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Abstract
Tensor decomposition has recently been gaining attention in the machine learning commu-
nity for the analysis of individual traces, such as Electronic Health Records. However, this 
task becomes significantly more difficult when the data follows complex temporal patterns. 
This paper introduces the notion of a temporal phenotype as an arrangement of features 
over time and it proposes SWoTTeD (Sliding Window for Temporal Tensor Decomposi-
tion), a novel method to discover hidden temporal patterns. SWoTTeD integrates several 
constraints and regularizations to enhance the interpretability of the extracted phenotypes. 
We validate our proposal using both synthetic and real-world datasets, and we present an 
original usecase using data from the Greater Paris University Hospital. The results show 
that SWoTTeD achieves at least as accurate reconstruction as recent state-of-the-art ten-
sor decomposition models, and extracts temporal phenotypes that are meaningful for 
clinicians.
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1  Introduction

A tensor is a natural representation for multidimensional data. Tensor decomposition is a 
historic statistical tool for analyzing such complex data. The popularization of efficient and 
scalable machine learning techniques has made them attractive for real-world data (Perros 
et al., 2017). It has therefore been successfully investigated in a number of areas, such as 
signal processing, chemometrics, neuroscience, communication or psychometrics (Fanaee-
T and Gama, 2016). Technically, tensor decomposition simplifies a multidimensional ten-
sor into simpler tensors by learning latent variables in an unsupervised fashion (Anandku-
mar et al., 2014). Latent variables are unobserved features that capture hidden behaviors of 
a system. Such variables are difficult to extract from complex multidimensional data due 
to (1) multiple interactions between dimensions and (2) intertwined occurrences of hidden 
behaviors.

Recently, several approaches based on tensor decomposition have shown their effec-
tiveness and their interest for computational phenotyping from Electronic Health Records 
(EHR)  (Becker et  al., 2023). The hidden recurrent patterns that are discovered in these 
data are called phenotypes. These phenotypes are of particular interest to (1) describe the 
real practices of medical units and (2) support hospital administrators to improve their care 
management. For example, a better description of care pathways of COVID-19 patients at 
the beginning of the pandemic may help clinicians to improve care management of future 
epidemic waves. This example motivates to apply such data analytic tools on a cohort of 
patients from the Greater Paris University Hospitals (see the case study in Sect. 7).

The main limitation of existing tensor decomposition techniques is the definition of a 
phenotype as a mixture of medical events without considering the temporal dimension. 
This means that all events occur at the same time. In this case, a care pathway is viewed as 
a succession of independent daily cares. Nonetheless, it seems more realistic to interpret 
a care pathway as mixtures of treatments, i.e. sequences of cares. For example, COVID-
19 patients hospitalized with acute respiratory distress syndrome are treated for several 
problems during the same visit: viral infection, respiratory syndromes and hemodynamic 
problems. On the one hand, a treatment of the viral infection involves the administration 
of drugs for several days. On the other hand, the acute respiratory syndrome also requires 
continuous monitoring for several days. A patient’s care pathway can then be abstracted as 
a mixture of these treatments. Some approaches proposed to capture the temporal depend-
encies between daily phenotypes using temporal regularization (Yin et al., 2019) but the 
knowledge provided to the clinician are still daily phenotypes.

In this article, we present SWoTTeD (Sliding Window for Temporal Tensor Decom-
position), a tensor decomposition technique based on machine learning to extract tempo-
ral phenotypes. Contrary to a classical daily phenotype, a temporal phenotype describes 
the arrangement of drugs/procedures over a time window of several days. Drawing a par-
allel with sequential pattern mining, the state-of-the-art methods extract itemsets from 
sequences while SWoTTeD extracts sub-sequences. Thus, temporal phenotyping signifi-
cantly enhances the expressivity of computational phenotyping. Following the principle 
of tensor decomposition, SWoTTeD discovers temporal phenotypes that accurately recon-
struct an input tensor with a time dimension. It allows the overlapping of distinct occur-
rences of phenotypes to represent asynchronous starts of treatments. To the best of our 
knowledge, SWoTTeD is the first extension of tensor decomposition to temporal phenotyp-
ing. We evaluate the proposed model using both synthetic and real-world data. The results 
show that SWoTTeD outperforms the state-of-the-art tensor decomposition models in 



5941Machine Learning (2024) 113:5939–5980	

1 3

terms of reconstruction accuracy and noise robustness. Furthermore, the qualitative analy-
sis shows that the discovered phenotypes are clinically meaningful.

In summary, our main contributions are as follows: 

1.	 We extend the definition of tensor decomposition to temporal tensor decomposition. 
To the best of our knowledge, this is the first extension of tensor factorization that is 
capable of extracting temporal patterns. A comprehensive review is provided to position 
our proposal within the existing approaches in different fields of machine learning.

2.	 We propose a new framework, denoted as SWoTTeD, for extracting temporal phenotypes 
through the resolution of an optimization problem. This model also introduces a novel 
regularization term that enhances the quality of the extracted phenotypes. SWoTTeD 
has been extensively tested on synthetic and real-world datasets to provide insights into 
its competitive advantages. Additionally, we offer an open-source, well-documented, 
and efficient implementation of our model.

3.	 We demonstrate the utility of temporal phenotypes through a real-world case study.

The remainder of the article is organized as follows: the next section presents the state 
of the art of machine learning techniques related to tensor decomposition in the specific 
case of temporal tensor. Section 3 introduces the new problem of temporal phenotyping, 
then Sect.  4 presents SWoTTeD to solve it. The evaluation of this model is detailed in 
three sections. We begin by introducing the experimental setup in Sect. 5, followed by the 
presentation of reproducible experiments and results conducted on synthetic and real-world 
datasets. Lastly, Sect. 7 presents a case study on a COVID-19 dataset.

2 � Related work

Discovering hidden patterns, a.k.a phenotypes1 in our work, from longitudinal data is a 
fundamental issue of data analysis. This problem has been more especially investigated for 
the analysis of EHR data which are complex and require to be explored to discover hid-
den patterns providing insights about patient cares. With this objective, tensor decomposi-
tion has been widely used and proven to extract concise and interpretable patterns (Becker 
et al., 2023).

In this related work, we enlarge the scope and also review different machine learning 
techniques that have been recently proposed to address the problem of patient phenotyping. 
As our proposal is based on the principles of tensor decomposition, we start by review-
ing techniques derived from tensor decomposition and that have been applied to EHR. 
Then, we present methods that targeted a similar objective, but with alternative modeling 
techniques. They both share the task of uncovering hidden patterns in temporal sequences 
using unsupervised methods.

Notations
In the remaining of this article, [K] = {1,… ,K} denotes the set of the K first non-zero 

integers. ℕ∗ denotes the strictly positive natural numbers. Curvy capital letters ( X  ) denote 

1  The term of phenotype usually denotes a set of traits that characterizes a disease. This notion is here 
extended to traits observed through the EHR systems. Thus, a phenotype is a set of observations in EHR 
data characterizing a treatment or a disease.
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tensors (or irregular tensors), bold capital letters ( X ) are matrices, bold lowercase letters 
( x ) are vectors and lowercase letters (x) are scalars.

2.1 � Tensor decomposition from temporal EHR data

An EHR dataset has a timed event-based structure described at least by three dimensions: 
patient identifiers, care events (procedures, lab tests, drug administrations, etc) and time. 
We begin by introducing the tensor-based representation of EHR data. Following that, we 
provide a comprehensive review of various techniques designed to tackle the challenge of 
patient phenotyping using this data representation.

2.1.1 � Tensor based representation of temporal EHR data

Considering that time is discrete (e.g., events are associated with a specific day during the 
patient’s stay), each patient k ∈ [K] is represented by a matrix X(k) where the first dimen-
sion represents the type of events and the second one represents time. If patient k received 
a care event i at time t, then x(k)

i,t
 is a non-zero value. In the majority of cases, values are cat-

egorical, typically represented as boolean values (0 or 1). However, there are cases where 
values may be integers or real numbers, such as the count of drugs administered or a meas-
urement of a biophysiological parameter.

Additionally, if we consider that all patients have the same length of stay, the set of 
patients is a regular three-dimensional tensor X  , i.e. a data-cube. Nevertheless, in prac-
tice, patients’ stays do not have the same duration. It ensues that each matrix X(k) has its 
own temporal size, noted Tk . In this case, the collection of matrices {X(k)}k∈[K] can not be 
stacked as a regular third-order tensor. Such a collection is termed an irregular tensor and 
we use the same notation X  . Figure 1 depicts an irregular tensor that represents the typical 
structure of the input of a patient phenotyping problem. In this figure, we assume all fea-
tures are categorical, i.e. matrices are boolean valued. A black cell represents a 1 (the pres-
ence of a given event at a given time instant) and a white cell represents a 0 (the absence of 
a given event at a given time instant).

We will see that some tensor decomposition approaches handle irregular tensors while 
some others require regular ones. Padding the shortest care pathways with zeros to conform 
to a regular standardized tensor structure is an appealing option. However, two primary 
drawbacks come with this approach: (1) It would artificially inflate dataset sizes when 
accommodating a single lengthy care pathway; (2) It would blur the distinction between 
the absence of an event during a hospital stay and non-hospital stays, potentially undermin-
ing result accuracy and interpretability. For these reasons, irregular tensors are more suit-
able to represent care pathways.

Fig. 1   Illustration of an irregular 
tensor  = {X(k)}k∈[K] representing 
a collection of K patients stays. 
Each patient has its own duration 
T
k
 but share the same set of cares 

(in rows). A black cell at position 
(i, t) (i.e. x(k)i,t = 1 ) indicates that 
the i-th care occurs at the time t 
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2.1.2 � Third‑order tensor decomposition with PARAFAC2

PARAFAC2 (Kiers et al., 1999) is a seminal decomposition designed to handle irregular 
tensors. It extends the Canonical Polyadic (CP) factorization (Kiers et al., 1999) which is 
a foundational approach for decomposing regular tensors into a sum of rank-one compo-
nents. PARAFAC2 introduces flexibility in accommodating tensors with different temporal 
lengths, making it particularly useful in scenarios where temporal information is crucial, 
such as in the analysis of longitudinal data  (Fanaee-T and Gama, 2015) and specifically 
electronic health records (Perros et al., 2019).

Recent enhancements to PARAFAC2 have significantly strengthened the capabilities of 
this model to address specific challenges. In particular, SPARTan, proposed by Perros et al. 
(2017), stands out for its scalability and parallelizability on large and sparse datasets, while 
Dpar2 (Jang and Kang, 2022) was designed to handle effectively irregular dense tensors. 
Nonetheless, these interesting computational properties do not ensure that the solution 
given by PARAFAC2 identifies meaningful phenotypes in practice. For instance, factor 
matrices can contain negative values and this does not make sense in the context of patient 
phenotyping.

Alternative formulations of PARAFAC2 have been proposed to incorporate additional 
constraints. Cohen and Bro (2018) introduced a non-negativity constraint on the varying 
mode to enhance the interpretability of the resulting factors. Roald et al. (2022) extended 
the constraints to all-modes. On the other hand, COPA (Constrained PARAFAC2) (Afshar 
et al., 2018) took a step further by introducing various meaningful constraints in PARA-
FAC2 modeling, including latent components that change smoothly over time and sparse 
phenotypes to ease the interpretation.

Finally, a practical limitation of PARAFAC2 pertains to the rank value. In the context 
of patient phenotyping, the rank value represents the number of phenotypes. The decom-
position technique requires that this value must not exceed the dimension of any mode, 
including the time dimension. Consequently, the number of phenotypes cannot exceed the 
minimum duration observed in an irregular third-order tensor, which implies the exclusion 
of pathways with duration shorter than the specified rank from the dataset.

In conclusion, PARAFAC2 proves to be an interesting model for patient phenotyping 
using temporal EHR data. It is especially suitable to handle large datasets of irregular 
tensors such as care pathways. However, its formulation may lead to extract meaningless 
phenotypes. To address this limitation, some extensions of PARAFAC2 include additional 
constraints, but they remain simple. The extraction of more meaningful and clinically rel-
evant phenotypes requires flexible constraints.

2.1.3 � Extracting relevant phenotypes with tensor decomposition

Recently, several approaches have been proposed to enrich tensor decomposition with 
expert constraints designed to yield more meaningful and clinically relevant phenotypes. 
We identified three specific questions that have been addressed in the literature:

Dealing with additional static information Real EHR data contain both temporal (e.g., 
longitudinal clinical visits) and static information (e.g., age, body mass index (BMI), 
smoking status, main reason for hospitalisation, etc.). It is expected that the static infor-
mation impacts the temporal phenotypes, i.e. the distribution of care deliveries along 
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the patient visits. This question has been addressed by TASTE (Afshar et al., 2020) and 
TedPar (Yin et al., 2021). TASTE takes as input an irregular tensor X  and an additional 
matrix representing the static features of each patient. The decomposition maps input 
data into a set of phenotypes and patients’ temporal evolution. Phenotypes are defined 
by two factor matrices: one for temporal features and and the other for static features.
Dealing with correlations between diagnoses and medication events In general, the set 
of medical events contains diagnostic events (e.g., lab tests) and care events (e.g., medi-
cations or medical procedures). The occurrences of these two types of events may be 
correlated: it is likely that establishing a diagnosis leads to the delivery of a specific 
care. For instance, an elevated blood glucose concentration, measured by a lab test, 
often leads to the administration of insulin, which constitutes a care event. In patient 
data, this implies that the likelihood of a blood glucose measurement and an insulin 
injection co-occurring is higher than, for example, a blood glucose measurement and 
mechanical ventilation. HITF (Yin et al., 2018) leverages these correlations to enhance 
tensor decomposition by splitting the dimension of feature types into two dimensions: 
one for medications and the other for diagnoses. This model has also been used within 
CNTF (Yin et al., 2019), which proposes modeling patient data as a tensor with four 
dimensions: patients identifier, lab tests, medications, and time.
Supervision of tensor decomposition Another improvement of the tensor decomposi-
tion methods involves extending them to supervised fashions. Henderson et al. (2018) 
proposed a semi-supervised tensor factorization method that introduces a cannot-link 
matrix on the patient factor matrix to encourage separation in the patient subgroups.
Predictive Task Guided Tensor Decomposition (TaGiTeD) (Yang et al., 2017) is another 
framework conceived to overcome the limitations of existing unsupervised approaches, 
such as the requirement for a large dataset to achieve meaningful results. TaGiTeD 
guide the decomposition by specific prediction tasks. This is done by learning represen-
tations that lead to best prediction performances. Lastly, Rubik (Wang et al., 2015) and 
SNTF (Anderson et al., 2017) are other tensor factorization models incorporating guid-
ance constraints to align with existing medical knowledge.

 It is worth noting that these advanced models benefit from the recent progress in machine 
learning, and more specifically automatic differentiation (Baydin et al., 2018). Automatic 
differentiation does not necessitate explicit gradient computation to evaluate efficiently the 
derivatives of a function. Thus, it eases the design of efficient optimization algorithms for 
various tensor decomposition tasks. The flexibility of these machine learning frameworks 
fosters the conception of complex models that produce more meaningful phenotypes.

2.1.4 � Temporal dimension in tensor decomposition

While it appears crucial to manage the dynamics in a patient’s evolution, most tensor 
decompositions do not explicitly model the temporal dependencies within the patient data. 
The temporal aspect is particularly significant when constructing phenotypes for typical 
care profiles.

First of all, it is worst noting that the seminal decomposition model, PARAFAC2, does 
not capture temporal information in their phenotypes. Let X =

(
X(k)

)
k∈[K]

 be an irregular 
tensor of K patients, and Y =

(
Y(k)

)
k∈[K]

 another irregular tensor such that y(k)∶,t = x
(k)

∶,�k(t)
 

where �k is a random permutation of daily vectors of the patient k. The decomposition of 
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these two tensors leads to the exact same phenotypes. This illustrates that the phenotypes 
extracted by PARAFAC2 are insensitive to the temporal dimension of the data.

Some variants of PARAFAC2 have targeted this limitation by the introduction of tem-
poral regularisation terms. According to Afshar et al. (2018), learning temporal factors that 
change smoothly over time is often desirable to improve the interpretability and alleviate 
the over-fitting. COPA, as introduced by Afshar et al. (2018), includes a smoothness reg-
ularization to account for irregularities in the temporal gaps between two visits. LogPar 
Yin et  al. (2020) expands this regularization to binary and incomplete irregular tensors. 
However, both of these techniques have limitations as they rely solely on local informa-
tion to smooth pathways, neglecting the temporal history needed to construct meaningful 
phenotypes.

To address long term dependencies, Temporally Dependent PARAFAC2 Factorization 
(TedPar) (Yin et al., 2021) was developed to model the gradual progression of chronic dis-
eases over an extended period. TedPar introduces the concept of temporal transitions from 
one phenotype to another to capture temporal dependencies. Additionally, Ahn et al. (2022) 
proposed Time-Aware Tensor Decomposition (TATD), a tensor decomposition method that 
incorporates time dependency through a smoothing regularization with a Gaussian ker-
nel. For CNTF (Yin et al., 2019), a recurrent neural network (RNN) was used to take into 
account the ordering of the clinical events. Given the sequence wk

p,1
,… ,wk

p,t−1
 describing 

the progression of a phenotype p of a given patient k, an LSTM (Long Short-Term Mem-
ory) network is used to predict wk

p,t
 such that the Mean Square Error (MSE) between the 

real and predicted value is minimized. The idea behind this is to penalize a reconstruction 
model that does not allow to accurately predict the next sequence of events. It enforces to 
discover a decomposition that is easily predictable.

It is worth noting that all these models do not discover temporal patterns. The temporal 
dimension is used to constraint the extraction of daily phenotypes by taking into account 
the temporal dependencies. Nonetheless, these temporal dependencies are not explicit for 
a physician analyzing the care pathways. A daily phenotype shown to physicians only rep-
resent co-occurring events. The method presented in this article extracts phenotypes that 
describe a temporal pattern. The phenotype itself encapsulates information about temporal 
dependencies in an easily interpretable manner.

2.2 � Alternative approaches for extracting temporal phenotypes

While tensor decomposition techniques have not yet tackled the issue of extracting tempo-
ral patterns from care pathways, similar challenges have been addressed using alternative 
approaches. In this section, we highlight three of them:

Temporal Extensions of Topic Models Originally, topic modeling (or latent block mod-
els) is a statistical technique for discovering the latent semantic structures in textual 
document. It can estimate, at the same time, the mixture of words that is associated 
with each topic, and the mixture of topics that describes each document. Pivovarov et al. 
(2015) and Ahuja et al. (2022) proposed to consider the patients’ data as a collection 
of documents. The topic modeling of these documents results in a set of topics rep-
resenting the phenotypes. Temporal extensions of topic modeling could then be used 
to extract temporal phenotypes. For instance, Temporal Analysis of Motif Mixtures 
(TAMM)  (Emonet et  al., 2014) is a probabilistic graphical model designed for unsu-
pervised discovery of recurrent temporal patterns in time series. It uses non-parametric 
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Bayesian methods fitted using Gibbs sampling to describe both motifs and their tem-
poral occurrences in documents. It is important to mention that the extracted motifs 
include a temporal dimension. This modeling capability seems to be very interesting 
in patient phenotyping to derive temporal phenotypes. TAMM relies on an improved 
version of the Probabilistic Latent Sequential Motif model  (Varadarajan et  al., 2010) 
which explains how the set of all observations is supposed to be generated. Variable 
Length Temporal Analysis of Motif Mixtures is a generalization of TAMM that allows 
motifs to have different lengths and infers the length of each motif automatically. The 
primary limitation is that they do not scale as effectively as the optimization techniques 
employed in tensor decomposition  (Kolda and Bader, 2009). Furthermore, the mod-
els are highly inflexible, and making modifications requires developing new samplers. 
These limitations prevented us from using these topic models.
Phenotypes as Embeddings In the context of neural networks, embeddings are low-
dimensional, learned continuous vector representations of discrete variables. Neural 
network embeddings are useful because they can reduce the dimensionality of categori-
cal variables and meaningfully represent categories in the transformed space. The pri-
mary purposes of using embeddings are finding nearest neighbours in the embedding 
space and visualizing relations between categories. They can also be used as input to 
a machine learning model for supervised tasks. Hettige et al. (2020)  introduces Med-
Graph, a supervised embedding framework for medical visits and diagnosis or medica-
tion codes taken from pre-defined standards in healthcare such as International Classifi-
cation of Diseases (ICD). MedGraph leverages both structural and temporal information 
to improve the embeddings quality.
Pattern Mining Methods Sequential pattern mining  (Fournier-Viger et  al., 2017) 
addresses the problem of discovering hidden temporal patterns. A sequential pat-
tern would represent a phenotype by a sequence of events. The well-known problem 
of pattern mining, which tensor decomposition does not suffer from, is pattern deluge. 
This problem makes it unsuitable for practical use. Nonetheless, tensor decomposition 
methods are close to pattern mining approaches based on compression. GoKrimp (Lam 
et al., 2014), SQS (Tatti and Vreeken, 2012) and more recently SQUISH (Bhattachar-
yya and Vreeken, 2017) proposed sequential pattern mining approaches that optimize 
a Minimum Description Length (MDL) criteria  (Galbrun, 2022). Unfortunately, only 
GoKrimp is able to handle sequences of item-sets (i.e. with parallel events), but it 
extracts only sequences of items and does not allow interleaving occurrences of pat-
terns. As representing the parallel events is a crucial aspect of phenotypes, these tech-
niques can not answer the problem of temporal phenotyping.

3 � Temporal phenotyping: new problem formulation

This section formalizes the problem of temporal phenotyping that is addressed in the 
remainder of the article. In short, temporal phenotyping is a tensor decomposition of 
a third-order temporal tensor discovering phenotypes that are manifested as temporal 
patterns.

Let X  be an irregular third-order tensor, also viewed as a collection of K matrices of 
dimension n × Tk , where K is the number of individuals (patients), n is the number of 
features (care events), and Tk is the duration of the k-th individual’s observations.
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Given R ∈ ℕ
∗ , a number of phenotypes and � ∈ ℕ

∗ the duration of phenotypes (also 
termed as phenotype size), temporal phenotyping aims to build:

•	 P ∈ ℝ
R×n×�
+  : a third-order tensor representing the R temporal phenotypes shared 

among all individuals. Each temporal phenotype is a matrix of size n × � . A phe-
notype represents the presence of an event at a relative time � , 0 ≤ 𝜏 < 𝜔 . � is the 
same for all phenotypes. p(r)

�
 denotes the vector representing the co-occurring events 

in the r-th phenotype at the relative temporal position �.
•	 W =

{
W(k) ∈ ℝ

R×T �
k

+

}

k∈[K]
 : a collection of K assignment matrices of dimension 

R × T �
k
 where T �

k
= Tk − � + 1 is the size for the k-th individual along the temporal 

dimension. A non-zero value at position (r, t) in W(k) describes the start of the phe-
notype r at time t for the k-th individual. A matrix W(k) is also named the pathway of 
the k-th individual as it describes his/her history as a sequence of temporal pheno-
types.

These phenotypes and pathways are built to accurately reconstruct the input tensor, i.e. X  . 
The reconstruction we propose is based on a convolution operator that takes into account 
the time dimension of P to reconstruct the input tensor from P and W . The convolution 
operator, denoted ⊛ , is such that X(k) ≈ �X

(k)
= P⊛W(k) for all k ∈ [K] (we remind the 

reader that X(k) is the matrix for the k-th patient, see Sect. 2.1.1 and Fig. 1). Formally, this 
operator reconstructs each vector of the matrix X̂(k) at time t, denoted x̂(k)

.,t
 , as follows:

Intuitively, x̂(k)
.,t

 is a mixture of phenotype columns that occurred at most � time units ago, 
except at the beginning. At one time instant, the observed events are the sum of the �-th 
day of the R phenotypes weighted by the W(k) matrix.

Figure 2 depicts the reconstruction of one matrix X(k) of an input tensor. This matrix 
is of length Tk = 14 with n = 4 features. Its decomposition is made of R = 3 phenotypes 
of size 4 × 2 each ( � = 2 and n = 4 ) and a pathway of length T �

k
= 14 − 2 + 1 = 13 . A 

colored square in W(k) indicates the start of phenotype occurrences, which can overlap in 
X(k) . For instance, the column x(k)

.,5
 combines the occurrence of the second day of the sec-

ond phenotype (in green) and the first day of the third phenotype (in blue). Each patient 
is given a pathway matrix W(k) based on the same phenotypes P and according to his 
input matrix X(k) . This means that a phenotype represents a typical pattern that might 
occur in the pathways of multiple patients.

The problem of temporal phenotyping consists in discovering both  P and W tensors 
that reconstruct accurately the input tensor.

4 � SWoTTeD model

SWoTTeD is a tensor decomposition model for temporal phenotyping. The generic prob-
lem of temporal phenotyping presented above is complemented by some additional hypoth-
eses to guide the solving toward practically interesting solutions. These hypotheses are 
implemented through the definition of a reconstruction loss and regularization terms. This 

(1)x̂
(k)

.,t
=

R∑

r=1

min(�,t−1)∑

�=1

w
(k)
r,t−�p

(r)
�
.
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section presents the detail of the Sliding Window for Temporal Tensor Decomposition 
model.

4.1 � Temporal phenotyping as a minimization problem

As in the case of the classic tensor decomposition problem, temporal phenotyping is a 
problem of minimizing the error between the input tensor and its reconstruction.

SWoTTeD considers the decomposition of binary tensors, i.e. X ∈ {0, 1} . It corre-
sponds to data that describe the presence/absence of events. In this case, we assume the 
input tensor X  follows a Bernoulli distribution and we use the loss function for binary data 
proposed by Hong et al. (2020).2 In the previous section, Eq. 1 details the reconstruction of 
a patient matrix. The resulting reconstruction loss L⊛ is defined as follows:

This reconstruction loss is super-scripted by ⊛ to remind that it is based on the convolution 
operator described in Eq. 1.

SWoTTeD also includes two regularization terms: sparsity and non-succession regulariza-
tion. Sparsity regularization on P aims to enforce feature selection and improve the interpret-
ability of phenotypes. It is implemented through an L1 term. We chose this popular regulariza-
tion technique among several others, as it has shown its practical effectiveness.

We also propose a phenotype non-succession regularization to prevent undesirable decom-
position, as illustrated in Fig. 3. The described situation is a successive occurrence of the same 
event. This situation is often encountered in care pathways as a treatment might be a care 
delivery over several days. In this case, there are two opposite alternatives to decompose the 
matrix with equal reconstruction errors ( L⊛ ): the first alternative (at the top) is to describe the 
treatment as a daily care delivery and to assume that a patient received the same treatment 
three days in a row; the second alternative (at the bottom) is to describe the treatment as a 
succession of three care deliveries, but that is received only once. SWoTTeD implements the 
second solution as one of our objective is to unveil temporal patterns, i.e. phenotypes that cor-
relate temporally some events.

To guide the decomposition toward our preferred one, we add a term to penalize a recon-
struction that uses the same phenotype on successive days. If a phenotype occurs on one day, 
its recurrence within the following � days will incur a cost. Formally, the non-succession reg-
ularization is defined as follows and depends only on the patient pathway W(k):

This equation can be seen as a weighted logged convolution where the weight is wr,t . Intui-
tively, as the prevalence of the phenotype grows, the cost of a new occurrence within the 
same time window also rises.

The inner log term sums all possible undesirable occurrences of the same phenotype r at 
time t. The log function is used to attenuate the effect of this term and to have a zero value 

(2)L
⊛(X̂,X) =

K∑

k=1

Tk∑

t=1

n∑

i=1

log(x̂
(k)

i,t
+ 1) − x

(k)

i,t
log(x̂

(k)

i,t
).

(3)S(W(k)) =

R∑

r=1

T �
k∑

t=1

max

(
0,w

(k)
r,t log

(
t+�∑

�=t−�

w(k)
r,�

))
.

2  Hong et al. (2020) discuss in detail the choice of the loss function regarding the distribution of a variable: 
Gaussian, Poisson (positive counts), Gamma (positive continuous data) or Bernoulli (binary data).
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when w(k)
r,t = 1 surrounded with 0 (the ideal case, depicted in the second decomposition of 

Fig. 3).
The final loss function of SWoTTeD is given by the weighted sum of the reconstruction 

error, the sparsity and the non-succession regularization:

where � and � are two positive real-valued hyperparameters. Note that the two regulariza-
tion terms have opposite effects: sparsity encourages phenotypes with many zeros, while 
non-succession favors the use of non-zero values in phenotypes rather than in pathways. 
The choice of hyperparameters may impact the quality of the discovered phenotypes.

4.2 � Optimization framework

We aim to uncover temporal phenotypes by minimizing the overall loss function � . The 
specification of our minimization problem is as follows:

The minimization problem presented in Eq. 5 restricts the values’ range to [0, 1] in order 
to interpret P (resp. W ) as the probability of having an event (resp. a phenotype) at a given 
time. These constraints align with our assumption of Bernoulli distribution. Another moti-
vation to normalize the pathways is related to the non-succession regularization, S(W(k)) . If 
the values of W(k) are higher than 1, the non-succession regularization penalizes each pres-
ence of a phenotype which is not desired.

To optimize the overall loss function � (see Eq. 4), we use an alternating minimization 
strategy and projected gradient descent (PGD). Alternating Gradient Descent algorithm 
optimizes one variable at a time, individually, using a gradient descent step, with all other 
variables fixed. Alternating the process of minimization guarantees reduction of the cost 
function, until convergence. PGD handles the non-negativity and the normalization con-
straints. It works by clipping the values after each iteration.

(4)� = L⊛(P⊛W,X) + 𝛼 ||P||1 + 𝛽

K∑

k=1

S
(
W(k)

)

(5)
argmin
{W(k)},P

L⊛(P⊛W,X) + 𝛼 ||P||1 + 𝛽

K∑

k=1

S
(
W(k)

)

subject to ∀k, 0 ≤ W(k)
≤ 1, 0 ≤ P ≤ 1.

,
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Algorithm 1   Optimization Framework for SWoTTeD 

The optimization framework of SWoTTeD is illustrated in Algorithm  1. W and P 
are initialized with random values drawn from a uniform distribution between 0 and 1. 
In each mini-batch, we first sample a collection of patient matrices {X(k) ∣ k ∈ B} with B 
being the patient’s indices of a batch. The phenotype tensor P is firstly optimized given 
{W(k) ∣ k ∈ B} values, then {W(k) ∣ k ∈ B} is optimized given P values. Note that the gra-
dients are not explicitly computed, but evaluated by automatic differentiation (Baydin et al., 

Fig. 2   Illustration of a matrix reconstruction ( X(k) ) from R = 3 phenotypes of size � = 2 on the left and a 
care pathway ( W(k) ) on the top. Each phenotype has a specific color. Each colored cell in W(k) designates the 
start of a phenotype occurrence in the reconstruction (surrounded with a colored rectangle in X(k) ). A cell 
with two colors received the contribution of two occurrences of different phenotypes
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2018). The algorithm stops after a fixed number of epochs, with the number of epochs 
being a predefined hyper-parameter.3

Among the conventional optimization hyper-parameters, including learning rate, batch 
size, and the number of epochs, the primary hyperparameters for SWoTTeD encompass R 
(number of temporal phenotypes), � (temporal size of phenotypes), and � , � (loss weights). 
In contrast to recent deep neural network architectures, SWoTTeD features a limited set of 
interpretable hyperparameters.

4.3 � Applying SWoTTeD on test sets

The tensor decomposition presented in the previous section corresponds to the training of 
SWoTTeD on an irregular tensor X  . This training provides a set of temporal phenotypes P . 
In the minimization problem presented in Eq. 5, the assignment tensor W contains a set of 
free parameters that are to be discovered during the learning procedure but are not kept in 
the model because they are specific to the train set.

The results of the decomposition is evaluated on a different test set, X′ . The objective is 
to assess whether the unveiled phenotypes are useful for decomposing new care pathways. 
In this case, we can conclude that it captures generalizable phenotypes, otherwise it discov-
ers too specific ones (overfitting).

Applying a tensor decomposition on a test set, X′ , consists in finding the optimal assign-
ment given a fixed set of temporal phenotypes. X′ is a third-order tensor with K′ individu-
als, each having their duration, but sharing the same n features defined in the training data-
set. The optimal assignment is obtained by solving the following optimization problem that 
is similar to Eq. 5, but with a fixed P̂ (the optimal phenotypes obtained from the decompo-
sition of a train set):

(6)
argmin

W�

L⊛
(
�P⊛W

�,X�
)
+ 𝛽

K∑

k=1

S
(
W�(k)

)

subject to 0 ≤ W ≤ 1.

Fig. 3   Example of alternative decompositions of a sequence of similar events with the same L⊛ value. Phe-
notype 1 does not capture the sequence of events, whereas phenotype 2 does. The information is reported in 
the pathway in the case of phenotype 1

3  An early stopping based on a convergence criteria would be possible to reduce the computing time of 
simplest decompositions.
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This optimization problem can be solved by a classical gradient descent algorithm. Simi-
larly to the training, we use PGD for the normalization constraint.

5 � Experimental setup

SWoTTeD is implemented in Python using the PyTorch framework (Paszke et al., 2019), 
along with PyTorch Lightning4 for easy integration into other deep learning architectures. 
The model is available in the following repository: https://​gitlab.​inria.​fr/​hsebia/​swott​ed. In 
the experiments, we used two equivalent implementations of SWoTTeD: a classic version 
that handles irregular tensor and a fast-version that handles only regular tensor benefit-
ing from improved vectorial optimization.5 Additionally, we provide the repository which 
includes all the materials needed to reproduce the experiments except for the case study 
from Sect. 7: https://​gitlab.​inria.​fr/​tguyet/​swott​ed_​exper​iments. All experiments have been 
conducted with desktop computers,6 without the use of GPU acceleration.

We trained the model with an Adam optimizer to update both tensors P and W . The 
learning rate is set to 10−3 with a batch size of 50  patients. We fine-tuned the hyperpa-
rameters � and � by testing different values and selecting the ones that yielded the best 
reconstruction measures (see experiments in Sect. 6.1). The tensors P and W are initialized 
randomly using a uniform distribution ( U(0, 1)).

The quality measures reported in the results have been computed on test sets. For each 
experiment, 70% of the dataset is used for training, and 30% is used for testing. The test set 
patients are drawn uniformly.

5.1 � Datasets

In this section, we present the open-access datasets used for quantitative evaluations of 
SWoTTeD, including comparisons with competitors. We conducted experiments on both 
synthetic and real-world datasets to evaluate the reconstruction accuracy of SWoTTeD 
against its competitors. Synthetic datasets are used to quantitatively assess the quality of 
the hidden patterns as they are known in this specific case.

5.1.1 � Synthetic data

The generation of synthetic data involves the reverse process of the decomposition. Gener-
ating a dataset follows three steps: 

1.	 A third-order tensor of phenotypes P is generated by randomly selecting a subset of 
medical events for each instant of the temporal window of each phenotype.

2.	 The patient pathways W are generated by randomly selecting the days of occurrence for 
each phenotype along the patient’s stay, ensuring that the same phenotype cannot occur 
on successive days. Bernoulli distributions with p = 0.3 are used for this purpose.

4  https://​www.​pytor​chlig​htning.​ai
5  “Comparison of time efficiency of SWoTTeD versus FastSWoTTeD” section of “Appendix 2” provides 
comparison between the two implementations.
6  Processor Intel i7-1180G7, 4.60  GHz, 16  Gb RAM, without graphical acceleration, running Ubuntu 
22.04 system.

https://gitlab.inria.fr/hsebia/swotted
https://gitlab.inria.fr/tguyet/swotted_experiments
https://www.pytorchlightning.ai
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3.	 The patient matrices of X  are then computed using the reconstruction formulation pro-
posed in Eq. 1.

However, this reconstruction can result in values greater than 1 when multiple occur-
rences of phenotypes sharing the same drug or procedure deliveries accumulate. To fit our 
hypothesis of binary tensors, we binarize the tensor resulting from the process above by 
projecting non-zero values to 1.

The default characteristics of the synthetic datasets subsequently generated for various 
experiments are as follows: K = 500 patients, n = 20 care events, R = 4 phenotypes of 
length � = 3 , and stays of Tk = 10 days for all k.

5.1.2 � Real‑world datasets

The experiments conducted on synthetic datasets are complemented by experiments on 
three real-world datasets, which are publicly accessible. We selected one classical dataset 
in the field of patient phenotyping (namely the MIMIC database) and two sequential data-
sets coming from very different contexts. Table 1 summarizes the main characteristics of 
these datasets.

•	 MIMIC dataset7: MIMIC-IV is a large-scale, open-source and deidentified database pro-
viding critical care data for over 40, 000 patients admitted to intensive care units at the 
Beth Israel Deaconess Medical Center (BIDMC)  (Johnson et  al., 2020). We used the 
version 0.4 of MIMIC-IV. The dataset has been created from the database by selecting 
a collection of patients and gathering their medical events during their stay. For the sake 
of reproducibility, the constitution of the dataset is detailed in “Appendix 1”. In addition, 
the code used to generate our final dataset is provided in the repository of experiments.

•	 E-Shop dataset8: This dataset contains information on clickstream from one online 
store offering clothing for pregnant women. Data are from five months of 2008 and 
include, among others, product category, location of the photo on the page, country 
origin of the IP address and product price.

•	 Bike dataset9: This contains sequences of locations where shared bikes where parked in 
a city. Each item represents a bike sharing station and each sequence indicate the dif-
ferent locations of a bike over time. The specificity of this dataset is to contain only one 
location per date.

For each of these datasets, we also created a “regular” version, which contains individuals’ 
pathways sharing the same length. This dataset is utilized with our fast-SWoTTeD imple-
mentation that benefits from better vectorization. The creation of these datasets involves 
two steps: (1) selecting individuals with pathway durations greater than or equal to T, and 
(2) truncating the end of the pathways if they exceed T in length. The selection of the 
values for T is a balance between maintaining the maximum length and retaining the maxi-
mum number of individuals.

7  Original dataset: https://​physi​onet.​org/​conte​nt/​mimic​iv/0.​4/
8  Original data: https://​archi​ve.​ics.​uci.​edu/​datas​et/​553/​click​stream+​data+​for+​online+​shopp​ing. We used 
the prepared version from SPMF repos​itory.
9  Original data: https://​www.​kaggle.​com/​cityo​fLA/​los-​angel​es-​metro-​bike-​share-​trip-​data. We used the 
prepared version from SPMF repos​itory.

https://physionet.org/content/mimiciv/0.4/
https://archive.ics.uci.edu/dataset/553/clickstream+data+for+online+shopping
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php#r1
https://www.kaggle.com/cityofLA/los-angeles-metro-bike-share-trip-data
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php#r1
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We remind that our case study presents another dataset of patients staying in the Greater 
Paris University Hospitals for qualitative analysis of phenotypes. This dataset will be 
detailed in Sect. 7.

5.2 � Competitors

We compare the performance of SWoTTeD against four state-of-the-art tensor decom-
postion models. These models were selected based on the following criteria: (1) their moti-
vation to analyze EHR datasets, (2) their competitiveness in terms of accuracy compared 
to other approaches, (3) the availability of their implementations, and (4) their handling of 
temporality.

We remind that SWoTTeD is the only tensor decomposition technique able to extract 
temporal patterns. Our competitors extract daily phenotypes.

The four competing models are the followings:

•	 CNTF—Collective Non-negative Tensor Factorization  (Yin et  al., 2019) a tensor 
decomposition model factorizing tensors with varying temporal size, assuming the 
input tensor to follow a Poisson distribution, but it has shown its effectiveness on 
binary data; CNTF is our primary competitor since it incorporates temporal regulariza-
tion, aiming to capture data dynamics.

•	 PARAFAC2 (Kiers et al., 1999), original decomposition model with non-negative con-
straint. This decomposition is based on Frobenius norm. We use the Tensorly imple-
mentation (Kossaifi et al., 2019).

•	 LogPar (Yin et al., 2020), a logistic PARAFAC2 for learning low-rank decomposition 
with temporal smoothness regularization. We choose to include LogPar in the competi-
tors’ list because, like SWoTTeD, it is designed for binary tensors and assumes a Ber-
noulli distribution. LogPar can handle only regular tensors.

•	 SWIFT—Scalable Wasserstein Factorization for sparse non-negative Tensors  (Afshar 
et  al., 2021), a tensor decomposition model minimizing the Wasserstein distance 
between the input tensor and its reconstruction. SWIFT does not assume any explicit 
distribution, thus it can model complicated and unknown distributions.

For each experiment, we manually configure their hyper-parameters to ensure the fairest 
possible comparisons.

5.3 � Evaluation metrics

In tensor decomposition, a primary objective is to reconstruct accurately an input ten-
sor. We adopt the FIT ∈ (−∞, 1]  (Bro et  al., 1999) to measure the quality of a model’s 
reconstruction:

(7)FITX = 1 −

∑K

k=1
��X(k) − X̂

(k)
��F

∑K

k=1
��X(k)��F
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where the input tensor X  serves as the ground truth, the resulting tensor is denoted X̂  and 
|| ⋅ ||F is the Frobenius norm. The higher the value of FIT, the better. The FIT measure is 
also used to compare phenotypes and patient pathways when hidden patterns are known a 
priori, i.e., for synthetic datasets. Thus, FITP (resp. FITW ) denotes the reconstruction qual-
ity of P (resp. W).

It is worth noting that FITX measure is computed on a test set except for SWIFT and 
PARAFAC2. Evaluation on test sets requires the model to be able to project a test set 
on existing phenotypes (see Sect.  4.3), but SWIFT and PARAFAC2 do not have this 
capability.

We also introduce a similarity measure between two sets of phenotypes to evaluate 
empirically the uniqueness of solutions and a diversity measure of a set of phenotypes, 
adapted from similarity measures introduced by Yin et al. (2019).

Let P = {P1,… ,PR} and P� = {P�
1
,… ,P�

R
} be two sets of phenotypes defined over a 

temporal window size � . The principle of our similarity measure is to find the optimal 
matching between the phenotypes of the two sets, and to compute the mean of the (dis)
similarities between the matching pairs of phenotypes. More formally, in the case of cosine 
similarity, we compute:

where � denotes an isomorphism between P and P′ , and cos(⋅, ⋅) is a cosine distance 
between two temporal phenotypes. It is computed as the mean of the cosine similarity 
between each time slice of the phenotype:

where ⟨⋅, ⋅⟩ is the Euclidean inner product.
In practice, we first compute a matrix of costs and use the Hungarian algorithm (Kuhn, 

1955) to find the optimal matching ( � ). Finally, we compute the measure with �.
The diversity measure of the set of phenotypes aims to quantify the redundancy among 

the phenotypes. In this case, we expect to have low similarities between the phenotype.
Let P = {P1,… ,PR} be a set of R phenotypes defined over a temporal window of size 

� , the cosine diversity is defined by:

sim(P,P�) = max
�

(
R − 1

2

)−1 ∑

(i,j)∈�

cos(Pi,P
�
j
)

cos(P,P�) =
1

�

��

i=1

⟨p∶,i, p�∶,i⟩
��p∶,i�� ��p�∶,i��

div(P) =
(
R

2

)−1 ∑

1≤i<j≤R

1 − cos(Pi,Pj).

Table 1   Real-world dataset 
characteristics: n number 
of features, K number of 
individuals, T̄  mean duration

Dataset n K T̄

MIMIC-IV 2717 200 9.62 ± 12.7

MIMIC-IV-reg 825 200 10
Bike 21, 078 67 11.43 ± 5.93

Bike-reg 5243 67 10
E-Shop 24, 026 317 13.79 ± 11.19

E-Shop-reg 5212 317 10
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6 � Experiments and results

In this section, we present the experiments we conducted to evaluate SWoTTeD.

6.1 � Loss hyper‑parameters exploration and ablation study

This section focuses on the loss hyper-parameters of SWoTTeD.10 The objectives of these 
experiments are to evaluate the usefulness of each term, to provide a comprehensive review 
of the effect of the loss parameters and to assess whether the model behaves as expected. 
We start by presenting some experiments on synthetic datasets and then confirm the results 
on the three real-world datasets.

In this first experiment, we generated synthetic datasets using R hidden phenotypes 
( R = 4, 12 or 36) with a window size � = 3 . SWoTTeD is run 10 times with different 
parameter values:

•	 � = {0, 0.5, 1, 2, 4, 8, 16} representing the weight of the sparsity term in the loss; � = 0 
disables this term.

•	 � = {0, 0.5, 1, 2, 4, 8, 16} representing the weight of the phenotype non-succession term 
in the loss; � = 0 disables this term.

We collected the FITX and FITP metric values on a test set. The first metric assesses the 
quality of the reconstruction, while the second assesses whether the discovered phenotypes 
match the expected ones.

Figure 4 depicts the FIT measures with respect to the parameters � and � . The normali-
zation is considered in this experiment. One general result is that the FITX values are high. 
Values exceeding 0.5 indicate significantly good reconstructions, and those surpassing 0.8 
imply that the differences between two matrices become imperceptible. Furthermore, we 
observe that a good FITP implies a good FITX . This illustrates that in tensor decomposi-
tion, an accurate discovery of hidden phenotypes is beneficial for achieving a high-quality 
tensor reconstruction. However, as we see with R = 32 , a good FITX does not necessarily 
mean that the method discovered the correct phenotypes.

A second general observation is that the same evolution of the FIT with respect to � is 
observed in most of the settings: the FIT increases between � = 0 and � = 1 and then it 
decreases quickly for higher values. This demonstrates two key points: (1) the inclusion of 
non-succession term improves the reconstruction accuracy, and (2)  on average, a value of 
� = 0.5 yields the best results. Regarding the parameter � , we notice a slight improvement 
in FIT measures as � increases. This is more obvious with R = 36 . When we focus on results 
with � = 0.5 , we observe that � = 1 is, on average, the best compromise for the sparsity term.

One last observation is that as R increases, FIT measures decrease. This may be counter-
intuitive, as the expected results is that the FITX decreases with increasing R (as we will 
discuss with real-world dataset results later on). In this experiment, R corresponds to both 
the rank of the decomposition and the number of hidden phenotypes we used to generate 
the dataset. As R increases, the dataset contains more variability and denser events, making 
the reconstruction task challenging and leading to a slightly decrease of the FIT measure. 
FITX maintains a high value even with R = 36 but FITP has low values in this case. We 
explain this observation by colinearities between phenotypes.

10  Additional results on the effect of the normalization are presented in Annex B.1.



5957Machine Learning (2024) 113:5939–5980	

1 3

Finally, we complemented our analysis of parameters by specifically investigating the 
non-succession term introduced in SWoTTeD. To assess its efficiency, we generated syn-
thetic datasets with  4 random phenotypes and 6 phenotypes that have been designed to 
contain successions of similar events (see Fig. 3).

Figure 5 depicts the FITX and FITp values with respect to � ( � is set to 2 in this experi-
ment). We observe clearly that FITP are higher when � is not zero, i.e. when we use the 
non-succession term in SWoTTeD ( FITP = 0.75 instead of 0.50 when � = 0 ). The best 
median FITX is close to 0.8 and occurs when � = 0.5 . This confirms that adding the non-
succession regularization disambiguates the situation illustrated in Fig.  3 and helps the 
model to correctly reconstruct the latent variables. We conclude that the use of the non-
succession regularization increases the decomposition quality, whether there are event rep-
etitions in phenotypes or not (see Fig. 4).

6.2 � SWoTTeD against competitors

In this section, we compare SWoTTeD against competitors based on the ability to achieve 
accurate reconstructions, to extract hidden phenotype effectively and to efficiently handle 
large scale datasets. To address these various dimensions, we use both synthetic and real-
world datasets.

For the real-world datasets, we use truncated versions because LogPar requires regu-
lar tensors. Additionally, we remind that FIT values are evaluated on test sets, except for 
SWIFT and PARAFAC2, for which we utilize the error on the training set since these 
approaches can not be applied on test sets.

6.2.1 � SWoTTeD accuracy on daily phenotypes

This experiment compares the accuracy of SWoTTeD against competitors on 20 synthetic 
datasets. For the sake of fairness, the datasets are generated with daily hidden phenotypes 
( � = 1 ). Our goal is to evaluate the accuracy of phenotypes extracted by SWoTTeD com-
pared to the ones of state-of-the-art models.

The results, depicted in Fig. 6, show that SWoTTeD achieves the best performance in 
terms of FITX and FITP metrics. The second-best model is PARAFAC2. It achieves good 
tensor reconstructions but it fails to identify the hidden phenotypes (low FITP values). The 
analysis of the phenotypes shows that PARAFAC creates mixtures of phenotypes. Note 
that PARAFAC2 has no value for R = 36 because R must be lower than the maximum of 
every dimension.

The reconstructions of CNTF are also satisfying but the phenotypes are different from 
the expected one. Our intuition is that assuming Poisson distribution is not effective for 
these data following a Bernoulli distribution. The two other competitors are assumed to be 
adapted to these data but in practice, we observe that they have reconstructed the tensors 
with lower accuracy, and the extracted phenotypes are less similar to the hidden ones com-
pared to SWoTTeD.

To confirm these results, Fig. 7 depicts critical difference diagrams11. It ranks the meth-
ods based on the Wilcoxon signed-rank test on FITX or FITP metrics. The diagram shows 

11  Critical diagram (Demšar, 2006) is a visual representation of the results of the Wilcoxon signed-rank test 
(see figure legend for reading instructions).
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that SWoTTeD is ranked first, and the difference in FITP compared to other methods is 
statistically significant.

The high-quality performance of SWoTTeD can be attributed to two main factors. 
Firstly, SWoTTeD offers greater flexibility in reconstructing input data by allowing the 
overlap of different phenotypes and their arrival with a time lag. Secondly, SWoTTeD 
employs a loss function that assumes a Bernoulli distribution, which fits better binary data.

6.2.2 � SWoTTeD against competitors on real‑world datasets

In this section, we evaluate SWoTTeD against its competitors on the three real-world data-
sets to confirm that previous results applies on real-world data. We vary R from 4 to 36, � 
from 1 to 5 for SWoTTeD, and we compare FITX values. It is worth noting that FITP can 
not be evaluated in this case as the hidden phenotypes are unknown. Each setting is ran 10 
times with different train and test sets.

Figure  8 summarizes the results. Across all datasets, SWoTTeD achieves an average 
FITX of 0.21. PARAFAC2 achieves the second best reconstructions but we remind you 
that FITX is evaluated on the train set. CNTF has good results except for the bike dataset. 
Specifically, SWoTTeD outperforms all the competitors with comparable R on bike and 
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MIMIC datasets regardless of the phenotype size. On the E-shop dataset, CNTF exhib-
its good performances with R = 36 and outperforms SWoTTeD when 𝜔 > 1 . Nonetheless, 
SWoTTeD with � = 3 becomes better than CNTF. LogPar and SWIFT have the worse 
FITX on average. For the sake of graphic clarity, SWIFT is not represented in this figure. Its 
FITX values are below −0.5 . The complete Figure is provided in “Appendix” (see Fig. 14, 
page 35).

The figure presents results for three different values of R. As expected, FITX of SWoT-
TeD increases with R. Intuitively, real-world datasets contain a diversity and a large 
number of hidden profiles. With more phenotypes, the model becomes more flexible and 
can capture the diversity in the data more effectively, resulting in more accurate tensor 
reconstructions.

We also observe that while FITX decreases slightly as the phenotype size (� ) increases, 
all values remain higher than those of CNTF, except for bike with R = 36 . This suggests 
that SWoTTeD with 𝜔 > 1 discovers phenotypes that are both complex and accurate. It 
may seem counter-intuitive that the FIT does not decrease. In fact, the number of model 
parameters increases with the size of the phenotype. However, these parameters are not 
completely free. Larger phenotypes also add more constraints to the reconstruction due to 
temporal relations, which can introduce errors when a phenotype is only partially identi-
fied. The more complex is the phenotype, the more likely there is a difference between the 
mean description and its instances.

The most important result of this experiment is that the reconstruction with tempo-
ral phenotypes competes with the reconstruction with daily phenotypes. This means that 
SWoTTeD strikes a balance between a good reconstruction of the input data and an extrac-
tion of rich phenotypes. Furthermore, the temporal phenotypes—with � strictly higher 
than 1—convey a rich information to users by describing complex temporal arrangements 
of events.

6.2.3 � Time efficiency

Figure 9 illustrates the computing times of the training process on real-world datasets. It 
compares the computing time of SWoTTeD with its competitors under different setting 
(varying values of R and � ). We have excluded SWIFT from this figure as its computing 
time is several orders of magnitude slower than the other competitors due to the computa-
tion of Wasserstein distances.

This figure shows that our implementation of SWoTTeD is one order of magnitude faster 
than CNTF or LogPar. This efficiency is attained through a vectorized implementation of 

Fig. 5   Comparison of FIT
X
 (left) and FIT

P
 (right) with respect to the � hyper-parameter on a synthetic data-

set with hidden phenotypes having repeated successive events
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the model. The mean computing times on a standard desktop computer12 for SWoTTeD 
are 70.42s ± 18.37 , 102.83s ± 209.34 and 14.34s ± 1.03 for the Bike, E-shop, and MIMIC 
datasets respectively.

Regarding the parameters of SWoTTeD, we observe that the computing time grows lin-
early with the number of phenotypes. More surprisingly, the size of the phenotypes has 
only a minor impact on computing time. This can be attributed to the efficient implementa-
tion of convolution in the PyTorch framework.

Despite the relatively high theoretical complexity of the reconstruction procedure (see 
Annex C), this experiment demonstrates that SWoTTeD has low computing times and can 
scale to handle large datasets.

6.3 � SWoTTeD robustness to data noise

Noisy data are a common challenge encountered in the analysis of medical data. Physicians 
may make errors during data collection. Some exams may not be recorded in electronic 
health records and the data collection instruments themselves may be unreliable, result-
ing in inaccuracies within datasets. These inaccuracies are commonly referred to as noise. 
Noise can introduce complications as machine learning algorithms may interpret it as a 
valid pattern and attempt to generalize from it. Therefore, we conducted an assessment of 
the robustness of our model against simulated noisy data.

Fig. 6   FIT
P
 values (at the top) and FIT

X
 values (at the bottom) of SWoTTeD vs competitors on synthetic 

data with � = 1

Fig. 7   Critical difference diagrams between SWoTTeD and its competitors (based on FIT
X
 metric on the 

left, and on FIT
P
 metric on the right). The lower the rank, the better. Horizontal bars indicate statistical 

non-significant difference between models. The significancy is obtained with a Wilcoxon signed-rank test 
( � = 0.05)

12  Intel i7-1180G7, 4.60 GHz, 16 Gb RAM, without graphical acceleration.
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We considered two types of common noise that are due to data entry errors: (1) the 
additive noise due to occurrences of additional events in patient’s hospital stays, and (2) the 
destructive noise, due to important events that have not been reported. We start by generat-
ing 20 synthetic datasets that are divided into training and test sets. Only the training set is 
disturbed, and the FIT value is measured over the test set. The idea behind disturbing only 
the training set is to assess SWoTTeD ’s ability to capture meaningful phenotypes in the 
presence of noise that can be generalized over a non-disturbed test set. For additive noise, 
we inject additional events positioned randomly into the X  tensor. The number of added 
events per patient is determined according to a Poisson distribution with a parameter � . We 
vary � from 2 to 25 with a stepsize of 5, except for the first step that has a value of 3.13 The 
noise level is normalized by the number of ones in the dataset (i.e. the number of events). 
For instance, � = 0.3 means that 30% of additional events have been injected into the data. 
Values greater than 1.0 for noise addition indicates than more than half of the events are 
random. For the destructive noise, we iterate over all the events of all patients in X  , and 
delete them based on a Bernoulli distribution with a parameter p. We vary p from 0 to 0.7 
with a stepsize of 0.1.

Our focus was primarily on SWoTTeD ’s ability to derive correct phenotypes from 
noisy data, as measured by the FITP metric.

Figure 10 displays the values of FITP obtained with various noise ratios. In the case of 
added events, we notice that FITP decreases as the average number of added events per 
patient increases. However, the quality of reconstruction remains above zero even when 
the average number of added events per patient reaches 10. In the case of deleting events, 
we notice that FITP starts to decrease when the ratio of missing events exceeds 0.3. In an 
extreme case where we have 70% of missing events, SWoTTeD still manages to have a 
positive phenotype reconstruction quality.

Consequently, we can conclude that our model exhibits robustness to noisy data, par-
ticularly in the case of missing data. This experiment further confirms the interest of tensor 
decomposition when data are noisy. Interestingly, adding some random noise even resulted 
in improved accuracy. We explain this by the relatively low number of epochs (200): some 
randomness in the data fasten the convergence of optimization algorithms. With fewer 
epochs, the model discovered better phenotypes in the presence of noise. Being robust to 
destructive noise is more promising. In real-world dataset, especially in care pathways that 

Fig. 8   Reconstruction error FIT
X
 of SWoTTeD ( � = 1, 3, 5 ) and its competitors on real-world datasets and 

for different values of R 

13  This mean that the values of � are successively 3, 5, 10, 15, 20 and 25.
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is our primary application, missing events might be numerous. The results show that our 
model discovers the hidden phenotypes with high accuracy even with a lot of (random) 
missing events.

6.4 � Uniqueness and diversity in SWoTTeD results

Solving tensor decomposition problems with an alternating optimization algorithm does 
not guarantee a convergence toward a global minimum or even a stationary point, but only 
to a solution where the objective function stops decreasing (Kolda and Bader, 2009). The 
final solution can also be highly dependent on the initialization and of the training set. 
Similarly, SWoTTeD does not come with convergence guarantees, but we can empirically 
evaluate the diversity of solutions obtained across different runs.

The experiments conducted on synthetic datasets illustrated that different runs of 
SWoTTeD converge toward the expected phenotypes (as detailed in Sect. 6.1). However, 
it can not conclusively determine the uniqueness of solutions, as it heavily relies on the 
random phenotypes that have been generated. We exclusively employ real-world datasets 
in this section.

In this experiment, we delve into the sets of phenotypes in our real-world datasets. For 
each dataset, we run SWoTTeD 10 times and compare the sets of phenotypes using average 
cosine dissimilarity.

Figure 11 depicts the cosine dissimilarity obtained with R = 4 , 12 and 36 for SWoT-
TeD (with varying phenotype sizes) and CNTF. Lower dissimilarity values indicate greater 
similarity between phenotypes from one run to another, which is preferable.

With R = 36 , the cosine dissimilarity is below 0.5 for all datasets. In the case of SWoT-
TeD, it generally exceeds 0.3. This observation suggests that there may be multiple local 

Fig. 9   Computing time in seconds (base-10 log-scale) of one run of SWoTTeD and its competitors

Fig. 10   FIT
P
 values of SWoTTeD on synthetic data as a function of normalized noise (% of new or deleted 

events)
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optima, where the optimization procedure must make choices among the phenotypes to 
represent. Consequently, the convergence location may depend on the initial state. The 
dissimilarity values show both high and low values, that correspond to have “clusters” of 
similar solutions.

On average, CNTF exhibits slightly better than SWoTTeD, but the difference with 
SWoTTeD ( � = 1 ) is not significant across the dataset.

For � = 3 or 5, we observe higher dissimilarity between the runs. Part of this increase 
can be explained by the metric used: cosine similarity tends to be higher for high-dimen-
sional vectors (i.e. larger phenotype sizes). This is because small differences in one dimen-
sion can lead to a significant decrease in cosine similarity, and the probability of such dif-
ferences increases with the number of dimensions.

We conducted a qualitative analysis of the differences between the sets of phenotypes 
and found them to be almost the same. However, we observed some discrepancies with 
a few extra or missing events. These events are recurrent in the data, but not necessarily 
related to a pathway. As the number of phenotypes is limited, it is better to include such 
events in a phenotype to improve reconstruction accuracy. Their weak association with 
other events can lead to variations between runs.

Continuing our investigation of the similarities between phenotypes, we also evaluate 
the diversity of phenotypes within the sets of R phenotypes. We computed the pairwise 
cosine dissimilarity between phenotypes within each extracted set by the different runs of 
SWoTTeD. The objective is to evaluate each method’s ability to extract a diverse set of 
phenotypes. It is worth noting that no orthogonality constraint, proposed by Kolda (2001) 
for instance, is directly implemented in SWoTTeD (nor in CNTF). The diversity is expected 
as a side-effect of the reconstruction loss with a small set of phenotypes. For datasets with 
numerous latent behaviors, a diverse set of phenotypes ensures a better coverage of the data.

Figure 12 presents the distributions of cosine dissimilarity values. In this experiment, 
higher cosine dissimilarity values indicate greater diversity, which is desirable. We can 
notice the results are correlated to the analysis of uniqueness. Diverse sets of phenotypes 
corresponds to robust settings. This may be explained by the fact that the diverse sets 
extracted the complete set.

To summarize this section, we conclude that SWoTTeD consistently converges toward 
sets of similar phenotypes on the real-world datasets for different runs. These sets con-
tain diverse phenotypes, highlighting SWoTTeD ’s ability to discover non-redundant 
latent behaviors in temporal data. Despite these promising results, we recommend running 
SWoTTeD multiple times on new datasets to enhance the confidence in the results.

Fig. 11   Cosine dissimilarity between pairs of sets of phenotypes with respect to the phenotypes’ size for 
SWoTTeD, and CNTF. The lower the dissimilarity, the more similar are the sets of phenotypes between 
each run
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7 � Case study

The previous experiments demonstrated that SWoTTeD is able to accurately and robustly 
identify hidden phenotypes in synthetic data and to accurately reconstruct real-world data. 
In this section, we illustrate that the extracted temporal phenotypes are meaningful. For 
this purpose, we used SWoTTeD on an EHR dataset from the Greater Paris University 
Hospitals and showed the outputted phenotypes to clinicians for interpretation.

The objective of this case study is to describe typical pathways of patients that have been 
admitted into intensive care units (ICU) during the first waves of COVID-19 in the Greater 
Paris region, France. The typical pathways are representative of treatment protocols that 
have actually been implemented. Describing them may help hospitals to gain insight into 
their management of treatments during a crisis. In the context of COVID-19, we know that 
the most critical cases are patients with comorbidities (diabetes, hypertension, etc.). This 
complicates the analysis of these patients’ care pathways because they blend multiple inde-
pendent treatments. In such a situation, cutting edge tools for pathway analysis are helpful 
to disentangle the different treatments that have been delivered.

Care pathways of COVID-19 patients have been obtained from the data warehouse 
of the Greater Paris University Hospitals. We create one dataset per epidemic wave of 
COVID-19 for the first four waves. The periods of these waves are those officially defined 
by the French government. The patients selected for this study are adults (over 18 years 
old) with at least a positive PCR. For each patient, we create a binary matrix that represents 
the patient’s care events (drugs deliveries and procedures) during the first 10 days of his/
her stay in the Intensive Care Unit (ICU). Epidemiologists selected 85 types of care events 
(58 types of drugs and 27 types of procedures) based on their frequency and relevance 
for COVID-19. Drugs are coded using the third level of ATC​14 codes and procedures are 
coded using the third level of CCAM15 codes.

In the following, we present the results obtained for the fourth wave (from 2021-07-05 
to 2021-09-06) which holds 2, 593 patients and 21, 325 care events.16 We run SWoTTeD 
to extract R = 8 phenotypes of length � = 3 . We run 1, 000 epochs with a learning rate of 
10−3.

Fig. 12   Cosine dissimilarity between pairs of phenotypes with respect to the phenotypes’ size for SWoT-
TeD, and CNTF. The higher the dissimilarity, the more diverse

14  ATC: Anatomical, Therapeutic and Chemical.
15  CCAM is the French classification of medical procedures.
16  Details of the dataset preparation and all phenotypes for all the waves are available on “Synthetic Data-
set” and “MIMIC-IV Dataset” section of “Appendix 1”.
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Figure  13 illustrates five of the eight phenotypes extracted from the fourth wave. At 
first glance, we can see that these phenotypes are sparse. This makes them almost easy to 
interpret: a phenotype is an arrangement of at most 7 care events, all with high weights. 
In addition, they make use of the time dimension: each phenotype describes the presence 
of care events on at least two different time instants. Thus, it demonstrates that the time 
dimension of a phenotype is meaningful in the decomposition. These phenotypes have 
been shown to a clinician for interpretation. It was confirmed that they reveal two relevant 
care combinations: some combinations of cares sketch the disease background of patients 
(hypertension, liver failure, etc.) while others are representative of treatment protocols. The 
phenotype 1 has been interpreted as a typical protocol for COVID-19. Indeed, L04A code 
referring to Tocilizumab has become a standard drug to help patients with acute respiratory 
problems avoid mechanical ventilation. In this phenotype, clinicians detect a switch from 
the prophylactic delivery of Tocilizumab (the first day) to a mechanical ventilation identi-
fied through the use of typical sedative drugs (N01B: Lidocaine, J01X: Metronidazole and 
N05C: Midazolam). This switch, including the discontinuation of Tocilizumab treatment, is 
a typical protocol. Nevertheless, further investigations are required to explain the presence 
of antibiotics (H02A: Prednisone and J01D: Cefotaxime). Phenotype 5 illustrates a severe 
septic shock: a patient in this situation will be monitored (DEQ), injected with dopamine 
(EQL) to induce cardiac activity, and with insulin (A10A) to manage the patient’s glycae-
mia. This protocol is commonly encountered in ICU, and is applied for COVID-19 patients 
in critical condition.

The previously detailed phenotypes illustrate that SWoTTeD disentangles generic ICU 
protocols and specific treatments for COVID-19. Other phenotypes have also been readily 
identified by clinicians as corresponding to treatments of patients having specific medical 
backgrounds. The details can be found in “Appendix 4”. Their overall conclusion is that 
SWoTTeD extracts relevant phenotypes that uncover some real practices.

8 � Conclusion and perspectives

The state-of-the-art tensor decomposition methods are limited to the extraction of pheno-
types that only describe a combination of correlated features occurring the same day. In this 
article, we proposed a new tensor decomposition task that extracts temporal phenotypes, 

Fig. 13   Five phenotypes discovered for the 4th epidemic wave. Each gray cell represents the presence of a 
drug (in rows) at a relative time instant (in columns). The darker the cell, the higher the value. Cell values 
lie in the range [0, 1]
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i.e., phenotypes that describe a temporal arrangement of events. We also propose SWoT-
TeD, a tensor decomposition method dedicated to the extraction of temporal phenotypes.

SWoTTeD has been intensively tested on synthetic and real-world datasets. The results 
show that it outperforms the current state-of-the-art tensor decomposition techniques on syn-
thetic data by achieving the best reconstruction accuracies of both the input data and the hid-
den phenotypes. The results on real-world data show that the reconstruction competes with 
state-of-the art methods, and extracts information through temporal phenotypes that is not 
captured by other approaches.

In addition, we proposed a case study on COVID-19 patients to demonstrate the effective-
ness of SWoTTeD to extract meaningful phenotypes. This experiment illustrates the relevance 
of the temporal dimension to describe typical care protocols.

The results of SWoTTeD are very promising and open new research lines in machine 
learning, temporal phenotyping and care pathway analytics. For future work, we plan to 
extend SWoTTeD to extract temporal phenotypes described over a variable window size. It 
would also be interesting to make the reconstruction more flexible for alternative applications. 
In particular, our temporal phenotypes are rigid sequential patterns: they describe the strict 
succession of days. This was expected to describe treatments in ICU, but some other applica-
tions might expect two consecutive days of a phenotype to match two days that are not strictly 
consecutive (with a gap in between). This is an interesting but challenging modification of 
the reconstruction which can be computationally expensive. Finally, another possible improve-
ment would be to use an AO-ADMM solver (Huang et al., 2016; Roald et al., 2022), which is 
known to increase the stability of tensor decomposition (Becker et al., 2023).

Appendix 1: Details about experiments

Synthetic dataset

The code to generate synthetic data is available in the experiment repository: https://​gitlab.​
inria.​fr/​tguyet/​swott​ed_​exper​iments. The file “gen_data.py” implements the generation 
of synthetic data. We also provide a jupyter notebook “run_SWoTTeD_synthetic_
data.ipynb” that allows the reader to run readily SWoTTeD on a synthetic dataset.

MIMIC‑IV dataset

The database can be accessed via this link https://​mimic.​mit.​edu/. Once the database is set 
up in a Postgres database, the Jupyter notebook “CohortConstruction.ipynb” can 
be run to prepare the dataset: it builds the cohort of patients and the input tensors used in 
the experiments. We also provide a notebook “run_SWoTTeD_mimic.ipynb” to guide 
the reader to execute SWoTTeD on MIMIC-IV.

The availability of this data preparation enables anyone to create the exact dataset we 
used for our experiments and to compare his/her own results with ours.

https://gitlab.inria.fr/tguyet/swotted_experiments
https://gitlab.inria.fr/tguyet/swotted_experiments
https://mimic.mit.edu/
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Appendix 2: Additional results

Impact of normalization

Similar experiments were conducted without normalization. The Fig.  15 depicts the 
ratio of FITX with and without normalization. We observe that the values are very close 
to 1. On average, normalization appears to increase the FIT  measure (ratio above 1), 
but it is not significant. We conclude from this experiment that normalization does not 
clearly improves the reconstruction accuracy neither the quality of the extracted pheno-
types. Therefore, we recommend keeping the normalization constraint because it guar-
antees that W ’s values are limited to the range  [0,  1] and they can be interpreted as 
probabilities.

Comparison of FIT computed on train or test datasets

The objective of this experiment is to show that the phenotypes discovered does not 
overfit the train dataset. To demonstrate this, we computed the FITX values on test and 
train sets.

Figure 16 presents the results obtained for our four real-world datasets. We observe 
that the FITX computed on train and test datasets are on average similar both for 
SWoTTeD and CNTF. It shows that neither SWoTTeD nor CNTF overfits the train 
dataset. This result contributes to show that the extracted phenotypes are meaningful.

Comparison of time efficiency of SWoTTeD versus FastSWoTTeD

We remind that FastSWoTTeD is an implementation of SWoTTeD for datasets having 
all sequences with the same length. In this case, it is possible to increase the computa-
tional efficiency of the implementation with vectorization techniques. We also remind 
that we did not use GPUs to accelerate the training.

In this experiment we generated 200 synthetic sequences with all same lengths 
( T = 20 ) and 40 features. We run the two models on the same datasets and we measure 
the training time, and the FITX on a test set.

Figure 17 depicts the computing times with respect to the number of hidden pheno-
types (R). The boxplot averages the result for different model settings. We clearly see 
that FastSWoTTeD is more than one order of magnitude faster than SWoTTeD.

Figure  18 depicts the FITX obtained with the two implementations of SWoTTeD. 
We observe that the two implements have achieves the same FITX . The difference can 
be explained by the randomness in the training process, combined with small floating 
point errors that propagate differences between the decompositions. Statistically, the 
differences are not significant between these two models.
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Appendix 3: Computational complexity of the reconstruction loss

Let X  be a dataset with K patients, n medical features, and a maximum hospital stay length 
of T̄  ; let R be the desired number of phenotypes described over a temporal window of size 
� . The complexity to compute the reconstruction P⊛W

(k) is given by:

O
(
K × T̄ × R × n × 𝜔

)
.

Fig. 14   Reconstruction error FIT
X
 of SWoTTeD ( � = 1, 3, 5 ) and its competitor on real-world datasets and 

for different values of R 

Fig. 15   Ratio of the FIT
X
 metric with and without normalization of SWoTTeD on synthetic datasets. A 

ratio above 1 indicates a benefit of using normalization on the reconstruction accuracy

Fig. 16   FIT
X
 metric computed 

on test and train datasets for 
realworld datasets
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It follows that the complexity to compute the error L⊛ (see Eq. 2) is as follows:

The complexity of the loss of SWoTTeD (see Eq. 4) includes the complexity of the regu-
larization terms, as outlined below:

•	 The complexity of the L1 norm is O(n × � × R) (i.e., the size of P).
•	 The complexity of the non-succession regularization term S(W(k)) is O

(
K × R × T̄ × 𝜔

)

.

In comparison to non-temporal tensor decomposition techniques (e.g., CNTF), the com-
plexity of SWoTTeD considers the �  factor that corresponds to the temporal width of 
phenotypes. While SWoTTeD is more expressive, it requires more computing resources 
than CNTF.17 On the other hand, the reconstruction and non-succession term are based on 
convolution operators that benefit from material optimization. Thus, we anticipate that the 
efficiency of the optimization process will be preserved.

SWoTTeD is based on an optimization procedure for training the model. Each epoch 
comprises the computation of the loss � , and its derivatives. Considering that SWoTTeD 
is based on automatic differentiation, the time complexity to evaluate the derivative is pro-
portional to the computation of the loss (Verma, 2000).

O
(
(R × 𝜔 + 1) × K × T̄ × n

)
.

17  Here, we consider CNTF model without temporal regularization. Indeed, temporal regularization of 
CNTF is based on an internal LSTM architecture that is time consuming to train.

Fig. 17   log10(time) (in seconds) 
for training SWoTTeD and Fast-
SWoTTeD models

Fig. 18   FIT
X
 on synthetic datasets obtained with SWoTTeD and FastSWoTTeD models
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Appendix 4: Case study details

Dataset preparation

In our case study, we used data from the Greater Paris University Hospitals. For the sake 
of health data security and privacy, these data have been pseudo-anonymized and it is not 
possible to export them out of the hospital infrastructure. Then, all experiments on the 
AP-HP dataset were conducted on hospital servers through secured access.

In addition, all the experiments have been approved by the Ethical committee of AP-HP 
which is in charge to inform patients about their data usage for research purposes, to obtain 
their informed consent and to validate the appropriateness of data access by researchers.

In accordance with epidemiologists, we created one dataset per epidemic wave of 
COVID-19 for the first four waves. The periods of these waves are those officially defined 
by the French government18:

•	 wave 1: 2020-03-01 - 2020-07-06, 8561 patients, 81, 517 care events
•	 wave 2: 2020-07-07 - 2021-01-04, 10, 444 patients, 91, 824 care events
•	 wave 3: 2021-01-05 - 2021-07-05, 14, 667 patients, 139, 045 care events
•	 wave 4: 2021-07-05 - 2021-09-06, 2593 patients, 21, 325 care events

The patients selected for this study are:

•	 adults (over 18 years old)
•	 at least a positive PCR19 test to witness the COVID-19 status of the patient
•	 admitted in an Intensive Care Unit (ICU). ICU includes here the historical and de 

novo units. The latter have been by set up to respond urgently to the massive arrival of 
patients.

For each patient we create a binary matrix that represents its care pathway.
We collected medical procedures and drugs delivered during the 10 first days in an 

Intensive Care Unit (ICU). All care pathways start from the entrance in an ICU. This 
means that all cares received at hospital before the entrance in ICU are ignored. If a patient 
is admitted several times in an ICU, each visit is independent of the others.

All care pathways of length strictly larger than 10 are truncated. Indeed, no further 
information is expected beyond the tenth day. In the final dataset, 60% of the care pathways 
are truncated. In addition, stays shorter than 2 days are discarded.

Drugs are coded using ATC​20 codes and procedures are coded using CCAM21 codes. 
CCAM is the French Common Classification of medical procedures. Each code is a type of 
medical event in the input tensor. The date of occurrence of an event is determined by the 
number of days before the beginning of mechanical ventilation. More specifically, it means 
that the sampling rate is one day. In the data warehouse, procedure and drug deliveries are 
timestamped but, according to clinicians, these timestamps are not reliable (for instance, 

19  Polymerase Chain Reaction.
20  ATC: Anatomical, Therapeutical and Chemical.
21  CCAM is the French classification of medical procedures.

18  https://​www.​insee.​fr/​fr/​stati​stiqu​es/​54325​09?​somma​ire=​54354​21.

https://www.insee.fr/fr/statistiques/5432509?sommaire=5435421
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care deliveries are entered in the system at once at the end of the day). If the length of stay 
is lower than 10 days (whatever the discharge reason), then the temporal dimension of its 
matrix is its length of stay. More specifically, all matrices do not have the same temporal 
dimensions.

We first selected the 500 most frequent drugs and the 200 most frequent procedures over 
a very large space. Then, drugs have been clustered at the 3rd ATC level, and procedures at 
the 3th level of CCAM coding hierarchy. Indeed, different drug names may correspond to 
the same kind of cares. Thus, we group drugs using the coding hierarchy of the ATC and 
of the CCAM. A second manual selection has been done by physicians to keep only the 
most relevant features in the context of COVID-19. In the end, 85 types of care events (58 
types of drugs and 27 types of procedures) have been selected by physicians based on their 
frequency and relevance for COVID-19.

It is worth noticing that we do not have access to a reliable information about the dura-
tion of a drug prescription. For instance, we noticed that antibiotic drugs are delivered to 
patients on a single day each time, but not several days in a row. Nonetheless, clinicians 
indicates that antibiotic are always delivered for several days to be effective. This is a limi-
tation to identify temporal phenotypes, but we prefer to not pre-process the data to prevent 
from having too questionable results.

The following table presents the parameters used for the results presented in Sect. D.2. 

Parameter Value

R 8 or 20
� 3 or 5
� 0.5
� 0.5
� 10−3

epochs 1, 000
batch size 64

Additional results on case study

In this section, we present the results obtained for the four first waves of the COVID-19 
pandemic. We start by providing results about the reconstruction accuracy for several set-
tings of SWoTTeD. Then, we illustrate the reconstruction of some patient matrices. Finally, 
we present the graphical and detailed descriptions of the phenotypes obtained with R = 8 
phenotypes and � = 3.

Note that these results need additional investigations by clinicians to provide reliable 
interpretations. For this reason, we do not provide more detailed interpretations of pheno-
types in this document.

Reconstruction accuracy

Table 2 gives the FITX values obtained on the four AP-HP datasets (four first waves of the 
pandemic). The values are close to the ones obtained on the MIMIC-IV dataset. These val-
ues are positive, indicating that the reconstruction is reasonably good on average.
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We can notice that SWoTTeD achieves better reconstruction with R = 20 than with 
R = 8 . Indeed, with more phenotypes, the decomposition becomes easier. The drawback of 
having more phenotypes is to discover simpler patterns, i.e. involving fewer events.

Finally, increasing the size of the temporal phenotypes does not improve the reconstruc-
tion. Larger temporal phenotypes means a more constrained reconstruction.

Reconstructions

Figure 19 illustrates the reconstructions of two patient’s matrices. The patients are in the 
dataset of the fourth wave, and the reconstruction use R = 8 and � = 3.

These reconstructions illustrate the behaviour we observed: 1) a reconstruction con-
tains all the events of the input matrix, 2) some additional events appear in the reconstruc-
tion. For the patient on the left (id  :  596), the reconstruction contains, with significant 
weights, the five care events of the initial matrix. But, an additional event appears in the 

Table 2   Reconstruction accuracy 
measured by FIT

X
 of the AP-HP 

datasets (one per wave) with 
different settings of SWoTTeD 

Bold values are the bests

Wave R = 8 R = 20 R = 20

� = 3 � = 3 � = 5

w1 0.17 0.27 0.22
w2 0.15 0.25 0.23
w3 0.15 0.23 0.23
w4 0.15 0.25 0.27

Fig. 19   Examples of patient matrix reconstruction (with R = 8 and � = 3 ). For each patient, the original 
matrix is on the left, the reconstructed matrix is on the right

Fig. 20   Graphical representation of the phenotypes of the first wave
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Table 3   Detailed description of phenotypes of the first wave

Phenotype 1

Event code Description Time

C02C Urapidil, hypertension 0.00 0.00 0.17
J01C Amoxicilline 0.00 0.00 1.00
N02B Paracetamol 0.00 0.00 1.00
N03A Pregabaline 0.00 0.00 0.33
V03A Oxygen 0.61 0.00 0.00

Phenotype 2

 Event code Description Days

C09C Irbesartan, ARB 0.39 0.00 0.00
DEQ Electrocardiogram 0.00 1.00 0.00
EQQ Cardiac monitoring 0.00 1.00 0.00
JVJ Dialysis 0.00 0.66 0.00

Phenotype 3

 Event code Description Days

A10A Insuline 0.00 0.00 1.00
A10B Metformine 1.00 0.00 0.00
R03A Adrenergics, inhalants 0.00 0.00 1.00
R03B Drugs for obstructive airway diseases 0.00 0.00 0.39
R06A Antihistamines 0.00 0.00 0.28

Phenotype 4

 Event code Description Days

ENL Monitoring of intra-arterial pressure 0.00 0.38 0.00
EQL Dopamine 0.00 0.00 1.00
EQQ Cardiac monitoring 0.00 0.00 1.00
YYY​ Rescucitation procedures 0.00 0.00 1.00

Phenotype 5

 Event code Description Days

N02A Morphines 0.00 1.00 0.00
N05B Hydroxizine, sedation 0.00 0.00 1.00

Phenotype 6

 Event code Description Days

C03C Furosemide 0.00 0.00 0.73
C07A Bisoprolol 0.00 0.00 1.00
N05C Midazolam, sedation 0.00 0.00 1.00

Phenotype 7

 Event code Description Days

A03A Phloroglucinol 0.00 0.00 0.88
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reconstruction (with a low weight). For the patient on the right (id  : 1992), the first day 
of the reconstruction contains a lot of lightly weighted events, but it reconstructs well the 
complex combination at time 6.

A possible explanation of this behaviour can be found in the weak quality of the data. 
As we notice, there may miss some events. The additional events in the reconstruction may 
witness such misinformed care deliveries. This hypothesis remains to be investigated.

Phenotypes of the first wave

Figure  20 illustrates the phenotypes that have been extracted. These phenotypes are 
detailed in Table 3.

Phenotypes of the second wave

Figure  21 illustrates the phenotypes that have been extracted. These phenotypes are 
detailed in Table 4.

Fig. 21   Graphical representation of the phenotypes of the second wave

Table 3   (continued)

Phenotype 7

 Event code Description Days

H02A Prednisone, antibiotic 0.00 0.00 1.00
J01D Cefotaxime 1.00 0.00 0.00
J01F Azithromicine 1.00 0.00 0.00

Phenotype 8

 Event code Description Days

B01A Antithrombotic agents 0.00 0.00 1.00
C03C Furosemide 0.00 1.00 0.00
C08C Amlodipine 0.00 0.00 1.00
C09A Ramipril 0.00 0.00 0.54
C10A Statine 0.00 0.00 0.89
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Table 4   Detailed description of 
phenotypes of the second wave

Event code Description Days

Phenotype 1
A03A Phloroglucinol 0.00 0.00 0.42
J01E Sulfonamides and trimethoprim 0.00 0.00 0.24
N02B Paracetamol 0.00 0.00 1.00
Phenotype 2
H02A Prednisone, antibiotic 1.00 0.00 0.00
P02C Ivermectine 0.26 0.00 0.00
R03A Adrenergics, inhalants 0.00 1.00 0.00
R03B Drugs for obstructive airway diseases 0.00 0.00 0.50
Phenotype 3
N02A Morphines 1.00 0.00 0.00
N03A Pregabaline 0.00 0.00 0.63
Phenotype 4
B01A Antithrombotic agents 0.00 1.00 0.00
J01F Azithromicine 0.00 0.22 0.00
N05B Hydroxizine, sedation 1.00 0.00 0.00
JVJ Dialysis 0.00 0.00 0.38
Phenotype 5
A06A Constipation 0.00 0.35 0.00
A10A Insuline 1.00 0.00 0.00
DEQ Electrocardiogram 0.00 1.00 0.00
Phenotype 6
C03C Furosemide 0.00 0.00 1.00
C07A Bisoprolol 0.00 0.00 1.00
J01C Amoxicilline 0.00 0.00 1.00
J01X Metronidazole 0.00 0.00 0.27
Phenotype 7
A03A Phloroglucinol 0.00 0.19 0.00
A10B Metformine 0.80 0.00 0.00
C03A Hydrochlorothiazide 0.14 0.00 0.00
C08C Amlodipine 1.00 0.00 0.00
C09A Ramipril 0.00 0.80 0.00
C09C Irbesartan, ARB 0.52 0.00 0.00
C10A Statine 1.00 0.00 0.00
J01M Ciprofloxacine 0.16 0.00 0.00
N05C Midazolam, sedation 0.00 0.00 1.00
V03A Oxygen 0.00 0.70 0.00
Phenotype 8
J01D Cefotaxime 0.00 1.00 0.00
DEQ Electrocardiogram 0.00 0.01 0.00
EQL Dopamine 0.00 1.00 0.00
EQQ Cardiac monitoring 1.00 0.00 0.00
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Phenotypes of the third wave

Figure  22 illustrates the phenotypes that have been extracted. These phenotypes are 
detailed in Table 5.

Fig. 22   Graphical representation of the phenotypes of the third wave

Table 5   Detailed description of 
phenotypes of the third wave

Vent code Description Days

Phenotype 1
C10A Statine 1.00 0.00 0.00
H02A Prednisone, antibiotic 1.00 0.00 0.00
J01E Sulfonamides and trimethoprim 0.38 0.00 0.00
N02A Morphines 0.00 0.00 1.00
P02C Ivermectine 0.37 0.00 0.00
Phenotype 2
A03A Phloroglucinol 0.61 0.00 0.00
B01A Antithrombotic agents 1.00 0.00 0.00
C09A Ramipril 0.00 0.00 0.66
J01D Cefotaxime 1.00 0.00 0.00
J01X Metronidazole 0.21 0.00 0.00
Phenotype 3
A10B Metformine 1.00 0.00 0.00
C07A Bisoprolol 0.00 1.00 0.00
J01C Amoxicilline 0.00 1.00 0.00
L04A Tocilizumab 0.00 0.00 0.51
Phenotype 4
C03C Furosemide 0.00 1.00 0.00
N03A Pregabaline 0.00 0.88 0.00
Phenotype 5
A06A Constipation 0.00 0.26 0.00
C09C Irbesartan, ARB 0.00 0.40 0.00
N02B Paracetamol 0.00 1.00 0.00
R03A Adrenergics, inhalants 0.00 0.60 0.00
R03B Drugs for obstructive airway diseases 0.00 0.27 0.00
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Phenotypes of the fourth wave

Figure  23 illustrates the phenotypes that have been extracted. These phenotypes are 
detailed in Table 6.

Fig. 23   Graphical representation of the phenotypes of the fourth wave

Table 6   Detailed description of 
phenotypes of the fourth wave

Event code Description Days

Phenotype 1
B01A Antithrombotic agents 0.00 0.00 1.00
J01E Sulfonamides and trimethoprim 0.00 0.00 0.33
R03A Adrenergics, inhalants 0.00 0.00 0.53
R03B Drugs for obstructive airway diseases 0.00 0.00 0.26
R06A Antihistamines 0.23 0.00 0.00
Phenotype 2
H02A Prednisone, antibiotic 0.00 1.00 0.00
J01D Cefotaxime 0.00 0.00 1.00
J01X Metronidazole 0.00 0.40 0.00
L04A Tocilizumab 0.59 0.00 0.00
N01B Lidocaine 0.00 0.21 0.00
N05C Midazolam, sedation 0.00 1.00 0.00

Vent code Description Days

Phenotype 6
A10A Insuline 0.00 1.00 0.00
C08C Amlodipine 0.00 0.00 1.00
JVJ Dialysis 0.00 0.63 0.00
Phenotype 7
N05C Midazolam, sedation 0.00 0.00 1.00
V03A Oxygen 0.00 0.79 0.00
DEQ Electrocardiogram 0.00 1.00 0.00
EQL Dopamine 0.00 1.00 0.00
EQQ Cardiac monitoring 0.01 1.00 0.01
YYY​ Rescucitation procedures 0.00 0.74 0.00
Phenotype 8
N05B Hydroxizine, sedation 0.00 1.00 0.00

Table 5   (Continued)
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