
Vol.:(0123456789)

Machine Learning (2024) 113:3929–3959
https://doi.org/10.1007/s10994-024-06536-9

1 3

Generalization bounds for learning
under graph‑dependence: a survey

Rui‑Ray Zhang1,2 · Massih‑Reza Amini3

Received: 18 May 2022 / Revised: 29 January 2024 / Accepted: 5 March 2024 /
Published online: 3 April 2024
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2024

Abstract
Traditional statistical learning theory relies on the assumption that data are identically and
independently distributed (i.i.d.). However, this assumption often does not hold in many
real-life applications. In this survey, we explore learning scenarios where examples are
dependent and their dependence relationship is described by a dependency graph, a com-
monly utilized model in probability and combinatorics. We collect various graph-depend-
ent concentration bounds, which are then used to derive Rademacher complexity and
stability generalization bounds for learning from graph-dependent data. We illustrate this
paradigm through practical learning tasks and provide some research directions for future
work. To our knowledge, this survey is the first of this kind on this subject.

Keywords Generalization bounds · Dependency graphs · Uniform stability · Rademacher
complexity · Bipartite ranking

1 Introduction

The central assumption in machine learning is that observations are independently and
identically distributed (i.i.d.) with respect to a fixed yet unknown probability distribution.
Under this assumption, generalization error bounds, shedding light on the learnability of
models or conducting in the design of advanced algorithms (Boser et al., 1992), have been
proposed. However, in many real applications, the data collected can be dependent, and
therefore the i.i.d. assumption does not hold. There have been extensive discussions in the

Editor: Aryeh Kontorovich.

 * Rui-Ray Zhang
 rui.zhang@bse.eu

 Massih-Reza Amini
 massih-reza.amini@imag.fr

1 Barcelona School of Economics, 08005 Barcelona, Catalonia, Spain
2 School of Mathematics, Monash University, Clayton, VIC 3168, Australia
3 LIG/CNRS, University Grenoble Alpes, 38041 CEDEX 9 Grenoble, France

http://orcid.org/0000-0002-0748-7398
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06536-9&domain=pdf

3930 Machine Learning (2024) 113:3929–3959

1 3

community on why and how the data are dependent (Amini & Usunier, 2015; Dehling &
Philipp, 2002).

Learning with interdependent data Establishing generalization theories under depend-
ent settings have received a surge of interest in recent years (Kuznetsov & Mohri, 2017;
Mohri & Rostamizadeh, 2008, 2009; Ralaivola et al., 2010). A major line of research in
this direction models the data dependencies by various types of mixing models, such as
�-mixing (Rosenblatt, 1956), �-mixing (Volkonskii & Rozanov, 1959), �-mixing (Ibragi-
mov, 1962), and �-mixing (Kontorovich, 2007), and so on. Mixing models have been used
in statistical learning theory to establish generalization error bounds based on Rademacher
complexity (Kuznetsov & Mohri, 2017; Mohri & Rostamizadeh, 2009, 2010) or algo-
rithmic stability (He et al., 2016; Mohri & Rostamizadeh, 2008, 2010) via concentration
results (Kontorovich & Ramanan, 2008) or independent block technique (Yu, 1994). In
these models, the mixing coefficients quantitatively measure the dependencies among data.
Another line of work, referred to as decoupling, studies the behavior of complex systems
by decomposing a set of dependent random variables into sets of independent variables and
a set of dependent variables with vanishing moments (Peña & Giné, 1999). A random vari-
able with vanishing moments has a property that its expected value converges to zero as the
number of terms increases. This technique of decoupling has been successfully applied in
many areas of mathematics, statistics, and engineering.

Dependency graphs Although the results based upon the mixing model and decoupling
with vanishing moments are fruitful, they face difficulties in practical applications, as it is
usually difficult to determine or estimate the quantitative dependencies among data points
(such as the mixing coefficients or the vanishing moments) unless under some restrictive
assumptions. On the other hand, determining whether two data are dependent or exhibit a
suitable dependency structure is often much easier in practice. Thus in this paper, we focus
on such a qualitative dependent setting. We use graphs as a natural tool to describe the
dependencies among data and establish generalization theory under such graph-depend-
ence. The dependency graph model we use has been widely utilized in many other fields,
in particular, in probability theory and statistics, where it is used to prove normal or Pois-
son approximation using Stein’s approach, cumulants, and so on (see, for example, Janson,
1988, 1990). It is also heavily used in probabilistic combinatorics and statistical physics,
such as Lovász local lemma (Erdős & Lovász, 1975), Janson’s inequality (Janson et al.,
1988), along with many others.

Rademacher complexity We collect various concentration bounds under graph-depend-
ence and utilize them to derive Rademacher and stability generalization bounds for learn-
ing from dependent data. The basic tool used to establish generalization theory is concen-
tration inequalities. Standard concentration results for the i.i.d. case no longer apply for
dependently distributed data, making the study a challenging task. Janson (2004) extended
Hoeffding’s inequality to the sum of dependent random variables. This result bounds the
probability that the summation of graph-dependent random variables deviates from its
expected value, in terms of the fractional chromatic number of the dependency graph. Our
first approach uses a similar idea, by dividing graph-dependent variables into sets of inde-
pendent ones, we establish concentration bounds based on fractional colorings, and gener-
alization bounds via fractional Rademacher complexity.

Algorithmic stability PAC-Bayes bounds for classification with non-i.i.d. data have
also been obtained based on fractional colorings of graphs in Ralaivola et al. (2010).
These results also hold for specific learning settings such as ranking and learning from
stationary �-mixing distributions. Ralaivola and Amini (2015) established new concen-
tration inequalities for fractionally sub-additive and fractionally self-bounding functions

3931Machine Learning (2024) 113:3929–3959

1 3

of dependent variables. Though fundamental and elegant, the above generalization
bounds are algorithm-independent. They consider the complexity of the hypothesis
space and data distribution, but do not involve specific learning algorithms. To derive
better generalization bounds, there is growing interest in developing algorithm-depend-
ent generalization theories. This line of research heavily relies on the notion of algo-
rithmic stability, which exhibits a key advantage, that is, they are tailored to specific
learning algorithms, exploiting their particular properties. Our second approach utilizes
algorithmic stability to establish generalization bounds. Note that even under the i.i.d.
assumption, Hoeffding-type concentration inequalities, which bound the deviation of
sample average from expectation, are not strong enough to prove stability-based gen-
eralization. On the contrary, McDiarmid’s inequality characterizes the concentration of
general Lipschitz functions of i.i.d. random variables, hence is used as the key tool for
proving the stability bounds. Therefore, to build algorithmic stability theory for non-
i.i.d. samples, we start with McDiarmid-type concentration bounds for graph-dependent
random variables.

Table 1 lists some generalization results using Rademacher complexity and algorith-
mic stability for i.i.d., mixing, and graph-dependent settings, respectively.

Paper organization In this survey, we begin with introducing different McDiarmid-
type concentration inequalities for functions of graph-dependent random variables.
Then we utilize these concentration bounds to provide upper bounds on generalization
error for learning from graph-dependent data using Rademacher complexity and algo-
rithm stability. In the reminder, Sect. 2 introduces notation and the framework. Sec-
tion 3 establishes fractional Rademacher complexity and algorithmic stability bounds.
Section 4 shows how the presented framework can be utilized to derive generaliza-
tion bounds for learning from graph-dependent data in a variety of practical scenar-
ios, including learning-to-rank, multi-class classification problems, and learning from
m-dependent data. We finally conclude this work in Sect. 5 and provide some perspec-
tive and future work.

2 Notation and framework

Throughout this paper, for all positive integer n, let [n] denote the integer set
{1, 2,… , n} . Given two integers i < j , let [i, j] denote the integer set {i, i + 1,… , j − 1, j} .
Let Ωi be a Polish space for every i ∈ [n] , � =

∏
i∈[n] Ωi = Ω1 ×… × Ωn be the product

space, ℝ be the set of real numbers, and ℝ+ be the set of non-negative real numbers. Let
‖ ⋅ ‖p denote the standard �p-norm of a vector. We use uppercase letters for random vari-
ables, lowercase letters for their realizations, and bold letters for vectors.

Table 1 Rademacher complexity and stability generalization bounds for i.i.d., mixing, and graph-dependent
settings

Rademacher bounds Stability bounds

i.i.d Bartlett and Mendelson (2002) Bousquet and Elisseeff (2002)
Mixing conditions Mohri and Rostamizadeh (2009) Mohri and Rostamizadeh (2008)
Graph-dependence Theorem 3.5 (Amini & Usunier, 2015) Theorem 3.12 (Zhang et al., 2019)

3932 Machine Learning (2024) 113:3929–3959

1 3

2.1 Graph‑theoretic notation

We use the standard graph-theoretic notation. All graphs considered are finite, undirected,
and simple (no loops or multiple edges). A graph G = (V ,E) consists of a set of vertices
V, some of which are connected by edges in E. Given a graph G, let V(G) be the vertex set
and E(G) be the edge set. The edge connecting a pair of distinct vertices u, v is denoted by
{u, v} , which is assumed to be unordered. The number of edges incident on a vertex is the
degree of the vertex; and we use Δ(G) to denote the maximum degree of graph G.

2.1.1 Graph covering and partitioning

Formally, given a graph G, we introduce the following definitions.

 (a1) A family {Sk}k of subsets of V(G) is a vertex cover of G if
⋃

Sk = V(G).
 (a2) A vertex cover {Sk}k of G is a vertex partition of G if every vertex of G is in exactly

one element of {Sk}k.
 (a3) A family {(Sk,wk)}k of pairs (Sk,wk) , where Sk ⊆ V(G) and wk ∈ [0, 1] is a fractional

vertex cover of G if {Sk}k is a vertex cover of G, and
∑

k∶v∈Sk
wk = 1 for every v ∈ V(G)

.
 (a4) An independent set of G is a set of vertices of G, no two of which are adjacent in G.

Let I(G) denote the set of all independent sets of graph G.
 (a5) A fractional independent vertex cover {(Ik,wk)}k of G is a fractional vertex cover such

that Ik ∈ I(G) for every k.
 (a6) A fractional coloring of a graph G is a mapping g from I(G) to [0, 1] such that ∑

I∈I(G)∶v∈I g(I) ⩾ 1 for every vertex v ∈ V(G) . The fractional chromatic number �f (G)
of G is the minimum of the value

∑
I∈I(G) g(I) over fractional colorings of G. See

Fig. 1 for an example. Note that the fractional chromatic number �f (G) of graph G is
the minimum of

∑
k wk over all fractional independent vertex covers {(Ik,wk)}k of G

(see, for example, Janson, 2004).
 (a7) Let H be a graph and {Hx ⊆ V(G)}x∈V(H) be a set of subsets of V(G) indexed by the

vertices of H. Each set Hx is called a ‘bag’. The pair (H, {Hx}x∈V(H)) is an H-partition
of G if:

 (i) {Hx}x∈V(H) is a vertex partition of G.

Fig. 1 A fractional coloring
of a cycle graph C5 of length
5 with patterns indicating dif-
ferent colors. The set of pairs
{({i, (i + 3)(mod 5)}, 1∕2)}1⩽i⩽5
is a fractional vertex cover with
the fractional chromatic number
5/2

3933Machine Learning (2024) 113:3929–3959

1 3

 (ii) Distinct u and v are adjacent in H if and only if there is an edge of G with one end-
point in Hu and the other endpoint in Hv.

In graph theory, a vertex identification (also called vertex contraction) is to contract a
pair of vertices u and v of a graph and produces a graph in which the two vertices u and
v are replaced with a single vertex t such that t is adjacent to the union of the vertices
to which u and v were originally adjacent. Note that in vertex contraction, it does not
matter if u and v are connected by an edge; if they are, the edge is simply removed upon
contraction, this special case of vertex identification called edge contraction.

Informally speaking, an H-partition of graph G is obtained from a proper partition
of V(G) by identifying the vertices in each part, deleting loops, and replacing parallel
edges with a single edge. H is also called the quotient graph of the graph G. For brev-
ity, we say H is a partition of G. For more about partitions of graphs, see, for example,
(Wood, 2009).

 (a8) A tree is a connected, acyclic graph, and a forest is a disjoint union of trees. For a
given forest F, we denote the set of (vertex sets of) disjoint trees in forest F as T(F).

 (a9) If forest F is a partition of graph G, then the pair (F, {Fx ⊆ V(G)}x∈V(F)) is a tree-
partition of G. The set of all tree-partitions of graph G is denoted by ��(G) . See Fig. 2
for an example.

Tree-partitions were independently introduced by Seese (1985) and Halin (1991), and
have since been widely investigated (Wood, 2009). Essentially, a tree-partition of a
graph is a proper partition of its vertex set into ‘bags’, such that identifying the vertices
in each bag produces a forest.

2.2 Probabilistic tools

Concentration inequalities are fundamental tools in statistical learning theory. They
bound the deviation of a function of random variables from some value that is usually
the expectation. Among the most powerful ones is McDiarmid’s inequality (McDiar-
mid, 1989), which establishes sharp concentration for multivariate functions that do not
depend too much on any individual coordinate, specifically, when the function satisfies c
-Lipschitz condition for a weighted hamming distance (bounded differences condition).

Let 1{A} denote the indicator function for any event A, that is, 1{A} = 1 if A occurs,
otherwise, 1{A} = 0 . We first introduce the definition of a Lipschitz function.

Fig. 2 A tree-partition of graph G is (H, {{1, 2}, {3, 4}, {5, 6}}) , where H is a path on vertices {h1, h2, h3} ,
which correspond to vertex sets {1, 2}, {3, 4} , and {5, 6} respectively

3934 Machine Learning (2024) 113:3929–3959

1 3

Definition 2.1 (c-Lipschitz) Given a vector c = (c1,… , cn) ∈ ℝn
+
 , a function f ∶ � → ℝ is

c-Lipschitz if for all x = (x1,… , xn) and x� = (x�
1
,… , x�

n
) ∈ � , we have

where ci is the i-th Lipschitz coefficient of f (with respect to the Hamming metric).

McDiarmid’s inequality is based on the following bound on the moment-generating
function.

Lemma 2.2 (McDiarmid, 1989) Let X = (X1,… ,Xn) be a vector of independent random
variables taking values in � and f ∶ � → ℝ be c-Lipschitz. Then for any s > 0,

We can now state the following McDiarmid’s inequality, which constitutes one of the
pillars of our results. It states that a Lipschitz function of independent random variables
concentrates around its expectation.

Theorem 2.3 (McDiarmid’s inequality 1989) Let f ∶ � → ℝ be c-Lipschitz and
X = (X1,… ,Xn) be a vector of independent random variables that takes values in � . Then
for every t > 0,

In the following, we extend McDiarmid’s inequality to the graph-dependent case, where
the dependencies among random variables are characterized by a dependency graph. We
first define the notion of dependency graphs, which is a widely used model in probabil-
ity, statistics, and combinatorics, see Erdős and Lovász (1975), Janson et al. (1988), Chen
(1978) and Baldi and Rinott (1989) for some classical results.

Given a graph G = (V ,E) , we say that random variables {Xi}i∈V are G-dependent if for
any disjoint S, T ⊂ V such that S and T are non-adjacent in G (that is, no edge in E has one
endpoint in S and the other in T), random variables {Xi}i∈S and {Xj}j∈T are independent.
See Fig. 3 for an example. Formally, we define the dependency graphs in the following.

Definition 2.4 (Dependency graphs) An undirected graph G is called a dependency graph
of a random vector X = (X1,… ,Xn) if

(2.1)|f (x) − f (x�)| ⩽
n∑
i=1

ci1{xi≠x�i}
,

𝔼
�
es(f (X)−𝔼 f (X))

�
⩽ exp

�
s2

8
‖c‖2

2

�
.

(2.2)ℙ(f (X) − 𝔼 f (X) ⩾ t) ⩽ exp

�
−

2t2

‖c‖2
2

�
.

Fig. 3 A dependency graph G for random variables {Xi}i∈[6] . Random variables {X1,X2} and {X5,X6} are
independent, since disjoint vertex sets {1, 2} and {5, 6} are not adjacent in G

3935Machine Learning (2024) 113:3929–3959

1 3

 (b1) V(G) = [n].
 (b2) For all disjoint I, J ⊂ [n] , if I, J are not adjacent in G, then {Xi}i∈I and {Xj}j∈J are

independent.

The above definition of dependency graphs is a strong version; there are ones with
weaker assumptions, such as the one used in Lovász local lemma. Let Kn denote the com-
plete graph on [n], that is, every two vertices are adjacent. Then Kn is a dependency graph
for any set of variables {Xi}i∈[n] . Note that the dependency graph for a set of random vari-
ables may not be necessarily unique, and the sparser ones are the more interesting ones.

Here we introduce a widely-studied random process that generates dependent data
whose dependency graph can be naturally constructed for illustration purposes. Consider a
data-generating procedure modeled by the spatial Poisson point process, which is a Poisson
point process on ℝ2 , see Linderman and Adams (2014) and Kirichenko and Van Zanten
(2015) for discussions of using this process to model data collections in various machine
learning applications. The number of points in each finite region follows a Poisson distribu-
tion, and the number of points in disjoint regions are independent. Given a finite set {Ui}

n
i=1

of regions in ℝ2 , let Xi be the number of points in region Ui for every i ∈ [n] . Then the
graph G

(
[n], {{i, j} ∶ Ui ∩ Uj ≠ �}

)
 is a dependency graph of the random variables {Xi}

n
i=1

.
An important property of the dependency graph, in view of the definition of frac-

tional independent vertex covers, is that if we have a fractional independent vertex cover
{(Ik,wk)}k∈[K] of G, then we may decompose the sum of interdependent variables into a
weighted sum of sums of independent variables.

Lemma 2.5 (Janson, 2004, Lemma 3.1) Let G be a graph, and {(Ik,wk)}k∈[K] be a frac-
tional independent vertex cover of G. Let {ui}i∈V(G) be a set of any numbers. Then

where each Ik ∈ I(G) is an independent set. In particular, we have the following.

• By setting ui = 1 for each i ∈ V(G) , we have

• By letting {ui}i∈V(G) be some G-dependent variables {Xi}i∈V(G) , we have (2.3) becomes
a weighted sum of independent random variables {Xi}i∈Ik.

2.3 Concentration bounds for decomposable functions

Notice that McDiarmid’s inequality applies to independent random variables. Janson
(2004) derived a Hoeffding-like inequality for graph-dependent random variables by
decomposing the sum into sums of independent variables. Janson’s bound is a special case

(2.3)
∑

i∈V(G)

ui =
∑

i∈V(G)

K∑
k=1

wk1{i∈Ik}ui =

K∑
k=1

wk

∑
i∈Ik

ui,

(2.4)|V(G)|,=
K∑
k=1

wk|Ik|.

3936 Machine Learning (2024) 113:3929–3959

1 3

of McDiarmid-type inequality tailored for interdependent random variables, especially
when the function involves summation.

Theorem 2.6 (Janson’s concentration inequality, 2004) Let random vector X be G-depend-
ent such that for every i ∈ V(G) , random variable Xi takes values in a real interval of
length ci ⩾ 0 . Then, for every t > 0,

where c = (ci)i∈V(G) and �f (G) is the fractional chromatic number of G.

We will extend this result, and obtain similar concentration results under certain
decomposability constraints for Lipschitz functions of graph-dependent random vari-
ables defined in Definition 2.7.

Definition 2.7 (Decomposable c -Lipschitz functions) Given a graph G on n vertices and a
vector c = (ci)i∈[n] ∈ ℝn

+
 , a function f ∶ � → ℝ is decomposable c-Lipschitz with respect

to graph G if for all x = (x1,… , xn) ∈ � and for all fractional independent vertex covers
{(Ij,wj)}j of G, there exist (ci)i∈Ij-Lipschitz functions {fj ∶ �Ij

→ ℝ}j such that

where for every set V ⊆ [n] , we write �V ∶=
∏

i∈V Ωi , and xV ∶= {Xi}i∈V.

Theorem 2.8 (Amini & Usunier, 2015; Usunier et al., 2005) Let function f ∶ � → ℝ be
decomposable c-Lipschitz, and �-valued random vector X be G-dependent. Then for t > 0,

Remark 2.9 The chromatic number �(G) of a graph G is the smallest number of colors
needed to color the vertices of G such that no two adjacent vertices share the same color. Let
Δ(G) denote the maximum degree of G. It is well-known that �f (G) ⩽ �(G) ⩽ Δ(G) + 1 ,
(see, for example, Bollobás 1998). Thus in our bound (2.7), we can substitute �f (G) with
�(G) or Δ(G) + 1 , which may be easier to estimate in practice.

Proof of Theorem 2.8 Following the Cramér-Chernoff method (see, for example, Boucheron
et al., 2013), we have for any s > 0 and t > 0,

Let {(Ij,wj)}j∈[J] be a fractional independent vertex cover of the dependency graph G with

(2.5)ℙ

� �
i∈V(G)

Xi − 𝔼
�

i∈V(G)

Xi ⩾ t

�
⩽ exp

�
−

2t2

�f (G)‖c‖22

�
,

(2.6)f (x) =
∑
j

wjfj(xIj),

(2.7)ℙ (f (X) − 𝔼 f (X) ⩾ t) ⩽ exp

�
−

2t2

�f (G)‖c‖22

�
.

(2.8)ℙ (f (X) − 𝔼 f (X) ⩾ t) ⩽ e−st 𝔼
[
es(f (X)−𝔼 f (X))

]
.

(2.9)
J∑
j=1

wj = �f (G).

3937Machine Learning (2024) 113:3929–3959

1 3

Utilizing the decomposition property of the Lipschitz function (2.6), the moment-generat-
ing function on the right-hand side of (2.8) can be written as

where each fj(Ij) = fj(XIj
) is some Lipschitz function of independent variables {Xi}I∈Ij.

Now, let {p1,… , pJ} be any set of J strictly positive reals that sum to 1. Since ∑J

j=1
�j∕�f (G) = 1 by (2.9), using the convexity of the exponential function and Jensen’s

inequality, we obtain that

where the last step is by the linearity of expectation. Note that each subset Ij in summation
(2.10) is an independent set, and therefore corresponds to independent variables. Hence
applying Lemma 2.2 to each expectation that appears in the above summation gives

By rearranging terms in the exponential of the right-hand side of the inequality above and
setting

we have that

where the last equality is by recalling that the sum of pi equals 1. By Cauchy–Schwarz
inequality,

�
[
es(f (X)−� f (X))

]
= �

[
exp

(
J∑
j=1

swj(fj(Ij) − � fj(Ij))

)]
,

(2.10)

𝔼
[
es(f (X)−𝔼 f (X))

]
= 𝔼

[
exp

(
J∑
j=1

pj

swj

pj
(fj(Ij) − 𝔼 fj(Ij))

)]

⩽ 𝔼

[
J∑
j=1

pj exp

(
swj

pj
(fj(Ij) − 𝔼 fj(Ij))

)]

=

J∑
j=1

pj 𝔼

[
exp

(
swj

pj
(fj(Ij) − 𝔼 fj(Ij))

)]
,

J�
j=1

pj 𝔼

�
exp

�
swj

pj
(fj(Ij) − 𝔼 fj(Ij))

��
⩽

J�
j=1

pj exp

⎛⎜⎜⎝
s2w2

j

8p2
j

�
i∈Ij

c2
i

⎞⎟⎟⎠
.

pj =

wj

�∑
i∈Ij

c2
i

∑J

j=1

�
wj

�∑
i∈Ij

c2
i

� ,

J�
j=1

pj exp

⎛⎜⎜⎝
s2w2

j

8p2
j

�
i∈Ij

c2
i

⎞⎟⎟⎠
=

J�
j=1

pj exp

⎛
⎜⎜⎜⎝
s2

8

⎛⎜⎜⎝

J�
j=1

wj

��
i∈Ij

c2
i

⎞⎟⎟⎠

2⎞⎟⎟⎟⎠

= exp

⎛
⎜⎜⎜⎝
s2

8

⎛
⎜⎜⎝

J�
j=1

wj

��
i∈Ij

c2
i

⎞
⎟⎟⎠

2⎞
⎟⎟⎟⎠
,

3938 Machine Learning (2024) 113:3929–3959

1 3

where the last equality is due to decomposition (2.3) and equation (2.9). The proof is then
completed by choosing s = 4t∕(�f (G)

∑
i∈V(G) c

2
i
) in (2.8). ◻

2.4 Concentration bounds for general Lipschitz functions

We have demonstrated concentration results for functions with specific decomposable
constraints. Moving forward, we extend our study to encompass more general Lipschitz
functions. To begin with, we present concentration results for scenarios involving forest-
dependence, wherein the dependency graphs are structured as forests. It is worth recalling
that a forest is a disjoint union of trees.

Theorem 2.10 (Zhang et al., 2019; Zhang, 2022) Let function f ∶ � → ℝ be c-Lipschitz,
and �-valued random vector X be G-dependent. If G is a disjoint union of trees {Ti}i∈[k] .
Then for t > 0,

where cmin,i ∶= min{cj ∶ j ∈ V(Ti)} for all i ∈ [k].

The proof of this theorem is by first properly ordering {Xi}i∈V(G) as (Xi)i∈[n] , and rewrit-
ing f (X) − � f (X) as a summation

∑
i∈[n] Vi , where

In the proof, each tree Ti is rooted by choosing the vertex with the minimum Lipschitz coef-
ficient min{cj ∶ j ∈ V(Ti)} in that tree as the root. It can be shown that for some suitable
ordering, each Vi ranges in an interval of length at most ci + cj , where j is the parent of i in
the tree, or simply ci (if i corresponds to a root vertex). The theorem then follows by apply-
ing the Chernoff-Cramér technique to

∑n

i=1
Vi . The detailed proof is a bit involved and can

be found in Zhang (2022).

Remark 2.11 If random variables (X1,… ,Xn) are independent, then the empty graph
Kn = ([n], �) is a valid dependency graphs for {Xi}i∈[n] . In this case, inequality (2.11) gets
reduced to the McDiarmid’s inequality (2.2), since each vertex is treated as a tree.

If all Lipschitz coefficients are of the same value c, then the denominator of the expo-
nent in (2.11) becomes kc2 + 4(n − k)c2 = (4n − 3k)c2 , since the number of edges in the
forest is n − k . The denominator in Janson’s bound (2.5) is 2nc2 , since the fractional chro-
matic number of any tree is 2. Thus if k ⩾ 2n∕3 , then bound (2.11) is tighter than Janson’s
concentration inequality (2.5).

⎛
⎜⎜⎝

J�
j=1

wj

��
i∈Ij

c2
i

⎞
⎟⎟⎠

2

=

⎛
⎜⎜⎝

J�
j=1

√
wj

�
wj

�
i∈Ij

c2
i

⎞
⎟⎟⎠

2

⩽

�
J�
j=1

wj

�⎛
⎜⎜⎝

J�
j=1

wj

�
i∈Ij

c2
i

⎞
⎟⎟⎠
= �f (G)

�
i∈V(G)

c2
i
,

(2.11)ℙ (f (X) − 𝔼 f (X) ⩾ t) ⩽ exp

�
−

2t2∑k

i=1
c2
min,i

+
∑

{i,j}∈E(G)(ci + cj)
2

�
,

Vi ∶= �[f (X)|X1,…Xi] − �[f (X)|X1,…Xi−1].

3939Machine Learning (2024) 113:3929–3959

1 3

2.4.1 Concentration for general graphs

In this subsection, we consider the concentration of general Lipschitz functions of vari-
ables whose dependency graph may not be a forest. This is by utilizing tree-partitions of
the dependency graphs via vertex identifications, and then applying the forest-dependent
results obtained.

Theorem 2.12 Let function f ∶ � → ℝ be c-Lipschitz, and �-valued random vector X be
G-dependent. Then for any t > 0,

where

with c̃u ∶=
∑

i∈Fu
ci for all u ∈ V(F) and c̃min,T ∶= min{c̃i ∶ i ∈ V(T)} for all T ∈ T(F).

Proof For every u ∈ V(F) , we define a random vector Yu = {Xi}i∈Fu
 , and treat each Yu as a

random variable. We then define a new random vector Y = (Yu)u∈V(F) , and let g(Y) = f (X) .
It is easy to check that g is c̃-Lipschitz by the triangle inequality, where c̃ = (̃cu)u∈V(F) .
Hence the theorem immediately follows from Theorem 2.10. ◻

It is useful to define the notion of forest complexity, which depends only on the graph,
especially when the Lipschitz coefficients are of the same order.

Definition 2.13 (Forest complexity) The forest complexity of a graph G is defined by

where the minimization is over all tree-partitions of G.

Remark 2.14 The width of a tree-partition is the maximum number of vertices in a bag.
The tree-partition-width ���(G) of G is the minimum width of a tree-partition of G. Let
F ∈ ��(G) be the tree-partition with tree-partition width ���(G) . Then

since the number of disjoint trees in a forest F equals |V(F)| − |E(F)| . Upper bounds on
tree-partition-width Λ(G) can be obtained using treewidth and the maximum degree of G,
and are beyond the scope of this paper, see Wood (2009) for more details.

If all the Lipschitz coefficients are of the same value, then Theorem 2.12 gets simplified.

Corollary 2.15 Let function f ∶ � → ℝ be Lipschitz with the same coefficient c, and �-val-
ued random vector X be G-dependent. Then for t > 0,

ℙ(f (X) − 𝔼 f (X) ⩾ t) ⩽ exp

(
−

2t2

D(G, c)

)
,

D(G, c) ∶= min
(F,{Fx}x∈V(F))∈��(G)

(∑
T∈T(F)

c̃2
min,T

+
∑

{u,v}∈E(F)

(̃cu + c̃v)
2

)
,

Λ(G) ∶= min
(F,{Fx}x∈V(F))∈��(G)

(∑
T∈T(F)

min
u∈T

|Fu|2 +
∑

{u,v}∈E(F)

|Fu ∪ Fv|2
)
,

Λ(G) ⩽ |T(F)|���(G)2 + 4|E(F)|���(G)2 = (|V(F)| + 3|E(F)|)���(G)2,

3940 Machine Learning (2024) 113:3929–3959

1 3

Similar to the theorems derived above, Corollary 2.15 also gives an exponentially decay-
ing bound on the probability of deviation. The rate of decay is determined by the Lipschitz
coefficients of the function, and the forest complexity of the dependency graph. Intuitively,
the closer the dependency graph is to a forest, the faster the deviation probability decays.
This uncovers how the dependencies among random variables influence concentration.

2.4.2 Examples

Here we present several explicit examples to demonstrate and estimate the forest complex-
ity where random variables are structured as graphs. All these examples naturally emerge
in the context of random processes that are intricately intertwined within graph structures.

Example 2.16 (G is a tree) In this case, Λ(G) ⩽ |E(G)|(1 + 1)2 + 1 = 4n − 3 . We get an upper
bound of Λ(G) that is linear in the number of variables, which is comparable to Janson’s con-
centration inequality up to some constant factor (see (2.5) with �f (G) = 2 and Remark 2.11).

Example 2.17 (G is a cycle Cn) If n is even, a tree-partition is illustrated in Fig. 4, where the
resulting forest is a path F of length n/2 with each gray belt representing a ‘bag’. We will
keep this convention for the rest of this paper.

By the illustrated tree-partition, Λ(G) ⩽ 2 × (1 + 2)2 + (n∕2 − 2)(2 + 2)2 + 1 = O(n) .
When n is odd, according to the tree-partition shown in Fig. 5,
Λ(G) ⩽ (1 + 2)2 + (

n−1

2
− 1)(2 + 2)2 + 1 = O(n) . Since �f ⩾ 2 for cycles, our bound is

again comparable to Janson’s concentration inequality (2.5) up to some constant multipli-
cative factor.

(2.12)ℙ(f (X) − 𝔼 f (X) ⩾ t) ⩽ exp

(
−

2t2

Λ(G)c2

)
.

Fig. 4 A tree-partition of C6

Fig. 5 A tree-partition of C5

3941Machine Learning (2024) 113:3929–3959

1 3

Example 2.18 (G is a grid) Suppose G is a two-dimensional (m × m)-grid. Then n = m2 .
Considering the tree-partition illustrated in Fig. 6, we have

3 Generalization for learning from graph‑dependent data

We now apply the concentration bounds obtained above to derive generalization bounds for
supervised learning from graph-dependent data. Let

be a G-dependent training sample of size n, where X denotes the input space and Y denotes
the set of labels. Let D be the underlying distribution of data on X × Y . Note that the sam-
ple S contains dependent data with the same marginal distribution D.

Further we fix some � ∶ Y × Y → ℝ+ as a non-negative loss function. For any hypoth-
esis f ∶ X → Y , the empirical error on sample S is defined by

For learning from dependent data, the generalization error can be defined in various ways.
We adopt the following widely-used one (Hang & Steinwart, 2014; Lozano et al., 2006;
Meir, 2000; Steinwart & Christmann, 2009)

which assumes that the test data is independent of the training sample.

3.1 Generalization bounds via fractional Rademacher complexity

Our first approach is based on Rademacher complexity (Bartlett & Mendelson, 2002). This
approach can be extended to accommodate interdependent data by utilizing the decomposi-
tion into independent sets described in Sect. 2.1.1.

Λ(G) ⩽ 1 + 2

m∑
i=1

(2m − 1)2 =
2

3
m(2m + 1)(2m − 1) + 1 = O(m3) = O(n

3

2).

S ∶= ((x1, y1),… , (xn, yn)) ∈ (X × Y)n

R̂
S
(f) ∶=

1

n

n∑
i=1

�(yi, f (xi)).

(3.1)R(f) ∶= �
(x,y)∼D

[�(y, f (x))],

Fig. 6 A tree-partition of 4 × 4
gird

3942 Machine Learning (2024) 113:3929–3959

1 3

Definition 3.1 (Fractional Rademacher complexity, Usunier et al., 2005)
Let {(Ij,wj)}j be a fractional independent vertex cover of a dependency graph G con-

structed over a training set S of size n, with
∑

j wj = �f (G) . Let F = {f ∶ X → Y} be the
hypothesis class. Then, the empirical fractional Rademacher complexity of F given S is
defined by

where � = (�i)1⩽i⩽n denote a vector of n independent Rademacher variables, that is,
ℙ(�i = −1) = ℙ(�i = +1) = 1∕2 for each i ∈ [n] . Moreover, the fractional Rademacher
complexity of F is defined by

Remark 3.2 In the i.i.d. situation, the set of singleton vertices is a valid fractional independ-
ent vertex cover, and the fractional Rademacher complexity (3.2) simplifies to the original
empirical Rademacher complexity (Bartlett & Mendelson, 2002) defined by

Additionally, because the former is a sum of empirical Rademacher complexities, it enables
one to get estimates by extending the properties of the empirical Rademacher complexity.

In the following, we give an example of a function class of linear functions with
bounded-norm weight vectors, for which the empirical Rademacher averages can be
bounded directly.

Theorem 3.3 Let F = {x ↦ ⟨w,�(x)⟩ ∶ ‖w‖ ⩽ B} be a class of linear functions with
bounded weights in a feature space such that ‖�(x)‖ ⩽ Γ for all x. Then

Proof In view of the definition of the empirical fractional Rademacher complexity (3.2), by
the linearity of expectation, we have

where the first inequality is by noting ‖w‖ ⩽ B , and applying Cauchy–Schwarz inequality
to the inner product, and the second inequality is by Jensen’s inequality.

(3.2)�ℜ⋆
S
(F) =

1

n
�
�

⎡
⎢⎢⎣
�
j

wj sup
f∈F

⎛
⎜⎜⎝
�
i∈Ij

𝜎if (xi)
⎞
⎟⎟⎠

⎤
⎥⎥⎦
,

ℜ⋆(F) = �
S

[
�ℜ⋆

S
(F)

]
.

(3.3)ℜ̂
S
(F) =

1

n
�
�

[
sup
f∈F

(∑
i∈[n]

�if (xi)

)]
.

(3.4)�ℜ⋆
S
(F) ⩽ BΓ

√
𝜒f (G)

n
.

�ℜ⋆
S
(F) =

1

n

�
j

wj 𝔼
�

⎡
⎢⎢⎣
sup

‖w‖⩽B

⎛
⎜⎜⎝
�
i∈Ij

⟨w, 𝜎i𝜙(xi)⟩
⎞
⎟⎟⎠

⎤
⎥⎥⎦

⩽
B

n

�
j

wj 𝔼
�

������
�
i∈Ij

𝜎i𝜙(xi)

������
⩽

B

n

�
j

wj

⎛⎜⎜⎝
𝔼
�

������
�
i∈Ij

𝜎i𝜙(xi)

������

2⎞⎟⎟⎠

1∕2

,

3943Machine Learning (2024) 113:3929–3959

1 3

As the Rademacher variables are independent, we have �[�i�k] = �[�i]�[�k] = 0 for
any distinct i, k. Hence we have

and therefore,

Since we have ‖�(xi)‖ ⩽ Γ in the feature space, then

By noticing that
∑

j wj∕�f (G) = 1 , using Jensen’s inequality for the square root function
yields

The result follows then by noting
∑

j wj�Ij� = n by (2.4). ◻

Remark 3.4 Note that � could be the feature mapping corresponding to the last hidden layer
of a neural network, or a kernel function. In particular, under the assumption of Theo-
rem 3.3, let � be a feature mapping associated to a kernel K such that K(x, x) ⩽ Γ2 for all x.
Then the standard Rademacher complexity of kernel-based hypotheses (Mohri et al., 2018,
Theorem 6.12) gives that ℜ̂

S
(F) ⩽ BΓ∕

√
n , and in comparison, our bound (3.4) has an

additional factor
√

�f (G) , which becomes exactly 1 as in Remark 3.2.
It is also worth noting that the fractional Rademacher complexity is defined for a given

fractional cover. In general, our analysis holds for any optimal fractional cover; neverthe-
less, various cover selections may result in different bound values. Nonetheless, in practice,
this influence is unlikely to have a significant impact.

We now obtain generalization bounds using the fractional Rademacher complexity.

Theorem 3.5 (Amini & Usunier, 2015; Usunier et al., 2005) Given a sample S of size n with
dependency graph G and a loss function � ∶ Y × Ŷ → [0,M] . Let F denote the hypothesis
class. Then, for any � ∈ (0, 1) , with probability at least 1 − � , we have, for all f ∈ F , that

and

�
�

������
�
i∈Ij

�i�(xi)

������

2

= �
�

⎡
⎢⎢⎣
�
i,k∈Ij

�i�k⟨�(xi),�(xk)⟩
⎤
⎥⎥⎦
=
�
i∈Ij

‖�(xi)‖2,

�ℜ⋆
S
(F) ⩽

B

n

�
j

wj

⎛⎜⎜⎝
�
i∈Ij

‖𝜙(xi)‖2
⎞⎟⎟⎠

1∕2

.

�ℜ⋆
S
(F) ⩽

BΓ

n

∑
j

wj

√
|Ij| =

BΓ𝜒f (G)

n

∑
j

wj

𝜒f (G)

√
|Ij|.

�ℜ⋆
S
(F) ⩽

BΓ𝜒f (G)

n

√∑
j

wj

𝜒f (G)
|Ij| =

BΓ
√

𝜒f (G)

n

√∑
j

wj|Ij|.

(3.5)R(f) ⩽ �R
S
(f) + 2ℜ⋆(𝓁◦F) +M

√
𝜒f (G)

2n
log

(
1

𝛿

)
,

3944 Machine Learning (2024) 113:3929–3959

1 3

where 𝓁◦F = {(x, y) ↦ 𝓁(y, f (x)) | f ∈ F}.

Proof For any f ∈ F , we have R̂
S
(f) is an unbiased estimator of R(f), since the data points

in the sample S are assumed to be G-dependent and have the same marginal distribution.
Hence considering a G-dependent “ghost” sample S� = ((x�

1
, y�

1
),… , (x�

n
, y�

n
)) that is inde-

pendently generated from the same distribution as S , we have

Let {(Ij,wj)}j∈[J] be a fractional independent vertex cover of the dependency graph G with ∑
j wj = �f (G) . By Jensen’s inequality and the convexity of the supremum, we get

where the second equality is due to the decomposition (2.3).
Then by the sub-additivity of the supremum, we have

where g(S) is defined by

and satisfies g(S) =
∑

j wjgj(S) , where for each j,

Note that each function gj has bounded difference M/n and satisfies (2.6), and therefore is
a decomposable Lipschitz function. Then using Theorem 2.8, for all � ∈ (0, 1) , with prob-
ability at least 1 − � , we have

(3.6)R(f) ⩽ �R
S
(f) + 2�ℜ⋆

S
(𝓁◦F) + 3M

√
𝜒f (G)

2n
log

(
2

𝛿

)
,

sup
f∈F

(R(f) − R̂
S
(f)) = sup

f∈F

(
�
S
�
R̂
S
� (f) − R̂

S
(f)

)
= sup

f∈F

(
�
S
�

[
R̂
S
� (f) − R̂

S
(f)

])
.

sup
f∈F

�
𝔼
S
�

�
R̂
S
� (f) − R̂

S
(f)

��
⩽ 𝔼

S
�

�
sup
f∈F

(R̂
S
� (f) − R̂

S
(f))

�

= 𝔼
S
�

�
sup
f∈F

�
1

n

�
i∈[n]

(�(y�
i
, f (x�

i
)) − �(yi, f (xi)))

��

=
1

n
𝔼
S
�

⎡⎢⎢⎣
sup
f∈F

⎛⎜⎜⎝

J�
j=1

wj

�
i∈Ij

(�(y�
i
, f (x�

i
)) − �(yi, f (xi)))

⎞⎟⎟⎠

⎤⎥⎥⎦
,

sup
f∈F

(R(f) − R̂
S
(f)) ⩽ g(S),

g(S) =
1

n
�
S
�

⎡
⎢⎢⎣

J�
j=1

wj sup
f∈F

⎛⎜⎜⎝
�
i∈Ij

(�(y�
i
, f (x�

i
)) − �(yi, f (xi)))

⎞⎟⎟⎠

⎤⎥⎥⎦
,

gj(S) ∶=
1

n
�
S
�

⎡⎢⎢⎣
sup
f∈F

⎛⎜⎜⎝
�
i∈Ij

(�(y�
i
, f (x�

i
)) − �(yi, f (xi)))

⎞⎟⎟⎠

⎤⎥⎥⎦
.

3945Machine Learning (2024) 113:3929–3959

1 3

 Note that

since the introduction of Rademacher variables � = (�i)i , uniformly taking values in
{−1,+1} , does not change the expectation. Indeed, for �i = +1 , the corresponding sum-
mand stays unaltered, and for �i = −1 , the corresponding summand reverses sign, which is
the same as flipping (xi, yi) and (x�

i
, y�

i
) between S and S′ . This change has no effect on the

overall expectation as we are considering the expectation over S and S′ , and by noting that
S and S′ are independent and Ij is some independent set. Therefore, we have

where the last step uses the sub-additivity of the supremum. Then in view of Definition 3.1
of �ℜ⋆

S
 , we obtain

Therefore the first bound (3.5) follows from the definition of the supremum, that is, for all
f ∈ F ,

Note that

sup
f∈F

(R(f) − R̂
S
(f)) ⩽ 𝔼

S

[g(S)] +M

�
�f (G)

2n
log

�
1

�

�

=

J�
j=1

wj

n
𝔼
S,S�

⎡
⎢⎢⎣
sup
f∈F

⎛
⎜⎜⎝
�
i∈Ij

(�(y�
i
, f (x�

i
)) − �(yi, f (xi)))

⎞
⎟⎟⎠

⎤
⎥⎥⎦
+M

�
�f (G)

2n
log

�
1

�

�
.

�
S,S�

⎡
⎢⎢⎣
sup
f∈F

⎛
⎜⎜⎝
�
i∈Ij

(�(y�
i
, f (x�

i
)) − �(yi, f (xi)))

⎞
⎟⎟⎠

⎤
⎥⎥⎦

= �
S,S�

�
�

⎡⎢⎢⎣
sup
f∈F

⎛⎜⎜⎝
�
i∈Ij

�i(�(y
�
i
, f (x�

i
)) − �(yi, f (xi)))

⎞⎟⎟⎠

⎤⎥⎥⎦
,

(3.7)

sup
f∈F

(R(f) − R̂
S
(f))

⩽

J�
j=1

wj

n
𝔼
S,S�

𝔼
�

⎡⎢⎢⎣
sup
f∈F

⎛⎜⎜⎝
�
i∈Ij

�i(�(y
�
i
, f (x�

i
)) − �(yi, f (xi)))

⎞⎟⎟⎠

⎤⎥⎥⎦
+M

�
�f (G)

2n
log

�
1

�

�

⩽ 2

J�
j=1

wj

n
𝔼
�

𝔼
S

⎡⎢⎢⎣
sup
f∈F

⎛⎜⎜⎝
�
i∈Ij

�i(�(yi, f (xi)))
⎞⎟⎟⎠

⎤⎥⎥⎦
+M

�
�f (G)

2n
log

�
1

�

�
,

sup
f∈F

(R(f) − �R
S
(f)) ⩽ 2𝔼

S

[
�ℜ⋆

S
(𝓁◦F)

]
+M

√
𝜒f (G)

2n
log

(
1

𝛿

)
.

R(f) − R̂
S
(f) ⩽ sup

f∈F

(
R(f) − R̂

S
(f)

)
.

3946 Machine Learning (2024) 113:3929–3959

1 3

satisfies the condition of Theorem 2.8 with bounded difference M/n, and therefore concen-
trates around its expectation ℜ⋆(𝓁◦F) . Then using the union bound with (3.5), yields the
second bound (3.6). ◻

From Remark 3.2, Theorem 3.5 is a natural extension of the standard Rademacher gen-
eralization bounds when examples are identically and independently distributed (see, for
example, Mohri et al., 2018, Theorem 3.3), as in this case, �f (G) = 1.

Remark 3.6 To use the symmetrization technique in Eq. (3.7), the variables involved in
the same summation need to be independent. Consequently, when extending the concept
of Rademacher complexities to scenarios involving interdependent variables, it becomes
necessary to decompose the set of random variables into independent sets. In this context,
the fractional independent vertex cover {(Ij,wj)}j with

∑
k wk = �f (G) emerges as a pivotal

tool for achieving an optimal decomposition, as �f (G) is the minimum of
∑

k wk over all
fractional independent vertex covers.

3.2 Generalization bounds via algorithmic stability

This section establishes stability bounds for learning from graph-dependent data, using the
concentration inequalities derived in the last section. Algorithmic stability has been used
in the study of classification and regression to derive generalization bounds (Devroye &
Wagner, 1979; Kearns & Ron, 1999; Kutin & Niyogi, 2002; Rogers & Wagner, 1978). A
key advantage of stability bounds is that they are designed for specific learning algorithms,
exploiting particular properties of the algorithms.

Since uniform stability was introduced in Bousquet and Elisseeff (2002), it has been
among the most widely used notions of algorithmic stability. Given a training sample S of
size n, for every i ∈ [n] , removing the i-th element from S results in a sample of size n − 1 ,
which is denoted by

A learning algorithm A is a function that maps the training set S onto a function
fA
S

∶ X → Y.

Definition 3.7 (Uniform stability, Bousquet & Elisseeff, 2002) Given an integer n > 0 , the
learning algorithm A is �n-uniformly stable with respect to the loss function � , if for any
i ∈ [n] , S ∈ (X × Y)n , and (x, y) ∈ X × Y , it holds that

Intuitively, small perturbations of the training sample have little effect on the learning
for a stable learning algorithm.

Now, we begin our analysis by considering the difference between the empirical error
and the generalization error of a learning algorithm fA

S
 trained over a G-dependent sample

S , formally defined by

�ℜ⋆
S
(𝓁◦F) =

�
j

wj

⎛
⎜⎜⎝
1

n
�
�

⎡
⎢⎢⎣
sup
f∈F

⎛
⎜⎜⎝
�
i∈Ij

𝜎i(𝓁(yi, f (xi)))
⎞
⎟⎟⎠

⎤
⎥⎥⎦

⎞
⎟⎟⎠

S
⧵i ∶= ((x1, y1),… , (xi−1, yi−1), (xi+1, yi+1)… , (xn, yn)).

(3.8)|�(y, fA
S
(x)) − �(y, fA

S
⧵i (x))| ⩽ �n.

3947Machine Learning (2024) 113:3929–3959

1 3

The mapping ΦA ∶ (X × Y)n → ℝ will play a critical role in estimating R(fA
S
) via stability.

We will first bound the probability of the deviation of ΦA(S) from its expectation (Lemma
3.8), and then obtain an upper bound of expected value of ΦA(S) (Lemma 3.10).

Lemma 3.8 Given a G-dependent sample S of size n, and a �n-uniformly stable learning
algorithm A . Suppose the loss function � is bounded by M. Then for any t > 0,

We prove the following lemma, which states that the Lipschitz coefficients of ΦA(⋅) are all
bounded by 4�n +M∕n . Then Lemma 3.8 follows from Lemma 3.9 and Theorem 2.15, since
the Lipschitz coefficients are all of the same value.

Lemma 3.9 Given a �n-uniformly stable learning algorithm A , for any S,S� ∈ (X × Y)n
that differ only in one entry, we have

Proof In the literature Bousquet and Elisseeff (2002), Lemma 3.9 was proved for the i.i.d.
case, actually, the proof remains valid in our dependent setting. Assume that S and S′ differ
only in i-th entry, and denote S′ as

such that the marginal distribution of (x�
i
, y�

i
) is also D.

Notice that we do not require the data to be i.i.d., as samples are dependent, and have
the same marginal probability distribution D . To begin with, we bound R(fA

S
) − R(fA

S
i
)

using the triangle inequality,

where the last inequality is by the uniform stability defined by (3.8).
Then we bound R̂

S
(fA
S
) − R̂

S
i (fA

S
i
),

(3.9)ΦA(S) ∶= R(fA
S
) − R̂

S
(fA
S
).

ℙ(ΦA(S) − 𝔼[ΦA(S)] ⩾ t) ⩽ exp

(
−

2n2t2

Λ(G)(4n�n +M)2

)
.

|ΦA(S) − ΦA(S
�)| ⩽ 4�n +

M

n
.

S
i ∶= ((x1, y1),… , (xi−1, yi−1), (x

�
i
, y�

i
), (xi+1, yi+1)… , (xm, ym)),

||R(fAS) − R(fA
S
i)|| ⩽ ||R(fAS) − R(fA

S
⧵i)|| + ||R(fAS⧵i) − R(fA

S
i)||

= ||𝔼
D
[�(y, fA

S
(x))] − 𝔼

D
[�(y, fA

S
⧵i (x))]||

+ ||𝔼
D
[�(y, fA

S
⧵i (x))] − 𝔼

D
[�(y, fA

S
i (x))]||

= ||𝔼
D
[�(y, fA

S
(x)) − �(y, fA

S
⧵i (x))]||

+ ||𝔼
D
[�(y, fA

S
⧵i (x)) − �(y, fA

S
i (x))]|| ⩽ 2�n,

3948 Machine Learning (2024) 113:3929–3959

1 3

where the last inequality is by the uniform stability and the assumption that � is bounded
by M.

Combining the above bounds, by the triangle inequality, we have that

which completes the proof. ◻

We are now in measure to bound the expectation of ΦA(S).

Lemma 3.10 Let S be a G-dependent sample of size n. Suppose the maximum degree of G
is Δ = Δ(G) . Let A be a �i-uniformly stable learning algorithm for every i ∈ [n − Δ, n] ,
and �n,Δ = maxi∈[0,Δ] �n−i . Then we have

The proof of the lemma is based on iterative perturbations of the training sample S ,
where a perturbation is essentially removing a data point from S . The property of uni-
form stability of the algorithm guarantees that each perturbation causes a discrepancy
up to �n,Δ , and in total 2(Δ + 1) perturbations have to be made to eliminate the depend-
ency between a data point and the others.

We start with a technical lemma before the proof of Lemma 3.10.

Lemma 3.11 Under the same assumptions in Lemma 3.10, we have

Proof For every i ∈ [n] , let NG(i) be the set of vertices adjacent to i in graph G, and suppose
N+
G
(i) = NG(i) ∪ {i} = {j1,… , jni} with jk−1 > jk . Define S(i,0) = S and for every k ∈ [ni] ,

let S(i,k) be obtained from S(i,k−1) by removing the jk-th entry. By the uniform stability of A ,
for any (x, y) ∈ X × Y and k ∈ [ni] , we have

By a decomposition using a telescoping summation,

n||R̂S
(fA
S
) − R̂

S
i (fA

S
i)|| =

|||||||

∑
(xj ,yj)∈S

�(yj, f
A
S
(xj)) −

∑
(xj ,yj)∈S

i

�(yj, f
A

S
i (xj))

|||||||
⩽ ||�(yi, fAS (xi)) − �(y�

i
, fA
S
i (x

�
i
))|| +

∑
j≠i

|||�(yj, f
A
S
(xj)) − �(yj, f

A

S
i (xj))

|||
⩽
∑
j≠i

|||�(yj, f
A
S
(xj)) − �(yj, f

A

S
⧵i (xj))

||| +
∑
j≠i

|||�(yj, f
A

S
⧵i (xj)) − �(yj, f

A

S
i (xj))

|||
+ ||�(yi, fAS (xi)) − �(y�

i
, fA
S
i (x

�
i
))|| ⩽ 2n�n +M,

||ΦA(S) − ΦA(S
i)|| = ||(R(fAS) − R̂

S
(fA
S
)) − (R(fA

S
i) − R̂

S
i (fA

S
i))||

⩽ ||R(fAS) − R(fA
S
i)| + |R̂(fA

S
) − R̂

S
i (fA

S
i)|| ⩽ 4�n +

M

n
,

𝔼[ΦA(S)] ⩽ 2�n,Δ(Δ + 1).

max
(xi ,yi)∈S

𝔼
(x,y),S

[�(y, fA
S
(x)) − �(yi, f

A

S
(xi))] ⩽ 2�n,Δ(Δ + 1).

||�(y, fAS(i,k−1) (x)) − �(y, fA
S
(i,k) (x))|| ⩽ �n,Δ.

3949Machine Learning (2024) 113:3929–3959

1 3

Similarly, we also get

Now we are ready to bound the difference

Therefore, by noting that ni = |N+
G
(i)| ⩽ Δ + 1 for all i, we have

where the last equality is because (xi, yi) and (x, y) are independent of S(i,ni) , and have the
same distribution. ◻

Now we are ready to prove Lemma 3.10.

Proof of Lemma 3.10 From the definition of ΦA(S) in (3.9), we have

�(y, fA
S
(x)) =

ni∑
k=1

(�(y, fA
S
(i,k−1) (x)) − �(y, fA

S
(i,k) (x)) + �(y, fA

S
(i,ni)

(x)).

�(yi, f
A
S
(xi)) =

ni∑
k=1

(�(yi, f
A

S
(i,k−1) (xi)) − �(yi, f

A

S
(i,k) (xi)) + �(yi, f

A

S
(i,ni)

(xi)).

�(y, fA
S
(x)) − �(yi, f

A

S
(xi))

=

ni∑
k=1

(
(�(y, fA

S
(i,k−1) (x)) − �(y, fA

S
(i,k) (x))) − (�(yi, f

A

S
(i,k) (xi)) − �(yi, f

A

S
(i,k−1) (xi)))

)

+ �(y, fA
S
(i,ni)

(x)) − �(yi, f
A

S
(i,ni)

(xi))

⩽

ni∑
k=1

|�(y, fA
S
(i,k−1) (x)) − �(y, fA

S
(i,k) (x))|

+

ni∑
k=1

|�(yi, fA
S
(i,k) (xi)) − �(yi, f

A

S
(i,k−1) (xi))| + �(y, fA

S
(i,ni)

(x)) − �(yi, f
A

S
(i,ni)

(xi))

⩽ 2ni�n,Δ + �(y, fA
S
(i,ni)

(x)) − �(yi, f
A

S
(i,ni)

(xi)).

𝔼
S,(x,y)

[�(y, fA
S
(x)) − �(yi, f

A

S
(xi))]

⩽ 𝔼
S,(x,y)

[�(y, fA
S
(i,ni)

(x)) − �(yi, f
A

S
(i,ni)

(xi))] + 2ni�n,Δ

⩽ 𝔼
S,(x,y)

[�(y, fA
S
(i,ni)

(x)) − �(yi, f
A

S
(i,ni)

(xi))] + 2�n,Δ(Δ + 1)

= 𝔼
S,(x,y)

[�(y, fA
S
(i,ni)

(x))] − 𝔼
S

[�(yi, f
A

S
(i,ni)

(xi))] + 2�n,Δ(Δ + 1)

= 𝔼
S
(i,ni) ,(x,y)

[�(y, fA
S
(i,ni)

(x))] − 𝔼
S
(i,ni),(xi ,yi)

[�(yi, f
A

S
(i,ni)

(xi))] + 2�n,Δ(Δ + 1)

= 2�n,Δ(Δ + 1),

𝔼
S

[ΦA(S)] = 𝔼
S

[
𝔼
(x,y)

[�(y, fA
S
(x))] −

1

n

n∑
i=1

�(yi, f
A
S
(xi))

]

=
1

n

n∑
i=1

𝔼
S,(x,y)

[�(y, fA
S
(x)) − �(yi, f

A
S
(xi))] ⩽ 2�n,Δ(Δ + 1),

3950 Machine Learning (2024) 113:3929–3959

1 3

where the last inequality is by Lemma 3.11. ◻

Combining Lemmas 3.8 and 3.10 gives the following theorem, which upper-bounds the
generalization error of learning algorithms trained over G-dependent training sets of size n.

Theorem 3.12 Let S be a sample of size n with dependency graph G. Suppose the maxi-
mum degree of G is Δ . Assume that the learning algorithm A is �i-uniformly stable for all
i ∈ [n − Δ, n] . Suppose the loss function � is bounded by M. Let �n,Δ = maxi∈[0,Δ] �n−i . For
any � ∈ (0, 1) , with probability at least 1 − � , it holds that

Remark 3.13 It is well known that for many learning algorithms, �n = O(1∕n) (see, for
example, Bousquet and Elisseeff 2002), in this case, we have that
�n,Δ(Δ + 1) ⩽ �n−Δ(Δ + 1) = O(

Δ

n−Δ
) , which vanishes asymptotically if Δ = o(n) . The term

O
�√

Λ(G)∕n
�
 also vanishes asymptotically if Λ(G) = o(n2) . We also observe that if the

training data are i.i.d., Theorem 3.12 degenerates to the standard stability bound obtained
in Bousquet and Elisseeff (2002), by setting Δ = 0 , �n,Δ = �n , and Λ(G) = n.

4 Applications

In this section, we present three practical applications related to learning with interdependent
data, for which we use the methodology presented in the previous sections to derive generali-
zation bounds.

4.1 Bipartite ranking

The goal of bipartite ranking is to assign higher scores to instances of the positive class than
the ones of the negative class (Agarwal & Niyogi, 2009; Freund et al., 2003). This frame-
work corresponds to many applications of information retrieval such as recommender systems
(Sidana et al., 2021), and uplift-modeling (Betlei et al., 2021), etc.

It has attracted a lot of interest in recent years since the empirical ranking error of a scoring
function h ∶ X → ℝ over a training set T ∶=

(
xi, yi

)
1⩽i⩽m

 with yi ∈ {−1,+1} defined by

is equal to one minus the Area Under the ROC Curve (AUC) of h (see, for example, Cortes
and Mohri 2004), where m− ∶=

∑m

i=1
1{yi=−1} and m+ ∶=

∑m

i=1
1{yi=1} are the number of

negative and positive instances in the training set T respectively.
For two instances of different classes (x, y), (x�, y�) in T such that y ≠ y′ , by considering the

(unordered) pairs of examples {(x, y), (x�, y�)} , and the classifier of pairs f associated to a scor-
ing function h defined by

R(fA
S
) ⩽ R̂

S
(fA
S
) + 2�n,Δ(Δ + 1) +

4n�n +M

n

√
Λ(G)

2
log

(
1

�

)
.

(4.1)L̂T (h) =
1

m−m+

∑
i∶yi=1

∑
j∶yj=−1

1{h(xi)⩽h(xj)},

f (x, x�) = h(x) − h(x�),

3951Machine Learning (2024) 113:3929–3959

1 3

we can rewrite the bipartite ranking loss (4.1) of h over T as the classification error of the
associated f over the pairs of instances of different classes,

where n = m−m+,

is the set of n unordered pairs of examples from different classes in T, and

Note that z1,−1 = 1 and z−1,1 = −1.
Let

be the sets of positive and negative instances of T respectively. Then T = T+ ∪ T− . With-
out loss of generality, we assume that m+ ⩽ m− , which corresponds to the usual situation
in information retrieval, where there are fewer positive (relevant) instances than negative
(irrelevant) ones.

In this case, the independent covers of the corresponding dependency graph of S is
{(Ik, 1)}k∈{1,…,m−}

 , where

with �k,m−
 denoting the permutation that is defined by

Figure 7 illustrates the dependency graph of a bipartite ranking problem with m+ = 2 posi-
tive examples and m− = 3 negative instances as well as its corresponding independent cov-
ers represented by dotted ellipsoids.

Remark 4.1 In the bipartite ranking, the dependent pairs of instances correspond to
the edges of a complete bipartite graph Km+,m−

 , since pairs are chosen with one positive
instance and one negative instance, see Fig. 7 for illustration.

Given a graph G, the line graph of G has the edges of G as its vertices, with two vertices
adjacent if the corresponding edges have a vertex in common in G. Then the dependency
graph for pairs S is the line graph of Km+,m−

 , known as an m+ × m− Rook’s graph, which is a
Cartesian product of two complete graphs.

For bipartite ranking, it is easy to check that

(4.2)R̂
S
(f) = L̂T (h) =

1

n

∑
{(x,y),(x� ,y�)}∈S

1{zy,y� f (x,x�)⩽0},

S ∶=
{
(x, y), (x�, y�) ∶ (x, y) ∈ T , (x�, y�) ∈ T , y ≠ y�

}

zy,y� ∶= 21{y−y�>0} − 1.

T+ ∶= {(x+
i
, 1) ∶ i ∈ [m+]} and T− ∶= {(x−

j
,−1) ∶ j ∈ [m−]}

Ik =
{(

x+
i
, x−

�k,m− (i)

)
∶ i ∈ [m+]

}
,

�k,m−
(i) =

{
(k + i − 1)(modm−), if (k + i − 1)(mod m−) ≠ 0

m−, otherwise.

�f

n
=

max(m−,m+)

m−m+

=
1

min(m−,m+)
.

3952 Machine Learning (2024) 113:3929–3959

1 3

 Therefore by Theorems 3.3, 3.5, and Ledoux and Talagrand’s contraction lemma (Ledoux
& Talagrand, 1991, p.78 Corollary 3.17) that can be extended to fractional Rademacher
complexities giving �ℜ⋆

S
(𝓁◦F) = 2�ℜ⋆

S
(F) , we can bound the generalization error of bipar-

tite ranking as follows.

Corollary 4.2 Let T be a training set composed of m+ positive instances and m− negative
ones; and S the set of unordered pairs of examples from different classes in T. Then for any
scoring function from F = {f ∶ (x, x�) ↦ ⟨w,�(x) − �(x�)⟩ ∶ ‖w‖ ⩽ B} , where � is a fea-
ture mapping with bounded norm such that ‖�(x) − �(x�)‖ ⩽ Γ for all (x, x�) , and for any
� ∈ (0, 1) , with probability at least 1 − � , we have

where m = min(m−,m+).

4.2 Multi‑class classification

We now address the problem of mono-label multi-class classification, where the
output space is a discrete set of labels Y = [K] with K classes. For the sake of

R(f) ⩽ R̂
S
(f) +

4BΓ√
m

+ 3

�
1

2m
log

�
2

�

�
,

Fig. 7 The graph on the right is a dependency graph corresponding to a bipartite rank-
ing problem with m+ = 2 positive examples T+ = {(x+

1
, 1), (x+

2
, 1)} ; and m− = 3 negative ones,

T− = {(x−
1
,−1), (x−

2
,−1), (x−

3
,−1)} . Each pair of examples from different classes corresponds to an edge of

the complete bipartite graph K2,3 on the left, and is represented by a vertex of the dependency graph on the
right. Two pairs are adjacent in the dependency graph if they have an example in common. Fractional inde-
pendent covers {(Ik, 1)}1⩽k⩽3 are shown by dotted ellipsoids

3953Machine Learning (2024) 113:3929–3959

1 3

presentation, we denote an element of X × Y as xy ∶= (x, y) . For a class of predictor func-
tions H = {h ∶ X × Y → ℝ} , let � be the instantaneous loss of h ∈ H on example xy
defined by

For any sample x, this loss function is the average number of classes, for which h assigns a
higher score to the pairs constituted by x and any other classes that are not the true class of
x. For a training set T =

(
x
yi
i

)
1⩽i⩽m

 of size m, the corresponding empirical error of a func-
tion h ∈ H is

Many multi-class classification algorithms like Adaboost.MR (Schapire & Singer, 1999) or
the multiclass SVM (Weston & Watkins, 1998) aim to minimize a convex surrogate func-
tion of this loss.

Similar to the bipartite ranking case, by considering pairs (xy, xy�) with y� ∈ Y⧵{y} , con-
stituted by the pairs xy of an example and its class, and the pairs xy′ of the same examples
with all other classes, the classifier of pairs f associated to a function h ∈ H is defined by

Then the empirical loss of a function h over T, can be written as the classification error of
the associated f,

where S = {(xy, xy
�

) ∶ xy ∈ T , xy
�

∈ T , y ≠ y�} is of size n = m(K − 1) , and
zy,y� = 21{y>y�} − 1 . In this case, an independent cover of the corresponding dependency
graph of S could be {(Ik, 1)}k∈{1,…,K−1} , where

�(y, h(xy)) =
1

K − 1

∑
y�∈Y⧵{y}

1{h(xy)⩽h(xy�)}.

(4.3)L̂T (h) =
1

m(K − 1)

m∑
i=1

∑
y�∈Y⧵{yi}

1{
h(x

yi
i
)⩽h(x

y�

i
)
}.

f (xy, xy
�

) = h(xy) − h(xy
�

).

(4.4)R̂
S
(f) = L̂T (h) =

1

n

∑
(xy ,xy�)∈S

1{zy,y� f (xy ,xy
�)⩽0},

Ik =
{(

x1
i
, xk+1

i

)
∶ i ∈ [m]

}
,

Fig. 8 The dependency graph for the multi-class classification problem with m = 4 examples and K = 4
classes is a vertex-disjoint union of 4 trianlges. Fractional independent covers {(Ik, 1)}1⩽k⩽3 are shown by
dotted ellipsoids

3954 Machine Learning (2024) 113:3929–3959

1 3

with the corresponding fractional chromatic number �f = K − 1.
Figure 8 illustrates a dependency graph for the multi-class classification problem with

m = 4 and K = 4 as well as the corresponding fractional independent covers represented by
dotted ellipsoids.

Similar to the bipartite ranking case, we have the following corollary based on the
prior results.

Corollary 4.3 Let T be a training set of K-label instances and of size m. Let S be the set of
no-redundant pairs of examples from different classes in T. Then for any scoring functions
from F = {f ∶ (x, x�) ↦ ⟨w,�(x) − �(x�)⟩ ∶ ‖w‖ ⩽ B} , where � is a feature mapping with
the bounded norm such that ‖�(x) − �(x�)‖ ⩽ Γ for all (x, x�) , and for any � ∈ (0, 1) , with
probability at least 1 − � , we have

Remark 4.4 The loss function we considered (4.3) is normalized by K − 1 , and we obtain a
result that is comparable to the binary classification case. For a loss function based on mar-
gins, �(y, h(xy)) = h(xy) −max

y�≠y
h(xy

�

) ; the Rademacher complexity term grows in lockstep
with the number of classes K.

4.3 Learning from m‑dependent data

Here we consider learning from m-dependent data, and give a practical learning sce-
nario. Suppose that there are linearly aligned locations, for example, real estate along
a street. Let yi be the observation at location i, for example, the house price. Let
xi denote the random variable modeling geographical effect at location i. Assume
that x’s are mutually independent and each yi is geographically influenced by a
neighborhood of size at most 2q + 1 . The goal is to learn to predict y from a sample
{((xi−q,… , xi,… , xi+q), yi)}i∈[n] , where n is the size of the sample. See Fig. 9 for an
example.

This model accounts for the impact of local locations on house prices. Similar sce-
narios are frequently considered in spatial econometrics, and moving average processes
in time series analysis, see Anselin (2013) for more examples.

R(f) ⩽ R̂
S
(f) +

4BΓ√
m

+ 3

�
1

2m
log

�
2

�

�
.

Fig. 9 Each observation yi is geographically determined by a set of variables {xj}i−2⩽j⩽i+2 of size 5. The
sample {({xj}i−2⩽j⩽i+2, yi)}i is 4-dependent

3955Machine Learning (2024) 113:3929–3959

1 3

The above application is a special case of m-dependence. A sequence of random vari-
ables {Xi}

n
i=1

 is said to be f(n)-dependent if subsets of variables separated by some distance
greater than f(n) are independent. This model was introduced by Hoeffding and Robbins
(1948) and has been studied extensively (see, for example, Stein 1972; Chen 1975). This is
usually the canonical application for the results based on the dependency graph model. A
special case of f(n)-dependence when f (n) = m is the following m-dependent model.

Definition 4.5 (m -dependence, Hoeffding and Robbins 1948) A sequence of random vari-
ables {Xi}

n
i=1

 is m-dependent for some m ⩾ 1 if {Xj}
i
j=1

 and {Xj}
n
j=i+m+1

 are independent for
all i > 0.

Figure 10 illustrates a dependency graph G for a 2-dependent sequence {Xi}i , and its
tree-partition. The illustration demonstrates the division of an m-dependent sequence
into blocks of size m. Subsequently, these blocks are sequentially mapped to verti-
ces of a path of length ⌈n∕m⌉ − 1 , as depicted in Fig. 10. This tree-partition shows that
Λ(G) ⩽ (⌈n∕m⌉ − 1)(m + m)2 + m2 ⩽ 4mn + m2.

Combining Theorem 3.12 and the above estimate of forest complexity gives the following.

Corollary 4.6 Let S be an m-dependent sample of size n. Assume that the learning algo-
rithm A is �i-uniformly stable for any i ∈ [n − 2m, n] . Suppose the loss function � is
bounded by M. For any � ∈ (0, 1) , with probability at least 1 − � , it holds that

Choose any uniformly stable learning algorithm in Bousquet and Elisseeff (2002) with
�n = O(1∕n) , such as regularization algorithms in RKHS, etc., and apply to the above-men-
tioned house price prediction problem. Then for any fixed q, with high probability, Corol-

lary 4.6 gives that R(fA
S
) ⩽ R̂

S
(fA
S
) + O

(√
1

n
log

(
1

�

))
 for sufficiently large n, matching the

stability bound in the i.i.d. case in Bousquet and Elisseeff (2002).

5 Concluding remarks

In this survey, we presented various McDiarmid-type concentration inequalities for func-
tions of graph-dependent random variables. These concentration bounds were then used to
obtain generalization error bounds for learning from graph-dependent samples via fractional
Rademacher complexity and algorithm stability.

We also included some real practical applications of the methodology. Note that in our
applications, the sample contains dependent data with the same marginal distribution, but this

R(fA
S
) ⩽ R̂

S
(fA
S
) + 2�n,2m(2m + 1) + (4n�n +M)

√
2m

n

(
1 +

m

n

)
log

(
1

�

)
.

Fig. 10 A tree-partition of the
dependency graph for 2-depend-
ent variables

3956 Machine Learning (2024) 113:3929–3959

1 3

is not necessary and concentration inequalities derived are without this assumption, and there-
fore can be applied to situations where the distribution may change over time.

The dependency graphs used for our applications exhibit certain structural regularities and
therefore we have explicit simple bounds. For applications under various other settings, we
can still obtain meaningful bounds as long as we have suitable estimates of the fractional chro-
matic number or forest complexity. We will leave interested readers to investigate and find
more applications.

There are various new directions that can be explored.

1. For dependent data, there are other definitions of the generalization error, such as the one
specified in Kuznetsov and Mohri (2017) and Mohri and Rostamizadeh (2008, 2010).
The connections between these and the one we used have been discussed in Mohri and
Rostamizadeh (2008, 2010). It is a natural question whether our results can be adapted
to this definition.

2. The dependency graph model we consider requires variables in disjoint non-adjacent
subgraphs to be independent. There are some newly introduced dependency graph mod-
els such as weighted dependency graphs (Dousse & Féray, 2019; Féray, 2018), and
the combination of mixing coefficients and dependency graphs (Lampert et al., 2018;
Isaev et al., 2021). It would be interesting to use these new dependency graphs to obtain
generalization bounds for learning under different dependent settings.

3. Recently, there are some new breakthroughs establishing sharper stability bounds (Bous-
quet et al., 2020; Feldman & Vondrak, 2019). It would be interesting to follow these
results and to obtain sharper stability bounds for learning under graph-dependence.

Acknowledgements R.-R. Z. thanks David Wood for email communications on tree-partitions. The authors
are sincerely grateful to the referees for carefully reading the manuscript and providing invaluable com-
ments and suggestions, which led to a substantial improvement in the presentation.

Author contributions R.-R. Z.: the first and final draft, stability bound, and its applications. M.-R. A.: frac-
tional Rademacher complexity bound, and its applications.

Funding The authors received no financial support for the research, authorship, and/or publication of this
article.

Availability of data and materials Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare no conflict of interest.

 Ethical approval Not applicable.

 Consent to participate Not applicable.

 Consent for publication All authors participated in this study give the publisher the permission to publish
this work.

3957Machine Learning (2024) 113:3929–3959

1 3

References

Agarwal, S., & Niyogi, P. (2009). Generalization bounds for ranking algorithms via algorithmic stability.
Journal of Machine Learning Research, 10(16), 441–474.

Amini, M. R., & Usunier, N. (2015). Learning with partially labeled and interdependent data. Springer.
Anselin, L. (2013). Spatial econometrics: Methods and models (Vol. 4). Springer.
Baldi, P., & Rinott, Y. (1989). On normal approximations of distributions in terms of dependency graphs.

The Annals of Probability, 17(4), 1646–1650.
Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk bounds and structural

results. Journal of Machine Learning Research, 3, 463–482.
Betlei, A., Diemert, E., & Amini, M. (2021). Uplift modeling with generalization guarantees. In 27th ACM

SIGKDD conference on knowledge discovery and data mining (pp. 55–65).
Bollobás, B. (1998). Modern graph theory (Vol. 184). Springer.
Boser, B., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. In Proceed-

ings of the 5th annual workshop on computational learning theory (COLT’92) (pp. 144–152).
Boucheron, S., Lugosi, G., & Massart, P. (2013). Concentration inequalities: A nonasymptotic theory of

independence. Oxford University Press.
Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. Journal of Machine Learning Research,

2, 499–526.
Bousquet, O., Klochkov, Y., & Zhivotovskiy, N. (2020). Sharper bounds for uniformly stable algorithms. In

Conference on learning theory (pp. 610–626). PMLR.
Chen, L. H. (1975). Poisson approximation for dependent trials. The Annals of Probability, 534–545
Chen, L. H. (1978). Two central limit problems for dependent random variables. Probability Theory and

Related Fields, 43(3), 223–243.
Cortes, C., & Mohri, M. (2004). AUC optimization vs. error rate minimization. In Advances in neural infor-

mation processing systems.
Dehling, H., & Philipp, W. (2002). Empirical process techniques for dependent data. In Empirical process

techniques for dependent data (pp. 3–113). Springer.
Devroye, L., & Wagner, T. (1979). Distribution-free performance bounds for potential function rules. IEEE

Transactions on Information Theory, 25(5), 601–604.
Dousse, J., & Féray, V. (2019). Weighted dependency graphs and the Ising model. Annales de l’Institut

Henri Poincaré D, 6(4), 533–571.
Erdős, P., & Lovász, L. (1975). Problems and results on 3-chromatic hypergraphs and some related ques-

tions. Infinite and Finite Sets, 10(2), 609–627.
Feldman, V., & Vondrak, J. (2019). High probability generalization bounds for uniformly stable algorithms

with nearly optimal rate. In Conference on learning theory (pp. 1270–1279). PMLR.
Féray, V. (2018). Weighted dependency graphs. Electronic Journal of Probability, 23.
Freund, Y., Iyer, R. D., Schapire, R. E., et al. (2003). An efficient boosting algorithm for combining prefer-

ences. Journal of Machine Learning Research, 4, 933–969.
Halin, R. (1991). Tree-partitions of infinite graphs. Discrete Mathematics, 97(1–3), 203–217.
Hang, H., & Steinwart, I. (2014). Fast learning from �-mixing observations. Journal of Multivariate Analy-

sis, 127, 184–199.
He, F., Zuo, L., & Chen, H. (2016). Stability analysis for ranking with stationary �-mixing samples. Neuro-

computing, 171, 1556–1562.
Hoeffding, W., & Robbins, H. (1948). The central limit theorem for dependent random variables. Duke

Mathematical Journal, 15(3), 773–780.
Ibragimov, I. A. (1962). Some limit theorems for stationary processes. Theory of Probability & its Applica-

tions, 7(4), 349–382.
Isaev, M., Rodionov, I., & Zhang, R.R. et al (2021). Extremal independence in discrete random systems.

arXiv preprint arXiv: 2105. 04917
Janson, S. (1988). Normal convergence by higher semiinvariants with applications to sums of dependent

random variables and random graphs. The Annals of Probability, 16(1), 305–312.
Janson, S. (1990). Poisson approximation for large deviations. Random Structures & Algorithms, 1(2),

221–229.
Janson, S. (2004). Large deviations for sums of partly dependent random variables. Random Structures &

Algorithms, 24(3), 234–248.
Janson, S., Łuczak, T., & Rucinski, A. (1988). An exponential bound for the probability of nonexistence of a

specified subgraph in a random graph. Institute for Mathematics and its Applications (USA)
Kearns, M., & Ron, D. (1999). Algorithmic stability and sanity-check bounds for leave-one-out cross-vali-

dation. Neural Computation, 11(6), 1427–1453.

http://arxiv.org/abs/2105.04917

3958 Machine Learning (2024) 113:3929–3959

1 3

Kirichenko, A., & Van Zanten, H. (2015). Optimality of Poisson processes intensity learning with Gaussian
processes. The Journal of Machine Learning Research, 16(1), 2909–2919.

Kontorovich, L. (2007). Measure concentration of strongly mixing processes with applications. Carnegie
Mellon University.

Kontorovich, L. A., & Ramanan, K. (2008). Concentration inequalities for dependent random variables via
the martingale method. The Annals of Probability, 36(6), 2126–2158.

Kutin, S., & Niyogi, P. (2002). Almost-everywhere algorithmic stability and generalization error. In Pro-
ceedings of the eighteenth conference on uncertainty in artificial intelligence (pp. 275–282). Morgan
Kaufmann Publishers Inc.

Kuznetsov, V., & Mohri, M. (2017). Generalization bounds for non-stationary mixing processes. Machine
Learning, 106(1), 93–117.

Lampert, C.H., Ralaivola, L., & Zimin, A. (2018). Dependency-dependent bounds for sums of dependent
random variables. arXiv preprint arXiv: 1811. 01404

Ledoux, M., & Talagrand, M. (1991). Probability in Banach spaces: Isoperimetry and processes. Springer.
Linderman, S., & Adams, R. (2014). Discovering latent network structure in point process data. In Interna-

tional conference on machine learning (pp. 1413–1421).
Lozano, A. C., Kulkarni, S. R., & Schapire, R. E. (2006). Convergence and consistency of regularized

boosting algorithms with stationary �-mixing observations. In: Advances in neural information pro-
cessing systems (pp. 819–826).

McDiarmid, C. (1989). On the method of bounded differences. Surveys in Combinatorics, 141(1), 148–188.
Meir, R. (2000). Nonparametric time series prediction through adaptive model selection. Machine Learning,

39(1), 5–34.
Mohri, M., & Rostamizadeh, A. (2008). Stability bounds for non-i.i.d. processes. In Advances in neural

information processing systems (pp. 1025–1032).
Mohri, M., & Rostamizadeh, A. (2009). Rademacher complexity bounds for non-i.i.d. processes. In

Advances in neural information processing systems (pp. 1097–1104).
Mohri, M., & Rostamizadeh, A. (2010). Stability bounds for stationary �-mixing and �-mixing processes.

Journal of Machine Learning Research, 11, 789–814.
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT press.
Peña, V. H., & Giné, E. (1999). Decoupling: From dependence to independence. Springer.
Ralaivola, L., & Amini, M. R. (2015). Entropy-based concentration inequalities for dependent variables. In

International conference on machine learning (pp. 2436–2444).
Ralaivola, L., Szafranski, M., & Stempfel, G. (2010). Chromatic PAC-Bayes bounds for non-iid data: Appli-

cations to ranking and stationary �-mixing processes. Journal of Machine Learning Research, 11,
1927–1956.

Rogers, W. H., & Wagner, T. J. (1978). A finite sample distribution-free performance bound for local dis-
crimination rules. The Annals of Statistics, 506–514.

Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proceedings of the National
Academy of Sciences of the United States of America, 42(1), 43.

Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3), 297–336.

Seese, D. (1985). Tree-partite graphs and the complexity of algorithms. In International conference on fun-
damentals of computation theory (pp.412–421) Springer.

Sidana, S., Trofimov, M., Horodnytskyi, O., et al. (2021). User preference and embedding learning with
implicit feedback for recommender systems. Data Mining Knowledge Discovery, 35(2), 568–592.

Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of depend-
ent random variables. In Proceedings of the sixth Berkeley symposium on mathematical statistics and
probability, volume 2: Probability theory. The Regents of the University of California.

Steinwart, I., & Christmann, A. (2009). Fast learning from non-i.i.d. observations. In Advances in neural
information processing systems (pp. 1768–1776).

Usunier, N., Amini, M. R., & Gallinari, P. (2005). Generalization error bounds for classifiers trained with
interdependent data. Advances in Neural Information Processing Systems, 18, 1369–1376.

Volkonskii, V., & Rozanov, Y. A. (1959). Some limit theorems for random functions. I. Theory of Probabil-
ity & its Applications, 4(2), 178–197.

Weston, J., & Watkins, C. (1998). Multi-class support vector machines.
Wood, D. R. (2009). On tree-partition-width. European Journal of Combinatorics, 30(5), 1245–1253.
Yu, B. (1994). Rates of convergence for empirical processes of stationary mixing sequences. The Annals of

Probability, 94–116.
Zhang, R. R. (2022). When Janson meets McDiarmid: Bounded difference inequalities under graph-depend-

ence. Statistics & Probability Letters, 181(109), 272.

http://arxiv.org/abs/1811.01404

3959Machine Learning (2024) 113:3929–3959

1 3

Zhang, R. R., Liu, X., Wang, Y., & Wang, L. (2019). McDiarmid-type inequalities for graph-dependent
variables and stability bounds. Advances in Neural Information Processing Systems, 32, 10890–10901.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

	Generalization bounds for learning under graph-dependence: a survey
	Abstract
	1 Introduction
	2 Notation and framework
	2.1 Graph-theoretic notation
	2.1.1 Graph covering and partitioning

	2.2 Probabilistic tools
	2.3 Concentration bounds for decomposable functions
	2.4 Concentration bounds for general Lipschitz functions
	2.4.1 Concentration for general graphs
	2.4.2 Examples

	3 Generalization for learning from graph-dependent data
	3.1 Generalization bounds via fractional Rademacher complexity
	3.2 Generalization bounds via algorithmic stability

	4 Applications
	4.1 Bipartite ranking
	4.2 Multi-class classification
	4.3 Learning from m-dependent data

	5 Concluding remarks
	Acknowledgements
	References

