic decisions are made at each 
node, continuing down the tree. The root node is regarded as a set with a single object. For 
each bag B ∈ � , let the probability of selecting a feature � of an object v be:

Here, f�B
∶ R

n
→ R

m is a function that transforms the embeddings zx̄ and zv into a vector 
R

m , where n = |zx̄| + |zv| and m is the number of features for the object v. The bag-specific 
parameters �B are initialized prior training with the knowledge of the dataset schema for 
every possible bag B ∈ � . In plain words, Eq.  (9) means that all items in the bag B are 
processed with f�B

 , the outputs are concatenated are passed through the softmax function. 
This results in a single probability value for each feature in every object of B , which are 
resolved at once.

Note that the function f�B
 is a different function from f�B . Its parameters are bag-spe-

cific, and it is implemented as a single fully connected layer with no activation function, 
since the output is later passed through softmax. Observed features and parts of the tree 
that are fully expanded (the mask of the corresponding features is 1) are excluded from the 
softmax. We enforce this by setting the corresponding outputs of f�B

 to −∞ , so the softmax 
returns 0. At the root level, the terminal action potential 𝜈at (x̄) is added to the softmax.

(9)ℙ(v, 𝜅 ∣ x̄) = softmax
v,𝜅

(
f𝜑B

(zx̄, zv) ∶ v ∈ B
)

Fig. 5  Visualization of how an action is selected. Sequentially, a path is created from the root to a leaf 
unobserved feature (or the terminal action) by a series of stochastic decisions. In set features, all items and 
their features are resolved at once. The probability of the performed action is a product of the partial prob-
abilities on the path. In this example, the chosen action a selects the posts[0].comments[0].text feature with 
probability 𝜋(a ∣ x̄) =

∏3

i=1
𝜛i
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Now, remember that the action selection starts at the root of x̄ , iteratively samples from 
ℙ(v, 𝜅 ∣ x̄) and proceeds down the tree, until it reaches a leaf feature (also, see Algorithm 2 
SeLectActIon). Let us define an action a = [a1, ..., an] as a list of the specific choices, 
a1 = (v1, �1) or at, a2 = (v2, �2), ..., an = (vn, �n) , where n is the length of the path. We can 
write the probability of selecting the action a, given the observation x̄ , as a product of 
choice probabilities made on its path:

Hence, any action a ∈ Af ∪ at (i.e., any currently unobserved leaf feature, or the terminal 
action) can be sequentially sampled from Eq. (10).

The � is a probability distribution of actions, hence it is a policy. The decomposition 
according to Eq. (10) has several benefits. First, it was shown that a sensible policy decom-
position introduces inductive biases to the model and speeds up the learning (Tang & 
Agrawal, 2020). Our decomposition is logical because the decision on each level is made 
for objects that are semantically related. Second, it is interpretable, because it reveals which 
objects and features contributed to the decision. Third, it saves computational resources as 
only the probabilities on the selected path need to be computed. A drawback of the hier-
archical softmax is that the decisions are made sequentially for each sample, which limits 
the parallel computation capabilities of modern GPUs. In our implementation, most of the 
time is spent on simulating the environment, and hence this drawback is negligible.

5.6  Training

(Algorithm 1 trAIn and A2c) We use the A2C algorithm (see Sect. 3.2) to optimize the 
policy � with its parameters � , with the following changes. Note that we cannot train the 
model with value-based methods that were used with the original CwCF (e.g., DQN (Mnih 
et al., 2015)), because they cannot optimize the policy itself.

First, we use the fact that the maximal Q value is 1.0 (the reward for correct predic-
tion is 1.0 and every other step has a negative reward) and clip the target q in Eq. (6) into 
(−∞, 1.0):

This reduces a maximization bias that occurs when learning a value function with neural 
networks (Van Hasselt et al., 2016).

Second, the computation of the policy entropy LH in Eq. (7) requires knowledge of all 
action probabilities. However, the sequential nature of the hierarchical softmax means that 
only the 𝜋(a ∣ x̄) for the actually performed action a is computed. As the computation and 
gathering of probabilities for all actions are troublesome and unnecessary, we propose to 
estimate the entropy as follows. In the A2C algorithm, only the gradient ∇LH is needed, 
and basic algebra shows that the correct way to estimate it is (Zhang et al., 2018):

Here, we use only the performed action to sample the expectation with zero bias, and the 
variance is decreased through large batches. For completeness, the derivation of Eq. (12) is 
in the Supplementary Material A.

(10)𝜋(a ∣ x̄) =

n∏

i=1

ℙ(ai ∣ x̄)

(11)q(s, a, s�) = clip(r(s, a, s�) + �V�� (s
�),−∞, 1.0)

(12)∇�H��
(s) = − �

a∼�� (s)

[
log��(a ∣ s) ⋅ ∇� log��(a ∣ s)

]
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The A2C algorithm returns the loss Lpg at each step. Simultaneously, the classification 
loss Lcls is computed. Multiple parallel samples are processed at once to create a larger 
batch (see Supplementary Material  C for further details). After each step, the model’s 
parameters are updated in the direction of −∇(Lpg + Lcls) . We believe that the A2C algo-
rithm sufficiently demonstrates the method but note that any recent or future RL enhance-
ment is likely to improve its performance.

5.7  Pretraining classifier

The RL part of the algorithm optimizes Eq. (1), which assumes a trained classifier. How-
ever, the classifier is trained simultaneously by minimizing Eq. (8). As the classifier output 
appears in (1) and Eq. (8) is based on the probability P� , this introduces nonstationarity in 
both problems. To mitigate the issue and speed up convergence, we pretrain the classifier 
� with random observations (pruned samples). We cannot target a specific budget, since it 
is unknown before the training (only a tradeoff parameter � is specified). Hence, we cover 
the whole state space by generating observations x̄ ranging from almost empty to complete. 
The exact details are in Supplementary Material C.

6  Experiments

In this section, we describe several experiments that show the behavior of our algorithm 
and other tested methods. First, we describe the tested algorithms and the experiment 
setup. Then, we continue with a synthetic dataset designed to demonstrate the differences 
in algorithms’ behaviors. Next, we apply the algorithm to a real-world problem of identify-
ing malicious web domains. Finally, we gathered five more datasets for a quantitative eval-
uation. The complete code for all described algorithms and all datasets is shared publicly 
at https:// github. com/ jarom iru/ rcwcf. For the reproducibility of our results, we also include 
the scripts to run the experiments and produce the plots.

6.1  Tested algorithms

To our knowledge, there is no other method dealing specifically with costly hierarchical 
data. We constructed the following algorithms for comparison. Each of them represents 
certain class of algorithms and they can also be perceived as ablations of the main algo-
rithm presented in this manuscript.

HMIL represents algorithms that disregard the costs and always use all available fea-
tures. Alternatively, it can be seen as an ablation of the main algorithm, where we leave 
only the input embedding and classification parts. This method uses the complete informa-
tion available, processes it directly with the HMIL algorithm and is trained in a supervised 
manner. This approach provides an estimate of achieveable accuracy, but also with the 
highest cost. In practice, using all features at once makes the algorithm prone to overfitting, 
which we mitigated by using aggressive weight decay regularization (Loshchilov & Hutter, 
2018).

RandFeats represents a naive approach to the hierarchical composition of features, 
which are now selected randomly. With this, we can estimate the influence of the informed 
feature selection. It is an ablation of the full algorithm, implemented by replacing the pol-
icy with a random sampling. The algorithm acquires features randomly until a specified 

https://github.com/jaromiru/rcwcf
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budget is exceeded. All other parts of the algorithm are kept the same. Since this algo-
rithm is uninformed, we expect it to underperform the complete algorithm and give a lower 
bound estimate for accuracy.

Flat-CwCF: In this case, we demonstrate the original CwCF algorithm, which requires 
a fixed number of features. We achieve this by flattening the data—only the root-level fea-
tures are selectable, and the algorithm observes the complete sub-tree (embedded with 
HMIL) whenever such a feature is selected. This algorithm behaves the same as the full 
algorithm on the root level but lacks fine control over which features it requests deeper in 
the structure. Because of that, we expect the method to underperform the full algorithm 
with lower budgets, but to reach the performance of HMIL gradually.

One could argue that we could also engineer a fixed set of features for each dataset 
and apply the original CwCF or a similar algorithm. For example, the engineered features 
for the threatcrowd dataset (see Fig. 10-right for its schema) could include its domain and 
aggregated hashes of five random IP addresses, emails, and malware hashes. However, 
there can be more or fewer of these objects in the actual data sample. Given the variability 
of individual samples, the automatic selection of a static set of features is difficult, and the 
standard approaches to feature selection do not work with structured data.

In the original CwCF paper (Janisch et al., 2020), the authors proposed a heuristic base-
line method that acquired features in a precomputed order sorted by their importance. For 
each subset, a specific classifier was trained to estimate the accuracy at this point, resulting 
in a point in the accuracy vs cost plane. The original CwCF method was shown to outper-
form this baseline, due to its ability to select per-sample specific features in a unique order. 
In our case, it is unclear how to apply this baseline to the hierarchical data where each sam-
ple has a different number of objects in its sets and a different number of features overall.

Finally, we refer to the full method described in this paper as HMIL-CwCF. We 
searched for the optimal set of hyperparameters for each algorithm and dataset using vali-
dation data, and the complete table with all settings is in Supplementary Material C.

6.2  Experiment setup

For each dataset, we ran HMIL with ten different seeds, RandFeats with 30 different budg-
ets linearly covering either [0, 10], [0, 20] or [0, 40] range (depending on the dataset) and 
Flat-CwCF and HMIL-CwCF with 30 different values of � , logarithmically spaced in 
[10−4, 1.0] range. For each run, we selected the best epoch based on the validation data (for 
more details, see convergence graphs in Supplementary Material F).

To visualize the results, we select the best runs that are on the Pareto front of the vali-
dation dataset, using the cost and accuracy criteria. We plot the best runs as a scatter plot 
with the average cost on the x-axis and accuracy on the y-axis and also visualize their 
Pareto front with the testing set. To estimate variance, all other runs are visualized with 
faint color. For better comparison, we show the mean performance (± one standard devia-
tion) of HMIL across the whole x-axis.

Apart from the graph form, the results are also reported as normalized Area Under the 
Trade-off Curve (AUTC). The AUTC metric describes the overall performance across the 
whole range of budgets. It is computed as the area under the visualized Pareto front, nor-
malized by the total area of the graph, and the area below the prior of the most populous 
class is subtracted. The AUTC would return 0 for an algorithm that always predicts the 
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most populous class and 1 for an algorithm with perfect classification. See Supplementary 
Material D for more details.

6.3  Experiment A: synthetic dataset

This experiment is aimed to demonstrate the behavior of our and other tested algorithms 
on purposefully crafted data. Note that this synthetic dataset is designed to demonstrate the 
differences between the algorithms and therefore our method (HMIL-CwCF) performs the 
best.

Let us first explain the dataset’s structure (follow its schema in Fig. 6). A sample con-
tains two sets (set_a and set_b), each with ten items. Each item has two features—free 
feature item_key with a value 0 and item_value containing a random label. Randomly, a 
single item in one of the sets is chosen, and its item_key is changed to 1 and its item_value 
to the correct sample label. Further, the feature which_set contains the information about 
which set contains the indicative item. The idea is that the algorithm can learn a correct 
label by retrieving the which_set feature, opening the correct set, and retrieving the value 
for the item with item_key=1. Uniquely for this dataset, we test the algorithms directly on 
the training data.

Figure  7-right shows the performance of the tested algorithms in this dataset and 
Table 3 shows the AUTC metric. HMIL (the ablation with complete data) reaches 100% 
accuracy with a total cost of 31 (cost of all features). The Flat-HMIL is able to reduce the 
cost by acquiring only the correct set, but it has to retrieve all of its objects. Hence, it also 
reaches 100% accuracy, but with a cost of 16 (1 for which_set feature, 5 for one of the sets, 
and 10 for all values inside). Contrarily, the complete HMIL-CwCF method reaches 100% 
accuracy with only the cost of 7, since it can retrieve only the single indicative value from 
the correct set. Moreover, it is able to reduce the cost even further by sacrificing accuracy, 
as seen in the clustering around the cost of 6 and 0.75 accuracy, something that Flat-HMIL 
cannot do. This is one of the strengths of the proposed method—because it has greater con-
trol over which features it acquires, the user can choose to sacrifice the accuracy for a lower 
cost. Lastly, the RandFeats method selects the features randomly, and hence, its accuracy 
is well below HMIL-CwCF for corresponding budgets. The accuracy is influenced by the 
probability of getting the indicative item, which raises with the allocated budget and would 
reach 100% with the cost of 31 (we run the method with budgets from [0, 20]).

We selected one of the HMIL-CwCF models that was trained to reach 100% accuracy 
and examined how it behaves (see Fig.  7-left). We see that it indeed learned to acquire 

Fig. 6  The schema of the syn-
thetic dataset. The numbers in 
parentheses denote the costs of 
the corresponding features
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which_set feature, open the corresponding set_a or set_b and select the item_value of the 
item with item_key=1 to learn the right label.

This experiment validates the correct behavior of our method and demonstrates the need 
for all its parts. Compared to HMIL and Flat-CwCF, the complete method reaches com-
parable accuracy with lower cost. Moreover, compared to Flat-CwCF, it has better con-
trol over which features it requests, achieving better accuracy even in the low-cost region. 
Finally, the order in which the features are acquired matters, as shown in comparison with 
RandFeats.

6.4  Experiment B: threatcrowd

Let us focus on one of the real-world cases that motivated this work. Threatcrowd is a ser-
vice providing rich security-oriented information about domains, such as known malware 
binaries communicating with the domain (identified by their hashes), WHOIS information, 
DNS resolutions, subdomains, associated email addresses, and, in some cases, a flag that 
the domain is known to be malicious (see an example of its interface in Fig. 8). This infor-
mation is stored in a graph structure, but only a part around the current query is visible 
to the user. However, the user can easily request more information about the connected 
objects. For example, after probing the main domain google.com, the user can focus 
on one of its multiple IP addresses to analyze its reverse DNS lookups, or which other 
domains are involved with a particular malware. To make the queries, Threatcrowd pro-
vides an API with a limited number of requests per unit of time, which makes it a scarce 

Fig. 7  Results in the synthetic dataset. (left) The process of feature selection. In this example, the algorithm 
optimally requests the which_set feature, opens set_a, and learns the label in the indicative item. (right) 
Performance of all algorithms across different budget settings (x-axis). We show our method (HMIL-
CwCF), its ablation with a random policy (RandFeats), ablation with flattened data (Flat-CwCF), and the 
HMIL algorithm trained with complete information. We train 30 instances per each algorithm (HMIL-
CwCF, RandFeats, and Flat-CwCF), each targeting a different budget. We plot the best runs and their 
Pareto front. We also show the results of all runs as faint points for information about variance. Uniquely 
for this dataset, the train, validation and test sets are the same
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resource. We are interested in the following task: Classify a specified domain using the 
information provided through the API, minimizing the number of requests.

To make the experimentation easier and reproducible, we sourced an offline data-
set directly from the Threatcrowd service through their API, with their permission. Pro-
grammatically, we gathered information about 1171 domains within a depth of three API 
requests (including one request for the domain itself) around the original domain and 
split them into training, validation, and test sets. We chose three API requests because we 
assume that most of the indicative information is located in the close neighborhood of the 
root object. Each domain contains its URL as a free feature and a list of associated IP 
addresses, emails, and malware hashes. These objects can be further reverse-looked up for 
other domains. This offline dataset perfectly simulates real-life communication with the 
original service but in a swift and error-free manner. The dataset’s schema can be viewed 
in Fig. 10-right.

We ran all of the algorithms with the sourced data, and the results of the experiment are 
shown in Fig. 9a and Table 3. The HMIL reaches the mean accuracy of 0.83 with a cost of 
15 (on average, one needs to make 15 requests to gather all information within the depth 
of three). Other algorithms reach the same accuracy with a lower cost—Flat-CwCF with 
11, RandFeats with 5, and HMIL-CwCF with only 2 (results are rounded). That means 
that our method needs only two API requests on average to reach the same accuracy as 
HMIL (which uses complete information), resulting in 7.5× savings. To better understand 
what these two requests on average mean, we analyzed a single trained model and plotted 
a histogram of API requests across the whole test set in Fig. 9b. For example, with a single 
request, the algorithm can learn a list of all IP addresses (without further details) or a list 
of associated malware hashes. The histogram shows that in about 36% of samples, a single 
request is enough for classification, 29% requires two, 23% three, and 12% four requests or 
more.

Surprisingly, RandFeats performs better than Flat-CwCF, indicating that only a fraction 
of information is required, even if randomly sampled. The Flat-CwCF algorithm always 

Fig. 8  Threatcrowd interface. The left side shows a part of the information graph, unfolded to a limited 
depth. Various information is available for each node, and the right side displays the information about the 
currently focused node
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acquires a complete sub-tree for a specific feature (e.g., a complete list of IP addresses with 
their reverse lookups, up to the defined depth), resulting in unnecessarily high cost.

To get better insight into our algorithm’s behavior and to showcase its explainability, we 
visualize how a trained model works with a single sample in Fig. 10-left. Initially, only the 
domain name itself is known, without any additional details and the classification would be 
malware if the model decided to terminate at this point. However, the terminal action prob-
ability is low, and the model requests a list of malware hashes (there are not any) and a list 
of IP addresses instead (steps 0 and 1). The prediction changes to benign, likely because no 
malware communicates with the domain nor any malicious IP address is in the list. Still, 
the model performs a reverse DNS lookup for two IP addresses, which does not change 
the prediction (steps 2 and 3). Finally, the algorithm finishes with a correct classification 
benign. With four requests, the method was able to probe and classify an unknown domain.

To conclude, this experiment shows that the complete method leads to substantial sav-
ings while achieving the same accuracy. When deployed to production, this could mean 
that the method can classify much more samples with the same budget, or that the budget 
can be lowered, leading to monetary savings. To apply the model in a real-life scenario, 
the only thing required is an interface connecting the model’s input and decisions with the 
Threatcrowd API. After that, the model would be able to perform the classification online. 
The experiment also verifies that all parts of the algorithm are required. Specifically, the 
comparison with the Flat-CwCF and RandFeats baselines showed that flattening the fea-
tures results in degraded performance and that selecting features based on the knowledge 
gathered so far is crucial.

6.5  Experiment C: other datasets

To further evaluate our method, how it scales with small and large datasets and how it 
performs in binary and multi-class settings, we sourced five more datasets from var-
ious domains. Because our method targets a novel problem, we did not find datasets 

Fig. 9  a Results in threatcrowd dataset. The shaded area shows ± one standard deviation around the mean 
performance of HMIL (10 runs), across the whole x-axis for comparison. b Histogram of used API requests 
for a trained model that uses two requests on average
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in appropriate format—i.e., datasets with hierarchical structure and cost information. 
Therefore, we transformed existing public relational datasets into hierarchical forms 
by fixing the root object (different for each sample) and expanding its neighborhood 
into a defined depth. We also manually added costs to the features in a non-uniform 
way, respecting that in reality, some features are more costly than others (e.g., getting a 
patient’s age is easier than doing a blood test). In practice, the costs would be assigned 
to the real value of the required resources. The depth of the datasets was chosen so that 
they completely fit into the memory.

6.5.1  Dataset descriptions

We provide brief descriptions of the used datasets below. The statistics are summa-
rized in Table 2. For reproducibility, we published the processed versions, along with a 
library to load them. More details on how we obtained and processed the datasets, their 
splits, structure, and feature costs are in Supplementary Material B.

Fig. 10  (left) Classification of a potentially malicious domain (threatcrowd dataset). At each step, acquired 
features (full circles) and possible actions (empty circles; unobserved features and terminal action) are 
shown. The policy is visualized as line thickness and the selection with a green line. The method sequen-
tially requests features: First, it retrieves (step 0) a list of known malware hashes communicating with 
the domain, then (step 1) a list of associated IP addresses, and finally (steps 2 and 3) performs reverse 
IP lookups. The correct class is highlighted with a dot. Note that the number of actions differs at each 
step and the size of sets (IPs, hashes, and emails) differs between samples. (right) The dataset’s schema in 
feature:type(cost) format. In this dataset, the costs represent API requests
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Hepatitis: A relatively small medical dataset containing patients infected with hepatitis, 
types B or C. Each patient has various features (e.g., sex, age, etc.) and three sets of indica-
tions. The task is to determine the type of disease.

Mutagenesis: Extremely small dataset (188 samples) consisting of molecules that were 
tested on a particular bacteria for mutagenicity. The molecules themselves have several fea-
tures and consist of atoms with features and bonds.

Ingredients: Large dataset containing recipes with a single list of ingredients. The task 
is to determine the type of cuisine of the recipe. The main challenge is to decide when to 
stop analyzing the ingredients optimally.

SAP: In this large artificial dataset, the task is to determine whether a particular cus-
tomer will buy a new product based on a list of past sales. A customer is defined by various 
features and a list of sales.

Stats: An anonymized content dump from a real website Stats StackExchange. We 
extracted a list of users to become samples and set an artificial goal of predicting their 
age category. Each user has several features, a list of posts, and a list of achievements. The 
posts also contain their own features and a list of tags and comments.

6.5.2  Results

The results are shown in Fig. 11 and in Table 3. Let us select interesting facts and describe 
them below. The HMIL algorithm shows what accuracy is possible to achieve when using 
all features at once. The variance of its results indicates what should be considered normal 
in the corresponding dataset. Especially in hepatitis and mutagenesis (Fig. 11ae), the vari-
ance of the results is high, which is given by the datasets’ small sizes.

The results in sap (Fig. 11c) are noteworthy. Here, the top accuracy of HMIL is exceeded 
by HMIL-CwCF and Flat-CwCF. We investigated what is happening and concluded that 
HMIL overfits the training data, despite aggressive regularization—we tuned the weight 
decay to maximize the validation accuracy. Surprisingly, HMIL-CwCF and Flat-CwCF do 
not suffer from this issue, with fewer features. We hypothesize that the sap dataset contains 
some features deep in the hierarchy that are very informative on the training set, but do not 
translate well to the test set. The well-performing methods are able to circumvent the issue 
by selecting fewer features, which results in less overfitting.

Generally, the HMIL-CwCF is among the best-performing algorithms in all datasets, 
i.e., it reaches the same accuracy with lower cost (in sap and mutagenesis, it performs 

Table 2  Statistics of the used datasets. The features column shows the number of features (tree leaves) 
across all completely observed samples in the corresponding dataset

Dataset Samples Class distribution Features Depth
(all splits) (min/mean/max)

Synthetic 12 0.5/0.5 43/43.0/43 2
Threatcrowd 1171 0.27/0.73 4/701.7/3706 3
Hepatitis 500 0.41/0.59 7/121.7/1065 2
Mutagenesis 188 0.34/0.66 173/332.2/517 3
Ingredients 39774 0.01–0.20 2/11.8/66 2
SAP 35602 0.5/0.5 16/31.8/52 2
Stats 8318 0.49/0.38/0.13 9/52.5/21979 3
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comparatively to Flat-CwCF). Compared to HMIL, the cost is reduced about 26× in hepa-
titis, 1.2× in ingredients, 8× in sap, 6× in stats and 15× in mutagenesis, which are signifi-
cant savings. Flat-CwCF generally exhibits low performance in the low-cost region, due to 
its limited control over which features it gathers.

Fig. 11  The performance of the algorithms in five datasets, shown in the cost versus accuracy plane. We 
show our method (HMIL-CwCF), its ablation with a random policy (RandFeats), ablation with flattened 
data (Flat-CwCF) and the HMIL algorithm trained with complete information. We train 30 instances per 
each algorithm (HMIL-CwCF, RandFeats and Flat-CwCF), each targeting a different budget. We plot the 
best runs, selected using validation sets and their Pareto front. For information about variance, we also 
show the results of all runs as faint points. The HMIL is run 10 times, and we plot the mean ± one standard 
deviation (the bar visualizes the metrics across the whole range of budgets for comparison)

Table 3  Normalized area under 
the trade-off curve (AUTC; see 
Sect. 6.2 for description)

The highest values in the corresponding rows are given in bold

Dataset HMIL-CwCF Flat-CwCF RandFeats HMIL

Synthetic 0.88 0.75 0.32 0.50
Hepatitis 0.74 0.70 0.69 0.38
Mutagenesis 0.71 0.68 0.60 0.36
Ingredients 0.47 0.19 0.44 0.31
SAP 0.24 0.23 0.11 0.11
Stats 0.03 0.02 0.03 0.02
Threatcrowd 0.36 0.25 0.36 0.18
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Lastly, let us point out the result of HMIL-CwCF compared to RandFeats in ingredients 
(Fig. 11b). This dataset contains a single set of ingredients, which are objects with a single 
feature. The best any algorithm can do is to randomly sample the ingredients and stop opti-
mally. While RandFeats always uses the given budget, HMIL-CwCF can acquire more fea-
tures in some cases and compensate for that with other samples. Hence, it can reach higher 
accuracy with the same average cost as RandFeats.

The Flat-CwCF algorithm can either acquire the whole set of ingredients, or nothing. It 
achieves different points in Fig. 11b by randomization, i.e., it discloses the list of ingredi-
ents for some samples, or not for others. Note that the number of ingredients in each recipe 
varies and ranges from 1 to 65. One could argue that we could use a different encoding of 
the ingredients—e.g., one-hot encoding of the ingredients that are in a recipe. However, 
there are 6707 unique ingredients, while the mean number of ingredients in a recipe is 
around 11. Flattening the data this way would result in a very sparse and long binary fea-
ture vector. Applying the original CwCF method with such data would not work very well, 
since most of the features would encode a missing ingredient. This was already exemplified 
in Janisch et al. (2020), where training in a dataset with categorical values encoded to mul-
tiple one-hot encoded features (with a length of 40, compared to the required 6707 in case 
of ingredient) took an order of magnitude longer time to train, compared to similarly-sized 
dataset without such features.

To conclude, the results in Fig. 11 show that our method consistently performs better 
or comparatively to other methods—i.e., achieves a similar accuracy with much fewer fea-
tures. The AUTC metric in Table  3 aggregates the performance for the whole range of 
costs and confirms the conclusion.

6.6  Remarks

6.6.1  Explainability

Unlike the standard classification algorithms (e.g., HMIL), the sequential nature of HMIL-
CwCF enables easier analysis of its behavior. Figures 10 and 7 present two examples of 
the feature acquisition process and give insight into the agent’s decisions. The weights the 
model assigns to different features in different samples and steps can be used to assess the 
agent’s rationality or learn more about the dataset. We present more visualizations in Sup-
plementary Material E.

6.6.2  Classifier pretraining

The positive role of pretraining was already established in the original CwCF paper 
(Janisch et al., 2019). However, as we separate the classifier from the RL algorithm, it is 
worth to assess how the situation changes. We performed an ablation experiment with the 
sap dataset and a fixed � , where we ran the experiment 10 times with and without pretrain-
ing. The results in Fig. 12 show that the pretraining improves the speed of convergence and 
the performance on validation data.

6.6.3  Computational requirements

We measured the training times using a single core of Intel Xeon Gold 6146 3.2 GHz 
and 4 GB of memory. We used only CPU because the most time-consuming part of the 
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training was the environment’s simulation and it cannot benefit from the use of GPU. 
The measured times are displayed in Table 4. We show the synthetic dataset separately 
because it was much faster to learn. Note that the training times are for a single run 
(i.e., a single point in Fig. 11), but the runs are independent and are easily parallelized. 
After training, the inference time is negligible for all methods.

Note that while the training time of HMIL-CwCF is much longer than in the case 
of HMIL, it is easily compensated by the fact that our method can save a large amount 
of resources if correctly deployed. Moreover, computational power rises exponentially 

Fig. 12  Training of a model, with and without the classifier pretraining. Performed on the sap dataset with 
� = 0.00108264 ; an average of 10 runs

Table 4  Training times for a single instance (i.e., single setting of � in HMIL-CwCF). Note that most of the 
time is spent on simulating the environment

Dataset HMIL-CwCF RandFeats Flat-CwCF HMIL

Synthetic 1 h 30 min 1 h 1 min
Other (average) 19 h 14 h 9 h 1 h
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every year (resulting in faster training), while resources like  CO2 production, patients’ 
discomfort, or response time of an antivirus software only gain importance.

7  Discussion

Comparison with graph neural networks (GNNs)
Instead of HMIL, we could use a GNN to perform the input embedding. However, note 

that the data we work with are hierarchical and constructed around a central root. Hence 
it makes sense to model the data as trees, not as general graphs, and use a method tai-
lored to work with trees. In our case, generic message passing is unnecessary, and a single 
pass from leaves to the tree’s root is sufficient to embed all information correctly. Man-
dlík (2020) provides a deeper discussion about using HMIL and GNNs in sample-centric 
applications.

In some special cases, the same object could be located in multiple places (e.g., the 
same IP address accessible by multiple paths). In our method, we still handle the sample 
as a tree. If such a situation occurs, the data have to be unrolled, i.e., different places of the 
same object are considered to be different objects.

Is the depth of the tested datasets sufficient?
We argue that most of the relevant information is within the near neighborhood of the 

central object of interest. Increasing the depth exponentially increases the available feature 
space and space requirements and slows down training. As the experiments showed that 
there are substantial differences between the methods, we conclude that the used depth is 
sufficient.

How to obtain credible cost assignment?
In a real-life application, it should be possible to measure the costs of features up front. 

For example, the time required to perform an experiment, electricity consumed to retrieve 
a piece of data, or, as in the Threatcrowd experiment, every feature can represent a single 
API request.

Advantages and disadvantages of the proposed method
Our solution provides the following advantages, some of which are inherited from the 

original CwCF framework:

• It directly optimizes the objective in Eq. (1) and although the deep RL has not the same 
theoretical guarantees as tabular RL, it searches for the optimal solution. In contrast, 
some related work used heuristics (e.g., proxy rewards (Kachuee et al., 2019) in the flat 
CwCF case)—such algorithms are not guaranteed to aim for the optimal solution.

• The used HMIL algorithm used to process the hierarchical input is theoretically 
sound—Pevný and Kovařík (2019) generalizes the universal approximation theorem 
(Hornik, 1991; Leshno et al., 1993) to HMIL networks.

• As our method is based on a standard deep RL technique, its performance is likely to 
be improved with advancements in the RL field itself, since it is an actively developed 
area.

• The novel method can directly utilize many of the extensions developed for CwCF. 
This includes (1) problems with hard budget, (2) specifying the budget directly and 
automatic search for an optimal � , (3) missing features (e.g., features of some objects 
may be inaccessible, possibly because the training data is incomplete), and (4) using an 
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external high-performance classifier as one of the features. Points (1–3) are discussed 
in Janisch et al. (2020), (4) is explored in Janisch et al. (2019).

• The original CwCF paper (Janisch et al., 2020) has already established the competitive 
performance of the method in the flat data case. Therefore, we believe that the novel 
algorithm serves as a highly competitive baseline as well.

Below, we state the drawbacks of our algorithm we are aware of:

• Being RL-based, the algorithm is sample inefficient, i.e., it requires a long training. 
As mentioned, training in the more complicated datasets took about 19 h on average.

• Data must be hierarchical, e.g., it must not contain references to the same object in 
different places in the hierarchy, nor cycles. As mentioned in the discussion about 
GNNs, if such structures appear in the data, it must be unrolled (e.g., the same 
object would have to be copied to different places) so that the result is hierarchical.

• With some datasets, there could be non-negligible variance in the performance of 
trained models. The user is advised to repeat training several times and select the 
best-performing model, based on validation data.

Alternative approaches
Generally, there are two ways to make the existing algorithms work with the hierar-

chical data: (a) modifying the data, (b) modifying the algorithm. Below, we suggest sev-
eral different approaches to these options. Keep in mind that each of these suggestions 
would require substantial research to implement, and might not be possible at all. 

(a) Modifying the data can be done in the way we did in the case of Flat-CwCF, but there 
could be other ways, for example:

• It may be possible to decrease the granularity of choice to the set level by con-
sidering each path in the schema as a separate feature. While this approach would 
result in a fixed number of features for all samples, it brings several issues. For 
example, since sets can contain multiple objects, it is unclear how to choose one 
of them. An algorithm selecting the objects randomly would have inherently 
lesser control over which objects to select, and would not be able to utilize pos-
sible conditional dependencies between objects’ features. In the RandFeats base-
line, we have already shown that such loss of control results in degraded perfor-
mance. Second, if it is allowed to get the same feature multiple times (to cover 
different objects in a set), it is unclear how to aggregate and process these multi-
ple values.

• Another way could be to treat all features in the tree as a set of tuples (path, type, 
value), each encoded into a Rn space, and use algorithms designed to process 
sets (Shim et al., 2018). While this approach would preserve all information, it is 
unclear how to efficiently encode paths of various lengths that can branch in sets, 
or values of different types.

• Also, one could manually engineer features based on the known data struc-
ture. However, this step is laborious, suboptimal, and may be difficult to apply, 
because the individual samples vary in size of their sets. Note that the standard 
approaches to feature selection do not work with hierarchical data.
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(b) Let us also discuss the possible modification of the existing algorithms, where the 
problem is twofold. First, the algorithm needs to be modified to accept hierarchical data 
with varying size. In some cases, it could be solved by embedding the data sample into 
a smaller, fixed space, e.g., with the HMIL algorithm, as we did in our case. However, 
many algorithms for the CwCF problem depend on access to the actual feature values, 
such as decision trees (Maliah & Shani, 2018), random forests (Nan et al., 2015, 2016; 
Nan & Saligrama, 2017) or cascade classifiers (Xu et al., 2014) and may not work with 
such transformations. Second, the modified algorithm needs to be able to select features 
within the hierarchy. This could be done through direct selection of the corresponding 
output (as we do in our method, or as the (Shim et al., 2018) would do with the formerly 
proposed modification), or through some other way of identifying the specific feature 
(possibly by returning its encoded path).

Again, while believe that many of these problems are solvable, they would require non-
trivial further research.

8  Conclusion

We presented an augmented Classification with Costly Features framework that can pro-
cess hierarchically structured data. Contrarily to existing algorithms, our method can pro-
cess this kind of data in its natural form and select features directly in the hierarchy. In sev-
eral experiments, we demonstrated that our method substantially outperforms an algorithm 
that uses complete information, in terms of the cost of used features. We also showed how 
the original CwCF would work if the data was flattened so the method could process it. As 
our augmented HMIL-CwCF model has the ability to choose features with greater preci-
sion, it leads to superior performance. In a separate experiment, we applied our method to 
a real-life problem of classification of malicious web domains, where it also outperformed 
the other algorithms. The sequential nature of our algorithm and its hierarchical action 
selection contribute to its explainability, as the features are semantically grouped, and the 
user can view which of them are considered important at different time steps.
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