
Vol.:(0123456789)

Machine Learning (2024) 113:6413–6451
https://doi.org/10.1007/s10994-024-06541-y

1 3

Secure and fast asynchronous Vertical Federated Learning
via cascaded hybrid optimization

Ganyu Wang1 · Qingsong Zhang2 · Xiang Li1 · Boyu Wang1 · Bin Gu3 · Charles X. Ling1

Received: 18 September 2023 / Revised: 7 January 2024 / Accepted: 5 March 2024 /
Published online: 27 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2024

Abstract
Vertical Federated Learning (VFL) is gaining increasing attention due to its ability to
enable multiple parties to collaboratively train a privacy-preserving model using vertically
partitioned data. Recent research has highlighted the advantages of using zeroth-order opti-
mization (ZOO) in developing practical VFL algorithms. However, a significant drawback
of ZOO-based VFL is its slow convergence rate, which limits its applicability in handling
large modern models. To address this issue, we propose a cascaded hybrid optimization
method for VFL. In this method, the downstream models (clients) are trained using ZOO
to ensure privacy and prevent the sharing of internal information. Simultaneously, the
upstream model (server) is updated locally using first-order optimization, which signifi-
cantly improves the convergence rate. This approach allows for the training of large models
without compromising privacy and security. We theoretically prove that our VFL method
achieves faster convergence compared to ZOO-based VFL because the convergence rate of
our framework is not limited by the size of the server model, making it effective for training
large models. Extensive experiments demonstrate that our method achieves faster conver-
gence than ZOO-based VFL while maintaining an equivalent level of privacy protection.
Additionally, we demonstrate the feasibility of training large models using our method.

Keywords  Vertical Federated Learning · Zeroth order optimization · Computation-
communication efficiency · Privacy

1  Introduction

Data availability is essential for machine learning, however, privacy concerns often pre-
vent the direct sharing of data among different parties. Federated learning (FL) addresses
this issue by facilitating collaborative model training without sharing private data. This
approach allows multiple parties to leverage their data while adhering to privacy protec-
tion measures and government regulations, such as the General Data Protection Regulation
(GDPR) (Commission, 2016).

Editor: Bo Han.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06541-y&domain=pdf

6414	 Machine Learning (2024) 113:6413–6451

1 3

Federated Learning (FL) algorithms have evolved into two mainstream subtypes,
including Horizontal Federated Learning (HFL) (McMahan et al., 2017; Li et al., 2020,
2021; Karimireddy et al., 2020; Mishchenko et al., 2022; Shi et al., 2021; Casado et al.,
2023; Badar et al., 2023; Ahmad et al., 2023; Li et al., 2022; Sabater et al., 2022) and
Vertical Federated Learning (VFL) (Li et al., 2020; Vepakomma et al., 2018; Chen
et al., 2020; Yang et al., 2019; Hu et al., 2019; Wei et al., 2022; Gu et al., 2021). HFL
involves clients holding a subset of data points with a full feature set (horizontally dis-
tributed), while VFL involves clients holding all data points but with a non-intersecting
subset of features (vertically distributed).

We focus on VFL, which is applicable to practical learning scenarios in various
industries, such as hospitals, banks, and insurance companies. For example, a govern-
ment agency (server) collaborates with multiple banks (clients) to develop a model for
estimating customers’ credit scores (Wei et al., 2022), where each bank holds a distinct
set of customer features. In VFL, the client trains a feature extraction model that maps
its local data sample to embeddings. The server then collects the embeddings from all
clients and uses them as input for the server model to make a prediction.

To build a practical VFL, it is essential to meet the following fundamental require-
ments: model applicability (Castiglia et al., 2022; Makhija et al., 2022; Zhang et al.,
2021), privacy security (Zhou et al., 2020; Hardy et al., 2017; Fang et al., 2021), com-
putational efficiency (Chen et al., 2020; Hu et al., 2019; Zhang et al., 2021), and com-
munication efficiency (Zhang et al., 2021; Castiglia et al., 2022; Wang et al., 2022).

In a typical VFL framework optimized with FOO (Chen et al., 2020; Vepakomma
et al., 2018),nas illustrated in Fig. 1a, both the server and clients utilize FOO to opti-
mize the model, which is fast. However, sharing the gradient with the client poses a
serious risk of privacy leakage (Fu et al., 2022; Fredrikson et al., 2015; He et al., 2016;
Zhao et al., 2020), and the framework is only applicable to differentiable models.

A recent study (Zhang et al., 2021) found that applying ZOO on VFL, as depicted
in Fig. 1b, offers several advantages in building practical VFL. Firstly, it enhances
model applicability by eliminating the requirement for an explicit gradient to update
the model. Secondly, it improves privacy security by transmitting black-box informa-
tion (losses) to the client instead of internal information (gradients). Besides, the cli-
ent retains the perturbation direction, preventing third parties from obtaining the gradi-
ent. As a result, both the server and client can maintain the confidentiality of gradient

Fig. 1   The intuition of our VFL framework

6415Machine Learning (2024) 113:6413–6451	

1 3

information during training. However, relying solely on ZOO for model optimization
can lead to slow convergence, especially when dealing with large models.

Both frameworks mentioned above do not meet the requirement of practical VFL.
Although FOO converges rapidly and dependably, the privacy risk associated with trans-
mitting the gradient is a significant drawback. On the other hand, ZOO provides high
model applicability and privacy security but suffers from a slow convergence problem.

Then, it comes to the question: How to improve the convergence speed while preserving
the advantages of ZOO to make a practical VFL?

In this paper, we provide a solution to this problem by proposing a cascaded hybrid
optimization method in the asynchronous VFL which maximizes the benefits of both opti-
mization methods.

As depicted in Fig. 1c, we utilized distinct optimization methods for the upstream
(server) and downstream (client) of the global model in a cascaded manner. This approach
ensures privacy preservation, as the downstream models update with ZOO, which guaran-
tees that no gradient is transmitted through the network. Additionally, the upstream model
is updated with FOO locally, which converges fast and does not compromise privacy.

Our contributions can be summarized as follows:

•	 We propose a practical asynchronous VFL framework that cascades two different opti-
mization methods (FOO &ZOO), where the advantages of both optimization methods
are maximized. Our VFL framework satisfies the fundamental requirements of model
applicability, privacy security, computational efficiency, and communication efficiency
to a significant degree.

•	 We theoretically prove that the convergence of our VFL framework is faster than the
ZOO-based VFL by demonstrating that the convergence is solely limited by the size
of the client’s parameters. Additionally, our VFL framework can feasibly train a large
parameterized model with the majority part on the server.

•	 We conduct extensive experiments on the Multi-Layer Perception (MLP), Convolu-
tional Neural Network (CNN), and Large Language Model (LLM) to demonstrate the
privacy and applicability of our framework in the latest deep learning tasks.

Justification of the Application Scenario: In our VFL setting, the server uses a larger
model compared with the clients. We provide our justification for this application scenario
below.

In VFL, the server is typically the initiator and primary beneficiary of the model train-
ing process. The client, on the other hand, acts as a follower and only provides the embed-
ding of their local features without disclosing the raw data (Wei et al., 2022). Besides, the
server usually possesses more computational resources than the clients, making it more
suitable for training large models. Therefore, using a larger model on the server side can
lead to better data predictions and reduce the computational burden for all participants in
the VFL, making it a more preferable and economical option.

2 � Related work

There are several basic metrics to consider when developing a VFL framework:
Model Applicability dictates the VFL framework can fit heterogeneous models.

The heterogeneity of the model mainly determines whether the model is differentiable.

6416	 Machine Learning (2024) 113:6413–6451

1 3

For example, most of the VFL approaches explicitly apply gradient (Vepakomma
et al., 2018; Chen et al., 2020), which forces each party to use a differentiable model.
However, this approach may not always be practical, especially when the participants
have non-differentiable model architectures. In such cases, when the gradient is not
available, the main solution is to apply proximal-term (Castiglia et al., 2022) or to use
ZOO (Zhang et al., 2021).

Privacy is a critical consideration for any VFL algorithm. In VFL, there are two
types of private data: the features held by the clients and the labels held by the server.
Depending on the target of the attack, privacy inference attacks in VFL can be clas-
sified as feature inference attacks (Luo et al., 2021; Jin et al., 2021; Zhu et al., 2019;
Fredrikson et al., 2015; Weng et al., 2020) or label inference attacks (Fu et al., 2022;
Sun et al., 2022; Zhu et al., 2019; Zhao et al., 2020; Jin et al., 2021).

The mainstream privacy protection scheme is applying privacy computing on VFL.
For example, Liu et al. (2020) and Hardy et al. (2017) have applied homomorphic
encryption (HE) on the transmission data, where the participant in the VFL framework
sends the ciphertext instead of plain text through the network. Other works have used
differential privacy (DP) (Shokri & Shmatikov, 2015; Ranbaduge & Ding, 2022; Wei
et al., 2020; Sabater et al., 2022) or secure multiparty computation (SMC) (Fang et al.,
2021). Although these privacy computing methods have a provable security level, they
have several disadvantages. For example, HE restricts the choice of model structure,
DP reduces the performance of the global model, and HE and SMC have high commu-
nication or computation costs for participants, which limits their application.

Computational Efficiency dictates that the computation resource in VFL is effi-
ciently used. The computational efficiency of synchronous VFL can be low due to the
idle time for participants. In synchronous VFL, the server coordinates with all clients
by sending a request to all clients for each batch of training data. The server must
wait for all clients’ responses to fulfill one global update step before sending the next
request to all clients (Liu et al., 2019; Vepakomma et al., 2018; Castiglia et al., 2022;
Fang et al., 2021). As a result, all participants must wait for the slowest one, leading to
low computational efficiency in synchronous VFL.

Asynchronous VFL (Chen et al., 2020; Hu et al., 2019; Zhang et al., 2021) was
proposed to reduce idle time for each participant and improve the computation effi-
ciency. In asynchronous VFL, the client continuously sends its model output to the
server without coordination from the server. When the server receives the output from
the client, it replies with the necessary information (e.g., partial derivative) to assist
the model update of the client. This scheme eliminates most of the idle time for the cli-
ents and improves computation efficiency. Our research focuses on asynchronous VFL.

Communication Efficiency is about reducing the communication cost between the
parties of VFL. Research has focused on reducing communication rounds (Liu et al.,
2019; Wang et al., 2022) or per-round communication overhead (Castiglia et al., 2022).
Liu et al. (2019) propose multiple local updates on VFL participants to reduce com-
munication rounds. However, multiple local updates consume more computational
resources on clients, which is not favorable in VFL. Wang et al. (2022) apply a better
optimization method to speed up convergence and reduce communication rounds. Cas-
tiglia et al. (2022) apply compression to the embeddings of client outputs to support
efficient communication and multiple local updates, reducing per-round communica-
tion overhead and communication rounds.

6417Machine Learning (2024) 113:6413–6451	

1 3

3 � Method

This section introduces the modeling of the VFL problem and proposes our framework that
cascades different optimization methods. With a cascaded hybrid optimization method, the
advantage of both ZOO and FOO is maximized in one VFL framework.

3.1 � Problem definition

We consider a general form of VFL problem (Chen et al., 2020; Hu et al., 2019; Liu et al.,
2019; Zhang et al., 2021), which involves a single server and M clients.

Each participant in the VFL possesses n samples within their respective databases. Spe-
cifically, each client holds a distinct set of features for each sample, denoted as xi,m , while
the server holds the corresponding labels for the i-th sample,1 denoted as yi.

Clients communicate with the server through the network. To preserve the privacy of
the local data. Raw data xi,m and yi should not be transmitted through the network. The cli-
ent holds a local model Fm(wm;xi,m) parameterized by wm ∈ ℝ

dm with sample xi,m as input
and send the output ci,m of the model to the server through the network. The server holds a
model F0(w0;ci,1,… , ci,q) which is parameterized by w0 ∈ ℝ

d0 and take ci,m from all clients
as inputs. The loss function is denoted as L(ŷi, yi).

Ideally, all parties in the VFL framework collaborate to solve a finite-sum problem in
the composition form:

where g is the regularization function for the party m, [M] = {1, 2,⋯ ,M} denote the set of
all clients’ indices, w = {w1,w2,⋯ ,wM} denotes the parameters from all clients, fi(w0,w)
denotes the loss function for the i-th sample.

3.2 � Cascaded hybrid optimization (ZOO & FOO)

To leverage the advantage of ZOO and FOO in one VFL, we apply a cascaded hybrid opti-
mization method, where the upstream (server) and the downstream (client) of the global
model apply different optimization methods simultaneously. Specifically, the clients are
updated with ZOO and the communication between the server and the client does not con-
tain internal information, which protects privacy. The server is updated with FOO locally,
which speeds up the convergence of the VFL without degrading the privacy security.

(1)

f (w0,w) =
1

n

n∑

i=1

[
L(F0(w0, ci,1,… , ci,M), yi) + �

M∑

m=0

g(wm)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fi(w0,w)

with ci,m = Fm(wm;xi,m) ∀m ∈ [M]

1  For brevity, we use a single data sample i for discussion, however, the discussion can be easily general-
ized to a mini-batch version.

6418	 Machine Learning (2024) 113:6413–6451

1 3

3.2.1 � Client update with ZOO to ensure privacy security

The models of the clients are trained with the ZOO. The two-point stochastic gradient estima-
tor (Liu et al., 2020; Nesterov & Spokoiny, 2017) w.r.t. the client m’s parameter wm is defined
as:

where ui,m ∼ p is a random direction vector drawn from distribution p. Typically, p is stand-
ard normal distribution N(000, I) , or uniform distribution U(S(0, 1)) over a unit sphere at 0 ,
with the radius of 1. � is the smoothing parameter. fi

(
wm + �mui,m

)
 is the simplified form

of fi(w0,w1,w2,⋯ ,wm + �mui,m,⋯ ,wq) , i.e. the loss of the i-th sample with the model
parameter of client m changed to wm + �mui,m . �(dm) is a dimension-dependent factor that
relates to the choice of p. To be more specific, if p is N(000, I) then �(dm) = 1 and if p is
U(S(0, 1)) then �(dm) = dm.

The clients are unable to compute the gradient of the loss function locally due to the fact
that the label of the data is stored on the server. As illustrated in Fig. 2, the clients query
the server for the necessary computation material. The active client then computes the model
output with or without the perturbation �mui,m on its parameter and sends them to the server.
Specifically, the client’s outputs are:

Receiving the query from the client, the server replies to the client m with the correspond-
ing loss values hi,m and ĥi,m:

When the client receives hi,m and ĥi,m from the server, it is able to calculate the two-point
gradient estimator via:

(2)∇̂wm
fi
(
w0,w

)
=

𝜙(dm)

𝜇m

[
fi
(
wm + 𝜇mui,m

)
− fi

(
wm

)]
ui,m

ci,m = Fm(wm;xi,m)

ĉi,m = Fm(wm + 𝜇mui,m;xi,m)

hi,m = L(F0(w0, ci,1,… , ci,m,… , ci,M), yi)

ĥi,m = L(F0(w0, ci,1,… , ĉi,m,… , ci,M), yi)

(3)∇̂wm
fi
(
w0,w

)
=

𝜙(dm)

𝜇m

[
ĥi,m − hi,m

]
ui,m

Fig. 2   One round of our VFL
framework

6419Machine Learning (2024) 113:6413–6451	

1 3

Finally, the client m updates its parameter by gradient descent with the stochastic gradient
estimator:

There are two parts of private data in the VFL framework that require protection: the fea-
tures held by the clients and the labels held by the server. Our framework protects the pri-
vacy of the data by concealing the internal information of the participants. A comprehen-
sive analysis of the privacy protection of our framework is presented in Sect. 5.

3.2.2 � Server update with FOO to speed up the convergence

The primary issue with ZOO in the context of machine learning is that the variance of the
gradient estimation increases as the parameter dimension grows larger, leading to slow conver-
gence of ZOO, particularly for large models. To address this issue, we implemented the FOO
on the server to speed up the convergence. It is important to note that the server update is per-
formed locally and does not affect communication with the client or the client’s update steps.
As a result, the privacy protection of the framework is not compromised while simultaneously
accelerating convergence.

The server’s model is trained with the first-order gradient. Whenever the server receives
a message from the client, it performs one gradient descent step on its local model. Since the
server can access the output embeddings [ci,m]Mm=1 from all clients and the label yi , plus that
the server naturally has full access to its own model F0 , the server can explicitly calculate the
gradient via backpropagation. Specifically, the local gradient of the server is:

And the server’s parameter is updated via gradient descent:

3.3 � Asynchronous updates

The global model is trained without coordination among each party. We assume that all mes-
sages will be successfully transmitted, and no participants will withdraw during training. A
schematic graph is shown in Fig. 2. At each round, only one client is activated and communi-
cates with the server. After the communication, the activated client and the server update their
model. The clients’ update order can be modeled with a sequence of length T. In the t-th itera-
tion, the client mt is activated and picks the i-th sample for the update.

To model the delay of the clients, if the client mt is activated at the t-th iteration, the client
updates its parameter wmt

 and its delay for the i-th sample on the global model is reset. For all
other clients m ≠ mt , the delay count is incremented by 1. Formally, the delay for the client m
and sample i is updated using the following equation:

wt+1
m

= wt
m
− 𝜂m∇̂wm

fi
(
wt
0
,wt

)

∇w0
fi(w0,w) =

�
[
L(F0(w0, ci,1,… , ci,M), yi) + �g(w0)

]

�w0

(4)wt+1
0

= wt
0
− �0∇w0

fi(w
t
0
,wt)

� t+1
i,m

=

{
1, m = mt, i = it
� t
i,m

+ 1, otherwise

6420	 Machine Learning (2024) 113:6413–6451

1 3

Taking the client delay � t
i,m

 into consideration, we can represent the set of parameters for
the delayed clients as:

3.4 � Algorithm

By combining the ZOO on the client and FOO on the server, we designed an asynchro-
nous VFL framework. The algorithm is presented in Algorithm 1, and the procedure of one
update round is summarized in Fig. 2. The procedure of each training round can be sum-
marized as follows: first, the client randomly selects one sample i, computes ci,m and ĉi,m ,
and sends them to the server. Upon receiving the query from client m, the server calculates
the corresponding losses hi,m and ĥi,m and sends them back to the client. The server updates
its parameter using gradient descent (Eq. 4) immediately after sending the losses to the
client. Finally, upon receiving hi,m and ĥi,m from the server, the client updates its parameter
using the stochastic gradient estimator given by Eq. 3.

Algorithm 1   Asyn. VFL with Cascaded Hybrid Optimization

4 � Convergence analysis

4.1 � Theoretical challenges and advantages

The theoretical difficulty of our work comes from the cascaded hybrid optimization in the
VFL, where different optimization methods are simultaneously applied to the upstream and
downstream parts of the VFL. To the best of our knowledge, all related works in VFL
only considered a single type of optimization method in the entire VFL during one itera-
tion, whose analytic result can be more easily derived via the same analytic steps on the
entire framework. However, our work required different analytic procedures to be applied
to different parts of the model to solve the problem, which posed a significant challenge.

w̃
t = w

t−𝜏 t
i = [w

t−𝜏 t
i,1

1
,… ,w

t−𝜏 t
i,M

M
]

6421Machine Learning (2024) 113:6413–6451	

1 3

Specifically, the analytic procedure for ZOO and FOO is vastly different, making it difficult
to analyze these two different optimizations cascaded in a single model.

The theoretical advantage of our framework compared to the ZOO-based VFL (Zhang
et al., 2021) is that the convergence rate of our framework is no longer limited by the serv-
er’s parameter size, as stated in Remark 3. The complete proof of the convergence analysis
is provided in “Appendix 1”.

4.2 � Assumptions

Assumptions 1–4 are the basic assumptions for solving the non-convex optimization prob-
lem with stochastic gradient descent (Ghadimi & Lan, 2013; Liu et al., 2019; Zhang et al.,
2021). Assumption 1 tells that the global minima f ∗ is not −∞ (Ghadimi & Lan, 2013; Liu
et al., 2018; Zhang et al., 2021). Assumption 2 is used for modeling the smoothness of the
loss function f (⋅) , with which we can link the difference of the gradients with the difference
of the input in the definition domain. Assumption 3 is a common assumption for stochastic
gradient descent telling that the expectation of the estimation of the stochastic gradient of
the sample i does not have a systematic error or bias (Ghadimi & Lan, 2013). Assump-
tion 4 tells that the variance of the gradient estimation is bounded (Liu et al., 2018).

Assumption 1  (Feasible optimal solution) Function f is bounded below that is, there exist
f ∗ such that,

Assumption 2  (Lipschitz gradient) ∇fi is L-Lipschitz continuous w.r.t. all the parameter,
i.e., there exists a constant L for ∀ [w0,w], [w

�
0
,w�] such that

specifically there exists an Lm > 0 for all parties m = 0,⋯ ,M such that ∇wm
fi is Lm-Lip-

schitz continuous:

Assumption 3  (Unbiased gradient) For m ∈ 0, 1,⋯M for every data sample i, the stochas-
tic partial derivatives for all participants are unbiased, i.e.

Assumption 4  (Bounded variance) For m = 0, 1,⋯ ,M , there exist constants �m ≤ ∞ such
that the variance of the stochastic partial derivatives are bounded:

Assumption 5 is a common assumption for analyzing VFL when bounding some terms
for the entire model when the rest parts have been bounded (Castiglia et al., 2022; Gu
et al., 2021; Zhang et al., 2021). We only apply this assumption in the parts of convergence
analysis that do not affect the analytic result.

f ∗ ∶= inf
[w0,w]∈ℝ

d
f (w0,w) > −∞.

‖‖‖∇[w0,w]
fi(w0,w) − ∇[w0,w]

fi(w
�
0
,w�)

‖‖‖ ≤ L‖‖[w0,w] − [w�
0
,w�]‖‖

‖‖‖∇wm
fi(w0,w) − ∇wm

fi(w
�
0
,w�)

‖‖‖ ≤ Lm
‖‖[w0,w] − [w�

0
,w�]‖‖

�i∇wm
fi(w0,w) = ∇wm

f
(
w0,w

)

�i
‖‖‖∇wm

fi(w0,w) − ∇wm
f (w0,w)

‖‖‖
2

≤ �2

m

6422	 Machine Learning (2024) 113:6413–6451

1 3

Assumption 5  (Bounded block-coordinate gradient) The gradient w.r.t. all the client is
bounded, i.e. there exist positive constants Gm for the client m = 1,⋯ ,M the following
inequalities hold:

Assumption 6–7 are fundamental assumptions for analyzing the asynchronous
VFL (Zhang et al., 2021; Chen et al., 2020; Gu et al., 2021).

Assumption 6 states that the activation of each client in asynchronous VFL is inde-
pendent, without which the convergence result cannot be further simplified. Assump-
tion 7 states that the delay on the clients is bounded, without which the convergence
cannot be achieved.

Assumption 6  (Independent client) The activated client mt for the global iteration t is
independent of m0 , ⋯ , mt−1 and satisfies ℙ(mt = m) ∶= pm

Assumption 7  (Uniformly bounded delay) For each client m, and each sample i, the delay
at each global iteration t is bounded by a constant � . i.e. � t

m,i
≤ �

4.3 � Theorems

Theorem 1  Under Assumptions 1–7, to solve the Problem 1 with Algorithm 1 the following
inequality holds.

where L∗ = maxm

{
L, L0, Lm

}
 , d∗ = maxm

{
dm

}
 , �0 = �m = � ≤

1

4L∗d∗
 , 1

p∗
= minm pm ,

�∗ = maxm

{
�m

}
 , G∗ = maxm

{
Gm

}
 , and T is the number of iterations.

Remark 1  Theorem 1 tells that the major factors that affect the convergence are the learning
rate � , the smoothing coefficient � for the ZOO, and the biggest parameter size d∗ among
the clients.

Corollary 1  If we choose � =
1√
T
 , � =

1√
T
 , we can derive

where the parameters are the same as that in Theorem 1.

‖‖‖∇wm
hm(wm;xm,i)

‖‖‖ ≤ Gm

1

T

T−1∑

t=0

�
‖‖‖∇f

(
wt
0
,wt

)‖‖‖
2

≤
4p∗�

(
f 0 − f ∗

)

T�
+ �

(
4p∗L∗�

2

∗
+ 8p∗L∗d∗�

2

∗
+ p∗L

3

∗
�2

∗
d2
∗

)

+ �2
(
18p∗�

2L2
∗
d∗G

2

∗
+ 5p∗�

2L2
∗
�2

∗
L2
∗
d2
∗

)
+ �2

∗

(
p∗L

3

∗
d2
∗

)

1

T

T−1�

t=0

�
���∇f

�
wt
0
,wt

����
2

≤
1√
T

�
4p∗�

�
f 0 − f ∗

�
+ 4p∗L∗�

2

∗
+ 8p∗L∗d∗�

2

∗

�

+
1

T

�
18p∗�

2L2
∗
d∗G

2

∗
+ 5p∗�

2�2

∗
L4
∗
d2
∗
+ p∗L

3

∗
d2
∗

�

+
1

T
3

2

�
p∗L

3

∗
d2
∗

�

6423Machine Learning (2024) 113:6413–6451	

1 3

Remark 2  Corollary 1 demonstrates the convergence of our cascaded hybrid optimization
framework and shows that it converges in O

�
d∗√
T

�
 , where d∗ = max

m

{
dm

}
 represents the

largest model size among the clients, and T denotes the number of iterations.

Remark 3  Comparing our convergence analysis result and ZOO-VFL (Zhang et al., 2021),
our result does not include the parameter size of the server ( d0 ) in the constant terms,
which demonstrates that the convergence of the global model is not limited by the size of
the server’s parameter. Therefore, in our framework, the server can apply a larger model
without impacting the convergence of the global model.

5 � Security analysis

5.1 � Threat model

We discuss the privacy protection of our framework under the “honest-but-curious” and
“honest-but-colluded” models.

5.1.1 � Honest‑but‑curious

The “honest-but-curious” threat model refers to a scenario in which a participant is honest
and adheres to the protocol, but is curious about the data of other parties. This party may
attempt to gain more knowledge about the data of other parties through communication
between participants. Specifically, in VFL, clients seek to infer the label from the server,
while the server aims to derive the feature from the client.

5.1.2 � Honest‑but‑colluded

The “honest-but-colluded” threat model involves multiple participants colluding to gain
more knowledge about the private data from other participants. Specifically, in VFL, cli-
ents may work together to infer the label from the server, or the server may collude with
some clients to infer the feature from the remaining clients.

5.2 � Theorem

Theorem 2  Our framework can defend against existing privacy inference attacks on VFL
under the “honest-but-curious” and “honest-but-colluded” scenarios.

Proof  Defend Against Label Inference Attack: Our framework protects the label on the
server by concealing its internal information from clients. Specifically, the server responds
to the client with the losses of the model, which are limited to a single value for each
batch, without revealing the domain of the target task. Moreover, the server keeps the inter-
nal details of its model and the domain information associated with the labels confiden-
tial from clients. This approach guarantees that the server acts as a black box to clients,

6424	 Machine Learning (2024) 113:6413–6451

1 3

allowing them to collaborate with the server without having access to any task-specific
information.

In the context of the “honest-but-curious” model, one client in the VFL system attempts
to infer the label from the server.

The “direct label inference” attack from Fu et al. (2022) is based on the gradient infor-
mation provided by the server and relies on strong assumptions about both the attacker and
the victim. Specifically, the attack assumes that the server simply sums the output from all
clients and that the attacker has explicit knowledge of this fact. By exploiting this informa-
tion, the label can be directly inferred from the sign of the element in the gradient provided
by the server. However, this attack is not feasible for our framework, as we do not transmit
gradients to the client and the server model is agnostic, rather than a simple summation.

The “model completion attack” from Fu et al. (2022) and the “forward embeddings
leakage” from Sun et al. (2022) utilize the client’s local model and feature to predict the
label on the server. For these attacks to be successful, the local model and local feature
must be well-represented on the target task. Besides, a certain label for the sample can-
not be guaranteed with those attacks. Additionally, these attacks assume that the client has
knowledge of the target task, which can be avoided by using our proposed framework.

Deep leakage from gradient and its variant (Zhu et al., 2019; Zhao et al., 2020; Jin et al.,
2021) utilize the gradient provided by the server as the optimization objective to recon-
struct the true labels of the sample. However, these attacks assume the attacker has access
to the server’s model, which is not applicable to our current framework.

Under the “honest-but-colluded” model, some clients collude to infer the label from the
server, the attacker can access more information in this scenario.

If all clients colluded, the “direct label inference attack”, from Fu et al. (2022) still
assumes that the client knows that the server uses a simple summation model, which is
not applicable to our framework. The “model completion attack” from Fu et al. and the
“forward embeddings” attack from Sun et al. (2022) can have better representation on the
global task if some client colluded. However, the clients still cannot access the task infor-
mation from the server, which is not applicable to our model. In the “honest-but-colluded”
model, the “deep leakage from the gradient” (Zhu et al., 2019), still requires the gradient
information from the server and assumes a simple summation model on the server, which
can be avoided with our framework.

Defend Against Feature Inference Attack: Our framework protects the client’s fea-
tures by concealing their internal information from other participants. Clients send the
model’s output for each batch to the server without revealing the feature’s domain. Addi-
tionally, the server is unable to access the client’s model information. As a result, adversar-
ies view the client as a black box, only able to receive outputs from it. This makes it dif-
ficult to infer the feature from the client.

In the “honest-but-curious” model, the server attempts to infer the feature from the
clients.

The “deep leakage from gradient” (Zhu et al., 2019) leverages the gradient as the opti-
mization target to infer the feature from the client. However, this method assumes that the
server, as the attacker, can access the client’s model, which is not possible through the pro-
tocol in our framework.

The model inversions attack (Fredrikson et al., 2015) uses the model’s output to recover
the input of a machine-learning model, which has the potential to be used for feature
inference attacks in VFL. However, this attack requires the attacker to have the ability to
adaptively query the target model, which the server does not possess this capability in our
framework.

6425Machine Learning (2024) 113:6413–6451	

1 3

The “honest-but-colluded” model allows the server to collude with certain clients to
infer features from the remaining clients. Luo et al. (2021) consider a feature inference
scenario with two participants, where one participant takes the role of server and client and
attempts to infer the feature from the remaining client. They assume that the client uses a
logistic regression model, which allows them to reverse the model with the output. How-
ever, this method is not applicable to our framework because the client model is agnostic
to the attacker. Weng et al. (2020) consider a similar VFL with an extra HE scheme, and
they assume that the coordinator with the private key also colludes, enabling the attacker to
decrypt the communication. However, this approach is not applicable to our framework as
they also assume a specific model on the client. 	� ◻

6 � Experiments

In this section, we did extensive experiments to demonstrate the security of our framework,
the convergence of our framework and the feasibility of applying our framework to deep
learning tasks.

6.1 � Experiment setups

6.1.1 � Datasets

We vertically partitioned the dataset among M clients, with each client holding an equal
amount of features. The server held the labels. Both clients and the server knew the sam-
ple IDs, enabling them to coordinate training on each sample. For the base experiment,
we used the MNIST dataset (LeCun et al., 2010), the features of the image were flattened
and equally distributed among the clients. For the image classification task, we used the
CIFAR-10 dataset (Krizhevsky, 2009), with each client holding half of each image. For the
natural language processing (NLP) task, we used the IMDb dataset (McAuley & Leskovec,
2013) where the client held the review text data.

6.1.2 � Models

We used a Multi-Layer Perceptron (MLP) for the base experiment to demonstrate the
convergence rate of our framework. Although simple, it showed the advantage of our
framework.

The base model for clients was a single-layer Fully Connected Layer (FCL) with an
input size equal to the feature size of the client’s data and an output size of 128 by default.
The activation function was ReLU.

The base model for the server was a two-layer FCL whose input was the concatenation
of all the clients’ outputs [ ci,1,… , ci,M ]. Since the client updated asynchronously, the server
held a table of [ ci,1,… , ci,M ]. When the server received an update from client m, it would
update the corresponding ci,m in the table and use the table as input of the model. The
embedding size of the first layer was 128 by default and the output size of the second layer
was the number of classes.

6426	 Machine Learning (2024) 113:6413–6451

1 3

For the image classification task, we applied a split ResNet-18 model (He et al., 2016)
on the VFL framework. There were two clients and one server. Each client held half of
each image while the server held the labels. The clients preprocessed the images and
passed them through the first convolutional layer of ResNet-18. The model on the server
comprised the remaining parts of the ResNet-18 model.

For the NLP task, we applied a split distilBERT (Devlin et al., 2018) model on the
VFL framework. The network consisted of one client and one server, the client holding
the embedding layer of the transformer and the server holding the remaining parts of the
model.

6.1.3 � The frameworks for comparison

We conducted a comparative analysis of our asynchronous VFL framework with four
baseline methods: VAFL (Chen et al., 2020), ZOO-VFL (Zhang et al., 2021), Split-Learn-
ing (Vepakomma et al., 2018), and Syn-ZOO-VFL.2 All baselines employ a single optimi-
zation method across the entire VFL, and we applied the same base models to all frame-
works. While ZOO-VFL and Syn-ZOO-VFL share the same message transmission content
as our framework, VAFL and Split-Learning transmit partial derivatives through the net-
work, which poses a privacy risk. It is worth noting that our framework offers the same
level of privacy security as ZOO-VFL and Syn-ZOO-VFL, whereas VAFL is privacy risky.
Therefore, we consider the experiment on VAFL and Split-Learning as an upper bound for
convergence rate comparison among these frameworks, but it is not practical due to the
privacy risk.

6.1.4 � Training procedures

We employed different learning rates for the server and clients in our experiments, as their
update times differ. The optimal learning rate � was selected from the range [0.020, 0.015,
0.010, 0.005, 0.001] for all frameworks. We chose this range because � = 0.001 was too
small, resulting in slow convergence, while � = 0.020 was too large for ZOO to achieve
satisfactory test accuracy. We set � to 0.001 for all experiments, which was the optimal
parameter selected from the range [0.1, 0.01, 0.001, 0.0001, 0.00001] through prelimi-
nary experiments. To make a fair comparison, we applied the vanilla SGD strategy to all
VFL frameworks. The number of training epochs was 100 by default to ensure model
convergence.

For training the split ResNet-18 on distributed CIFAR-10, we trained the model for 40
epochs. To determine the optimal learning rate � for the framework, we searched � within
the range [0.03, 0.01 0.003, 0.001] for the framework. We selected the one with the highest
test accuracy. For the ZOO-VFL and Syn-ZOO-VFL, we searched for the optimal learning
rate in an exponential manner, i.e., [ ⋯ , 3 × 10, 10, 3, 1, 0.3, 0.1,⋯ ]. The upper limit for the
search was where the loss kept increasing, and the lower limit was where the model train-
ing accuracy did not increase for every epoch. We selected the learning rate that allowed
the model to train the fastest.

For the NLP task, we finetuned the pre-trained distil-BERT model. Since the model is
pre-trained, we set the number of training epochs to 10. The hyperparameter tuning scheme

2  This is the synchronous version of ZOO-VFL and the algorithm is in the “Appendix 2”.

6427Machine Learning (2024) 113:6413–6451	

1 3

was the same as that used for the CIFAR-10 task. All of the test accuracy presented in this
paper (including the Appendix) is derived from five independent runs.

6.2 � A demonstration on defending against label inference attack

In this experiment, we aimed to demonstrate the security levels of ZOO-based VFL
(ZOO-VFL, Syn-ZOO-VFL, and ours) and FOO-based VFL (Split-Learning and
VAFL) against a direct label inference attack from Fu et al. (2022). The attack is only
effective for the “model without split” VFLs where the server simply sums up the out-
put from all clients. The threat model involves a curious client aiming to infer labels
from the victim server. The client can design the query for the server to acquire partial
derivative w.r.t. the global model’s output layer, i.e., �L(y;yi)

�yc
 , where y represents the

probability output for all classes, yc is the probability for the c-th class predicted by the
model, and there are C classes in total. The label can be directly inferred with the sign
of �L(y;yi)

�yc
 , i.e., if the sign of it is negative, then the label for sample i is c; otherwise, the

sign is positive. Note that this attack scenario where the server model simply sums the
output of the clients is very strong (the server is too vulnerable). However, it has effec-
tively demonstrated the vulnerability of transmitting gradients in VFL.

To simulate a curious client who wanted to infer the label from the server, we
designed a dummy client that directly generated a random vector ci,m ∈ R

C , with ele-
ments sampled from N(0, 1) . The client then randomly selected a u ∈ R

C to compute
ĉi,m = ci,m + u . The server then responded with the corresponding losses ĥi,m and hi,m ,
and the curious client estimated �L(y;yi)

�yc
 using gradient estimation, i.e.

∇̂yL(y;yi) =
𝜙(d)

𝜇
(ĥi,m − hi,m)u . In addition to the curious client, eavesdroppers also

sought to infer labels from the server. However, when clients are benign, eavesdrop-
pers cannot obtain the client’s u value. Therefore, in the experiment, they randomly
generated a u to estimate the gradient.

We conducted the label inference attack using the MNIST dataset, using a batch
size of 64. The attack success rate was calculated by dividing the number of correctly
predicted samples by the total number of samples. The VFL framework was run for
a single epoch, during which the attacker predicted the label of all samples based on
the information they obtained. The VFL framework consisted of two clients and one
server, where the server model summed up the output from the clients and replied with
the losses value w.r.t. the client’s output. In the trial involving the curious client, there
was one curious client and one benign client. In the trial involving the eavesdropper,
both clients were benign.

The results are present in Table 1, where each experiment consists of 5 independent tri-
als. The table indicates that the use of FOO in VFL poses a serious privacy vulnerability,
as both curious clients and eavesdroppers can infer certain labels. On the other hand, when
ZOO is applied to VFL, the malicious client who dedicated designed the query only gains

Table 1   Demonstration with
Direct Label Inference Attack

FOO frameworks ZOO frameworks

Curious Client 100±0.0 11.7±0.07

Eavesdropper 100±0.0 10.0±0.1

6428	 Machine Learning (2024) 113:6413–6451

1 3

a slight advantage with one query. Additionally, eavesdroppers were unable to infer the
label from the messages due to the lack of gradient information on the server.

6.3 � A demonstration on defending against feature inference attack

In this experiment, we demonstrate the capability of our framework in defending against the
feature inference attacks based on “deep leakage from gradient” (DLG) (Zhu et al., 2019).
Besides, we highlight the vulnerability of gradient-based VFL in the context of such attacks.

We designed an experiment where the VFL involved two clients, each equipped with a
Convolutional Neural Network (CNN). In the CNN architecture, the first two layers are convo-
lutional layers, employing the Sigmoid activation function. The final layer is a fully connected
layer. The server aggregates the logits generated by each client through a summation process.
Each client possessed half of each image from CIFAR-10 as their private dataset.

Without loss of generality, we assume that client 1 is the victim, and the server is the
curious party. We assume that at some stage of the training, the attacker obtained a snap-
shot of the model parameters from Client 1 and the corresponding gradient w.r.t. the sam-
ple i. The gradient information obtained by the attack is ∇w1

fi(w0,w) =
�fi(w0,w)

�w1

 under the

FOO case (VAFL and Split-learning), or ∇̂w1
fi(w0,w) =

𝜙(d1)

𝜇1

(
ĥi,1 − hi,1

)
ui,1 under the ZOO

case (ZOO-VFL and ours). Having obtained the model parameter and gradient information,
the attacker aims to reconstruct the private data xi,1 maintained by Client 1.

We randomly selected an image from the CIFAR-10 dataset, specifically choosing
the image at index 28, which belongs to the class “deer”. Figure 3 shows the original
private data from the two clients, where client 1 (victim) held the left half of the picture.
Figure 4a depicts the DLG attack on the First Order Optimization (FOO)-based model,
while Fig. 4b showcases the DLG attack on the FOO-based model with Gaussian Noise
N(0, 0.03) added to each dimension of the gradient. Lastly, Fig. 4c illustrates the DLG
attack on the ZOO-based model.

Our observations indicate that DLG successfully infiltrated the VFL model when
an accurate gradient and the model snapshot were acquired. However, the DLG attack
proved ineffective against our framework trained with ZOO. This outcome is likely
attributed to the randomness introduced by the ZOO, which hinders the attacker from
obtaining accurate gradient information for the attack.

Fig. 3   The target data, with the
victim client holding the left half

6429Machine Learning (2024) 113:6413–6451	

1 3

6.4 � The convergence for different numbers of clients

In this experiment, we compared the convergence curve between our framework and
others, with varying numbers of clients. With the base model, we set the number of cli-
ents to {4, 6, 8} and plotted the epoch-training accuracy curve in Fig. 5. As illustrated
in the figure, our framework exhibited a more stable convergence rate than ZOO-VFL.
The curve for ZOO-VFL displayed significant vibration between the fifth and tenth
epoch, primarily due to client delay. This phenomenon was less obvious in our frame-
work. Table 2 shows the test accuracy achieved after the training procedure. Our frame-
work demonstrated a slight test accuracy loss compared to VAFL, which was a trade-off
for improving the privacy and security of the framework. In contrast, our framework

Fig. 4   DLG attack on the VFL framework

6430	 Machine Learning (2024) 113:6413–6451

1 3

achieved a much higher test accuracy than ZOO-VFL, indicating that ZOO-VFL does
not possess good convergence characteristics.

6.4.1 � More robust hyperparameter tuning

When searching for the optimal learning rate, we observed that the selection of the learn-
ing rate for ZOO-VFL was more sensitive compared to VFL-Cascaded. This sensitivity is
an undesirable characteristic for hyperparameter tuning, especially in federated learning,
which introduces more hyperparameters than centralized training (Kairouz et al., 2019).

Assuming that we have obtained the optimal learning rate for ZOO-VFL, it is worth
noting that even a slight increase in the learning rate can lead to a significant reduction in
test accuracy. Conversely, a minor decrease in the learning rate can also slow the conver-
gence and decrease test accuracy. In contrast, our framework demonstrates greater resil-
ience in learning rate selection, resulting in a more stable performance with less deviation
in hyperparameters.

To demonstrate the resilience of our framework, we reported the test accuracy at a dif-
ferent learning rate for comparing the ZOO-VFL and VFL-Cascaded. We selected the
server learning rate from [0.020, 0.015, 0.010, 0.005, 0.001], and trained the model for
200 epochs to make sure the model converges. The test accuracy is presented in Fig. 6. Our
findings indicate that the deviation from the optimal learning rate had a more significant
impact on ZOO-VFL than VFL-Cascaded.

Table 2   Test accuracy (%) for the
convergence of different number
of clients experiments

The best test accuracyamong the three privacy-protected baselines are
given in bold

Number of clients

4 6 8

Split-Learning 97.7±0.1 97.7±0.1 97.5±0.2

VAFL 97.7±0.2 97.8±0.1 97.7±0.2

Syn-ZOO-VFL 87.4±0.3 87.4±0.2 87.7±0.3

ZOO-VFL 89.0±0.3 89.4±0.4 89.2±0.4

VFL-Cascaded (Ours) 96.4±0.3 96.5±0.4 96.4±0.3

Fig. 5   Learning curve for differ-
ent numbers of clients

6431Machine Learning (2024) 113:6413–6451	

1 3

In VFL, a more robust hyperparameter is favorable as it requires less tuning and compu-
tational resources. This is particularly important as communication between the server and
clients in VFL is costly.

6.5 � The convergence for different server model sizes

6.5.1 � Base model

In this experiment, we conducted a comparison of the convergence rates between our
framework and other frameworks, using a variety of server model sizes. The frameworks
were applied to four clients and one server, and we tested it on different widths of the
server model, specifically the embedding size of the first layer. We varied the embedding
size of the first layer of the server from the default value of 128 to 256 and 512, resulting in
server model parameter counts of 66954, 133898, and 267786, respectively.

The training curve is presented in Fig. 7a. As shown in the figure, for all different sizes
of models, our framework has a more stable convergence than ZOO-VFL, where the vibra-
tion between the fifth and tenth epoch is less obvious. Table 3 presents the test accuracy
achieved after the training procedure. For all model sizes, our model has a significantly
higher test accuracy than ZOO-VFL. However, when compared to VAFL, our framework
incurs a trade-off of approximately 1% in test accuracy for privacy security.

To demonstrate the superiority of our framework in training larger models, we con-
ducted tests on deep learning tasks, including image classification and text classification
(NLP).

6.5.2 � Image classification

The training curve for the image classification task on CIFAR-10 using the split ResNet-18
model is presented in Fig. 7b. As depicted in the figure, our framework maintains a reason-
able convergence rate and is robust for the best two learning rates, where the best curve
almost overlaps the training curve for VAFL. The training accuracy for ZOO-VFL gradu-
ally increases from 0.10 to 0.22 during the training process, indicating the slow conver-
gence problem of ZOO-VFL with the large model. Table 3 shows the test accuracy. By

Fig. 6   Robustness of the hyper-
parameter

6432	 Machine Learning (2024) 113:6413–6451

1 3

Fig. 7   Learning curve for differ-
ent server model size

6433Machine Learning (2024) 113:6413–6451	

1 3

applying our framework, we can achieve a reasonable test accuracy in 40 training epochs
using a modified split ResNet18 model.

6.5.3 � Natural language processing

We also demonstrated that a more complex transformer-based model for NLP can be
trained with our VFL framework. The training curve is depicted in Fig. 7c. The dataset
comprises of two classes, therefore, the training accuracy commences at around 50%.

The difference in convergence speed becomes more noticeable when using a large model.
In our framework, the training accuracy reached 94% in the second epoch, which took approxi-
mately 45 min. In contrast, ZOO-VFL’s training accuracy only rose from 50% to 70% in 10
epochs, requiring around 6 h of training time, and the model’s performance remained close to
random guessing. Besides, the learning rate was more robust for VFL-Cascaded, with most of
the parameters we tuned proving to be effective. In contrast, ZOO-VFL’s second-best learning
rate exhibited much slower convergence, and the third-best learning rate failed to converge alto-
gether. The test accuracy of our model is presented in Table 3. Since training for around 6 h is
contrary to the basic idea of fine-tuning, we test the model after 2 epochs of training. The results
demonstrate that our framework is capable of training an extremely large deep-learning model.

7 � Limitations and discussions

In our framework, we utilized ZOO and FOO strategically to address the demanding
aspects of the VFL framework. Specifically, we employed ZOO on the client to maximize
model applicability and privacy protection, and FOO on the server to accelerate conver-
gence. We carefully balanced the advantages and disadvantages of ZOO and FOO in differ-
ent parts of the VFL model to ensure that our framework meets all requirements for practi-
cal VFL. A detailed comparison of the frameworks is presented in Table 4 (“S” for the
server and “C” for the client, “F” for the entire framework). It is important to note that the
inherent limitations of ZOO and FOO were not eliminated. That is, ZOO’s slow conver-
gence makes it unsuitable for dealing with large models on the client side, while the server
can only handle differentiable models.

However, our framework is more suitable for real-world application scenarios for
several reasons. Firstly, in VFL, the server is the initiator and sole beneficiary of the

Table 3   The test accuracy (%) for the different model size experiments

The best test accuracyamong the three privacy-protected baselines are given in bold

MNIST CIFAR-10 IMDb

MLP—server embedding size ResNet-18 Distil-BERT

128 256 512

Split-Learning 97.7±0.1 98.1±0.2 98.1±0.1 84.7±0.2 90.5±0.1

VAFL 97.7±0.2 97.8±0.2 97.8±0.1 88.1±0.1 90.5±0.1

Syn-ZOO-VFL 87.5±0.4 88.7±0.2 88.2±0.3 –
ZOO-VFL 89.0±0.3 85.3±0.8 86.0±0.7 – –
VFL-Cascaded (Ours) 96.4±0.3 96.5±0.4 96.2±0.3 87.2±0.6 89.6±0.2

6434	 Machine Learning (2024) 113:6413–6451

1 3

framework, with all clients acting as collaborators. As such, it is more cost-effective for
the server to train a larger model to achieve better prediction results, as only the server
obtains the prediction. Secondly, the server typically has more computational resources
than the clients, making it computationally efficient for the server to train a larger model.
Thirdly, as the server is the initiator and has the ability to select its model, the model
applicability of the server is not as critical in VFL. Conversely, for clients, their models
are unknown to the initiator of the VFL, making the model-agnostic characteristic impor-
tant. Therefore, our framework is more suitable for real-world applications than other
frameworks that use a unified optimization method.

8 � Conclusions

We proposed a novel VFL framework where different optimization methods were applied
to the upstream (server) and the downstream (client) of the VFL cascaded. This approach
maximized the benefits of both optimization methods. The clients are optimized with
ZOO to protect privacy, while the server is optimized with FOO to accelerate convergence
without compromising the framework’s privacy. Theoretical results demonstrated that our
framework with cascaded hybrid optimization converges faster than the ZOO-based VFL,
and that applying a large model on the server does not hinder convergence. Extensive
experiments demonstrated that our framework achieves better convergence characteristics
compared with the ZOO-based VFL while maintaining the same level of privacy security.

Appendix 1: Convergence analysis

Notation

Table 5 summarizes the parameters used in the convergence analysis.

Lemmas

Lemma 1  (Zeroth-order optimization) For arbitrary f ∈ C1

L
(Rd) , we have:

(1) f�(x) is continuously differentiable, its gradient is Lipschitz continuous with L� ≤ L:

(5)∇f𝜇(x) = �
u

[
∇̂f (x)

]

Table 4   Comparison with typical
VFL frameworks

VAFL ZOO-VFL Ours

S C F S C F S C F

Model Applicability ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓
Fast Convergence ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓
Privacy Security ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Comp. Efficiency ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6435Machine Learning (2024) 113:6413–6451	

1 3

where u is drawn from the uniform distribution over the unit Euclidean sphere, and
∇̂f (x) =

d

𝜇

[
f (x + 𝜇u) − f (x)

]
u is the gradient estimator, f�(x) = �

u

[
f (x + �u)

]
 is the

smooth approximation of f.

2) For any x ∈ ℝ
d,

3) For any x ∈ ℝ
d,

Lemma 1 helps build a connection between f(⋅) and its smooth approximation f�m
(⋅) of the

convergence analysis. Proof of this lemma is provided in Liu et al. (2018); Gao et al. (2018).

Bound the global update round

In one global round during training, the client mt is activated, and the server and the client
mt update one step.

Taking expectations w.r.t. the sample i and the random direction u for the zeroth-order
optimization in one global update round.

(6)|f�(x) − f(x)| ≤ L�2

2

(7)‖‖‖∇f�(x) − ∇f (x)
‖‖‖
2

≤
�2L2d2

4

(8)1

2
‖‖∇f(x)‖‖

2
−

�2L2d2

4
≤
‖‖‖∇f�(x)

‖‖‖
2

≤ 2‖‖∇f(x)‖‖
2
+

�2L2d2

2

(9)�
u

[
‖‖‖∇̂f(x)

‖‖‖
2
]
≤ 2d‖‖∇f(x)‖‖

2
+

𝜇2L2d2

2

Table 5   Notation table

Basic
w0 The parameter for the server
wm The parameter for the client m
w = [w1,w2,⋯ ,wM] The grouped parameters for all the clients
f
(
w0,w

)
= f

(
w0,w,X, y

)
The global loss function

fi
(
w0,w

)
= fi

(
w0,w1,… ,wM

)
The loss function for the sample i

Notation with timestep (t), clients’ delay (w̃), ZOO gradient estimator (∇̂)
wt
m

The client m’s parameter, at global timestep t
wt = [wt

1
,… ,wt

M
] The clients’ parameter at global timestep t

w̃
t = w

t−𝜏 t
i = [w

t−𝜏 t
1,i

1
,… ,w

t−𝜏 t
M,i

M
]

The delayed parameter for all the clients at

global time step t (and the local timestep is 0
for all w)

∇̂wm
fi
(
w0,w

)

=
�(dhm)

�m

[
fi
(
wm + �mum,i

)
− fi

(
wm

)]
um,i

The ZO gradient estimator w.r.t. the client m’s
parameter wm

6436	 Machine Learning (2024) 113:6413–6451

1 3

where 1) applies Assumption 2 (smoothness), 2) plugging in a, b, c& d, 3) collect the
equation.

For a)

(10)

�i,u

�
f

�
wt+1
0

,wt
1
,⋯ ,wt+1

mt
,⋯ ,wt

M

�
− f

�
wt
0
,wt

1
,⋯ ,wt

mt
,⋯ ,wt

M

��

1)

≤ −𝜂0�i

�
∇w0

f
�
wt
0
,wt

�
,∇w0

fi
�
wt
0
, w̃t

��

���
a)

+
1

2
L𝜂2

0
�i

���∇w0
fi
�
wt
0
, w̃t

����
2

�������������������������������������
b)

−𝜂mt
�i,u

�
∇wmt

f
�
wt
0
,wt

�
, ∇̂mt

fi
�
wt
0
, w̃t

��

���
c)

+
1

2
L𝜂2

mt
�i,u

���∇̂mt
fi
�
wt
0
, w̃t

����
2

���
d)

2)

≤ −
1

2
𝜂0�i

���∇w0
f
�
wt
0
,wt

����
2

+
1

2
𝜂0L

2

0
�i
��wt − w̃

t��
2

+ L𝜂2
0
L2
0
�i‖w − w̃‖2 + L𝜂2

0
�i

���∇w0
f
�
wt
0
,wt

����
2

+ L𝜂2
0
𝜎2

0

−
1

2
𝜂mt

�i,u

���∇wmt
f
�
wt
0
,wt

����
2

+
1

4
𝜂mt

𝜇2

mt
L2
mt
d2
mt

+ 𝜂mt
L2
mt
�i,u

��wt − w̃
t��

2

+ 2L𝜂2
mt
dmt

�i,u

���∇wmt
f
�
wt
0
,wt

����
2

+ 2L𝜂2
mt
dmt

L2
mt
�i,u

��wt − w̃
t��

2
+ 2L𝜂2

mt
dmt

𝜎2

mt

+
1

4
L𝜂2

mt
𝜇2

mt
L2
mt
d2
mt

≤ −
�
1

2
𝜂0 − L𝜂2

0

�
�i

���∇w0
f
�
wt
0
,wt

����
2

+
�
1

2
𝜂0 + L𝜂2

0

�
L2
0
�i‖w − w̃‖2 + L𝜂2

0
𝜎2

0

−

�
1

2
𝜂mt

− 2L𝜂2
mt
dmt

�
�i,u

���∇wmt
f
�
wt
0
,wt

����
2

+

�
𝜂mt

+ 2L𝜂2
mt
dmt

�
L2
mt
�i,u

��wt − w̃
t��

2

+ 2L𝜂2
mt
dmt

𝜎2

mt
+

1

4

�
L𝜂2

mt
+ 𝜂mt

�
𝜇2

mt
L2
mt
d2
mt

3)

≤ −
�
1

2
𝜂0 − L𝜂2

0

�
�i

���∇w0
f
�
wt
0
,wt

����
2

−
�
1

2
𝜂mt

− 2L𝜂2
mt
dmt

�
�i,u

���∇wmt
f
�
wt
0
,wt

����
2

+

��
1

2
𝜂0 + L𝜂2

0

�
L2
0
+

�
𝜂mt

+ 2L𝜂2
mt
dmt

�
L2
mt

�
�i‖w − w̃‖2

+ L𝜂2
0
𝜎2

0
+ 2L𝜂2

mt
dmt

𝜎2

mt
+

1

4

�
L𝜂2

mt
+ 𝜂mt

�
𝜇2

mt
L2
mt
d2
mt

(11)

− 𝜂0�i

⟨
∇w0

f
(
wt
0
,wt

)
,∇w0

fi
(
wt
0
, w̃t

)⟩

= −𝜂0�i

⟨
∇w0

f
(
wt
0
,wt

)
,∇w0

fi
(
wt
0
, w̃t

)
− ∇w0

fi
(
wt
0
,wt

)
+ ∇w0

fi
(
wt
0
,wt

)⟩

= −𝜂0�i

⟨
∇w0

f
(
wt
0
,wt

)
,∇w0

fi
(
wt
0
, w̃t

)
− ∇w0

fi
(
wt
0
,wt

)⟩

− 𝜂0�i

⟨
∇w0

f
(
wt
0
,wt

)
,∇w0

fi
(
wt
0
,wt

)⟩

1)
= −𝜂0�i

⟨
∇w0

f
(
wt
0
,wt

)
,∇w0

fi
(
wt
0
, w̃t

)
− ∇w0

fi
(
wt
0
,wt

)⟩
− 𝜂0�i

‖‖‖∇w0
f
(
wt
0
,wt

)‖‖‖
2

2)
= −

1

2
𝜂0�i

‖‖‖∇w0
f
(
wt
0
,wt

)‖‖‖
2

+
1

2
𝜂0�i

‖‖‖∇w0
fi
(
wt
0
, w̃t

)
− ∇w0

fi
(
wt
0
,wt

)‖‖‖
2

3)
= −

1

2
𝜂0�i

‖‖‖∇w0
f
(
wt
0
,wt

)‖‖‖
2

+
1

2
𝜂0L

2

0
�i
‖‖wt − w̃

t‖‖
2

6437Machine Learning (2024) 113:6413–6451	

1 3

where 1) applies Assumption 3 (unbiased gradient), 2) applies ⟨a, b⟩ ≤ 1

2
‖a‖2 + 1

2
‖b‖2 ,

3) applies Assumption 2 (smoothness).
For b):

where 1): ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 , 2) applies Assumption 2 (smoothness), 3) applies
�(X2) = �(X)2 + Var(X) and Assumption 4 (bounded variance).

For c):

where 1) applies Eq. 5 in Lemma 1, 2) applies Assumption 3 (unbiased gradient), 3)
applies ⟨a, b⟩ ≤ 1

2
‖a‖2 + 1

2
‖b‖2 , 4) applies ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 , 5) applies Eq. 7 in

Lemma 1, 6) applies Assumption 2 (smoothness).

(12)

1

2
L𝜂2

0
�i
���∇w0

fi
�
wt
0
, w̃t

����
2

=
1

2
L𝜂2

0
�i
���∇w0

fi
�
wt
0
, w̃t

�
− ∇w0

fi
�
wt
0
,wt

�
+ ∇w0

fi
�
wt
0
,wt

����
2

1)

≤ L𝜂2
0
�i
���∇w0

fi
�
wt
0
, w̃t

�
− ∇w0

fi
�
wt
0
,wt

����
2

+ L𝜂2
0
�i
���∇w0

fi
�
wt
0
,wt

����
2

2)

≤ L𝜂2
0
L2
0
�i‖w − w̃‖2 + L𝜂2

0
�i
���∇w0

fi
�
wt
0
,wt

����
2

3)

≤ L𝜂2
0
L2
0
�i‖w − w̃‖2 + L𝜂2

0

�
���∇w0

f
�
wt
0
,wt

����
2

+ 𝜎2

0

�

≤ L𝜂2
0
L2
0
�i‖w − w̃‖2 + L𝜂2

0

���∇w0
f
�
wt
0
,wt

����
2

+ L𝜂2
0
𝜎2

0

(13)

− 𝜂mt
�i,u

⟨
∇wmt

f
(
wt
0
,wt

)
, ∇̂mt

fi
(
wt
0
, w̃t

)⟩

1)
= −𝜂mt

�i,u

⟨
∇wmt

f
(
wt
0
,wt

)
,∇wmt

f𝜇mt
,i

(
wt
0
, w̃t

)⟩

= −𝜂mt
�i,u

⟨
∇wmt

f
(
wt
0
,wt

)
,∇wmt

f𝜇mt
,i

(
wt
0
, w̃t

)
− ∇wmt

fi
(
wt
0
,wt

)
+ ∇wmt

fi
(
wt
0
,wt

)⟩

2)
= −𝜂mt

�i,u

⟨
∇wmt

f
(
wt
0
,wt

)
,∇wmt

f𝜇mt
,i

(
wt
0
, w̃t

)
− ∇wmt

fi
(
wt
0
,wt

)⟩

− 𝜂mt
�i,u

‖‖‖∇wmt
f
(
wt
0
,wt

)‖‖‖
2

3)
= −

1

2
𝜂mt

�i,u

‖‖‖∇wmt
f
(
wt
0
,wt

)‖‖‖
2

+
1

2
𝜂mt

�i,u

‖‖‖∇wmt
f𝜇mt

,i

(
wt
0
, w̃t

)
− ∇wmt

fi
(
wt
0
,wt

)‖‖‖
2

= −
1

2
𝜂mt

�i,u

‖‖‖∇wmt
f
(
wt
0
,wt

)‖‖‖
2

+
1

2
𝜂mt

�i,u

‖‖‖∇wmt
f𝜇mt

,i

(
wt
0
, w̃t

)
− ∇wmt

fi
(
wt
0
, w̃t

)
+ ∇wmt

fi
(
wt
0
, w̃t

)
− ∇wmt

fi
(
wt
0
,wt

)‖‖‖
2

4)
= −

1

2
𝜂mt

�i,u

‖‖‖∇wmt
f
(
wt
0
,wt

)‖‖‖
2

+ 𝜂mt
�i,u

‖‖‖∇wmt
f𝜇mt

,i

(
wt
0
, w̃t

)
− ∇wmt

fi
(
wt
0
, w̃t

)‖‖‖
2

+ 𝜂mt
�i,u

‖‖‖∇wmt
fi
(
wt
0
, w̃t

)
− ∇wmt

fi
(
wt
0
,wt

)‖‖‖
2

5)
= −

1

2
𝜂mt

�i,u

‖‖‖∇wmt
f
(
wt
0
,wt

)‖‖‖
2

+
1

4
𝜂mt

𝜇2

mt
L2
mt
d2
mt

+ 𝜂mt
�i,u

‖‖‖∇wmt
fi
(
wt
0
, w̃t

)
− ∇wmt

fi
(
wt
0
,wt

)‖‖‖
2

6)
= −

1

2
𝜂mt

�i,u

‖‖‖∇wmt
f
(
wt
0
,wt

)‖‖‖
2

+
1

4
𝜂mt

𝜇2

mt
L2
mt
d2
mt
+ 𝜂mt

L2
mt
�i,u

‖‖wt − w̃
t‖‖

2

6438	 Machine Learning (2024) 113:6413–6451

1 3

For d):

where 1) applies Eq. 9 in Lemma 1, 2) applies ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 , 3) applies
Assumption 2 (smoothness), 4) applies �(X2) = �(X)2 + Var(X) and Assumption 4
(bounded variance).

Combine the gradient

Start with the Eq. 10, additionally taking expectation w.r.t. activated client mt , and applying
the Assumption 6 (independent client).

(14)

1

2
L𝜂2

mt
�i,u

‖‖‖∇̂mt
fi
(
wt
0
, w̃t

)‖‖‖
2

1)

≤
1

2
L𝜂2

mt
�i,u

(
2dmt

‖‖‖∇wmt
fi
(
wt
0
, w̃t

)‖‖‖
2

+
1

2
𝜇2

mt
L2
mt
d2
mt

)

= L𝜂2
mt
dmt

�i,u
‖‖‖∇wmt

fi
(
wt
0
, w̃t

)‖‖‖
2

+
1

4
L𝜂2

mt
𝜇2

mt
L2
mt
d2
mt

= L𝜂2
mt
dmt

�i,u
‖‖‖∇wmt

fi
(
wt
0
, w̃t

)
− ∇wmt

fi
(
wt
0
,wt

)
+ ∇wmt

fi
(
wt
0
,wt

)‖‖‖
2

+
1

4
L𝜂2

mt
𝜇2

mt
L2
mt
d2
mt

2)

≤ 2L𝜂2
mt
dmt

�i,u
‖‖‖∇wmt

fi
(
wt
0
, w̃t

)
− ∇wmt

fi
(
wt
0
,wt

)‖‖‖
2

+ 2L𝜂2
mt
dmt

�i,u
‖‖‖∇wmt

fi
(
wt
0
,wt

)‖‖‖
2

+
1

4
L𝜂2

mt
𝜇2

mt
L2
mt
d2
mt

3)

≤ 2L𝜂2
mt
dmt

L2
mt
�i,u

‖‖wt − w̃
t‖‖

2
+ 2L𝜂2

mt
dmt

�i,u
‖‖‖∇wmt

fi
(
wt
0
,wt

)‖‖‖
2

+
1

4
L𝜂2

mt
𝜇2

mt
L2
mt
d2
mt

4)

≤ 2L𝜂2
mt
dmt

L2
mt
�i,u

‖‖wt − w̃
t‖‖

2
+ 2L𝜂2

mt
dmt

(
�i,u

‖‖‖∇wmt
f
(
wt
0
,wt

)‖‖‖
2

+ 𝜎2

mt

)

+
1

4
L𝜂2

mt
𝜇2

mt
L2
mt
d2
mt

= 2L𝜂2
mt
dmt

L2
mt
�i,u

‖‖wt − w̃
t‖‖

2
+ 2L𝜂2

mt
dmt

�i,u
‖‖‖∇wmt

f
(
wt
0
,wt

)‖‖‖
2

+ 2L𝜂2
mt
dmt

𝜎2

mt

+
1

4
L𝜂2

mt
𝜇2

mt
L2
mt
d2
mt

= 2L𝜂2
mt
dmt

�i,u
‖‖‖∇wmt

f
(
wt
0
,wt

)‖‖‖
2

+ 2L𝜂2
mt
dmt

L2
mt
�i,u

‖‖wt − w̃
t‖‖

2
+ 2L𝜂2

mt
dmt

𝜎2

mt

+
1

4
L𝜂2

mt
𝜇2

mt
L2
mt
d2
mt

6439Machine Learning (2024) 113:6413–6451	

1 3

where 1) to simplify the notation, define Q1 to substitute the last row, 2) let �0 ≤
1

4 L
 then

−
1

2
𝜂0 + L𝜂2

0
< −

1

4
𝜂0 , and let �m ≤

1

4 Ldm
 , then 1

2
�0 − L�2

0
≤

1

4
�0 and 1

2
�m − 2 L�2

m
dm ≤

1

4
�m ,

3) uses the orthogonality of ∇f  , i.e.
���∇f

�
w0,w

����
2

=
���∇w0

f
�
w0,w

����
2

+
∑M

m=1

���∇wm
f
�
w0,w

����
2

.

Define the Lyapunov function to eliminate the client’s delay.

Define a Lyapunov function.

(15)

�mt ,i,u

�
f
�
wt+1
0

,wt
1
,⋯ ,wt+1

mt
,⋯ ,wt

M

�
− f

�
wt
0
,wt

1
,⋯ ,wt

mt
,⋯ ,wt

M

��

≤ −

�
1

2
𝜂0 − L𝜂2

0

�
�i
���∇w0

f
�
wt
0
,wt

����
2

−

M�

m=1

pm

�
1

2
𝜂m − 2L𝜂2

m
dm

�
�i,u

���∇wmt
f
�
wt
0
,wt

����
2

+

��
1

2
𝜂0 + L𝜂2

0

�
L2
0
+

M�

m=1

pm
�
𝜂m + 2L𝜂2

m
dm

�
L2
m

�
�i‖w − w̃‖2

+ L𝜂2
0
𝜎2

0
+

M�

m=1

pm2L𝜂
2

m
dm𝜎

2

m
+

M�

m=1

pm
1

4

�
L𝜂2

m
+ 𝜂m

�
𝜇2

m
L2
m
d2
m

1)

≤ −

�
1

2
𝜂0 − L𝜂2

0

�
�i
���∇w0

f
�
wt
0
,wt

����
2

−

M�

m=1

pm

�
1

2
𝜂m − 2L𝜂2

m
dm

�
�i,u

���∇wmt
f
�
wt
0
,wt

����
2

+

��
1

2
𝜂0 + L𝜂2

0

�
L2
0
+

M�

m=1

pm
�
𝜂m + 2L𝜂2

m
dm

�
L2
m

�
�i‖w − w̃‖2 + Q1

2)

≤ −
1

4
𝜂0�i

���∇w0
f
�
wt
0
,wt

����
2

−

M�

m=1

pm
1

4
𝜂m�i,u

���∇wmt
f
�
wt
0
,wt

����
2

+

��
1

2
𝜂0 + L𝜂2

0

�
L2
0
+

M�

m=1

pm
�
𝜂m + 2L𝜂2

m
dm

�
L2
m

�
�i‖w − w̃‖2 + Q1

3)

≤ −
1

4
min

�
𝜂0, pm𝜂m

�
�i
���∇f

�
wt
0
,wt

����
2

+

��
1

2
𝜂0 + L𝜂2

0

�
L2
0
+

M�

m=1

pm
�
𝜂m + 2L𝜂2

m
dm

�
L2
m

�
�i‖w − w̃‖2 + Q1

(16)Mt = f
(
wt
0
,wt

)
+

�∑

i=1

�i
‖‖‖w

t+1−i − w
t−i‖‖‖

2

6440	 Machine Learning (2024) 113:6413–6451

1 3

Taking expectation w.r.t. the activated client mt , sample index i, and the random direction
u.

where 1) plugging in Eq. 15, 2) plugging in a) and b).
For a) in Eq. 17:

(17)

�
(
Mt+1 −Mt

)

= �

[
f
(
wt+1
0

,wt+1
)
+

𝜏∑

i=1

𝜃i
‖‖‖w

t+1+1−i − w
t+1−i‖‖‖

2

]

− �

[
f
(
wt
0
,wt

)
+

𝜏∑

i=1

𝜃i
‖‖‖w

t+1−i − w
t−i‖‖‖

2

]

= �
[
f
(
wt+1
0

,wt+1
)
− f

(
wt
0
,wt

)]
+

𝜏∑

i=1

𝜃i�
‖‖‖w

t+1+1−i − w
t+1−i‖‖‖

2

−

𝜏∑

i=1

𝜃i
‖‖‖w

t+1−i − w
t−i‖‖‖

2

1)

≤ −
1

4
min

{
𝜂0, pm𝜂m

}
�
‖‖‖∇f

(
wt
0
,wt

)‖‖‖
2

+ Q1

+

[(
1

2
𝜂0 + L𝜂2

0

)
L2
0
+

M∑

m=1

pm
(
𝜂m + 2L𝜂2

m
dm

)
L2
m

]
�‖‖w̃t − w

t‖‖
2

�������������
a)

+

𝜏∑

i=1

𝜃i�
‖‖‖w

t+1+1−i − w
t+1−i‖‖‖

2

−

𝜏∑

i=1

𝜃i
‖‖‖w

t+1−i − w
t−i‖‖‖

2

���
b)

2)

≤ −
1

4
min

{
𝜂0, pm𝜂m

}
�
‖‖‖∇f

(
wt
0
,wt

)‖‖‖
2

+ Q1

+

[(
1

2
𝜂0 + L𝜂2

0

)
L2
0
+

M∑

m=1

pm
(
𝜂m + 2L𝜂2

m
dm

)
L2
m

]
𝜏

𝜏∑

i=1

�
‖‖‖w

t+1−i − w
t−i‖‖‖

2

+ 𝜃1�
‖‖‖w

t+1 − w
t‖‖‖

2

+

𝜏−1∑

i=1

(𝜃i+1 − 𝜃i)�
‖‖‖w

t+1−i − w
t−i‖‖‖

2

− 𝜃𝜏�
‖‖‖w

t+1−𝜏 − w
t−𝜏‖‖‖

2

≤ −
1

4
min

{
𝜂0, pm𝜂m

}
�
‖‖‖∇f

(
wt
0
,wt

)‖‖‖
2

+ Q1

+ 𝜃1�
‖‖‖w

t+1 − w
t‖‖‖

2

+

𝜏−1∑

i=1

(
𝜃i+1 − 𝜃i +

[(
1

2
𝜂0 + L𝜂2

0

)
L2
0
+

M∑

m=1

pm
(
𝜂m + 2L𝜂2

m
dm

)
L2
m

]
𝜏

)
�
‖‖‖w

t+1−i − w
t−i‖‖‖

2

−

{
𝜃𝜏 −

[(
1

2
𝜂0 + L𝜂2

0

)
L2
0
+

M∑

m=1

pm
(
𝜂m + 2L𝜂2

m
dm

)
L2
m

]
𝜏

}
�
‖‖‖w

t+1−𝜏 − w
t−𝜏‖‖‖

2

(18)�‖‖w̃t − w
t‖‖

2
1)

≤ �

‖‖‖‖‖

𝜏∑

i=1

(
w

i+1 − w
i
)‖‖‖‖‖

2
2)

≤ 𝜏

𝜏∑

i=1

�
‖‖‖w

t+1−i − w
t−i‖‖‖

2

6441Machine Learning (2024) 113:6413–6451	

1 3

where 1) applies Assumption 7 (uniformly bounded delay), 2) applies Cauchy-Schwarz

inequality, i.e.
�∑n−1

i=0
xi

�2

=

�∑n−1

i=0
1 ⋅ xi

�2

≤ n
∑n−1

i=0
x2
i
.

For b) in Eq. 17:

Let �1 = �2
��

1

2
�0 + L�2

0

�
L2
0
+
∑M

m=1
pm

�
�m + 2 L�2

m
dm

�
L2
m

�
 and define the recursive for-

mula for �i:

if follows that:

Then Eq. 17 becomes

where 1) plugs in c), 2) simplify the notation by denoting the second line as Q2.
For c):

(19)

�∑

i=1

�i�
‖‖‖w

t+1+1−i − w
t+1−i‖‖‖

2

−

�∑

i=1

�i�
‖‖‖w

t+1−i − w
t−i‖‖‖

2

= �1�
‖‖‖w

t+1 − w
t‖‖‖

2

+

�−1∑

i=1

(�i+1 − �i)�
‖‖‖w

t+1−i − w
t−i‖‖‖

2

− ���
‖‖‖w

t+1−� − w
t−�‖‖‖

2

(20)�i+1 = �i − �Q1

(21)

�� − �

[(
1

2
�0 + L�2

0

)
L2
0
+

M∑

m=1

pm
(
�m + 2L�2

m
dm

)
L2
m

]

= �1 − �2

[(
1

2
�0 + L�2

0

)
L2
0
+

M∑

m=1

pm
(
�m + 2L�2

m
dm

)
L2
m

]
= 0

(22)

�
(
Mt+1 −Mt

)

≤ −
1

4
min

{
�0, pm�m

}
�
‖‖‖∇f

(
wt
0
,wt

)‖‖‖
2

+ Q1

+ �2

[(
1

2
�0 + L�2

0

)
L2
0
+

M∑

m=1

pm
(
�m + 2L�2

m
dm

)
L2
m

]
�
‖‖‖w

t+1 − w
t‖‖‖

2

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
c)

1)

≤ −
1

4
min

{
�0, pm�m

}
�
‖‖‖∇f

(
wt
0
,wt

)‖‖‖
2

+ Q1

+ �2

[(
1

2
�0 + L�2

0

)
L2
0
+

M∑

m=1

pm
(
�m + 2L�2

m
dm

)
L2
m

]
M∑

m=1

pm�
2

m

(
2dmG

2

m
+

1

2
�2

m
L2
m
d2
m

)

2)

≤ −
1

4
min

{
�0, pm�m

}
�
‖‖‖∇f

(
wt
0
,wt

)‖‖‖
2

+ Q1

+ Q2

6442	 Machine Learning (2024) 113:6413–6451

1 3

where 1) the update rule for the communication round, 2) applies Eq. 9 in Lemma 1, 3)
applies Assumption 5 (bounded block-coordinated gradient), 4) applies Assumption 6
(independent client).

Bound the gradient ∇f
(
wt

0
, wt

)

Start with Eq. 22:

Summing over the global iteration t = 0, 1, ...T − 1 , arrange the equation and divide it by T
from both sides.

where 1) applies �
�
M0 −MT

�
= f

�
w0

0
,w0

�
− f

�
wT

0
,wT

�
−
∑�

i=1
�i
��wT−i − wT−i��

2
≤ f

�
w0

0
,w0

�
−

f
(
wT
0
,wT

)
≤ f 0 − f ∗ , we use f 0 to denote f

(
w0

0
,w0

)
 and applying Assumption 1.

Dividing � =
1

4
min

{
�0, pm�m

}
 from both sides:

where 1) plugs in a) and b).

(23)

�mt ,i,u
‖‖‖w

t+1 − w
t‖‖‖

2

1)
= �mt ,i,u

𝜂2
mt

‖‖‖∇̂mt
fi
(
wt
0
, w̃t

)‖‖‖
2

2)

≤ �mt ,i,u
𝜂2
mt

(
2dmt

‖‖‖∇wmt
fi
(
wt
0
, w̃t

)‖‖‖
2

+
1

2
𝜇2

mt
L2
mt
d2
mt

)

3)

≤ �mt ,i,u
𝜂2
mt

(
2dmtG

2

mt
+

1

2
𝜇2

mt
L2
mt
d2
mt

)

4)

≤

M∑

m=1

pm𝜂
2

m

(
2dmG

2

m
+

1

2
𝜇2

m
L2
m
d2
m

)

(24)
�
(
Mt+1 −Mt

)

≤ −
1

4
min

{
�0, pm�m

}
�
‖‖‖∇f

(
wt
0
,wt

)‖‖‖
2

+ Q1 + Q2

(25)

1

4T
min

{
�0, pm�m

}T−1∑

t=0

�
‖‖‖∇f

(
wt
0
,wt

)‖‖‖
2

≤
�
(
M0 −MT

)

T
+ Q1 + Q2

1)

≤
�
(
f 0 − f ∗

)

T
+ Q1 + Q2

(26)

1
T

T−1
∑

t=0
�‖‖
‖

∇f
(

wt
0,w

t)‖
‖

‖

2

≤
�
(

f 0 − f ∗
)

T�
+

Q1
�

+
Q2
�

1)
≤

�
(

f 0 − f ∗
)

T�

+ 1
�
L�20�

2
0 +

1
�

M
∑

m=1
pm2L�2mdm�

2
m + 1

�

M
∑

m=1
pm

1
4
(

L�2m + �m
)

�2
mL

2
md

2
m

+ 1
�
�2
[

(1
2
�0 + L�20

)

L20 +
M
∑

m=1
pm

(

�m + 2L�2mdm
)

L2m

] M
∑

m=1
pm�2m

(

2dmG2
m + 1

2
�2
mL

2
md

2
m

)

6443Machine Learning (2024) 113:6413–6451	

1 3

To simplify the result, let L∗ = maxm

{
L, L0, Lm

}
 , d∗ = maxm

{
dm

}
 , �0 = �m = � ≤

1

4L∗d∗
 ,

1

p∗
= minm pm , �∗ = maxm

{
�m

}
 , G∗ = maxm

{
Gm

}
 , then � =

1

4
min

{
�0, pm�m

}
=

�

4p∗
 .

Equation 26 can be further simplified:

where 1) plugs in the above variables for � , 2) simplify by �0 ≤
1

4 L
 and �m ≤

1

4 Ldm
 , 3) plugs

in the variables �,�∗, L∗ , 4) collect the � and � , 5) simply 9
2
< 5.

The proof of Theorem 1 is complete. 	� ◻

Suppose we set � =
1√
T
 , and � =

1√
T
 , the above equation becomes:

(27)

1

T

T−1∑

t=0

�
‖‖‖∇f

(
wt
0
,wt

)‖‖‖
2

1)

≤
4p∗�

(
f 0 − f ∗

)

T�

+
4p∗

�
L�2

0
�2

0
+

4p∗

�

M∑

m=1

pm2L�
2

m
dm�

2

m
+

4p∗

�

M∑

m=1

pm
1

4

(
L�2

m
+ �m

)
�2

m
L2
m
d2
m

+
4p∗

�
�2

[(
1

2
�0 + L�2

0

)
L2
0
+

M∑

m=1

pm
(
�m + 2L�2

m
dm

)
L2
m

]
M∑

m=1

pm�
2

m

(
2dmG

2

m
+

1

2
�2

m
L2
m
d2
m

)

2)

≤
4p∗�

(
f 0 − f ∗

)

T�

+
4p∗

�
L�2

0
�2

0
+

4p∗

�

M∑

m=1

pm2L�
2

m
dm�

2

m
+

4p∗

�

M∑

m=1

pm
1

4

(
L�2

m
+ �m

)
�2

m
L2
m
d2
m

+
4p∗

�
�2

[(
1

2
�0 +

1

4
�0

)
L2
0
+

M∑

m=1

pm

(
�m +

1

2
�m

)
L2
m

]
M∑

m=1

pm�
2

m

(
2dmG

2

m
+

1

2
�2

m
L2
m
d2
m

)

3)

≤
4p∗�

(
f 0 − f ∗

)

T�

+ 4p∗L∗��
2

∗
+ 8p∗L∗�d∗�

2

∗
+ p∗L∗��

2

∗
L2
∗
d2
∗
+ p∗L∗�

2

∗
L2
∗
d2
∗

+ p∗�
2

(
9

2
�
)
L2
∗
�
(
4d∗G

2

∗
+ �2

∗
L2
∗
d2
∗

)

4)

≤
4p∗�

(
f 0 − f ∗

)

T�

+ �
(
4p∗L∗�

2

∗
+ 8p∗L∗d∗�

2

∗
+ p∗L∗�

2

∗
L2
∗
d2
∗

)

+ �2
(
9

2
p∗�

2L2
∗

(
4d∗G

2

∗
+ �2

∗
L2
∗
d2
∗

))

+ �2

∗

(
p∗L∗L

2

∗
d2
∗

)

5)

≤
4p∗�

(
f 0 − f ∗

)

T�

+ �
(
4p∗L∗�

2

∗
+ 8p∗L∗d∗�

2

∗
+ p∗L∗�

2

∗
L2
∗
d2
∗

)

+ �2
(
18p∗�

2L2
∗
d∗G

2

∗
+ 5p∗�

2L2
∗
�2

∗
L2
∗
d2
∗

)

+ �2

∗

(
p∗L

3

∗
d2
∗

)

6444	 Machine Learning (2024) 113:6413–6451

1 3

Therefore,

where d = d∗ = max
m

{
dm

}
 (for clear notation), T is the number of iterations.

The proof of Corollary 1 is complete. 	� ◻

Appendix 2: Discussion on threat model where the attacker deviates
from the protocol

The “honest” threat model corresponds to a scenario in which all participants strictly
adhere to the prescribed protocol. In contrast, we introduced the “malicious” threat model,
allowing the attacker to deviate from the specified learning protocol. There are various
targets for the attacker to deviate from the protocol, such as impeding the learning pro-
cess (Fang et al., 2020), injecting a backdoor into the model (Liu et al., 2020) or influenc-
ing the prediction outcomes (Fu et al., 2022).

Deviation from the protocol by participants is considered less realistic in practical appli-
cations within the context of VFL. As VFL participants are typically accountable large
institutions, the detection of malicious conduct from these entities could lead to significant
reputational and financial losses. Consequently, the substantial risks generally outweigh the
potential gains from engaging in malicious behavior.

Our framework can defend against some attacks in scenarios where the attacker deviates
from the protocol. Specifically, if the attack needs access to accurate gradient information,
our framework remains resilient. For example, it can defend against backdoor attacks uti-
lizing gradient replacement (Liu et al., 2020), since the attacker cannot acquire the accu-
rate gradient. However, our framework is unable to thwart attacks unrelated to gradient
information, such as the active manipulation of the optimization process during training to
influence model predictions (Fu et al., 2022).

Appendix 3: Supplementary experiment details

The algorithm for Syn-ZOO-VFL:

(28)

1

T

T−1�

t=0

�
���∇f

�
wt
0
,wt

����
2

5)

≤
1√
T

�
4p∗�

�
f 0 − f ∗

�
+ 4p∗L∗�

2

∗
+ 8p∗L∗d∗�

2

∗

�

+
1

T

�
18p∗�

2L2
∗
d∗G

2

∗
+ 5p∗�

2�2

∗
L4
∗
d2
∗
+ p∗L

3

∗
d2
∗

�

+
1

T
3

2

�
p∗L

3

∗
d2
∗

�

(29)
1

T

T−1�

t=0

�
���∇f

�
wt
0
,wt

����
2

= O

�
d√
T

�

6445Machine Learning (2024) 113:6413–6451	

1 3

Algorithm 2   The Synchronous Modification of ZOO-VFL (Zhang et al., 2021)

Appendix 4: Experiments on different aspects of VFL‑cascaded

Computation cost

To facilitate the operation of ZOO on the client side and FOO on the server side, the server
within the VFL-Cascaded architecture is required to undertake additional computational
tasks. The primary distinction between our framework and others lies in the number of for-
ward and backward propagations executed by the participants.

We assess propagation counts and propagation time consumption among the asynchro-
nous VFL frameworks in Table 6. The VAFL (Chen et al., 2020) is optimized with FOO,
with both the client and server executing a singular forward and backward propagation.
The ZOO-VFL (Zhang et al., 2021) undergoes an update through ZOO. The client involves
an additional forward propagation on the perturbed parameter, while the server incorpo-
rates two extra forward propagations-one on the client’s perturbed inputs and another on its

Table 6   Computational cost for propagation of the models

a F, forward propagation; B, backward propagation

Asynchronous
frameworks

Client’s propagation Sun of the Clients’
propagation time per
epoch (s)

Server propagation Server propagation
time per epoch (s)

VAFL F + B a 1.61 ± 0.02 F + B 4.32 ± 0.08
ZOO-VFL F + F 0.69 ± 0.39 F + F + F 2.69 ± 0.39
VFL-Cascaded F + F 0.76 ± 0.02 F + F + B 5.18 ± 0.14

6446	 Machine Learning (2024) 113:6413–6451

1 3

locally perturbed parameter. No backward propagation is required. In our framework, VFL-
Cascaded, the server facilitates its local optimization through a backward propagation and
aids the client’s preparation with an additional propagation.

We recorded the propagation times for both clients and the server in the base experi-
ment on MNIST using the MLP model with four clients, as outlined in Sect. 6. All experi-
ments are run through five independent runs.

As indicated in the Table 6, our framework has a slightly increased propagation time for
the server compared to other frameworks. However, the observed difference is small.

Experiment on different feature separation

We conducted experiments involving various feature separations, adhering to the experi-
mental setup employed in the base experiment on MNIST, utilizing the MLP model with
four clients. The original feature separation is contingent on the first dimension of the
image, whereby the first client receives the upper quarter of the image, and the second
client obtains the second quarter, etc. Two additional separations, namely “cross” and “ran-
dom,” are introduced in this experiment. In the cross separation, the image is divided by a
cross in the middle, assigning one corner to each client. For the random separation, each
client randomly selects non-overlapping 1

4
 features from the entire set of features.

The convergence experiment results for different feature separation methods are pre-
sented in Fig. 8.

Notably, no significant differences are observed among the various feature separation
methods.

Experiment on different model split

We performed additional experiments involving different model splits, specifically con-
ducting an ablation study on model splitting in the CIFAR10 experiment.

The majority of the experimental details align with those outlined in Sect. 6 for the
CIFAR10 experiment. In this particular experiment, we add a different model split where

Fig. 8   Convergence of VFL-
cascaded with different feature
separation

6447Machine Learning (2024) 113:6413–6451	

1 3

the client is responsible for the first two layers of the ResNet18 (conv1, conv2), while the
server manages the remaining components.

The convergence results are presented in Fig. 9 and the corresponding test accuracy is
presented in Table 7.

Notably, the client handling two layers bears a heavier parameter load optimized with
ZOO, leading to a slower convergence rate, which is aligned with theoretical expectations.

Supplementary experiment on real‑world dataset

We conducted this experiment using the Give Me Some Credit (GMSC) dataset (Credit
Fusion, 2011), a real-world dataset containing information from 250,000 anonymous bor-
rowers. The aim of this dataset is to predict instances where individuals fail to repay an
installment, extending beyond 90 days from the due date within a 2-year timeframe.

The dataset consists of 10 features and 1 label for each sample. We assumed that there
were two clients in the VFL. The first 5 features belong to the first client, while the remain-
ing features belong to the second client. To address the substantial imbalance between pos-
itive and negative classes, downsampling was applied to the negative class, equalizing their
sizes with the positive class. Subsequently, the dataset was partitioned into a training set,
comprising 75% of the data, and a testing set, comprising the remaining 25%.

We utilized a Logistic Regression (LR) model on the clients, with the server aggregating
predictions by summing the logits from both clients. The batch size was fixed at 64. Learn-
ing rates for all frameworks were chosen through a grid search within the range [0.1, 0.01,
0.001, 0.0001]. The optimal value for the hyperparameter � was determined as 0.001 from
the set [0.1, 0.001, 0.0001, 0.0001] using grid search. The model was trained for a total of
50 epochs. The convergence curve is depicted in Fig. 10, and the test accuracy results for
those frameworks are detailed in Table 8. The results suggest that all optimization methods

Fig. 9   Convergence of different
model splitting

Table 7   Test accuracy (%) for
different model splits

Test accuracy

Client taking Conv1 87.2±0.6

Client taking Conv1 and Conv2 84.8±0.4

6448	 Machine Learning (2024) 113:6413–6451

1 3

perform effectively for this task, likely due to the model’s simplicity, making it easy to
optimize.

Author Contributions  Ganyu Wang developed the theory and conducted the experiment. Ganyu Wang,
Qingsong Zhang, and Xiang Li wrote the paper. Xiang Li, Boyu Wang, and Bin Gu verified the theory and
the experiment. Boyu Wang, Bin Gu, and Charles X. Ling supervised the project.

Funding  Natural Sciences and Engineering Research Council of Canada (NSERC), Discovery Grants
program.

Data availability  All datasets used in this research are public datasets.

Code availability  Code will be made public if accepted.

Declarations 

Conflict of interest  Western University, Xidian University, Mohamed bin Zayed University of Artificial Intel-
ligence.

Ethics approval  Waive. No ethics approval is needed for this research.

References

Ahmad, A., Luo, W., & Robles-Kelly, A. (2023). Robust federated learning under statistical heterogeneity
via hessian-weighted aggregation. Machine Learning, 112(2), 633–654.

Fig. 10   Convergence of VFL on
GMSC dataset

Table 8   Test accuracy (%) for the
experiment on real-world dataset

Test accuracy

VAFL 71.6 ± 0.03
ZOO-VFL 72.0 ± 0.5
VFL-Cascaded 72.3 ± 0.6

6449Machine Learning (2024) 113:6413–6451	

1 3

Badar, M., Nejdl, W., & Fisichella, M. (2023). FAC-fed: Federated adaptation for fairness and concept drift
aware stream classification. Machine Learning 1–26.

Casado, F. E., Lema, D., Iglesias, R., Regueiro, C. V., & Barro, S. (2023). Ensemble and continual federated
learning for classification tasks. Machine Learning 1–41.

Castiglia, T.J., Das, A., Wang, S., & Patterson, S. (2022). Compressed-VFL: Communication-efficient
learning with vertically partitioned data. In International conference on machine learning (pp.
2738–2766). PMLR

Castiglia, T., Wang, S., & Patterson, S. (2022). Flexible vertical federated learning with heterogeneous
parties. arXiv preprint arXiv:​2208.​12672.

Chen, T., Jin, X., Sun, Y., & Yin, W. (2020). VAFL: A method of vertical asynchronous federated learn-
ing. arXiv preprint arXiv:​2007.​06081.

Commission, E. (2016). Regulation (EU) 2016/679 of the European Parliament and of the Council of
27 April 2016 on the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing directive 95/46/EC (General Data Protection
Regulation). OJ, 2016-04-27.

Credit Fusion, W.C. (2011). Give Me Some Credit. Kaggle. https://​kaggle.​com/​compe​titio​ns/​GiveM​
eSome​Credit.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:​1810.​04805.

Fang, M., Cao, X., Jia, J., & Gong, N. (2020). Local model poisoning attacks to {Byzantine-Robust}
federated learning. In 29th USENIX security symposium (USENIX Security 20) (pp. 1605–1622).

Fang, W., Zhao, D., Tan, J., Chen, C., Yu, C., Wang, L., Wang, L., Zhou, J., & Zhang, B. (2021). Large-
scale secure XGB for vertical federated learning. In Proceedings of the 30th ACM international
conference on information & knowledge management (pp. 443–452).

Fredrikson, M., Jha, S., & Ristenpart, T. (2015). Model inversion attacks that exploit confidence infor-
mation and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on com-
puter and communications security (pp. 1322–1333).

Fu, C., Zhang, X., Ji, S., Chen, J., Wu, J., Guo, S., Zhou, J., Liu, A. X., & Wang, T. (2022). Label
inference attacks against vertical federated learning. In 31st USENIX security symposium (USENIX
Security 22), Boston, MA.

Gao, X., Jiang, B., & Zhang, S. (2018). On the information-adaptive variants of the ADMM: An itera-
tion complexity perspective. Journal of Scientific Computing, 76(1), 327–363.

Ghadimi, S., & Lan, G. (2013). Stochastic first-and zeroth-order methods for nonconvex stochastic pro-
gramming. SIAM Journal on Optimization, 23(4), 2341–2368.

Gu, B., Xu, A., Huo, Z., Deng, C., & Huang, H. (2021). Privacy-preserving asynchronous vertical feder-
ated learning algorithms for multiparty collaborative learning. IEEE Transactions on Neural Net-
works and Learning Systems.

Hardy, S., Henecka, W., Ivey-Law, H., Nock, R., Patrini, G., Smith, G., & Thorne, B. (2017). Private
federated learning on vertically partitioned data via entity resolution and additively homomorphic
encryption. arXiv preprint arXiv:​1711.​10677.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

Hu, Y., Niu, D., Yang, J., & Zhou, S. (2019). FDML: A collaborative machine learning framework for
distributed features. In Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining (pp. 2232–2240).

Jin, X., Chen, P.-Y., Hsu, C.-Y., Yu, C.-M., & Chen, T. (2021). CAFE: Catastrophic data leakage in verti-
cal federated learning. Advances in Neural Information Processing Systems, 34, 994–1006.

Kairouz, P., McMahan, H., Avent, B., Bellet, A., Bennis, M., Bhagoji, A., Bonawitz, K., Charles, Z.,
Cormode, G., & Cummings, R., et al. (2019). Advances and open problems in federated learning.
arXiv preprint arXiv:​1912.​04977.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., & Suresh, A. T. (2020). Scaffold: Stochastic
controlled averaging for federated learning. In International conference on machine learning (pp.
5132–5143). PMLR.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical report.
LeCun, Y., Cortes, C., & Burges, C. (2010). Mnist handwritten digit database. ATT Labs [Online].

http://​yann.​lecun.​com/​exdb/​mnist2.
Li, L., Zhan, D.-c., & Li, X.-c. (2022). Aligning model outputs for class imbalanced non-IID federated

learning. Machine Learning 1–24.
Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and

future directions. IEEE Signal Processing Magazine, 37(3), 50–60.

http://arxiv.org/abs/2208.12672
http://arxiv.org/abs/2007.06081
https://kaggle.com/competitions/GiveMeSomeCredit
https://kaggle.com/competitions/GiveMeSomeCredit
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1711.10677
http://arxiv.org/abs/1912.04977
http://yann.lecun.com/exdb/mnist

6450	 Machine Learning (2024) 113:6413–6451

1 3

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimization
in heterogeneous networks. Proceedings of Machine Learning and Systems, 2, 429–450.

Li, X., Jiang, M., Zhang, X., Kamp, M., & Dou, Q. (2021). FedBN: Federated learning on non-IID
features via local batch normalization. In International conference on learning representations.
https://​openr​eview.​net/​pdf?​id=​6YEQU​n0QICG.

Liu, S., Chen, P.-Y., Kailkhura, B., Zhang, G., Hero, A. O., III., & Varshney, P. K. (2020). A primer on
zeroth-order optimization in signal processing and machine learning: Principals, recent advances,
and applications. IEEE Signal Processing Magazine, 37(5), 43–54.

Liu, S., Kailkhura, B., Chen, P.-Y., Ting, P., Chang, S., & Amini, L. (2018). Zeroth-order stochastic vari-
ance reduction for nonconvex optimization. In Advances in neural information processing systems
(vol. 31).

Liu, Y., Kang, Y., Li, L., Zhang, X., Cheng, Y., Chen, T., Hong, M., & Yang, Q. (2019). A communica-
tion efficient vertical federated learning framework. Scanning Electron Microsc Meet at.

Liu, Y., Ma, Z., Liu, X., Ma, S., Nepal, S., Deng, R. H., & Ren, K. (2020). Boosting privately: Federated
extreme gradient boosting for mobile crowdsensing. In 2020 IEEE 40th international conference on
distributed computing systems (ICDCS) (pp. 1–11). IEEE.

Liu, Y., Yi, Z., & Chen, T. (2020). Backdoor attacks and defenses in feature-partitioned collaborative
learning. arXiv preprint arXiv:​2007.​03608.

Luo, X., Wu, Y., Xiao, X., & Ooi, B. C. (2021). Feature inference attack on model predictions in vertical
federated learning. In 2021 IEEE 37th international conference on data engineering (ICDE) (pp.
181–192). IEEE.

Makhija, D., Han, X., Ho, N., & Ghosh, J. (2022). Architecture agnostic federated learning for neural
networks. arXiv preprint arXiv:​2202.​07757.

McAuley, J., & Leskovec, J. (2013). Hidden factors and hidden topics: understanding rating dimensions
with review text. In Proceedings of the 7th ACM conference on recommender systems (pp. 165–172).

McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. (2017). Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp.
1273–1282). PMLR.

Mishchenko, K., Malinovsky, G., Stich, S., & Richtárik, P. (2022). Proxskip: Yes! local gradient steps
provably lead to communication acceleration! finally! In International conference on machine
learning (pp. 15750–15769). PMLR.

Nesterov, Y., & Spokoiny, V. (2017). Random gradient-free minimization of convex functions. Founda-
tions of Computational Mathematics, 17(2), 527–566.

Ranbaduge, T., & Ding, M. (2022). Differentially private vertical federated learning. arXiv preprint
arXiv:​2211.​06782.

Sabater, C., Bellet, A., & Ramon, J. (2022). An accurate, scalable and verifiable protocol for federated
differentially private averaging. Machine Learning, 111(11), 4249–4293.

Shi, J., Bian, J., Richter, J., Chen, K.-H., Rahnenführer, J., Xiong, H., & Chen, J.-J. (2021). Modes: Model-
based optimization on distributed embedded systems. Machine Learning, 110(6), 1527–1547.

Shokri, R., & Shmatikov, V. (2015). Privacy-preserving deep learning. In Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security (pp. 1310–1321).

Sun, J., Yang, X., Yao, Y., & Wang, C. (2022). Label leakage and protection from forward embedding in
vertical federated learning. arXiv preprint arXiv:​2203.​01451.

Vepakomma, P., Gupta, O., Swedish, T., & Raskar, R. (2018). Split learning for health: Distributed deep
learning without sharing raw patient data. arXiv preprint arXiv:​1812.​00564.

Wang, Y., Lin, L., & Chen, J. (2022). Communication-efficient adaptive federated learning. arXiv pre-
print arXiv:​2205.​02719.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., & Poor, H. V. (2020).
Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transac-
tions on Information Forensics and Security, 15, 3454–3469.

Wei, K., Li, J., Ma, C., Ding, M., Wei, S., Wu, F., Chen, G., & Ranbaduge, T. (2022). Vertical federated
learning: Challenges, methodologies and experiments. arXiv preprint arXiv:​2202.​04309.

Weng, H., Zhang, J., Xue, F., Wei, T., Ji, S., & Zong, Z. (2020). Privacy leakage of real-world vertical
federated learning. arXiv preprint arXiv:​2011.​09290.

Yang, K., Fan, T., Chen, T., Shi, Y., & Yang, Q. (2019). A quasi-newton method based vertical federated
learning framework for logistic regression. arXiv preprint arXiv:​1912.​00513.

Zhang, Q., Gu, B., Dang, Z., Deng, C., & Huang, H. (2021). Desirable companion for vertical federated
learning: New zeroth-order gradient based algorithm. In Proceedings of the 30th ACM interna-
tional conference on information & knowledge management (pp. 2598–2607).

https://openreview.net/pdf?id=6YEQUn0QICG
http://arxiv.org/abs/2007.03608
http://arxiv.org/abs/2202.07757
http://arxiv.org/abs/2211.06782
http://arxiv.org/abs/2203.01451
http://arxiv.org/abs/1812.00564
http://arxiv.org/abs/2205.02719
http://arxiv.org/abs/2202.04309
http://arxiv.org/abs/2011.09290
http://arxiv.org/abs/1912.00513

6451Machine Learning (2024) 113:6413–6451	

1 3

Zhang, Q., Gu, B., Deng, C., & Huang, H. (2021). Secure bilevel asynchronous vertical federated learn-
ing with backward updating. In Proceedings of the AAAI conference on artificial intelligence (vol.
35, pp. 10896–10904).

Zhao, B., Mopuri, K.R., & Bilen, H. (2020). iDLG: Improved deep leakage from gradients. arXiv preprint
arXiv:​2001.​02610.

Zhou, J., Chen, C., Zheng, L., Wu, H., Wu, J., Zheng, X., Wu, B., Liu, Z., & Wang, L. (2020). Vertically
federated graph neural network for privacy-preserving node classification. arXiv preprint arXiv:​2005.​
11903.

Zhu, L., Liu, Z., & Han, S. (2019). Deep leakage from gradients. In Advances in neural information pro-
cessing systems (vol. 32).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Ganyu Wang1 · Qingsong Zhang2 · Xiang Li1 · Boyu Wang1 · Bin Gu3 · Charles X. Ling1

 *	 Charles X. Ling
	 charles.ling@uwo.ca

	 Ganyu Wang
	 gwang382@uwo.ca

	 Qingsong Zhang
	 qszhang1995@gmail.com

	 Xiang Li
	 lxiang2@uwo.ca

	 Boyu Wang
	 bwang@csd.uwo.ca

	 Bin Gu
	 jsgubin@gmail.com

1	 Western University, London, ON N6A 3K7, Canada
2	 Xidian University, Xi’an 710126, Shaanxi, China
3	 Mohamed bin Zayed University of Artificial Intelligence, Masdar City, Abu Dhabi,

United Arab Emirates

http://arxiv.org/abs/2001.02610
http://arxiv.org/abs/2005.11903
http://arxiv.org/abs/2005.11903

	Secure and fast asynchronous Vertical Federated Learning via cascaded hybrid optimization
	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Problem definition
	3.2 Cascaded hybrid optimization (ZOO & FOO)
	3.2.1 Client update with ZOO to ensure privacy security
	3.2.2 Server update with FOO to speed up the convergence

	3.3 Asynchronous updates
	3.4 Algorithm

	4 Convergence analysis
	4.1 Theoretical challenges and advantages
	4.2 Assumptions
	4.3 Theorems

	5 Security analysis
	5.1 Threat model
	5.1.1 Honest-but-curious
	5.1.2 Honest-but-colluded

	5.2 Theorem

	6 Experiments
	6.1 Experiment setups
	6.1.1 Datasets
	6.1.2 Models
	6.1.3 The frameworks for comparison
	6.1.4 Training procedures

	6.2 A demonstration on defending against label inference attack
	6.3 A demonstration on defending against feature inference attack
	6.4 The convergence for different numbers of clients
	6.4.1 More robust hyperparameter tuning

	6.5 The convergence for different server model sizes
	6.5.1 Base model
	6.5.2 Image classification
	6.5.3 Natural language processing

	7 Limitations and discussions
	8 Conclusions
	Appendix 1: Convergence analysis
	Notation
	Lemmas
	Bound the global update round
	Combine the gradient
	Define the Lyapunov function to eliminate the client’s delay.
	Bound the gradient

	Appendix 2: Discussion on threat model where the attacker deviates from the protocol
	Appendix 3: Supplementary experiment details
	Appendix 4: Experiments on different aspects of VFL-cascaded
	Computation cost
	Experiment on different feature separation
	Experiment on different model split
	Supplementary experiment on real-world dataset

	References

