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Abstract
Although deep reinforcement learning has become a promising machine learning approach 
for sequential decision-making problems, it is still not mature enough for high-stake 
domains such as autonomous driving or medical applications. In such contexts, a learned 
policy needs for instance to be interpretable, so that it can be inspected before any deploy-
ment (e.g., for safety and verifiability reasons). This survey provides an overview of vari-
ous approaches to achieve higher interpretability in reinforcement learning (RL). To that 
aim, we distinguish interpretability (as an intrinsic property of a model) and explainability 
(as a post-hoc operation) and discuss them in the context of RL with an emphasis on the 
former notion. In particular, we argue that interpretable RL may embrace different facets: 
interpretable inputs, interpretable (transition/reward) models, and interpretable decision-
making. Based on this scheme, we summarize and analyze recent work related to inter-
pretable RL with an emphasis on papers published in the past 10 years. We also discuss 
briefly some related research areas and point to some potential promising research direc-
tions, notably related to the recent development of foundation models (e.g., large language 
models, RL from human feedback).
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1  Introduction

Reinforcement learning (RL) (Sutton & Barto, 2018) is a general machine learning frame-
work for designing systems with automatic decision-making capabilities. Research in RL 
has soared since its combination with deep learning, called deep RL (DRL), achieving sev-
eral recent impressive successes (e.g., AlphaGo (Silver et al., 2017), video game (Vinyals 
et  al., 2019), or robotics (OpenAI et  al., 2019)). These attainments were made possible 
notably thanks to the introduction of the powerful approximation capability of deep learn-
ing and its adoption for sequential decision-making and adaptive control.

However, this combination has simultaneously brought all the drawbacks of deep learn-
ing to RL. Indeed, as noticed by abundant recent work in DRL, policies learned via a DRL 
algorithm may suffer from various weaknesses, e.g.:

•	 They are generally hard to understand because of the blackbox nature of deep neural 
network architectures (Zahavy et al., 2016).

•	 They are difficult to train, require a large amount of data, and DRL experiments are 
often difficult to replicate (Henderson et al., 2018).

•	 They may overfit the training environment and may not generalize well to new situa-
tions (Zhang et al., 2018b).

•	 Consequently, they may be unsafe and vulnerable to adversarial attacks (Huang et al., 
2017).

These observations reveal why DRL is currently not ready for real-world high-stake appli-
cations such as autonomous driving or healthcare, and explain why interpretable and 
explainable RL has recently become a very active research direction. In this survey, we 
view interpretability as an intrinsic property of a model and explainability as a post-hoc 
operation (see Sect. 3)

Most real-world deployments of RL algorithms require that learned policies are intel-
ligible as they provide an answer (or a basis for an answer) to various concerns encompass-
ing ethical, legal, operational, or usability viewpoints:

Ethical concerns When designing an autonomous system, it is essential to ensure that 
its behavior follows some ethical and fairness principles discussed and agreed upon 
beforehand by the stakeholders according to the context (Crawford et al., 2016; Dwork 
et  al., 2012; Friedler et  al., 2021; Leslie, 2020; Lo Piano, 2020; Morley et  al., 2020; 
Yu et al., 2018). The growing discussion about bias and fairness in machine learning 
(Mehrabi et al., 2019) suggests that mitigating measures must be taken in every aspect 
of an RL methodology as well. In this regard, intelligibility is essential to help assess 
the embedding of moral values into autonomous systems, and contextually evaluate and 
debate their equity and social impact.
Legal concerns As autonomous systems start to be deployed, legal issues arise regarding 
notably safety (Amodei et  al., 2016), accountability (Commission, 2019; Doshi-Velez 
et  al., 2019), or privacy (Horvitz & Mulligan, 2015). For instance, fully-autonomous 
driving cars should be permitted in the streets only once proven safe with high confi-
dence. The question of risk management (Bonnefon et al., 2019) but also responsibility, 
in the case of an accident involving such systems, has become a more pressing and com-
plex problem. Verification, accountability, but also privacy can only be ensured with 
more transparent systems.
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Operational concerns Since transparent systems are inspectable and verifiable, they can 
be examined before deployment to ensure that their decision-making is based on mean-
ingful (ideally causal) relations and not on spurious features, ensuring higher reliability 
and increased robustness. From the vantage point of researchers or engineers, such sys-
tems have the advantage of being more easily debugged and corrected. Moreover, one 
may expect that such systems are easier to train, more data efficient, and more generaliz-
able and transferable to new domains thanks to interpretability inductive biases.
Usability concerns Interpretable and explainable models can form an essential com-
ponent for building more interactive systems, where an end-user can request more 
information about the outcome or decision-making process. In particular, explainable 
systems would arguably be more trustworthy, which is a key requirement for their inte-
gration and acceptance (Mohseni et  al., 2020), although the question of trust touches 
on many other contextual and non-epistemic factors (e.g., risk aversion or goal) beyond 
intelligibility.

In addition to this high-level list of concerns, we refer the interested reader to Whittle-
stone et al. (2021) for a more thorough discussion about the potential societal impact of 
the deployment of DRL-based systems. Although interpretability is a pertinent instrument 
to achieve more accountable AI-systems, the debate around their real-life implementation 
should stay active, and include diverse expertise from legal, ethical, and socio-political 
fields, whose coverage goes beyond the scope of this survey.

Motivated by the importance of these concerns, the number of publications in DRL 
specifically tackling interpretability issues has increased significantly in recent years. The 
surging popularity of this topic also explains the recent publication of three survey papers 
(Alharin et  al., 2020; Heuillet et  al., 2021; Puiutta & Veith, 2020) on interpretable and 
explainable RL. In Puiutta and Veith (2020) and Heuillet et al. (2021), a short overview 
is provided with a limited scope, notably in terms of surveyed papers, while Alharin et al. 
(2020) cover more studies, organized and categorized into explanation types. The presenta-
tion of those surveys generally leans towards explainability as opposed to interpretability 
(see Sect. 3 for the definitions adopted in this survey) and focuses on understanding the 
decision-making part of RL.

In contrast, this survey aims at providing a more comprehensive view of what may 
constitute interpretable RL, which we here specifically distinguish from explainable RL 
(see Sect. 3). In particular, while decision-making is indeed an important aspect of RL, we 
believe that achieving interpretability in RL should involve a more encompassing discus-
sion of every component involved in these algorithms, and should stand on three pillars: 
interpretable inputs (e.g., percepts or other structural information provided to the agent), 
interpretable transition/reward models, and interpretable decision-making.

Based on this observation, we organize previous work that proposes methods for achiev-
ing greater interpretability in RL, along those three components, with an emphasis on DRL 
papers published in the last 10 years. Thus, in contrast to the previous three surveys, we 
cover additional work that belongs to interpretable RL such as relational RL or neuro-sym-
bolic RL and also draw connections to other work that naturally falls in this designation, 
such as object-based RL, physics-based models, or logic-based task descriptions. We also 
briefly examine the potential impact of large language models on interpretable and explain-
able RL. One goal of this proposal is to discuss the work in (deep) RL that is specifically 
identified as belonging to interpretable RL and to draw connections to previous work in RL 
that is related to interpretability. Since such latter work covers a very broad research space, 
we can only provide a succinct account for it.
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The remaining of this survey is organized as follows. In the next section, we recall the 
necessary definitions and notions related to RL. Next, we discuss the definition of interpret-
ability (and explainability) in the larger context of artificial intelligence (AI) and machine 
learning (Sect. 3.1), and apply it in the context of RL (Sect. 3.2). In the following sections, 
we present the studies related to interpretable inputs (Sect. 4) and models (Sect. 5). The 
work tackling interpretable decision-making, which constitutes the core part of this survey, 
is discussed in Sect. 6. For the sake of completeness, we also sketch a succinct review of 
explainable RL (Sect. 7), which helps us contrast it to interpretable RL. Based on this over-
view, we provide in Sect. 8 a list of open problems and future research directions, which 
we deem particularly relevant. Finally, we conclude in Sect. 9.

2 � Background

In RL, an agent interacts with an environment through an interaction loop. The agent 
repeatedly receives an observation from the environment, chooses an action, and receives 
a new observation and usually an immediate reward. Although most RL methods solve 
this problem by considering the RL agent as reactive (i.e., given an observation, choose 
an action), Fig. 1 lists some other potential problems that an agent may tackle on top of 
decision-making: perception if the input is high-dimensional (e.g., image), learning from 
past experience, knowledge representation (KR) and reasoning, and finally planning if the 
agent has a model of its environment.

This RL problem is generally modeled as a Markov decision process (MDP) or 
one of its variants, notably partially observable MDP (POMDP).1 An MDP is defined 
as a tuple (S,A,T ,R) with a set S of states, a set A of actions, a transition function 
T ∶ S ×A × S → [0, 1] , and a reward function R ∶ S ×A → ℝ . The sets of states and 
actions, which may be finite, infinite, or even continuous, specify respectively the possi-
ble world configurations for the agent and the possible response that it can perform. In a 
partially observable MDP, the agent does not observe the state directly, but has access to 
an observation that probabilistically depends on the hidden state. The difficulty in RL is 
that the transition and reward functions are not known to the agent. The goal of the agent 
is to learn to choose actions (i.e., encoded in a policy) such that it maximizes its expected 

Fig. 1   Interaction loop in RL

1  See Puterman (1994) or Bertsekas and Tsitsiklis (1996) for a more complete discussion.
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(discounted) sum of rewards �
�
∑∞

t=0
�
tR(St,At)

�

 where � ∈ [0, 1] is a discount factor, St and 
At are random variables representing the state and action at time step t. The expectation is 
with respect to the transition probabilities T, the action selection, and a possible distribu-
tion over initial states. This expected sum of rewards is usually encoded in a value function 
when the initial states are fixed. A policy may choose actions based on states or observa-
tions in a deterministic or randomized way. In RL, the value function often takes the form 
of a so-called Q-function, which measures the value of an action a followed by a policy 
from a state s, i.e., �

�
∑∞

t=0
�
tR(St,At) ∣ S0 = s,A0 = a

�

 To solve this RL problem, model-
based and model-free algorithms have been proposed, depending on whether a model of 
the environment (i.e., transition/reward model) is explicitly learned or not.

The success of DRL is explained partly by the use of neural networks (NN) to approxi-
mate value functions or policies, but also by various algorithmic progress. Deep RL algo-
rithms can be categorized in two main categories: value-based methods and policy gradient 
methods, in particular in their actor-critic version. For the first category, the model-free 
methods are usually variations of the DQN algorithm (Mnih et al., 2015). For the second 
one, the current state-of-the-art model-free methods are PPO (Schulman et al., 2017) for 
learning a stochastic policy, TD3 (Fujimoto et al., 2018) for learning a deterministic policy, 
and SAC (Haarnoja et  al., 2018) for entropy-regularized learning of a stochastic policy. 
Model-based methods can span from simple approaches such as first learning a model 
and then applying a model-free algorithm using the learned model as a simulator, to more 
sophisticated methods that leverage the learned model to accelerate solving an RL problem 
(Francois-Lavet et al., 2019; Scholz et al., 2014; Veerapaneni et al., 2020).

For complex decision-making tasks, hierarchical RL (HRL) (Barto & Mahadevan, 2003) 
has been proposed to exploit temporal and hierarchical abstractions, which may facilitate 
learning and transfer, but also promote intelligibility. Although various architectures have 
been proposed, decisions in HRL are usually made at (at least) two levels. In the most 
popular framework, a higher-level controller (also called meta-controller) chooses tempo-
rally-extended macro-actions (also called options), while a lower-level controller chooses 
the primitive actions. Intuitively, an option can be understood as a policy with some start-
ing and ending conditions. When it is known, it directly corresponds to the policy applied 
by the lower-level controller. An option can also be interpreted as a subgoal chosen by the 
meta-controller for the lower-level controller to reach.

3 � Interpretability and explainability

In this section, we first discuss the definition of interpretability and explainability as pro-
posed in the explainable AI (XAI) literature. Then, we focus on the instantiations of those 
notions in RL.

3.1 � Definitions

Various terms have been used in the literature to qualify the capacity of a model to make 
itself understandable, such as interpretability, explainability, intelligibility, comprehensi-
bility, transparency, or understandability. Since no consensus about the nomenclature in 
XAI has been reached yet, they are not always distinguished and are sometimes used inter-
changeably in past work or surveys on XAI. Indeed, interpretability and explainability are 
for instance often used as synonyms (Miller, 2019; Molnar, 2019; Ribeiro et al., 2016a). 



5852	 Machine Learning (2024) 113:5847–5890

1 3

For better clarity and specificity, in this survey, we only employ the two most common 
terms, interpretability and explainability, and clearly distinguish those two notions, which 
we define below. This distinction allows us to provide a clearer view of the different work 
in interpretable and explainable RL. Moreover, we use intelligibility as a generic term that 
encompasses those two notions. For a more thorough discussion of the terminology in the 
larger context of machine learning and AI, we refer the interested readers to surveys on 
XAI (Barredo Arrieta et al., 2020; Chari et al., 2020; Gilpin et al., 2019; Lipton, 2017).

Following Barredo Arrieta et al. (2020), we simply understand interpretability as a pas-
sive quality of a model, while explainability here refers to an active notion that corresponds 
to any external, usually post-hoc, methodology or proxy aiming at providing insights into 
the working and decisions of a trained model. Importantly, the two notions are not exclu-
sive. Indeed, explainability techniques can be applied to interpretable models and explana-
tions may potentially be more easily generated from more interpretable models. This is 
why, one may argue that model interpretability is more desirable than post-hoc explainabil-
ity (Rudin, 2019). Moreover, both notions are epistemologically inseparable from both the 
observer and the context. Indeed, what is intelligible and what constitutes a good explana-
tion may be completely different for an end-user, a system designer (e.g., AI engineer or 
researcher), or a legislator for instance. Except in our discussion on explainable RL, we 
will generally take the point of view of a system designer.

While interpretability is achieved by resorting to intrinsically more transparent models, 
explainability requires carrying out additional processing steps to explicitly provide a kind 
of explanation aiming to clarify, justify, or rationalize the decisions of a trained black-box 
model. At first sight, it seems that interpretability is involving an objectual and mecha-
nistic understanding of the model, whereas explainability mostly restricts itself to a more 
functional.2—and often model-agnostic—understanding of the outcomes of a model. Yet, 
as advocated by Páez (2019), post-hoc intelligibility in AI should require some degree of 
objectual understanding3 of the model, since a thorough understanding of a model’s deci-
sions, also encompasses the ability to think counterfactually (“What if...”) and contras-
tively (“How could I alter the data to get outcome X?”).

Since the main focus of this review is interpretability, we further clarify this notion by 
recalling three potential definitions as proposed by Lipton (2017): simulatability, decom-
posability, and algorithmic transparency.

A model is simulatable if its inner working can be simulated by a human. Examples 
of simulatable models are small linear models or decision trees. The concept of simplic-
ity, and quantitative aspects, consequently underlie any definition of simulatability. In 
that sense, a hypothesis class is not inherently interpretable with respect to simulatability. 
Indeed, a decision tree may not be simulatable if its depth is huge, whereas a NN may 
be simulatable if it has only a few hidden nodes. A model is decomposable if each of its 
parts (input, parameter, and calculation) can be understood intuitively. Since a decom-
posable model assumes its inputs to be intelligible, any simple model based on complex 
highly-engineered features is not decomposable. Examples of decomposable models are 
linear models or decision trees using interpretable features. While the other two definitions 

2  A functional understanding “relies on an appreciation for functions, goals, and purpose” while a mecha-
nistic understanding “relies on an appreciation of parts, processes, and proximate causal mechanisms” 
(Páez, 2019).
3  Some objectual understanding is particularly beneficial when considering legal accountability and public 
responsibility.
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focuses on the model, the third one shifts the attention to the learning process and requires 
it to be intelligible. Thus, an algorithm is transparent if its properties are well-understood 
(e.g., convergence). In that sense, standard learning methods for linear regression or sup-
port vector machine may be considered transparent. However, since the training of deep 
learning models is currently still not very well-understood, it results in a regrettable lack of 
transparency of these algorithms.

Although algorithmic transparency is important, the most relevant notions for this sur-
vey are the first two since our main focus is the intelligibility of trained models. More gen-
erally, it would be useful and interesting to try to provide finer definitions of those notions, 
however this is out of the scope of this paper, whose goal is to provide an overview of work 
aiming at enhancing interpretability in (deep) RL.

3.2 � Interpretability in RL

Based on the previous discussion of interpretability in the larger context of AI, we now 
turn to the RL setting. To solve an RL problem, the agent may need to solve different 
AI tasks (notably perception, knowledge representation, reasoning, learning, planning) 
depending on the assumptions made about the environment and the capability of the agent 
(see Fig. 1).

For this whole process to be interpretable, all its components have arguably to be intel-
ligible, such as: (1) the inputs (e.g., observations or any other information the agent may 
receive) and its processing, (2) the transition and preference models, and (3) the decision-
making model (e.g., policy and value functions). The preference model describes which 
actions or policies are preferred. It can simply be based on the usual reward function, but 
can also take more abstract forms such as logic programs. Note that making those compo-
nents more intelligible supposes a certain disentanglement of the underlying factors, and 
entails a certain representation structure. With this consideration, this survey can be under-
stood as discussing methods to achieve structure in RL, which consequently enhances 
interpretability.

The three definitions of interpretability (i.e., simulatability, decomposability, and algo-
rithmic transparency) discussed previously can be applied in the RL setting. For instance, 
for an RL model to be simulatable, it has to involve simple inputs, simple preference (pos-
sibly also transition) models, and simple decision-making procedures, which may be hard 
to achieve in practical RL problems. In this regard, applying those definitions of interpret-
ability at the global level in RL does not lead to any interesting insights in our opinion. 
However, because RL is based on different components, it may be judicious to apply the 
different definitions of interpretability to them, possibly in a differing way. A more modu-
lar view provides a more revealing analysis framework to understand previous and current 
work related to interpretable RL. Thus, an RL approach can be categorized for instance, 
as based on a non-interpretable input model, but simulatable reward and decision-making 
models (Penkov & Ramamoorthy, 2019) or as based on simple inputs, a simulatable reward 
model, and decomposable transition and decision-making models (Degris et al., 2006).

In the end, interpretability is a difficult notion to delineate, whose definition may 
depend on both the observer and the context. Moreover, it is generally not a Boolean 
property, but there is a continuum from black-box (e.g., deep NN) to undoubtedly inter-
pretable (e.g., structured program) models. For these reasons, we discuss interpretable 
methods, but also DRL approaches that are not necessarily considered interpretable, 
but bring some intelligibility in the RL framework (e.g., via NN architectural bias or 
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regularization). We organize these studies along three categories: interpretable inputs, 
interpretable transition and preference models, and interpretable decision-making. We 
argue that they are essential aspects of interpretable RL since they each pave the way 
towards higher interpretability in RL. As in any classification attempt, the boundary 
between the different clusters is not completely sharp. Indeed, some propositions could 
arguably belong to several categories. However, to avoid repetition, we generally dis-
cuss them only once with respect to their most salient contributions.

4 � Interpretable inputs

A first step towards interpretable RL regards the inputs that an RL agent uses to learn 
and make its decisions. Arguably, these inputs must be intelligible if one wants to 
understand the decision-making process later on. Note that we define inputs in a very 
general sense. They can be any interpretable information specified by the system 
designer. Thus, they include the typical (interpretable) RL observations, but also any 
structural information, which enforces higher intelligibility to the data provided to the 
agent, such as the relational or hierarchical structure of the problem.

Interpretable numeric observations (e.g., kinematic information) can be directly 
provided by sensors or estimated from high-dimensional observations (e.g., depth from 
images in Michels et  al., 2005). To keep this survey concise, we do not cover such 
methods, which are more related to the state estimation problem. Instead, we mainly 
focus on RL approaches exploiting (pre-specified or learned) symbolic and structural 
information, since they specifically enforce intelligibility in the agents’ inputs. Moreo-
ver, they can help with faster learning, better generalizability and transferability but 
also be smoothly integrated with reasoning and planning.

Diverse approaches have been investigated to provide interpretable inputs to 
the agent (see Fig.  2). They may be pre-given as seen in the literature of structured 
RL (Sect.  4.1), or may need to be extracted from high-dimensional observations 
(Sect.  4.2). Tangentially, additional interpretable knowledge can be provided to help 
the RL agent, in addition to the observations (Sect. 4.3).

Fig. 2   Illustrations of the different approaches for interpretable inputs: (Left) Structured Approach, (Center) 
Extracting Symbolic Representation, (Right) Hierarchical Approach. Dashed lines represent optional links, 
depending on the methods
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4.1 � Structured approaches

The literature explored in this subsection assumes a pre-given structured representation of 
the environment which may be modelled through a collection of objects, and their rela-
tions as in object-oriented or relational RL (RRL, Dzeroski et al., 1998). Thus, the MDP is 
assumed to be structured and the problem is solved within that structure: task, reward, state 
transition, policies and value function are defined over objects and their interactions—e.g., 
using first-order logic4 (FOL, Barwise, 1977) as in RRL. A non-exhaustive overview of 
these approaches is provided in Table 1.

A first question, tied to knowledge representation (Swain, 2013), is the choice of the 
specific structured representations for the different elements (i.e., state, transition, rewards, 
value function, policy). For instance, a first step in this literature was to depart from propo-
sitional representation, and turn to relational representations, which not only seems to bet-
ter fit the way we reason about the environment—in terms of objects and relations —but 
may bring other benefits, such as the easy incorporation of logical background knowledge. 
Indeed, in propositional representations, the number of objects is fixed, all relations have to 
be grounded—a computationally heavy operation—but most importantly it is not suitable 
to generalize over objects and relations, and is unable to capture the structural aspect of 
the domain (e.g., Blocks World, Slaney & Thiébaux, 2001). Variations of this structure are 
presented below.

Relational MDP

Table 1   Overview of structured approaches 

Simulatability holds assuming small domains and also implies decomposability here

Relational representations Approach Interpretability References

Relational,
Q linear approx.

Linear Programming Simulatable5 Guestrin et al. (2003)

Relational,
FOL Q−decision tree

Q-learning Simulatable Džeroski et al. (2001)

Relational, hierarchical,
FOL Q-decision tree

Q-learning Simulatable Driessens and Blockeel (2001)

Relational,
HOL Q−decision tree

Q-learning Decomposable Cole et al. (2003)

Relational, feature-based,
Q linear approx.

Q-learning Partial decomp Walker et al. (2004)

Relational, feature-based,
Q w/ rel. Naive Bayes Net

Q-learning Partial decomp Sanner (2005)

Relational,
Q w/ graph kernels

Q-learning w/
Gaussian processes

Partial decomp Driessens et al. (2006)

Relational,
Graph NN State rep.,
Neural policy/value

Actor-Critic Partial decomp Garg et al. (2020), Janisch et al. (2021)

4  Recall, in contrast to propositional logic (i.e., Boolean vector representation), FOL describes the world in 
terms of objects, predicates (i.e., relations between objects), and functions (i.e., objects defined from other 
objects).
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Relational MDPs (RMDPs) (Guestrin et  al., 2003) are first-order representation of 
factored MDPs (Boutilier et  al., 2000) and are based on probabilistic relational model5 
(PRM, Koller, 1999). The representation involves different classes of objects (over which 
binary relations are defined), each having attributes attached to a specific domain. Transi-
tion and reward models are assumed given, e.g., as a dynamic Bayesian network (DBN, 
Dean & Kanazawa, 1990), although the specific representational language may vary.6 
Closely related, Object Oriented-MDPs (see Diuk et  al., 2008, presented in Sect. 5.1)—
later extended to deictic representations (Marom & Rosman, 2018)—use similar state-
representation yet differ in the way their transition dynamics are described: transitions are 
assumed deterministic and learned within a specific propositional form in the first step of 
their algorithm.

Relational RL
Following the initial work on Relational RL (Dzeroski et al., 1998), a consequent line 

of work summarized below extends previous work dealing with MDPs modelled in a rela-
tional language to the learning setting, at the crossroad of RL and logical machine learn-
ing—such as inductive logic programming (ILP, Cropper et  al., 2020) and probabilistic 
logic learning (De  Raedt & Kimmig, 2015). We also refer the interested readers to the 
surveys by van Otterlo (2009, 2012).

In Džeroski et  al. (2001), the Q-function is learned with a relational regression tree 
using Q-learning extended to situations where states, actions, and policies are represented 
using first-order logic. However, explicitly representing value functions in relational learn-
ing is difficult, partly due to concept drift (van Otterlo, 2005), which occurs since the pol-
icy providing examples for the Q-function is being constantly updated. It may motivate 
to turn towards policy learning (as Dzeroski et al., 1998 relying on P-trees), and employ 
approximate policy iteration methods which would keep explicit representation of the pol-
icy but not the value function, for larger probabilistic domains.

Diverse extensions of relational MDPs and of Relational RL (RRL) have been proposed, 
either exact or approximate methods, in model-free and in model-based, with more or less 
expressive representations and within a plain or more hierarchical approach (Driessens & 
Blockeel, 2001). Regarding the representations, previous model-free RRL work is based 
on explicit logical representation such as logical (FOL or more rarely Higher Order Logic 
(HOL, e.g., Cole et  al., 2003)) regression trees, which, in a top-down way, recursively 
partition the state space; in contrast, other bottom-up and feature-based approaches (San-
ner, 2005; Walker et  al., 2004) aim to learn useful relational features which they would 
combine to estimate the value function, either by feeding them to a regression algorithm 
(Walker et al., 2004), or into a relational naive Bayes network (Sanner, 2005). Other alter-
natives to regression trees have been implemented such as through Gaussian processes—
incrementally learnable Bayesian regression—with graph kernels, defined over a set of 
state and action (Driessens et al., 2006). Finally, other work in quest of more expressiv-
ity turns towards neural representations. For instance, after extracting a graph instance 
expressed in RDDL7 (Sanner, 2011), Garg et  al. (2020) compute nodes embedding via 

5  PRMs may be understood as “relational” extensions of “propositional” Bayesian networks.
6  Relational Dynamic Influence Diagram Language (RDDL, Sanner, 2011), extending DBN using state-
dependent rewards aggregated over objects, is able to model parallel effects. In contrast, Probabilistic Plan-
ning Domain Definition Language (PPDDL Younes & Littman, 2004) employs action-transition-based 
rewards and models correlated effect. Note that Guestrin et al. (2003) assume static representations, which 
are unfit for real-world dynamics or relational environments such as Blocks World.
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graph propagation steps, which are then fed to value and policy decoders (multi-layer per-
ceptrons, MLP) attached to each action symbol. In Janisch et  al. (2021), graph NNs are 
similarly used to build a relational state representation in relational problems. The authors 
resort to auto-regressive policy decomposition (Vinyals et al., 2017) to tackle multi-param-
eter actions (attached to unary or binary predicates).

Let us point out that despite the “reinforcement” appellation, a significant proportion 
of work in RRL assumes that environment models (transitions and reward structures) 
are known to the agent, which may be unrealistic. RRL has also been applied to diverse 
domains, such as for efficient exploration within robotics (Martínez et al., 2017b).

Discussion
In structured MDP and relational RL, by borrowing from symbolic reasoning, most 

work leads to agents that can learn and reason about objects. Such an explicit and logi-
cal representation of learned structures may help both generalize or transfer efficiently and 
robustly to similar representational frameworks by e.g., reusing learned representations or 
policies. However, some major drawbacks are that these approaches necessitate the sym-
bolic representation to be hand-designed, and often rely on non-differentiable operations. 
They are therefore not very flexible over framework variations (e.g., task or input) and not 
well suited for more complex tasks, or noisy real-life environments.

4.2 � Learning symbolic representations

When inputs are given as high-dimensional raw data, it seems judicious—although chal-
lenging—to extract explicit symbolic representations on which we can arguably reason and 

Table 2   Overview of approaches for Learning Symbolic Representations 

Representations Approach Interpretability References

Probabilistic symbols
for planning

Unsupervised clustering
(e.g., DBSCAN algorithm)

HL modular Konidaris et al. (2015, 2018)

Probabilistic symbols
for planning

Unsupervised clustering
(Bayesian hierarchical)

HL modular Andersen and Konidaris (2017)

Symbols as classifiers Human-teaching HL modular Kulick et al. (2013)
Symbols as classifiers Program-guided HL modular Penkov and Ramamoorthy 

(2019)
Symbols as classifiers Program-guided AE HL modular Sun et al. (2020)
Objects Object recognition

w/ template matching
Partial decomp. Li et al. (2017b)

Objects, relational Unsupervised object extraction
w/ activation spectrum

Partial decomp Garnelo et al. (2016)

Objects Unsupervised video
segmentation w/ optical flow

Weak Goel et al. (2018)

Relational Relational MLP-modules Weak Adjodah et al. (2018)
Objects CNN w/ attention Weak Zambaldi et al. (2019)
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plan in a more efficient and intelligible way. This process of abstraction, which is very 
familiar to human cognition,7 reduces the complexity of an environment to low dimen-
sional, discrete, abstract features. By abstracting away lower-level details and irrelevant 
variations, this paradigm brings undeniable advantage and could greatly leverage the learn-
ing and generalization abilities of the agent. Moreover, it provides the possibility of reusing 
high-level features through environments, space and time.

Some promising new research directions—tackling the key problem of symbol ground-
ing (Harnad, 1990)—are adopting an end-to-end training, therefore tying the semi-
otic emergence not only to control but also to efficient high-level planning (Andersen & 
Konidaris, 2017; Konidaris et  al., 2014, 2015), or model-based learning (Francois-Lavet 
et  al., 2019), to encourage more meaningful abstractions. Work presented below (see 
Table  2) ranges from extracting symbols to relational representations, which are in turn 
used for control or planning. In the next two sections, we distinguish actual high-level (HL) 
decomposability—meaning the HL module is decomposable—from HL modularity, which 
denotes the gain in interpretability brought by the task decomposition, which may be seen 
as a partial high-level decomposability.

Symbol grounding
Some previous approaches (Andersen & Konidaris, 2017; Konidaris et al., 2014, 2015, 

2018) have tackled the problem of learning symbolic representations adapted for high-level 
planning from raw data. As they are concerned about evaluating the feasibility and success 
probability of a high-level plan, they only need to construct symbols both for the initiation 
set and the termination set of each option. There, the state-variables are gathered into fac-
tors, which can be seen as sub-goals, and are tied to a set of symbols; through unsupervised 
clustering, each option is attached to a partition of the symbolic state; it leads to a proba-
bilisitc distribution over symbolic options (Sutton et  al., 1999) which guides the higher-
level policy to evaluate the plan.

In a different direction, some researchers have involved human teaching (Kulick et al., 
2013) or programs (Penkov & Ramamoorthy, 2019; Sun et al., 2020) to guide the learn-
ing of symbols. For instance, in the work by Penkov and Ramamoorthy (2019), the pre-
given program mapping the perceived symbols (from an auto-encoder network) to actions, 
imposes semantic priors over the learned representations, and may be seen as a regulari-
zation which structures the latent space. Meanwhile, Sun et  al. (2020) present a percep-
tion module which aims to answer the conditional queries (“if”) within the program, which 
accordingly provides a symbolic goal to the low-level controller. However, these studies, 
by relying on a human-designed program, or human-teaching, partly bypass the problem of 
autonomous and enacted symbol extraction.

Object Recognition
When the raw input is given as an image, diverse techniques within computer vision 

and within Object Recognition (OR) or Instance Segmentation (combining semantic seg-
mentation and object localization) are beneficial to extract a symbolic representation. Such 
extracted information, fed as input to the policy or Q-network, should arguably lead to 
more interpretable networks. OR aims specifically to find and identify objects in an image 
or video sequence, despite possible changes in sizes, scales or obstruction when objects are 
being moved; it ranges from classical techniques—such as template matching (Brunelli, 
2009), or Viola-Jones algorithm (Viola & Jones, 2001)—to more advanced ones.

7  Physical theories are a typical example of this practice, where laws—such as laws of motions—are reused 
across instantiations and scenes with various primitive entities.
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As an example of recent RL work learning symbolic representation, O-DRL (Iyer et al., 
2018; Li et al., 2017b) can exploit and incorporate object characteristics such as the pres-
ence and positions of game objects, which are extracted with template matching before 
being fed into the Q-network. In the case of moving rigid objects, techniques have been 
developed to exploit information from object movement to further improve object recogni-
tion. For instance, Goel et al. (2018) first autonomously detect moving objects by exploit-
ing structure from motion, and then use this information for action selection.

Aiming to delineate a general end-to-end RL framework, Deep Symbolic RL (DSRL, 
Garnelo et  al., 2016) combines a symbolic front end with a neural back end learning to 
map high-dimensional raw sensor data into a symbolic representation in a lower-dimen-
sional conceptual space. Such proposition may be understood within emblematic neuro-
symbolic approaches’ scheme (as presented in Bader and Hitzler 2005, Fig.4), where a 
symbolic system and a connectionist system share information back and forth. The authors 
also reflect on a few key notions for an ideal implementation such as conceptual abstrac-
tion (e.g., how to detect high level similarity), compositional structure, common sense pri-
ors or causal reasoning. However, their first prototype proposal is relatively limited, with 
a symbolic front end carrying out very little high-level reasoning, and a simple neural back 
end for unsupervised symbol extraction. Further work has questioned the generalization 
abilities of DSRL (Dutra & d’Avila Garcez, 2017) or aimed to incorporate common sense 
within DSRL (d’Avila Garcez et  al., 2018) to improve learning efficiency and accuracy, 
albeit still within quite restricted settings.

Relational Representations
To obtain more interpretable inputs for the policy or Q-value network, some work deals 

with specifically relation-centric representations, e.g., graph-based representation. Such 
relational representation can be leveraged for decision-making, e.g., once fed to the value 
or policy network or even in a hierarchical setting. Within this line of research, graph net-
works (Battaglia et al., 2018) stand out as an effective way to compute interactions between 
entities and can support combinatorial generalization to some extent (Battaglia et al., 2018; 
Cranmer et al., 2020; Gilmer et al., 2017; Li et al., 2017c; Sanchez-Gonzalez et al., 2018; 
Scarselli et al., 2009). Roughly, the inference procedure is a form of propagation process 
similar to a message passing system. Having high capacity, graph networks have been thor-
oughly exploited in a diverse range of problem domains, either for supervised, unsuper-
vised or in model-free or model-based RL, for tasks ranging from visual scene understand-
ing, to physical systems dynamics via chemical molecule properties, image segmentation, 
point clouds data, combinatorial optimization, or dynamic of multi-agent systems.

Aiming to represent relations between objects, relational modules have been designed 
to inform the Q-network (Adjodah et al., 2018), and/or the policy network (Zambaldi et al., 
2019). In a work by Zambaldi et al. (2019), the pairwise interactions are computed via a 
self-attention mechanism (Vaswani et al., 2017), and used to update each entity representa-
tion which—according to the authors’ claim—is led to reflect important structure about 
the problem and the agent’s intention. Unlike most prior work in relational inductive bias 
(e.g., Wang et al., 2018), it does not rely on a priori knowledge of the problem and the rela-
tions, yet is hard to scale to large input space, suffering from quadratic complexity. Other 
relational NN modules could be easily incorporated into any RL framework, e.g., (Chang 
et al., 2017; Santoro et al., 2017) which aim to factorize dynamics of physical systems into 
pairwise interactions.

Discussion
Extracting symbolic and relational representations from high dimensional raw data 

is crucial as it would avoid the need of hand-designing the symbolic domain, and could 
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therefore unlock enhanced adaptability when facing new environments. Indeed, the sym-
bolic way of representing the environment inherently benefits from its compositional and 
modular perspective, and enables the complexity of the state-space to be reduced thanks 
to abstraction. Moreover, most of the modules presented in this section may be incorpo-
rated as a preprocessing step for any object-oriented or relational RL, either being trained 
beforehand or more smoothly end-to-end with the subsequent model.

Nevertheless, despite a certain history of work in this area, in the absence of pre-given 
hand-crafted schemes, it remains a consequent challenge for an agent to autonomously 
extract relevant abstractions model from a high-dimensional continuous complex and noisy 
environment. Advanced computer vision techniques could be leveraged in RL, e.g., for 
object detection (e.g., YOLO, Redmon et al., 2016), tracking (e.g., Deep Sort, Wojke et al., 
2017), or for extracting structured representation (e.g., scene graphs, Bear et al., 2020).

For scene interpretation, going beyond the traditional spatial or subsumption (”part-of”) 
relations, some logic-based approaches have emerged, using decidable fragments of FOL, 
such as Description Logic (DL), in order to infer new facts in a scene, given basic com-
ponents (object type or spatial relation), e.g., redefining labels. For instance, Donadello 
et al. (2017) extending the work of Serafini and d’Avila Garcez (2016) employ fuzzy FOL. 
Another idea would be to first learn—ideally causally—disentangled subsymbolic rep-
resentations from low-level data (e.g., Higgins et  al., 2018), to bootstrap the subsequent 
learning of higher-level symbolic representations, on which more logical and reasoning-
based frameworks can then be deployed. In partially observable domains, an alternative 
approach is to enforce interpretability of the memory of the agent (Paischer et al., 2023).

As a side note, this line of work touches sensitive questions on how symbols acquire 
their meanings; e.g., with the well-known symbol grounding problem, inquiring on how 
to ground the representations and symbolic entities from raw observations.8 On top of the 
challenges of “when” and “how” to invent a new symbol, enters also the question of how to 
assess of its quality.

4.3 � Hierarchical approaches

Instead of working entirely within a symbolic structure as in Sect. 4.1, many researchers 
have tried to incorporate elements of symbolic knowledge with sub-symbolic components, 
with notable examples within hierarchical RL (HRL, e.g., Hengst., 2010). Their aim was 
notably to leverage both symbolic and neural worlds, with a more structured high-level 
and a more flexible low-level. In this type of work, the agent can be understood as taking 
as inputs this interpretable structural information in addition to its usual observations. One 
may argue that this hierarchical structure helps make more sense of the low-level high-
dimensional observations.

Table 3 introduces these approaches, focusing notably on their high-level interpretabil-
ity, as their lower-level components—especially when based on neural networks—rarely 
claim to be interpretable. Indeed, different levels of temporal and hierarchical abstrac-
tions within human decision-making arguably participate to make it more intelligible. For 
instance, Beyret et al. (2019) demonstrate how a meta-controller providing subgoals to a 
controller achieves both performance and interpretability for robotic tasks.

8  A common assumption in contemporary cognitive science is that these representations have to emerge in 
strong dependency to the actions and goals of the agent (enacted) and the environment (situated).
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Working at a higher level of abstraction than the controller, it seems reasonable that 
the high-level module (e.g., meta-controller, planner) manipulates symbolic representa-
tions and handles the reasoning part, while the low-level controller could still benefit from 
the flexibility of neural approaches. Yet, we could also imagine less dichotomic architec-
tures: for instance, another neural module may coexist at the high-level along with the 
logic-based module to better inform the decisions under uncertainty (as in Sridharan et al., 
2019).

Various symbolic domain knowledge may be incorporated to HRL frameworks, in 
order to leverage both learning and high-level reasoning: high-level domain-knowledge 
(e.g., with high-level transitions and mappings from low-level to high level), high-level 
plans, task-decomposition, or specific decisions rules (e.g., for safety filtering). High-level 
domain knowledge may be described through symbolic logic-based or action language 
such as PDDL or RDDL (Sanner, 2011) or via temporal logic (Camacho et al., 2019; Li 
et al., 2019).

Modularity
Modular approaches in HRL have been relevantly applied to decompose a possibly 

complex task domain into different regions of specialization, but also to multitask DRL, 
in order to reuse previously learned skills across tasks (Andreas et  al., 2017; Shu et  al., 
2018; Wu et al., 2019a). Tasks may be annotated by handcrafted instructions (as “policy 
sketches” in Andreas et al., 2017), and symbolic subtasks may be associated with subpoli-
cies which a full task-specific policy aims to successfully combine. Distinctively, Shu et al. 

Table 3   Overview of Hierarchical Approaches 

a Low-level High Level
b Finite State Automaton
c Symbolic Planner
d Reward Shaping
e Stochastic Temporal grammar may be given as a prior, or trained

Symbolic knowledge Learned components HL interpretability References

Subgoals Controllers (LL, HL)a Modular Beyret et al. (2019)
HL Domain Controller, HL RL Agent Partial Decomp Sridharan et al. (2019)
Symbolic Plans Full & Subpolicies Modular Andreas et al. (2017)
STGe Selector, Subpolicies Modular Shu et al. (2018)
Model Primitive Gate, Subpolicies Modular Wu et al. (2019a)
HL domain, SPc RL Agent Simulatable Leonetti et al. (2016)
HL domain, SP RL Agent, SP Simulatable Yang et al. (2018a)
HL domain, SP Controllers (LL, HL)a Partial. Decomp Jiang et al. (2018)

Task & Motion Planner
HL domain, SP Controllers (LL, HL)a, SP Partial. Decomp Lyu et al. (2019)
HL domain Subgoal FSAb, RL Agent Simulatable Furelos-Blanco et al. (2021)
HL domain, FSAb FSA-guided RL Agent Simulatable Li et al. (2019)
HL filtering rules RL Agent Partial decomp Zhang et al. (2019)
HL rules Model-based agent Partial decomp Lu et al. (2018)
HL domain, FSA RL Agent, RSd Partial decomp Camacho et al. (2019)
HL domain, SP Controller, RSd Partial decomp Grzes and Kudenko (2008)
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(2018) propose to train (or provide as a prior) a stochastic temporal grammar (STG), in 
order to capture temporal transitions between tasks; an STG encodes priorities of sub-tasks 
over others and enables to better learn how to switch between base or augmented subpoli-
cies. The work in Wu et al. (2019a) seeks to learn a mixture of subpolicies by modeling the 
environment assuming given a set of (imperfect) models specialized by regions, referred 
to as model primitives. Each policy is specialized on those regions and the weights in the 
mixture correspond to the posterior probability of a model given the current state. Echo-
ing the hierarchical abstractions involved in human decision-making, such modularity and 
task-decomposability—referred to as high-level modularity as previously—would arguably 
participate to make decision-making more intelligible.

Symbolic Planning
A specific line of work within HRL has emerged trying to fuse symbolic planning (SP, 

Cimatti et  al., 2008) with RL (SP+RL), to guide the agent’s task execution and learn-
ing (Leonetti et al., 2016). In classical SP, an agent uses a symbolic planner to generate 
a sequence of symbolic actions (plan) based on its symbolic knowledge. Yet, this pre-
defined notion of planning seems unfit to most RL or real-world domains which present 
both domain uncertainties and execution failures. Recent work then usually interleaves RL 
and SP, aiming to send feedback signals to the planner in order to handle such scenarios. 
Planning agents often carry prior knowledge of the high-level dynamics, typically hand-
designed, and assumingly consistent with the low-level environment.9

Framing SP in the context of automatic option discovery, in PEORL (Yang et  al., 
2018a), a constraint answer set solver generates a symbolic plan, which is then turned into 
a sequence of options to guide the reward-based learning. Unlike earlier work in SP-RL 
(e.g., Leonetti et  al., 2016), RL is intertwined with SP, such that more suitable options 
could be selected. Some work has extended PEORL, with two planning-RL loops for more 
robust and adaptive task-motion planning (Jiang et al., 2018), or with an additional meta-
controller in charge of subtask evaluation to propose new intrinsic goals to the planner 
(Lyu et al., 2019). Recent work (Jin et al., 2022) starts to deal with learning action models 
in the RL loop.

Declarative Domain Knowledge
Declarative and common sense knowledge has been incorporated in RL frameworks in 

diverse ways to guide exploration, such as to filter out unreasonable or risky actions with 
finite state automaton (Li et al., 2019) or high-level rules (Zhang et al., 2019). In contrast, 
Furelos-Blanco et al. (2021) propose to learn a finite-state automaton for the higher-level 
with an ILP method and solve the lower-level with an RL method. There, the automaton 
is used to generate subgoals for the lower level. A deeper integration of knowledge rep-
resentation and reasoning with model-based RL has been advocated in Lu et  al. (2018), 
where the learned dynamics are fed into the logical-probabilistic reasoning module to help 
it select a task for the controller. In a different direction, exploiting declarative knowledge 
to construct actions sequences can also help reward shaping to find the optimal policy, as a 
few studies (Camacho et al., 2019; Grzes & Kudenko, 2008) have demonstrated. We refer 
to the survey by Zhang and Sridharan (2020) for further examples of studies both in proba-
bilistic planning and RL aiming to reason with declarative domain knowledge.

Discussion

9  In contrast, the work in RL+SP mentioned in Sect. 4.2 does not assume similar HL domain knowledge, 
and aims to learn the mapping from the low-level domain to high-level symbols.
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Symbolic knowledge and reasoning elements have been consistently incorporated to 
(symbolic) planning or hierarchical decision-making, in models which may reach a cer-
tain high-level interpretability, albeit neglecting action-level interpretability. Moreover, 
most work still typically relies on manually-crafted symbolic knowledge—or has to rely 
on a (pretrained or jointly-trained) perception model for symbol grounding—assuming a 
pre-given symbolic structure hand-engineered by a human expert. Due to the similarities 
shared by the majority of discrete dynamic domains, some researchers (Lyu et al., 2019) 
have argued that a laborious crafting of symbolic model is not always necessary, as the 
symbolic formulation could adapt to different problems, by instantiating new types of 
objects and a few additional rules for each new task; such claim would still need to be 
backed by further work in order to demonstrate such flexibility. Moreover, when adopting 
a symbolic or logical high-level framework, one also needs to face a new trade-off between 
expressivity and complexity of the symbolic representation.

5 � Interpretable transition/preference models

In this section, we overview the work that focuses on exploiting an interpretable model of 
the environment or task. This model can take the form of a transition model (Sect. 5.1) or 
preference model (Sect. 5.2). Such interpretable models can help an RL agent reason about 
its decision-making, but also help humans understand and explain its decision-making. As 
such, they can be used in an interpretable RL algorithm, but also in a post-hoc procedure 
to explain the agent’s decision-making. Note that those models may be learned, or not, 
and, when not learned, may possibly be fully provided to the RL agent or not. For instance, 
the reward function, which is one typical way of defining the preference model, is gen-
erally specified by the system designer in order to guide the RL agent to learn and per-
form a specific task. This function is usually not learned directly by the RL agent (except 
in inverse RL, Ng & Russell, 2000), but still has to be intelligible in some sense, other-
wise the agent’s decision-making may be based on spurious reasons and the agent may not 
accomplish the desired task since a non-intelligible reward function is hard to verify and 
may be incorrectly specified.

5.1 � Interpretable transition models

Interpretable transition models can help discover the structure and potential decomposition 
in a problem that are useful for more data-efficient RL (via e.g., more effective explora-
tion), but also allow for larger generalizability and better transfer learning. The work dis-
cussed here either solely focuses on model learning or belongs to model-based RL. Vari-
ous interpretable representations have been considered for learning transition models, such 
as decision trees or graphical models for probabilistic models, physics-based or graph for 
deterministic models, or NNs with architectural inductive bias. The NN-based approaches, 
which are more recent, are presented separately to emphasize them. We provide an over-
view of all the methods for interpretable transition models in Table 4.

Probabilistic Models
While the setting of factored MDPs generally assumes that the structure is given, 

Degris et al. (2006) propose a general model-based RL approach that can both learn the 
structure of the environment and its dynamics. This method is instantiated with decision 
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trees to represent the environment model. Statistical �2 tests are used to decide for the 
structural decomposition.

Various approaches are based on generative models under the form of graphical mod-
els. In Metzen (2013), a graph-based representation of the transition model is learned 
in continuous domains. In Kansky et al. (2017), schema networks are proposed as gen-
erative models to represent the transition and reward models in a problem described in 
terms of entities (e.g., objects or pixels) and their attributes. As a graphical model, the 
authors explain how to learn its structure and how to use it for planning using inference. 
The work in Kaiser et al. (2019) learns via variational inference an interpretable transi-
tion model by encoding high-level knowledge in the structure of a graphical model.

In the relational setting, a certain number of studies explored the idea of learning a 
relational probabilistic model for representing the effects of actions (see Walsh, 2010 
for discussions of older work). In summary, those approaches are either based on batch 
learning (e.g., (Pasula et al., 2007; Walker et al., 2008)) or online methods (e.g., Walsh, 
2010) with or without guarantees using more or less expressive relational languages. 
Some recent work (Martínez et al., 2016, 2017a) proposes to learn a relational probabil-
istic model via ILP and uses optimization to select the best planning operators.

Deterministic Models
In Diuk et  al. (2008), an efficient model-based approach is proposed for an object-

oriented representation of the world. This approach is extended by Marom and Rosman 
(2018) to deictic object-oriented representations, which use partially grounded predi-
cates, in the KWIK framework (Walsh, 2010).

Alternatively, Scholz et al. (2014) explore the use of a physics engine as a parametric 
model for representing the deterministic dynamics of the environment. The parameters 
of this engine are learned by a Bayesian learning approach. Finally, the control problem 
is solved using the A* algorithm.

In a hierarchical setting, several recent studies have proposed to rely on search algo-
rithms on state-space graphs or planning algorithms for the higher-level policy. Given 
a mapping from the state space to a set of binary high-level attributes, Zhang et  al. 
(2018a) learn a model of the environment predicting if a low-level policy would suc-
cessfully transition from an initial set of binary attributes to another set. The low-level 
policy observes the current state and the desired set of attributes to reach. Once the 
transition model and policy are learned, a planning module can be applied to reach the 
specified high-level goals. Thus, the high-level plan is interpretable, but the low-level 
policy is not.

Eysenbach et al. (2019) extract a state-space graph from a replay buffer and apply the 
Dijkstra algorithm to find a shortest path to reach a goal. This graph represents the state 
space for the high level, while the low level is dealt with a goal-conditioned policy. The 
approach is validated in navigation problems with high-dimensional inputs.

NN-based Model
Various recent propositions have tried to learn dynamics model using NNs with spe-

cific architectural inductive bias taking graphs as inputs (Battaglia et al., 2016; Sanchez-
Gonzalez et al., 2018). While this line of work can provide high-fidelity simulators, the 
learned model may suffer from a lack of interpretability.

The final set of work we would like to mention aims at learning object-based dynam-
ics models from low-level inputs (e.g., frames) using NNs. In that sense, they can be 
understood as an extension of the work in relational domain where the input is now gen-
erally high-level. One early work (Finn et al., 2016; Finn & Levine, 2017) tries to take 
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into account moving objects. However, the model predicts pixels and does not take into 
account relations between objects, which limits its generalizability. Zhu et  al. (2018) 
propose a novel NN, which can be trained in an unsupervised way, for object detection 
and object dynamic prediction conditioned on actions and object relations. This work 
has been extended to deal with multiple dynamic objects (Zhu et al., 2020).

Another work (Agnew & Domingos, 2018) proposes an unsupervised method called 
Object-Level Reinforcement Learner (OLRL), which detects objects from pixels and learns 
a compact object-level dynamics model. The method works according to the following 
steps. Frames are first segmented into blobs of pixels, which are then tracked over time. 
An object is defined as blobs having similar dynamics. Dynamics of those objects are then 
predicted with a gradient boosting decision tree.

In Veerapaneni et  al. (2020) an end-to-end object-centric perception, prediction, and 
planning (OP3) framework is developed. The model has different components jointly-
trained: for (dynamic) entity grounding, for modeling the dynamics and for modeling the 
observation distribution. The variable binding problem is treated as an inference problem: 
being able to infer the posterior distribution of the entity variables given a sequence of 
observations and actions. One further specificity of this work is to model a scene not glob-
ally but locally, i.e., for each entity and its local interactions (locally-scoped entity-centric 
functions), avoiding the complexity to work with the full combinatorial space, and ena-
bling generalization to various configurations and number of objects.

Discussion
Diverse approaches have been considered for learning an interpretable transition model. 

They are designed to represent either deterministic or stochastic environments. Recent 
work is based on NNs in order to process high-dimensional inputs (e.g., images) and has 
adopted an object-centric approach. While NNs hinder the intelligibility of the method, the 

Table 5   Overview of approaches for Interpretable Preference Models 

Model Approach Interpretability References

Relational Inverse RL Simulatable Munzer et al. (2015)
Relational Active learning Decomposable Martínez et al. (2017a)
Deep decision trees Batch adversarial inverse RL Partial decomp Srinivasan and Doshi-Velez 

(2020)
Tree structure Active preference learning 

inverse RL
Decomp Bewley and Lecue (2022)

LTL Pre-specified Simulatable Aksaray et al. (2016)
Geometric LTL Pre-specified Simulatable Littman et al. (2017)
Truncated LTL Pre-specified Simulatable Li et al. (2017a), Li et al. (2019)
LTL Pre-specified Simulatable Toro Icarte et al. (2018b)
Finite-state machine Pre-specified Simulatable Toro Icarte et al. (2018a)
Formal languages Pre-specified Simulatable Camacho et al. (2019)
LTL Pre-specified Simulatable Hasanbeig et al. (2020)
Finite-state machine Local search Simulatable Toro Icarte et al. (2019)
Finite-state machine Automata learning Simulatable Xu et al. (2020), Gaon and 

Brafman (2020), Corazza 
et al. (2022)

Symbolic plan Pre-specified Simulatable Illanes et al. (2020)
Boolean task algebra Pre-specified Simulatable Tasse et al. (2020)
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decomposition into object dynamics can help scale and add transparency to the transition 
model.

5.2 � Interpretable preference models

In RL, the usual approach to describe the task to be learned or performed by an agent 
consists in defining suitable rewards, which is often a hard problem to solve for the system 
designer. The difficulty of reward specification has been recognized early (Russell, 1998). 
Indeed, careless reward engineering can lead to undesired learned behavior (Randlov & 
Alstrom, 1998) and to value misalignment (Arnold et al., 2017). Different approaches have 
been proposed to circumvent or tackle this difficulty: imitation learning (or behavior clon-
ing) (Osa et al., 2018; Pomerleau, 1989), inverse RL (Arora & Doshi, 2018; Ng & Rus-
sell, 2000), learning from human advice (Kunapuli et al., 2013; Maclin & Shavlik, 1996), 
or preference elicitation (Rothkopf & Dimitrakakis, 2011; Weng et  al., 2013). Table  5 
summarizes the related work for interpretable preference models. Note that some of the 
approaches in Sect. 5.1 apply here as well (e.g., Walker et al., 2008).

Closer to interpretable RL, Munzer et  al. (2015) extend inverse RL to relational RL, 
while Martínez et  al. (2017a) learn from demonstrations in relational domains by active 
learning. In Srinivasan and Doshi-Velez (2020), more interpretable rewards are learned 
using tree-structured representations (Bewley & Lecue, 2022; Yang et al., 2018b).

Recent work has started to investigate the use of temporal logic (or variants) to specify 
an RL task (Aksaray et  al., 2016; Littman et  al., 2017; Li et  al., 2017a, 2019). Related 
to this direction, Kasenberg and Scheutz (2017) investigate the problem of learning from 
demonstration an interpretable description of an RL task under the form of linear temporal 
logic (LTL) specifications.

Another related work Toro  Icarte et  al. (2018a) propose to specify and represent a 
reward function as a finite-state machine, called reward machine, which clarifies the reward 
function structure. Reward machines can be specified using inputs in a formal language, 
such as LTL (Camacho et  al., 2019; Hasanbeig et  al., 2020). The model has also been 
extended to stochastic reward machines (Corazza et al., 2022). Reward machines can also 
be learned by local search (Toro Icarte et al., 2019) or with various automata learning tech-
niques (Gaon & Brafman, 2020; Xu et al., 2020). Inspired by reward machine, Illanes et al. 
(2020) propose the notion of taskable RL, where RL tasks can be described as symbolic 
plans.

Using a different approach, Tasse et  al. (2020) show how a Boolean task algebra, if 
such structure holds for a problem, can be exploited to generate solutions for new tasks 
by task composition (Todorov, 2009). Such approach, which was extended to the lifelong 

Fig. 3   Illustrations of the different approaches for interpretable decision-making. From left to right: Direct 
Approach, Indirect Approach, Architectural Inductive Bias, Intelligibility-driven Regularization
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RL setting (Tasse et al., 2022), can arguably provide interpretability of the solutions thus 
obtained.

Discussion
As can be seen, research in interpretable preference representation has been less devel-

oped than for transition models. However, we believe interpretability of preference models 
is as important if not more than interpretability for describing the environment dynamics, 
when trying to understand the action selection of an RL agent. Thus, more work is needed 
in this direction to obtain more transparent systems based on RL.

6 � Interpretable decision‑making

We now turn to the main part of this survey paper, which deals with the question of inter-
pretable decision-making. Among the various approaches that have been explored to obtain 
interpretable policies (or value functions), we distinguish four main families (see Fig. 3). 
Interpretable policies can be learned directly (Sect.  6.1) or indirectly (Sect.  6.2), and in 
addition, in DRL, interpretability can also be enforced or favored at the architectural level 
(Sect. 6.3) or via regularization (Sect. 6.4).

6.1 � Direct approaches

Work in the direct approach aims at directly searching for a policy in a policy space chosen 
and accepted as interpretable by the system designer. They can be categorized according 
to their search space and the method to search in this space (Table 6). Several models have 
been considered in the literature:

Decision Trees
A decision tree is a directed acyclic graph where the nodes can be categorized into deci-

sion nodes and leaf nodes. It is interpretable by nature, but learning it can be computation-
ally expensive. The decision nodes will determine the path to follow in the tree until a leaf 
node is reached, this selection is mostly done according to the state features. Decision trees 
can represent value functions or policies. For instance, some older work (Ernst et al., 2005) 
uses a decision tree to represent the Q-value function where each leaf node represents the 
Q-value of an action in a state. Their optimization method is based on decision tree-based 
supervised learning methods which do not rely on differentiability.

In contrast, Likmeta et  al. (2020) propose to learn parameterized decision nodes. In 
this approach, the policy instead of the value function is represented by the decision tree 
where a leaf represents the action to take. The structure of the tree is assumed to be given 
by experts. To update the tree parameters, policy gradient with parameter-based explora-
tion is employed. Similarly, Silva et al. (2020) design a method to discretize differentiable 
decision trees such that policy gradient can be used during learning. Therefore, the whole 
structure of the tree can be learned. The analysis in Silva et al. (2020) also suggests that 
representing the policy instead of the value function with a decision tree is more beneficial. 
Expert or other prior knowledge may also bootstrap the learning process, as demonstrated 
by Silva and Gombolay (2020), where the policy tree is initialized from human-provided 
knowledge, before being dynamically learned. In addition, Topin et al. (2021) introduce a 
method defining a meta-MDP from a base MDP with additional actions where any policy 
in the meta-MDP can be transformed in a decision tree policy in the base MDP. In this way, 
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the meta-MDP can be solved by classic DRL algorithms. Recently, Pace et al. (2022) pro-
pose to learn a tree-based policy in the offline and partially-observable setting.

In a different approach, Gupta et al. (2015) propose to learn a binary decision tree where 
each leaf is itself a parametric policy. Linear Gibbs softmax policies are learned in discrete 
action spaces, while in continuous action spaces Gaussian distributions are learned. These 
parametric policies remain interpretable since their parameters are directly interpretable 
(probabilities for Gibbs softmax policies, mean and standard deviation for Gaussian distri-
bution) and do not depend on states. Hence, the composition of the decision tree with the 
parametric policies is interpretable. Policy gradient is employed to update the parametric 
policies and to choose how the tree should grow.

Formulas
Maes et  al. (2012a) represent the Q-value function (used to define a greedy policy) 

with a simple closed-form formula constructed from a pre-specified set of allowed com-
ponents: binary operations (addition, subtraction, multiplication, division, minimum, 
and maximum), unary operations (square root, logarithm, absolute value, negation, and 
inverse), variables (components of states or actions, both described as vectors), and a fixed 
set of constants. Because of the combinatorial explosion, the total number of operators, 
constants, and variables occurring in a formula was limited to 6 in their experiments. To 
search among this space, the authors formulate a multi-armed bandit problem and used a 
depth-limited search approach (Maes et al., 2012b).

In Hein et al. (2018, 2019), a formula is used to directly represent a policy. In this work, 
expressivity is improved by adding more operators (tanh, if, and, or) and deeper formulas 
(a maximum depth of 5 and around 30 possible variables). Genetic programming is used to 
search for the formula when a batch of RL transitions is available..

A different approach is proposed in the context of traffic light control by Ault et  al. 
(2020) who design a dedicated interpretable polynomial function where the parameters are 
learned by a variant of DQN. This function is then used similarly to a Q-value function to 
derive a policy.

Fuzzy controllers
Fuzzy controllers define a policy as a set of fuzzy rules of the form: 

“ IF fuzzy_condition(state) DO action. ” Akrour et  al. (2019) assume that a state is cat-
egorized in a discrete number of clusters with a fuzzy membership function. Then 
fuzzy_condition(state) is defined as a distance to a centroid. A policy is defined as a Gauss-
ian distribution such that the closer a state is to a centroid, the more the mean associated 
to the centroid is taken into account for the global mean. The mean associated to each 
cluster is learned via policy gradient given a non-interpretable critic. Similarly, Hein et al. 
(2017) learn fuzzy rules for deterministic policies with particle swarm optimization in con-
tinuous action domains. In both approaches, the number of rules (and clusters) are adapted 
automatically.

Logic Rules
Neural Logic Reinforcement Learning (NLRL Jiang & Luo, 2019) aims at representing 

policies by first-order logic. NLRL combines policy gradient methods with a new differen-
tiable ILP architecture adapted from Evans and Grefenstette (2018). All the possible rules 
are generated given expert-designed rule templates. To represent the importance of rules in 
the deduction, a weight is associated to each rule. As all rules are applied with a softmax 
over their weights, the resulting predicate takes its value over the continuous interval [0; 1] 
during learning. Such approach is able to generalize to domains with more objects than it 
was trained on, but computing all the applications of all possible rules during training is 
costly.
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In the previous approach, to limit the number of possible rules, the templates are 
generally formulated such that the number of atoms in the body of a rule is restricted 
to two. To overcome this limitation, Payani and Fekri (2019a, 2019b) design an alter-
native model, enforcing formulas to be in disjunctive normal form, where weights are 
associated to atoms (instead of rules) in a clause and extend it to RL (Payani & Fekri, 
2020). Similarly, Zimmer et  al. (2021) also define weights associated to atoms. How-
ever, the architecture proposed by Dong et al. (2019) is adapted to enforce interpretabil-
ity and relies on a Gumbel-Softmax distribution to select the arguments in a predicate. 
This approach can be more interpretable than previous similar work, since it can learn 
a logic program instead of a weighted combination of logic formulas. Recently, alterna-
tive approaches (Delfosse et al., 2023; Glanois et al., 2022) have been further explored.

Alternatively, Yang and Song (2019) propose a differentiable ILP method extending 
multi-hop reasoning (Lao & Cohen, 2010; Yang et  al., 2017). Instead of performing 
forward-chaining on predefined templates, weights are associated to every possible rela-
tional paths where a path corresponds to a multi-step chain-like logic formula. Com-
pared to previous work, it is less expressive since it is not able to represent full Horn 
clauses, but has a better scalability. This approach is extended by Ma et al. (2020) to the 
RL setting.

Programs
Verma et al. (2019) propose a novel approach to learn directly a policy written as a pro-

gram. Their approach can be seen as inspired by (constrained functional) mirror descent. 
Thus, their algorithm iteratively updates the current policy using a gradient step in the con-
tinuous policy space that mixes neural and programmatic representations, then projects the 
resulting policy in the space of programmatic policies via imitation learning. This approach 
is extended by Anderson et  al. (2020) to safe RL in order to avoid unsafe states during 
exploration with formal verification. Recently, Qiu and Zhu (2022) propose a differentiable 
method to learn a programmatic policy, while Cao et al. (2022) propose a framework to 
synthesize hierarchical and cause-effect logic programs.

Graphical Models
Most previously-discussed work uses a deterministic interpretable representation. How-

ever, graphical models can also be considered interpretable. Thus, for instance, in the con-
text of autonomous driving, Chen et al. (2020) solve the corresponding DRL problem as 
a probabilistic inference problem (Levine, 2018): for both the RL model and policy, they 
learn graphical models with hidden states, which are trained to be interpretable by enforc-
ing semantic meanings available at training time. The drawback of this approach is that it 
can only provide interpretability to the learned latent space.

Discussion
Using the direct approach to find interpretable policies is hard since we must be able to 

solve two potentially conflicting problems at the same time: (1) finding a good policy for 
the given (PO)MDP and (2) keeping that policy interpretable. These two objectives may 
become contradictory when the RL problems are large, resulting in a scalability issue with 
the direct approach. Most work learning a fully interpretable policy focuses only on small 
toy problems.

The direct approach is related to discrete optimization where the objective function is 
not differentiable and looking for a policy in such a space is very difficult. Another limita-
tion of these approaches is their poor robustness to noise. To overcome those issues, sev-
eral approaches use a continuous relaxation to make the objective function differentiable 
(i.e., search in a smoother space) and more robust to noise, but the scalability issue remains 
open.
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6.2 � Indirect approach

In contrast to the direct approach, the indirect approach follows two steps: first train 
a non-interpretable policy with any efficient RL algorithm, then transfer this trained 
policy to an interpretable one. Thus, this approach is related to imitation learning (Hus-
sein et  al., 2017) and policy distillation (Rusu et  al., 2016). Note a similar two-step 
approach can be found in post-hoc explainability for RL. However, a key difference con-
cerns how the obtained interpretable policy is used, either as a final controller or as a 
policy that explains a black-box controller, which leads to different considerations about 
how to learn and evaluate such interpretable policy (see Sect. 7). Similarly to RL algo-
rithms that can be subdivided into value-based methods and policy-based methods, the 
focus in the indirect approach may be to obtain an interpretable representation of either 
a learned Q-value function (which provides an implicit representation of a policy) or 
a learned policy (often called oracle), although most work focuses on the latter case. 
Regarding the types of interpretable policies, decision trees (or variants) are often cho-
sen due to their interpretability, however other representations like programs have also 
been considered.

Decision Trees and Variants
Liu et  al. (2018)’s work is representative among the value-based methods using 

decision trees. The authors introduce Linear Model U-trees (LMUTs) to approximate 
Q-functions estimated by NNs in DRL. LMUTs is based on U-tree (Maes et al., 1996), 
which is a tree-structured representation specifically designed to approximate a value 
function. A U-Tree, whose structure and parameters are learned online, can be viewed 
as a compact decision tree where each arc corresponds to the selection of the feature of 
a current or past observation, and each path from the root to a leaf represents a cluster 
of observation histories having the same Q-values. LMUTs extend U-Trees by having 
in each leaf a linear model, which is trained by stochastic gradient descent. Although 
LMUT is undoubtedly a more interpretable model than a NN, it shows its limit when 
dealing with high-dimensional features spaces (e.g., images). In Liu et al. (2018), rules 
extraction and super-pixels (Ribeiro et al., 2016b) are used to explain the decision-mak-
ing of the resulting LMUT-based agent.

Many policy-based methods propose to learn a decision tree policy. The difficulty 
of this approach is that a high-fidelity policy may require a large-sized decision tree. 
To overcome this difficulty, Bastani et  al. (2018) present a method called VIPER that 
builds on DAGGER (Ross et al., 2011), a state-of-the-art imitation learning algorithm, 
but exploits the available learned Q-function. The authors show that their proposition 
can achieve comparable performance to the original non-interpretable policy, and is 
amenable to verification. As an alternative approach to control the decision tree size, 
Roth et al. (2019) propose to increase its size only if the novel decision tree increases 
sufficiently the performance. As an improvement to work like VIPER using only one 
decision tree, Vasic et al. (2019) use a mixture of Expert Trees (MOET). The approach 
is based on a gating function that partitions the state space and then within each parti-
tion, a decision tree expert (via VIPER) approximates the policy.

For completeness, we mention a few other relevant studies, mostly based on imitation 
learning: Natarajan et  al. (2011) learn a set of relational regression trees in relational 
domains by functional gradient boosting; Cichosz and Pawełczak (2014) learn decision 
tree policies for car driving; Nageshrao et al. (2019) extract a set of fuzzy rules from a 
neural oracle.
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Programs
As an alternative to decision trees, Verma et  al. (2018) introduce Programmatically 

Interpretable RL (PIRL) to generate policies represented in a high-level, domain-specific 
programming language. To find a program that can reproduce the performance of a neu-
ral oracle, they propose a new method, Neurally Directed Program Search (NDPS). NPDS 
performs a local search over the non-smooth space of programmatic policies in order to 
minimize a distance from this neural oracle computed over a set of adaptively chosen 
inputs. To restrict the search space, a policy sketch is assumed to be given. Unlike the imi-
tation learning setting where the goal is to match the expert demonstrations perfectly, a key 
feature of NPDS is that the expert trajectories only guide the local program search in the 
program space to find a good policy.

Zhu et al. (2019) also propose a search technique to find a program to mimic a trained 
NN policy for verification and shielding (Alshiekh et  al., 2018). The novelty in their 
approach is to exploit the information of safe states, assumed to be given. If a generated 
program is found to be unsafe from an initial state, this information is used to guide the 
generation of subsequent programs.

In Burke et al. (2019), a method is proposed to learn a program from demonstration for 
robotics tasks that are solvable by applying a sequence of low-level proportional control-
lers. In a first step, the method fits a sequence of such controllers to a demonstration using 
a generative switching controller task model. This sequence is then clustered to generate a 
symbolic trace, which is then used to generate a programmatic representation by a program 
induction method.

Finally, although strictly speaking not a program, Koul et al. (2019) propose to extract 
from a trained recurrent NN policy a finite-state representation (i.e., Moore machine) that 
can approximate the trained policy and possibly match its performance by fine-tuning if 
needed. This representation is arguably more interpretable than the original NN.

Discussion
As mentioned previously, the direct approach requires tackling simultaneously two dif-

ficulties: (1) solve the RL problem and (2) obtain an interpretable policy. In contrast to the 
direct approach, the indirect approach circumvents the first above-mentioned difficulty at 
the cost of solving two consecutive (hopefully easier) problems: (1) solve the RL problem 
with any efficient RL algorithm, (2) mimic the good learned policy with an interpretable 
one by solving a supervised learning problem. Therefore, any imitation learning (Hus-
sein et al., 2017) and policy distillation (Rusu et al., 2016) methods could be applied to 

Table 7   Overview of approaches with Architectural Inductive Bias 

Inductive bias Model Intelligibity References

Relational Graph NN Partial decomp Wang et al. (2018)
Logical Modular architecture:

MLPs wired w/ tensor operators
Weak partial decomp Dong et al. (2019)

Attention Self-attention bottleneck
LSTM controller

Partial decomp Tang et al. (2020)

Attention ConvLSTM, attention
module, LSTM controller

Partial decomp Mott et al. (2019)

Attention DQN architecture
w/ attention

Partial decomp Annasamy and Sycara (2019)
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obtain an interpretable policy in the indirect approach. However, the indirect approach is 
more flexible than standard imitation learning because of the unrestricted access to (1) an 
already-trained expert policy using the same observation/action spaces, and (2) its value 
function as well. The teacher-student framework (Torrey & Taylor, 2013) fits particularly 
well this setting. As such, it would be worthwhile to investigate the applications of tech-
niques proposed for this framework (e.g., Zimmer et al., 2014) to the indirect approach.

In addition, the work by Verma et al. (2019) seems to be a promising approach to com-
bine the direct and indirect approaches. While the authors show that the performance of 
their proposition outperforms NDPS, it is currently still not completely clear which of a 
direct method or an indirect one should be preferred to learn good interpretable policies.

6.3 � Architectural inductive bias

To favor interpretable decision-making, specific architectural choices may be adopted for 
the policy network or value function, may it be through relational, logical, or attention-
based bias; some examples are presented in Table 7.

Relational Inductive Bias
Such bias refers to inductive bias imposing constraints on relationships and interactions 

among entities in a learning process. It can take various forms ranging from convolutional 
NNs to Graph NNs (GNN) as mentioned in Section 4.2 for representation learning, here 
designed for the policy network. While still difficult to apprehend since the approach is 
based on NNs, enforcing specific structures in the NN architecture arguably makes the 
model (and thus the decision-making computed by it) more interpretable. A representative 
example is NerveNet (Wang et al., 2018) which aims at learning a structured policy—para-
metrized as a GNN, and executing some graph propagation steps.

Logical Inductive Bias
For instance, Neural Logic Machine (NLM) (Dong et al., 2019) is an end-to-end dif-

ferentiable neural-symbolic architecture for inductive learning and logic reasoning. Predi-
cates are represented by probabilistic tensors, i.e., grounded on any possible combination 
of objects. From a set of premises (base predicates), the forward pass in NLM, mimick-
ing a sequence of forward chaining steps, outputs some conclusive tensors. Some logical 
architectural bias is embedded, as through the explicit wiring among the neural modules to 
realize the logical existential quantifiers as tensorial operations. Such approach can be seen 
as learning on a continuous relaxation of logic programs. Some undeniable advantages of 
NLM compared with the neuro-symbolic literature is the improved inference time, and that 
it does not rely on hand-engineered rule templates. However, what it gains in scalability, it 
loses in interpretability.

Attention-based Inductive Bias
Another intelligibility incentive is the use of selective attention mechanisms for the pol-

icy network (Mott et al., 2019; Tang et al., 2020), or the Q-network (Annasamy & Sycara, 
2019). The work of Tang et al. (2020) evolves RL agents which are encouraged to attend 
to a small fraction of its visual input, by selecting which spatial patches of the input repre-
sentation they feed to the LSTM controller. Similarly, Mott et al. (2019) present a soft, top-
down, spatial attention mechanism applied to the visual input, while allegedly uncovering 
part of the underlying decision process, in terms of space (“where”) and content (“what”). 
Although the authors argue that these attentions mechanisms yield more informative and 
reliable explanations than other methods for analyzing saliency, the correlation between 
attention and explainability has been both supported (Wiegreffe & Pinter, 2019) and 
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disputed (Brunner et al., 2020; Jain & Wallace, 2019) in further work along different sce-
narios. For related work focusing on explainability (see Sect. 7).

Discussion
As recent work suggests, relational or logical inductive bias can foster reasoning and 

generalization over structured data, may it be a graph or predicates, and can improve learn-
ing efficiency and robustness, while still benefiting from the flexibility of statistical learn-
ing, in contrast to pure symbolic approaches. Although, as soon as the environment and 
dynamics are complex, these learned relational, logical or attentive representations would 
not be sufficient to non-ambiguously make sense of the decision-making process.

It is worth mentioning some related deep learning work, which has used logical back-
ground knowledge as a way to shape the neural architecture itself, such as Franca et  al. 
(2014), whose neural ILP-solver builds recursive NNs, made with AND-OR type of 
networks. However, strong architectural bias may drastically decreases the model’s 
expressivity.

6.4 � Intelligibility‑driven regularization

An alternative to structural bias is to encompass a soft bias on the hypothesis space, 
through some additional cost function favoring a certain notion of interpretability. This 
additional term, as ultimately aiming at improving generalization error over training error, 
can be interpreted as a regularization technique. Although this approach is natural and 
has received some attention in the broader scope of machine learning, it is relatively less 
explored in DRL. For this reason, we also discuss some non-RL studies in that direction, 
which could potentially be fruitfully adapted to RL. These approaches are summarized in 
Table 8.

Classical regularization methods in deep learning which foster lower complexity should 
be beneficial for interpretability, although far from being sufficient, e.g., L1-regularization 
(Zhang et al., 2016) encouraging sparsity or model compression (Buciluǎ et al., 2006).

Other interpretability-oriented penalty formulations have been proposed such as erratic-
behavior penalties to improve smoothness (Jia et al., 2019), or objectives targeting legible 
or predictable motions (Dragan et al., 2013); another example is given by Francois-Lavet 
et al. (2019) who introduce an additional loss term based on cosine similarity to encour-
age the predicted abstract state change to align with a chosen embedding vector. This 

Table 8   Overview of approaches with Intelligibility-Driven Regularization 

Regularizer Model RL Training Interpretability References

Smoothness regularizer NN Yes Weak Jia et al. (2019)
Alignment regularizer Model-based

model-free,
w/ double DQN

Yes Weak Francois-Lavet et al. (2019)

Model compression NN No Weak Buciluǎ et al. (2006)
L1-Regularizer NN No Weak Zhang et al. (2016)
Legibility/Predictability
Regularizer

– No Weak Dragan et al. (2013)

Tree-Regularizer NN No Weak Wu et al. (2019b)
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regularization arguably drives the abstract state to be more meaningful and generalizable, 
and thereupon may enable more efficient planning.

More typical interpretability-oriented regularizers have been proposed, with FOL (in 
DL, with Serafini & d’Avila Garcez, 2016), or tree-regularizers (Wu et  al., 2019b). The 
(regional) tree-regularization proposed by Wu et  al. (2019b) aims to specifically learn 
deep policy networks whose decision boundaries are well approximated by small decision 
tree(s), hence targets human simulatability. By considering interpretability from the very 
start—in contrast to indirect approaches aiming at approximating a black-box policy net-
work with a decision tree a posteriori—it should be more accessible to reach both good 
performance and simulatability, due to the multiple optima property of deep NN. Indeed, 
indirect approaches may be unreliable as the original unregularized black box NN has no 
incentive to be simulatable or decomposable.

Discussion
Embedding interpretability bias through regularizers has the advantage to be easily inte-

grated with any optimization algorithm, such as stochastic gradient descent, if the hypoth-
esis class is made differentiable. As deep models have—infamously—multiple optima of 
similar predictive accuracy (Goodfellow et al., 2016), we can hope that using interpreta-
bility-oriented regularizers may not impact much the performance. However, since such 
approaches do not restrict the search space per se, they do not provide interpretability 
guarantee.

There are a few noticeable studies in deep learning aiming to distil logical knowledge 
through loss functions and regularizers during the NN training, such as (Demeester et al., 
2016; Donadello et  al., 2017; Diligenti et  al., 2017; Rocktäschel et  al., 2015; Serafini & 
d’Avila Garcez, 2016; Wang & Pan, 2019; Xu et  al., 2018)10 or (Minervini et  al., 2017) 
with adversarial training. Bridging the gap between XRL and interpretable literature, 
Plumb et  al. (2020) propose some explanability-regularizers, differentiable, and model 
agnostic, which would encourage the learned models, trained end-to-end, to be well 
explainable. Although intelligibility-enhancers seem numerous, the question of defining 

Fig. 4   Illustration for explainable RL approaches. Dashed lines represent optional links, depending on the 
methods

10  For instance, Serafini and d’Avila Garcez (2016) use FOL-based loss-function to constrain the learned 
semantic representations to be logically consistent.
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specific regularizers leading to a reasonably-interpretable decision-making in complex 
environments is far from being obvious.

7 � Explainable RL

Although the focus of this survey is on interpretable RL, we also provide a succinct over-
view of explainable RL (XRL) for completeness and in order to contrast it with the work in 
interpretable RL. Figure 4 illustrates the high-level procedure in XRL, which can be con-
trasted with the approaches for interpretable decision-making described in Fig. 3. A more 
thorough discussion on XRL can be found in the recent surveys by Alharin et al. (2020) or 
Heuillet et al. (2021). The methods discussed in this section are summarized in Table 9.

The goal in XRL is to provide some explanations regarding an RL agent’s decisions, 
e.g., highlighting the main features that influenced a decision and their importance. This 
is commonly done via a post-hoc and often model-agnostic procedure after a black-box 
model is already trained, which usually only aims to offer a functional understanding. 
Many contextual parameters should be taken into consideration when defining what consti-
tutes a "good" explanation for a scenario, e.g., background knowledge and levels of exper-
tise of the explanation recipients, their needs and expectations, but also (often neglected) 
the time available to them. Explanations can take various forms:

Visual explanation
Using the DQN algorithm, Zahavy et  al. (2016) build two graphical representations 

in order to analyze the decisions made by the DQN network: (1) t-SNE maps (van  der 
Maaten & Hinton, 2008) from the activations of the last hidden layer of the network and 

Table 9   Overview of approaches in Explainable RL 

Type Approach References

Visual t-SNE, saliency map from Jacobian Zahavy et al. (2016)
Visual Saliency map from perturbation Greydanus et al. (2018)
Visual Saliency map by balancing specificity and relevance Gupta et al. (2020)
Visual SHAP Wang et al. (2020)
Visual Attention mask Shi et al. (2020)
Visual Attention mask with information bottleneck Kim and Bansal (2020)
Visual Summary from history Sequeira and Gervasio (2020)
Textual State predicates Hayes and Shah (2017)
Textual State and outcome predicates van der Waa et al. (2018)
Textual Reuse of provided instructions Fukuchi et al. (2017)
Causal Causal model Madumal et al. (2020b)
Causal Opportunity chain Madumal et al. (2020a)
Policy Soft decision tree Coppens et al. (2019)
Policy Decision tree Bewley and Lawry (2021)
Policy Decision tree Kenny et al. (2023)
Other Reward decomposition Juozapaitis et al. (2019)
Other Markov chain on abstract state space Topin and Veloso (2019)
Other Probability of success, # steps to reach goal Cruz et al. (2019)
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(2) saliency maps from the Jacobian of the network. Motivated by the limitations of Jaco-
bian saliency maps, Greydanus et al. (2018) propose to build saliency maps using a pertur-
bation-based approach, which provides information about the importance of a perturbed 
region. Continuing this line of research, Gupta et al. (2020) introduce the idea of balancing 
specificity and relevance in order to build saliency maps to highlight more relevant regions. 
In order to take into account non-visual inputs as well, Wang et al. (2020) extend a generic 
explanation technique called SHAP (SHapley Additive exPlanation) (Lundberg & Lee, 
2017) to select important features for RL. Another approach is based on attention mecha-
nisms. Shi et al. (2020) propose to learn attention masks in a self-supervised way to high-
light information important for a decision. In Kim and Bansal (2020), attention is further 
combined with an information bottleneck mechanism in order to generate sparser attention 
maps. Using a different kind of explanation, Sequeira and Gervasio (2020) investigate the 
use of visual summaries extracted from histories to explain an agent’s behavior.

Textual explanation
The work of Hayes and Shah (2017) generates explanations for choosing an action 

by finding state predicates that co-occur with that action. Inspired by that approach, van 
der Waa et  al. (2018) extend it by introducing outcome predicates and provide contras-
tive explanations using both state and outcome predicates. In a setting where the agent 
learns from instructions given by a human tutor, Fukuchi et al. (2017) propose to explain 
the agent’s decisions by reusing the provided instructions.

Causal explanation
In the proposition of Madumal et al. (2020b), a causal model is learned from a given 

graph of causal relation in order to generate contrastive explanations of action choices. 
Building on this work, Madumal et  al. (2020a) instead generate explanations based on 
potential future actions using the concept of opportunity chains, which include information 
of what is enabled or caused by an action.

Interpretable policy
Some work tries to obtain a more intelligible policy in order to explain a trained RL 

agent using, e.g., soft decision trees (Coppens et  al., 2019), decision trees (Bewley & 
Lawry, 2021) or prototypes (Kenny et al., 2023). Note that the indirect approach for inter-
pretability (as presented in Sect. 6.2) should not be confused with this approach for post-
hoc explainability. In the latter case, a more intelligible policy is learned to explain a black-
box policy that is used as the proper controller. In contrast, in the former case, a more 
interpretable policy is learned to be used as the final controller that replaces the intermedi-
ate black-box policy, which therefore does not need to be explained anymore. Therefore, in 
the latter case, it is important that the intelligible policy mimics the black-box policy well, 
while in the former, the performance of the interpretable policy is more important than its 
ability to mimic the black-box policy. When learning such an explanatory policy, a com-
promise between its intelligibility and the fidelity of its approximation needs to be found. 
One common drawback is that such an approximation may be valid only on a restricted 
domain.

Other
Furthermore, Juozapaitis et al. (2019) propose to learn a vector Q-function, where each 

component corresponds to a given attribute called reward type. This decomposition of the 
Q-function is then used to explain preferences between actions. In contrast, in Topin and 
Veloso (2019), a policy is explained with a Markov chain built on an abstract state space. 
In addition, in goal-oriented RL, Cruz et al. (2019) justify an action choice based on its 
probability of success and the number of time steps to reach the goal.

Discussion
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Most work we discussed takes the target audience of the explanations to be the end-user. 
Even in this case, explanations can take multiple forms. Thus, it can be presented to the 
user in different modes (e.g., visual, textual, tabular,...) and it can be either local or global. 
Beyond their forms, explanations may also answer intelligibility queries of different nature 
and granularity: certainty, contextual, case-based or analogies, contrastive, counterfactual 
(“what if"), simulation-based (consequences), trace/steps, why not, etc (e.g., Chari et  al. 
(2020), Lim et al. (2019), Mittelstadt et al. (2019)). Hence, an explanation can be used to 
clarify, justify, or rationalize an action choice. Future work on XRL should make those 
aspects clear, since this information would impact how an explanation technique should be 
evaluated and taken into consideration.

One issue with post-hoc explanation approaches is that while the generated explanation 
may seem to make sense, it may in fact be specious (e.g., Atrey et al., 2020 for saliency 
maps) and may not reflect the true inner working of the model. While this may not be an 
issue if the explanation is used as a tool to justify an action choice to a user, this is prob-
lematic for understanding the decision-making process. Note this issue does not occur if an 
interpretable policy is used for decision-making.

While the explainable and interpretable literature refers to usually divergent approaches, 
some recent work aimed at bridging this gap, (e.g., Plumb et  al., 2020 previously men-
tioned in Sect. 6.4). Through regularizers, it gracefully integrates explanability considera-
tions during the training of the model. It stands at odds with traditional XRL literature, 
assuming they could extract a posteriori explanations, without any incentive for the model 
to be intelligible.

8 � Open problems and research directions

Before concluding this survey, we discuss a selection of open problems, which we regard 
as essential within the quest for interpretable RL.

Full Interpretability in RL
The work we have reviewed falls in various intermediate levels on the interpretability 

scale, some being more interpretable than others for different RL components. Moreover, 
few DRL approaches accepting high-dimensional inputs, if any, can achieve full interpret-
ability, i.e., interpretable inputs, interpretable models, and interpretable decision-making. 
Designing a fully-interpretable RL method with a high-degree of interpretability seems not 
to be achievable with the current methods, especially for complex tasks like autonomous 
driving, although such tasks calls for such methods. Thus, for DRL to be considered as 
a practical method to solve those difficult tasks, fully interpretable RL methods must be 
developed for all the RL components. Given the complexity of those tasks, this may only 
be achievable by abstraction and composition in the programming language sense, where 
interpretable methods can be composed to solve more difficult problems.

Interpretability vs Performance
A commonly-held opinion is that using a more transparent model or approach 

impacts negatively the final performance (Ribeiro et al., 2016a). In the light of impres-
sive results achieved by deep learning methods, this opinion seems hard to be chal-
lenged. However, some different voices (Rudin & Carlson, 2019) suggest that black-box 
models like those based on deep learning may not always be needed and that in some 
domains simple models should be favored and can obtain excellent performance with-
out the drawbacks of deep learning methods. Similar remarks have also been made in 
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deep RL by Mania et al. (2018), who showed that simple linear models with stochastic 
search can fare well against more advanced DRL methods. Extrapolating those observa-
tions, one may wonder if this could be achieved with all aspects of RL (inputs, models, 
decision-making) and if interpretability can be considered as a regularization technique, 
which would bring more transparency obviously, but also larger generalizability.

Interpretability vs Scalability
In addition to the challenge of designing a fully-interpretable RL method, running 

such a method in order to learn a fully-interpretable solution would probably be also 
more costly in terms of computation than a standard DRL algorithm. Indeed, for deci-
sion-making for instance, learning a fully-interpretable policy corresponds to a task 
similar to program synthesis (Gulwani et  al., 2017), which requires a search over a 
discrete solution space whose size increases exponentially fast with the solution size. 
Therefore, there may be a trade-off between the degree of interpretability one may want 
to achieve and the scalability of the interpretable algorithm. This question is crucial to 
investigate as the research moves to more and more interpretable methods, critically 
needed for high-stake tasks.

Evaluation of Interpretability and Explainability
We finish this discussion by a more classic question that has been frequently raised 

within XAI, but that we mention here due to its importance. Given the various meanings of 
interpretability and explainability and more precisely the various purposes they can serve, 
there is no common ground for the definition of good evaluation metrics for XAI in gen-
eral, but also for interpretable and explainable RL. For interpretability, is there a good met-
ric for deciding if one model is more interpretable than another? For explainability, is it 
possible to evaluate what constitutes a good explanation in a specific context? This state of 
affairs prevents a comparative evaluation of the different methods that have been proposed, 
which also impedes the rapid progress in this research direction. While achieving more pre-
cise definitions for interpretability and explainability can help, evaluation metrics and pro-
tocols could be proposed depending on precise goals regarding ethical, legal, operational, 
or usability concerns, which may help them to be adopted by the research community.

Impact of Foundation Models on Interpretable and Explainable RL
Recently, foundation models (i.e., large models pretrained on a massive quantity of gen-

erally-unlabelled data) (Bommasani et al., 2022) have shown impressive capabilities, nota-
bly for generation under user prompt of texts (OpenAI et al., 2023; Glaese et al., 2022) or 
images (Ramesh et al., 2021; Rombach et al., 2022). Although such models may arguably 
not be very transparent, various research effort (e.g., (Friedman et al., 2023; Singh et al., 
2023; Wu et al., 2023)) is currently spent to make their use more interpretable. Moreover, 
foundation models, in particular large language models (Liu et al., 2023), which are pre-
trained on text, have potentially the capability of generating textual explanation, although 
one should be careful about various well-known risks such as bias or hallucinations. Inter-
estingly, they can also implicitly learn human preferences during pretraining and can there-
fore serve directly as a source of rewards (Kwon et al., 2023; Rafailov et al., 2023).

In addition, these large models can be fine-tuned using RL with human feedback 
(RLHF) (Casper et al., 2023). RLHF is a framework that allows humans to specify their 
preferences, usually via pairwise comparisons of trajectories, circumventing the need of 
specifying a reward function, which is usually a difficult task for the system designer. In 
RLHF, a reward function is usually learned from human preferences. In such approach, 
the preference input is naturally understandable to humans and learning a reward function 
with a model such as a tree-structured model (Bewley & Lecue, 2022) can make the whole 
preference model interpretable.
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9 � Conclusion

We surveyed recent work in RL related to the important concern of interpretability (and 
its related notion of explainability). We argued for a definition of interpretability in RL, 
which contrary to the general setting of explainable AI, leads to different levels of trans-
parency in the components that play a role in RL. In particular, we first discussed stud-
ies that focus on interpretable inputs (e.g., observations, but possibly other structural 
information). Moreover, we provided an overview of approaches that deal with learning 
an interpretable transition model (e.g., important for interpretable model-based RL), but 
also those that deal with learning an interpretable preference model (e.g., fundamental 
to justify action selection). Then, we surveyed methods learning interpretable policies, 
which constitute arguably the most critical part of interpretable RL. For completeness, 
we also provided a short review of work related to post-hoc explainability. Finally, we 
highlighted a few open problems and future research directions that we deemed as par-
ticularly relevant.

Although concerns around the ethical implications of algorithmic and automation 
deployment are nothing new (Wiener, 1954), the field of AI ethics still seems at its 
infancy as we begin to witness the extent of the influence and impact that these systems 
may have on our societal fabric when deployed. In this regard, a responsible practice 
for the design, implementation, use, and monitoring/auditing of AI-driven systems is 
greatly impeded by the non-intelligibity of current algorithms. As RL-based systems 
become more widespread, questions related to interpretability become consequently 
increasingly pressing. One could even contend that interpretable RL is one of the key 
deadlocks to overcome to make RL a more functional method for being deployed in 
real-life While it may be hard to achieve a fully intelligible RL model, one may envision 
hierarchical RL approaches where some parts may not be completely transparent—e.g., 
at the low-level—but a maximum of other parts—e.g., at the subgoal level—are thor-
oughly interpretable.

While the act of opening up the blackbox do not suffice to instantly disclose a thor-
ough understanding of its social implications—since we “need to look across the sys-
tem, rather than merely inside” (as noted by Ananny & Crawford, 2018)—algorithmic 
intelligibility appears as a promising step towards further algorithmic accountability 
and more trustworthy AI. We encourage the curious reader to look further at the gener-
ous work of other researchers investigating these tangent questions (such as Crawford 
et al. (2016), Raji et al. (2020), Daly et al. (2019), Yu et al. (2018), Commission (2019) 
to mention only a few).
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