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Abstract
Semi-supervised ordinal regression (S2OR) has been recognized as a valuable technique 
to improve the performance of the ordinal regression (OR) model by leveraging availa-
ble unlabeled samples. The balancing constraint is a useful approach for semi-supervised 
algorithms, as it can prevent the trivial solution of classifying a large number of unlabeled 
examples into a few classes. However, rapid training of the S2OR model with balancing 
constraints is still an open problem due to the difficulty in formulating and solving the 
corresponding optimization objective. To tackle this issue, we propose a novel form of bal-
ancing constraints and extend the traditional convex–concave procedure (CCCP) approach 
to solve our objective function. Additionally, we transform the convex inner loop (CIL) 
problem generated by the CCCP approach into a quadratic problem that resembles support 
vector machine, where multiple equality constraints are treated as virtual samples. As a 
result, we can utilize the existing fast solver to efficiently solve the CIL problem. Experi-
mental results conducted on several benchmark and real-world datasets not only validate 
the effectiveness of our proposed algorithm but also demonstrate its superior performance 
compared to other supervised and semi-supervised algorithms
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1  Introduction

Ordinal regression (OR) has been a subject of research for the past two decades and is 
commonly formulated as a multi-class problem with ordinal constraints (Berg et al., 2021; 
Buri & Hothorn, 2020; Garg & Manwani, 2020; Gu et al., 2023; Li et al., 2020; Pang et al., 
2020). This learning task has been widely applied in various real-world scenarios such as 
information retrieval (Herbrich, 1999), collaborative filtering (Shashua & Levin, 2003), 
social sciences (Fullerton & Xu, 2012), and medical analysis (Cardoso et al., 2005). How-
ever, most of the existing ordinal regression models can only deal with labeled data, such 
as SVOR-IMC and SVOR-EXC (Chu & Keerthi, 2007). As a result, significant effort is 
required to obtain a sufficient number of labeled samples. To tackle this challenging prob-
lem, it has become necessary to incorporate unlabeled samples, which are often readily 
available at a low cost, into the training process (Chapelle et al., 2009). This has led to an 
increasing amount of attention being given to semi-supervised ordinal regression (S2OR) 
(Ganjdanesh et al., 2020; Gu et al., 2022; Liu et al., 2011; Seah et al., 2012; Srijith et al., 
2013).

In semi-supervised problems, it is crucial to prevent the trivial solution of classify-
ing a large number of unlabeled examples into a few classes (Chapelle et  al., 2008; Xu 
et al., 2005; Zhu, 2005). To address this issue, the balancing constraint (Collobert et al., 
2006) has been proposed as an effective solution, and several semi-supervised binary 
classification algorithms (Chapelle & Zien, 2005; Collobert et al., 2006; Joachims, 1999) 
with balancing constraints have been developed over the last two decades. Joachims 
(1999) enforced balancing constraints by swapping the pseudo-labels of unlabeled sam-
ples, assuming that these pseudo-labels match the class distribution of the labeled samples 
beforehand. Meanwhile, Chapelle and Zien (2005) directly treated balancing constraints 
as additional constraints, utilizing the gradient descent method to optimize the objective 
function. Additionally, Collobert et al. (2006) viewed balancing constraints as virtual sam-
ples, training the model with these virtual samples and other regular samples. Among these 
methods, the virtual samples approach is particularly efficient since it can leverage existing 
state-of-the-art solvers for the objective function with balancing constraints.

Efficiently training S2OR problems with balancing constraints remains a significant 
challenge due to the complexity of formulating and solving related problems. While Man-
ifoldOR (Liu et  al., 2011) and SSORERM (Tsuchiya et  al., 2019) are both S2OR algo-
rithms, they do not consider the influence of balancing constraints. To date, TOR (Seah 
et al., 2012) and SSGPOR (Srijith et al., 2013) are the only two S2OR algorithms using bal-
ancing constraints, and they achieve this by swapping the pseudo-labels of unlabeled sam-
ples. However, this approach may require a large number of iterations to make all pseudo-
labels reach the optimal position. Therefore, the TOR and SSGPOR algorithms are not yet 
optimal S2OR algorithms using balancing constraints. Table 1 summarizes representative 
OR algorithms, which highlights the need for a fast S2OR algorithm using balancing con-
straints, as this remains an open question.

In this paper, we propose a new algorithm, called BC-S2OR, to address the challenging 
problem of balancing constraints in S2OR via virtual samples. Specifically, we introduce 
a novel form of balancing constraints for S2OR to prevent most of the unlabeled samples 
from being classified into a few classes. Then, we extend the traditional convex-concave 
procedure (CCCP) framework to solve this complex optimization problem. We transform 
the convex inner loop (CIL) problem with multiple equality constraints into a quadratic 
problem like support vector machine (SVM), where the multiple equality constraints are 
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treated as virtual samples. This allows us to use existing solvers (Chu & Keerthi, 2007) to 
efficiently solve the CIL problems. Numerical experiments conducted on several bench-
mark and real-world datasets confirm the effectiveness of our proposed algorithm, which 
outperforms other supervised and semi-supervised OR algorithms.

2 � Preliminaries

2.1 � Ordinal regression

Ordinal regression (OR) is a significant supervised learning problem that involves learning 
a ranking or ordering of instances. It combines the properties of classification and metric 
regression. The goal of ordinal regression is to categorize data points into a set of finite 
ordered categories.

Let S = {(xi, yi)|i = 1, 2,… , n} denote an OR dataset, where xi ∈ ℝ
d is a d-dimensional 

vector and yi ∈ {1, 2,… , r} is the corresponding ordinal class label. Based on the thresh-
old model (Crammer & Singer, 2002) illustrated in Fig. 1, the OR problem with r classes 
has r − 1 ordered thresholds: �1 ≤ �2 ≤ ⋯ ≤ �r−1 . In this threshold model, a sample x 
is classified as class k if its predictive output h(x) = ⟨w,�(x)⟩1 falls within the range of 
𝜃k−1 < h(x) ≤ 𝜃k.

On the basis of this threshold model, Li and Lin (2007) proposed a new formulation of 
the OR problem. Specifically, they reduced the OR problem with r classes to r − 1 binary 
classification sub-problems and defined the training set of each sub-problem as:

Table 1   Several representative OR algorithms

1N denotes the size of problem, 1 < a < 2.3 , and both of T and t denote number of iterations, but T is much 
more than t

Algorithm Balancing constraints (BC) Time complexity1

Supervised SVOR-IMC (Chu & Keerthi, 2007) No O(Na)

SVOR-EXC (Chu & Keerthi, 2007) No O(Na)

Semi-supervised SSORERM (Tsuchiya et al., 2019) No O(tN3)

ManifoldOR (Liu et al., 2011) No O(tN3)

SSGPOR (Srijith et al., 2013) Swap labels of unlabeled data O(TN3)

TOR (Seah et al., 2012) Swap labels of unlabeled data O(TNa)

BC-S2OR Treat BC as virtual samples O(tNa)

Fig. 1   Threshold model of OR 
problem

1  �(⋅) is transformation function from an input space to a high-dimensional reproducing kernel Hilbert 
space.



2578	 Machine Learning (2024) 113:2575–2595

1 3

where I[a] denotes an indicator function that returns 1 if a is true and returns 0 if a is false, 
k ∈ {1, 2,… , r − 1} and yk

i
∈ {−1,+1} . These r − 1 sub-problems are aimed to define r − 1 

parallel decision boundaries for ordinal scales and the predictive ordinal class label f (xi) is 
defined as:

where h(x) = ⟨w,�(x)⟩ is the predictive output, �k means the k-th threshold and g(xk
i
) 

denotes the binary classifier.

2.2 � Semi‑supervised ordinal regression

In many cases, ordinal regression models suffer from poor performance due to a limited 
number of ordinal samples. To overcome this challenge, it becomes necessary to incor-
porate unlabeled samples into the training process. As a result, there has been a growing 
interest in semi-supervised ordinal regression (S2OR).

For a particular labeled sample (xi, yi) , the extended binary classification loss � k
i
 for a 

particular threshold �k can be derived as

Consequently, the ordinal regression loss �i of the labeled sample (xi, yi) superimposing the 
r − 1 parts easily becomes

where Hs(t) = max{0, s − t}.
Given that n labeled samples and u unlabeled samples are available in S2OR, the objec-

tive function can be derived as:

(1)
xk
i
= xi,

yk
i
= 1 − 2I[yi ≤ k],

(2)
f (xi) = 1 +

r−1∑

k=1

I[g(xk
i
) > 0],

g(xk
i
) = h(xi) − 𝜃k,

(3)� k
i
= max

{
0, 1 − yk

i
(wT�(xi) − �k)

}
.

(4)

�i =

r−1∑

k=1

� k
i
=

r−1∑

k=1

max
{
0, 1 − yk

i
(wT�(xi) − �k)

}

=

r−1∑

k=1

H1(y
k
i
g(xk

i
))

(5)min
w̄
def
=(w,𝜃)

J(w̄) =
1

2
‖w‖2 + C

r−1�

k=1

n�

i=1

H1

�
yk
i
g
�
xk
i

��

(6)
+ C∗

r−1∑

k=1

n+u∑

i=n+1

H1(|g(xki )|)

s.t. �1 ≤ �2 ≤ ⋯ ≤ �r−1,
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where w̄ = (w, 𝜃) is the parameter vector, C means the penalty coefficient of labeled sam-
ples and C∗ means the penalty coefficient of unlabeled samples.

The threshold order defined in Eq. (6) plays a crucial role in the OR problem and (Chu & 
Keerthi, 2007) proposed two approaches to ensure this order. The first approach involves cal-
culating the loss contribution of all samples for each threshold, which automatically satisfies 
the ordered relations between the thresholds at the optimal solution. However, in Eq. (5), the 
loss term of unlabeled samples causes the objective function to lose the property of convexity. 
Consequently, the threshold order is not guaranteed automatically, as shown in Lemma 1. The 
detailed proof of Lemma 1 can be found in Appendix A.

Lemma 1  For the S2OR problem based on the threshold model, if the constraint of the 
threshold order (i.e., �1 ≤ �2 ≤ ⋯ ≤ �r−1 ) is not explicitly enforced, the threshold order 
cannot be guaranteed automatically.

Building upon the previous discussion, we adopt the second approach proposed by Chu 
and Keerthi (2007) to ensure the threshold order. This approach involves explicitly incorporat-
ing the constraint of the threshold order into the objective function. Although this approach 
may make the S2OR problem slightly more complicated, it can perfectly guarantee the thresh-
old order.

2.3 � Concave–convex procedure

The concave-convex procedure (CCCP) is a highly effective majorization-minimization algo-
rithm that is capable of solving the non-convex program formulated as the difference of con-
vex functions (DC) through a sequence of convex programs.

We provide a specific example of the CCCP approach. Firstly, we define the DC program 
as:

where o, v and ai are real-valued convex functions, bj is an affine function, A and B respec-
tively represent the number of inequality constraints and equality constraints. The CCCP 
approach is an iterative procedure that solves the following sequence of convex programs:

where t means the iteration number. In our paper, we refer to these convex programs as 
the convex inner loop (CIL) problems. As demonstrated in Eq. (8), the CCCP approach 
involves linearizing the concave portion (i.e., −v(w) ) to achieve a sequence of convex pro-
grams (i.e., o(w) − w▽v(wt)).

(7)

min
w

&o(w) − v(w)

s.t. ai ≤ 0, i ∈ [A],

bj = 0, j ∈ [B],

(8)

wt+1 = argmin
w

&o(w) − w▽v(wt)

s.t. ai ≤ 0, i ∈ [A],

bj = 0, j ∈ [B],
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3 � Proposed algorithm

In this section, we first introduce our local balancing constraints. Then, we propose our BC-
S2OR algorithm to tackle the local balancing constraints via virtual samples. Finally, we ana-
lyze the time complexity of our algorithm.

3.1 � Local balancing constraints

In semi-supervised binary classification problems, a binary classifier may classify all unla-
beled examples into the same class due to the large margin criterion. To address this issue, 
Joachims (1999) proposed a balancing constraint that ensures the proportion of different 
classes assigned to the unlabeled samples is the same as that found in the labeled samples. 
Building on this idea, Collobert et al. (2006) and Chapelle and Zien (2005) introduced a simi-
lar but slightly relaxed balancing constraint:

In the S2OR problem based on the threshold model, multiple binary classifiers are trained 
to predict the ordinal class label. However, the large margin criterion may negatively 
impact each extended binary classifier, resulting in poor performance of the overall S2OR 
problem. To address this issue, we introduce multiple similar balancing constraints as the 
ones mentioned above to restrict each binary classifier separately. The balancing constraint 
formulation for the S2OR problem is as follows:

where there are r − 1 balancing constraints.
However, it should not be overlooked that the original balancing constraint defined in 

Eq. (10) is one slightly relaxed constraint and cannot perfectly guarantee that the proportion 
of positive and negative labels assigned to the unlabeled samples matches that found in the 
labeled samples in binary classification problems. The superposition of multiple errors of 
original balancing constraints can lead to the instability of the entire S2OR problem, resulting 
in most unlabeled samples being classified into a few categories.

To alleviate this situation, we propose a modification to the original balancing constraint. 
Specifically, we reduce the weights of samples that are far away from decision boundaries and 
only maintain the balancing constraints of samples near the decision boundaries. This modi-
fication ensures that the proportion of each class of unlabeled samples is consistent with that 
of labeled samples as much as possible. We introduce a novel formulation called the local 
balancing constraint in our S2OR, which is expressed as follows:

where there are r − 1 local balancing constraints and �k
i
 , Zk and Ek can be defined as:

(9)
1

u

n+u∑

i=n+1

f (xi) =
1

n

n∑

i=1

yi.

(10)
1

u

n+u∑

i=n+1

g(xk
i
) =

1

n

n∑

i=1

yk
i
,

(11)
1

Zk

n+u∑

i=n+1

�k
i
g(xk

i
) =

1

Ek

n∑

i=1

�k
i
yk
i
,
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where c is the constraint parameter. In practical applications, to avoid the high complexity 
of Eq. (11), it is common to use �k

i
 as a constant coefficient, which is calculated in advance.

The comparison between the original balancing constraints and our local balancing con-
straints is presented in Fig. 2 to illustrate the difference. Specifically, we use a three-class 
S2OR problem as an example. The original balancing constraints defined in Eq. (10) are 
influenced by unlabeled samples far away from the decision boundaries, which may cause 
an incorrect reflection of the proportion of positive and negative labels of unlabeled sam-
ples in the binary classification sub-problem. Consequently, the superposition of multiple 
errors of original balancing constraints can result in a serious imbalance between the pro-
portions of unlabeled samples in each class in the whole S2OR problem. This imbalance 
can lead to the classification of only a few unlabeled samples into the second class, as 
shown in the first picture in Fig. 2. In contrast, our proposed local balancing constraints can 
ignore samples far away from the decision boundaries and better ensure the proportion of 
unlabeled samples in each class, as shown in the second picture in Fig. 2.

3.2 � BC‑S2OR algorithm

In this subsection, we discuss the transformation of our non-convex objective function into 
a formulation of the difference of convex functions (DC) and how we utilize the CCCP 
approach to solve it (Allahzadeh & Daneshifar, 2021; Oliveira & Valle, 2020; Rastgar 
et al., 2020; Zhai et al., 2020, 2023). We specifically focus on transferring the local balanc-
ing constraints to virtual samples and then using existing SVOR solvers (Chu & Keerthi, 
2007) to efficiently solve the CIL problem.

3.2.1 � DC formulation

The treatment of loss terms for unlabeled samples poses a challenging problem in semi-super-
vised learning, particularly in the context of S2OR. Given the large number of loss terms for 
each unlabeled sample at all thresholds, addressing this issue is a thorny task. To overcome 

(12)𝛾k
i
=

{
1 if |g(xk

i
)| < c

0 otherwise

(13)Ek =

n∑

i=1

I
[
�k
i
≠ 0

]
, Zk =

n+u∑

i=n+1

I
[
�k
i
≠ 0

]
,

Fig. 2   Contrast between original balancing constraints and our local balancing constraints
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this challenge, we propose to convert the unlabeled samples into artificially labeled ones. This 
conversion enables us to transform the non-convex objective function into a DC formulation, 
which is expressed as the difference between two convex functions.

Firstly, we duplicate unlabeled samples and introduce that

Note that when yi = r , we have that ∀k ∈ {1,… , r − 1}, yk
i
= +1 according to Eq. (1), and 

when yi = 1 , we have that ∀k ∈ {1,… , r − 1}, yk
i
= −1.

Then, the original S2OR problem (i.e., Eq. (5)) can be equivalently rewritten as Eq. (15). 
The proof can be found in Appendix B.

where o and v are convex functions defined as follows:

3.2.2 � CCCP for S2OR

We utilize the CCCP approach to solve the DC formulation (i.e., Eq. (15)). As shown in Eq. 
(8), the main process of the CCCP approach is to iteratively solve a sequence of CIL prob-
lems, which is generated by linearizing the concave part of the original DC formulation. Here, 
we first calculate the derivative of the concave part with respect to w̄

Then, according Eq. (8), we obtain the following CIL problem:

(14)

yi = r, ∀i ∈ {n + 1,… , n + u},

yi = 1, ∀i ∈ {n + u + 1,… , n + 2u},

xi = xi−u, ∀i ∈ {n + u + 1,… , n + 2u}.

(15)min
w̄
def
=(w,𝜃)

J(w̄) = o(w̄) − v(w̄)

(16)

o(w̄) =
1

2
‖w‖2 + C

r−1�

k=1

n�

i=1

H1

�
yk
i
g
�
xk
i

��

+ C∗

r−1�

k=1

n+2u�

i=n+1

H1

�
yk
i
g
�
xk
i

��
,

v(w̄) =C∗

r−1�

k=1

n+2u�

i=n+1

H0

�
yk
i
g
�
xk
i

��
.

(17)−w̄ ⋅ ▽v(w̄) =

r−1∑

k=1

n+2u∑

i=n+1

𝛽k
i
yk
i
g
(
xk
i

)

(18)where 𝛽k
i
=

{
C∗ if yk

i
g
(
xk
i

)
< 0

0 otherwise
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To solve the aforementioned CIL problem, we introduce Lagrangian variables (Bertsekas, 
2014) and calculate the partial derivative with respect to primal variables. In order to sim-
plify the dual problem, we transform our local balancing constraints to virtual samples. 
It should be noted that the number of virtual samples is the same as the number of local 
balancing constraints, both of which are r − 1 . The virtual samples are defined as follows:

where �k
0
= 0 . The column in kernel matrix corresponding to the example xk

0
 is computed 

as follow:

Algorithm 1   BC-S2OR algorithm

Here, we directly show the final duality formulation of the CIL problem:

(19)

min
w̄
def
=(w,𝜃)

1

2
‖w‖2 + C

r−1�

k=1

n�

i=1

𝜉k
i
+ C∗

r−1�

k=1

n+2u�

i=n+1

𝜉k
i

+

r−1�

k=1

n+2u�

i=n+1

𝛽k
i
yk
i
g
�
xk
i

�

s.t.
1

Zk

n+u�

i=n+1

𝛾k
i
g(xk

i
) =

1

Ek

n�

i=1

𝛾k
i
yk
i
,

yk
i
g(xk

i
) ≥ 1 − 𝜉k

i
, 𝜉k

i
≥ 0, ∀i ∈ {1,… , n + 2u},

𝜃1 ≤ 𝜃2 ≤ ⋯ ≤ 𝜃r−1.

(20)�(xk
0
) =

1

Zk

n+u∑

i=n+1

�k
i
�
(
xk
i

)
, yk

0
= 1,

(21)
⟨
�
(
xk
0

)
,�

(
xk

�

i

)⟩
=

1

Zk

n+u∑

j=n+1

�k
j

⟨
�
(
xk
j

)
,�

(
xk

�

i

)⟩
.
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where �k
0
=

1

Ek

∑n

i=1
�k
i
yk
i
 and �k

i
= yk

i
 when i ≠ 0 , sk = 0 when k = 0 or k = r , 

K(xk
i
, xk

�

j
) = ⟨�(xk

i
),�(xk

�

j
)⟩ , 𝛼̄k

i
= (𝛼k

i
− 𝛽k

i
)yk

i
 , and Ck

i
 and C

k

i
 are defined as:

Equation (22) is close to the SVOR optimization problem and thus can be optimized by the 
standard SVOR solver (Chu & Keerthi, 2005, 2007).

When using the Lagrange multiplier method, w is formed as:

Also, � can be obtained by the following Karush–Kuhn–Tucker (KKT) conditions (Haeser 
& Ramos, 2020; Su & Luu, 2020; Van Su & Hien, 2021; Zemkoho & Zhou, 2021):

If i = 0 and �k
i
≠ 0 , we have

If i ∈ {1,… , n} and 0 < 𝛼k
i
< C , we have

If i ∈ {n + 1,… , n + u} and 0 < 𝛼k
i
< C∗ , we have

Finally, we summarize our BC-S2OR algorithm in Algorithm 1 where C means the penalty 
coefficient of labeled samples, C∗ means the penalty coefficient of unlabeled samples and k 
is the Gaussian kernel parameter. Moreover, the illustration of our BC-S2OR algorithm is 
provided in Fig. 3.

3.3 � Time complexity

In this subsection, we analyze the time complexity of our BC-S2OR algorithm. In each 
iteration, our algorithm mainly consists of three parts: solving the CIL problem, updating 

(22)

argmax
𝛼̄

r−1∑

k=1

n+2u∑

i=0

𝜍k
i
𝛼̄k
i

−
1

2

r−1∑

k=1

r−1∑

k�=1

n+2u∑

i=0

n+2u∑

j=0

𝛼̄k
i
𝛼̄k�

j
K
(
xk
i
, xk

�

j

)

s.t. Ck

i
≤ 𝛼̄k

i
≤ C

k

i
,

n+2u∑

i=0

𝛼̄k
i
− sk + sk+1 = 0, sk ≥ 0.

Ck

i
=

{
min

{
yk
i
C, 0

}
if 1 ≤ i ≤ n

min
{
yk
i

(
C∗ − �k

i

)
,−yk

i
�k
i

}
if i ≥ n + 1

ll

C
k

i
=

{
max

{
yk
i
C, 0

}
if 1 ≤ i ≤ n

max
{
yk
i

(
C∗ − �k

i

)
,−yk

i
�k
i

}
if i ≥ n + 1

(23)w =

r−1∑

k=1

n+2u∑

i=0

𝛼̄k
i
𝜙(xk

i
).

(24)
1

Zk

n+u∑

i=n+1

�k
i
g
(
xk
i

)
=

1

Ek

n∑

i=1

�k
i
yk
i
,

(25)yk
i
g
(
xk
i

)
= 1,

(26)yk
i
g
(
xk
i

)
= 1.
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the w̄ and updating the � . To solve the CIL problem, we need to solve a SVOR problem 
with N = (r − 1)(n + 2u) samples. The time complexity of solving a SVOR problem 
using a properly modified state-of-the-art solver (Chu & Keerthi, 2007) is O(Na) , where 
1 < a < 2.3 . Moreover, the updates of w̄ and � have linear time complexity. Therefore, each 
iteration of our BC-S2OR algorithm requires O(Na) computations.

4 � Experiments

In this section, we present experimental results to demonstrate the superiority of our BC-
S2OR algorithm.

4.1 � Compared algorithms

We compared our algorithm with existing state-of-the-art algorithms including supervised 
and semi-supervised algorithms.

SVOR-EXC/SVOR-IMC2 Support vector approaches for ordinal regression, which 
optimize multiple thresholds to define parallel decision boundaries for ordinal scales, 
including two methods of explicit and implicit constraints on thresholds (Chu & 
Keerthi, 2007).
TOR A transductive ordinal regression method working by a label swapping scheme 
that facilitates a strictly monotonic decrease in the objective function value (Seah et al., 
2012).
ManifoldOR A semi-supervised ordinal regression method projecting the original data 
to the one-dimensional ranking axis under the manifold learning framework (Liu et al., 
2011).
TSVM-CCCP3 A transductive classification method using convex-concave procedure 
framework to iteratively optimize non-convex cost functions (Collobert et al., 2006).

Fig. 3   Illustration of BC-S2OR

2  SVOR is available at http://​www.​gatsby.​ucl.​ac.​uk/​~chuwei/​svor.​htm.
3  TSVM-CCCP is available at https://​github.​com/​fabia​nsinz/​Unive​rSVM.

http://www.gatsby.ucl.ac.uk/%7echuwei/svor.htm
https://github.com/fabiansinz/UniverSVM
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TSVM-LDS4 A transductive classification method trying to place decision boundaries in 
regions with low density (Chapelle & Zien, 2005).

Specially, we utilized the TSVM-CCCP algorithm and the TSVM-LDS algorithm to han-
dle multi-class data by the one-versus-rest approach.

4.2 � Implementations

We implemented our BC-S2OR algorithm by building upon the SVOR-IMC code. Spe-
cifically, we introduced an outer loop based on the CCCP approach, where each iteration 
solves an SVM-like sub-problem. To solve the related dual problem, we modified the 
sequential minimal optimization (SMO) method, which has been widely used in SVMs 
(Chen et al., 2006; Nakanishi et al., 2020; Platt, 1998; Sornalakshmi et al., 2020). Addi-
tionally, we incorporated the shrinking technique (Chang & Lin, 2011) and a warm-start 
strategy to accelerate the procedure.

We utilized the open-source codes available for the TSVM-CCCP algorithm, the 
TSVM-LDS algorithm, the SVOR-EXC algorithm, and the SVOR-IMC algorithm. These 
codes were provided by their respective authors. Additionally, we implemented the TOR 
algorithm and the ManifoldOR algorithm by following the algorithm description provided 
by the authors.

4.3 � Datasets

To evaluate the performance of our proposed BC-S2OR algorithm along with other exist-
ing state-of-the-art methods, we conducted experiments on a collection of benchmark 
and real-world datasets, as presented in Table 2. For the benchmark datasets,5 we discre-
tized the continuous target into ordinal scale using the approach of the equal-frequency 
bin (Sulaiman & Bakar, 2017). For the real-world datasets,6 we first processed the text 
data using the TF-IDF technique (Aizawa, 2003; Onan, 2020; Wang et al., 2020) and then 

Table 2   Datasets Type Dataset Sample size Features Class

Benchmark
Datasets

Abalone 4177 8 3
Bank 8192 32 5
California 20,640 8 5
Census 22,784 16 5

Real-world
Datasets

Software 5269 1000 5
Luxury 9207 1000 5
Industrial 15,976 1000 5
Pantry 25,628 1000 5

4  TSVM-LDS is available at https://​github.​com/​paper​impl/​LDS.
5  Benchmark datasets are available at https://​www.​dcc.​fc.​up.​pt/​~ltorgo/​Regre​ssion.
6  Real-world datasets are available at https://​nijia​nmo.​github.​io/​amazon/​ index.​html.

https://github.com/paperimpl/LDS
https://www.dcc.fc.up.pt/%7eltorgo/Regression
https://nijianmo.github.io/amazon/%20index.html
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reduced the dimensionality to 1000 using the PCA approach (Abdi & Williams, 2010; 
Chen et al., 2020). It is worth noting that we scaled all features to the range [−1, 1] for all 
datasets. To perform the experiments in a semi-supervised setting, we randomly split the 
labeled data into different sizes of 100, 200, 300, 400, 500, and 600, and the remaining 
data formed the set of unlabeled data.

4.4 � Experimental setup

All the experiments were conducted on a PC with 48 2.2GHz cores and 80GB RAM, 
and all the results were the average of 10 trials. The penalty coefficient C of labeled 
samples was fixed at 10. For the kernel-based methods, we used the Gaussian kernel 
k(x, x�) = exp (�||x − x�||2) and fixed � at 10−1 . For all compared algorithms, we followed 
the hyperparameter settings of their original papers. In particular, the initial penalty coef-
ficient of unlabeled samples was set at 10−5 for the TOR algorithm. For the ManifoldOR 
algorithm, the nearest neighbor number is set at 50 and the value of regularization param-
eter is 0.5. For the TSVM-CCCP algorithm, we used the symmetric hinge loss and turned 
the penalty coefficient of unlabeled samples via 5-fold cross validation. For the TSVM-
LDS algorithm, the exponent parameter was turned via 5-fold cross validation. And for our 
BC-S2OR algorithm, we used 5-fold cross validation to optimize the the penalty coefficient 
C∗ of unlabeled samples.

To compare the generalization performance of the algorithms, we employed three 
widely used measure criteria. The mean zero–one error was used to determine the classifi-
cation error of the samples, which is defined as

We also used the mean absolute error to measure the deviation between the predicted and 
true class labels of the samples, which is defined as

Furthermore, training time is an important criterion for evaluating an algorithm’s effi-
ciency. Consuming less time to meet the requirements denotes more efficient performance. 
To ensure fairness, we only compare the training time among the S2OR algorithms.

4.5 � Results and discussion

Figures 4 and 5 present the results of the mean zero–one error and the mean absolute 
error on different datasets. We would like to note that due to the excessive training time 
consumed by the TOR algorithm and the ManifoldOR algorithm, some of the experi-
mental results are missing. Through careful analysis, we find that when the numbers of 
ordinal classes and samples are relatively small, the performance of the semi-supervised 
multi-classification algorithms (i.e., the TSVM-LDS algorithm and TSVM-CCCP algo-
rithm) is better than that of the supervised OR algorithms (i.e., the SVOR-EXC algo-
rithm and SVOR-IMC algorithm). This is because the semi-supervised algorithms can 
utilize unlabeled samples to improve performance. However, as the numbers of ordinal 

1

u

n+u∑

i=n+1

I[f (xi) ≠ yi].

1

u

n+u∑

i=n+1

|f (xi) − yi|.
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classes and samples increase, the OR algorithms start to exhibit better performance than 
the semi-supervised multi-classification algorithms because they make good use of the 
ordinal information. Importantly, our proposed BC-S2OR algorithm outperforms the 
above-mentioned algorithms, which is obviously due to its ability to leverage both the 
unlabeled samples and the ordinal information. Furthermore, our BC-S2OR algorithm 

Fig. 4   Mean zero–one errors of different algorithms
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also outperforms other S2OR methods (i.e., the TOR algorithm and ManifoldOR algo-
rithm). Figure 6 compares the average training time of the S2OR algorithms. The exper-
imental results indicate that our BC-S2OR algorithm performs better than the other 
S2OR algorithms in terms of training time.

Fig. 5   Mean absolute errors of different algorithms
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5 � Conclusion

In this paper, we present a novel algorithm, named BC-S2OR, that addresses the challenging 
issue of the balancing constraints in S2 OR using virtual samples. Firstly, we introduce a new 
type of the balancing constraints for S2OR that prevents the majority of unlabeled samples 
from being classified into only a few classes. Then, to solve our complex optimization prob-
lem, we extend the traditional convex-concave procedure (CCCP) approach. We convert the 
convex inner loop (CIL) problem, which includes multiple equality constraints, into a quad-
ratic problem similar to support vector machine (SVM). In this quadratic problem, the mul-
tiple equality constraints are considered as virtual samples. This enables us to use existing 
solvers (Chu & Keerthi, 2007) to efficiently solve the CIL problems. Numerical experiments 
carried out on various benchmark and real-world datasets confirm the superiority of our pro-
posed algorithm, which outperforms other supervised and semi-supervised algorithms.

Appendix A: Proof of Lemma 1

Firstly, we define some data subsets where j ∈ {1,… , r}:

It is easy to see that �k is optimal if it minimizes the function:

Ilow
j

(𝜃)
def
= {i ∈ {1,… , n} ∶ yi = j,wT𝜙(xi) − 𝜃 ≥ −1},

I
up

j
(𝜃)

def
= {i ∈ {1,… , n} ∶ yi = j,wT𝜙(xi) − 𝜃 ≤ 1},

Ilow(𝜃)
def
= {i ∈ {n + 1,… , n + u} ∶ −1 ≤ wT𝜙(xi) − 𝜃 ≤ 0},

Iup(𝜃)
def
= {i ∈ {n + 1,… , n + u} ∶ 0 < wT𝜙(xi) − 𝜃 ≤ 1}.

Fig. 6   Training time (s) of S2OR algorithms on large-scale datasets with fixed 1000 labeled samples
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Then, we obtain the derivative of ek(�) with respect to �:

And through simple calculation, we have:

In order to prove that the order of � is no longer guaranteed in S2 OR problem, we construct 
a counterexample. Firstly, we find that the derivative lk(�) (28) is not a monotone function. 
What’s more, when � tends to be positive infinity, we have lk(𝜃) > 0 and when � tends to 
be negative infinity, we have lk(𝜃) < 0 . In this case, we assume that lk(�) and lk+1(�) both 
own three zero points, and the first derivative of these points is not zero. Next, we set the 
zero points of lk(�) from left to right as a1 , a2 and a3 , and the zero points of lk+1(�) as b1 , 
b2 and b3 . According to (29), we assume one situation that a1 < b1 < b2 < a2 < a3 < b3 . 
Under such condition, ek(�) and ek+1(�) both own two local minimum points a1, a3 and 
b1, b3 . Finally, we assume that point a3 and point b1 are global optimal solutions of ek(�) 
and ek+1(�) . Then we have 𝜃k = a3 > 𝜃k+1 = b1 , and this situation conflicts with the order 
�k ≤ �k+1 we asked for. Therefore, we conclude that the order of � is no longer guaranteed 
in S2 OR problem.

Appendix B: Proof of the DC formulation

In order to handle the non-convex objective function (5) better, we rewrite the loss of 
unlabeled samples:

where Rs(t) = min{1 − s, max{0, 1 − t}} = H1(t) − Hs(t) represents a ramp loss. Further 
more, we rewrite the loss term of unlabeled samples in the objective function (5) with the 
help of the ramp loss:

(27)

ek(�) = C

k∑

j=1

∑

i∈Ilow
j

(�)

(wT�(xi) − � + 1)

+ C

r∑

j=k+1

∑

i∈I
up

j
(�)

(−wT�(xi) + � + 1)

+ C∗
∑

i∈Ilow(�)

(wT�(xi) − � + 1)

+ C∗
∑

i∈Iup(�)

(−wT�(xi) + � + 1).

(28)
▽ek(�) = −C

k∑

j=1

|Ilow
j

(�)| + C

r∑

j=k+1

|Iup
j
(�)|

− C∗|Ilow(�)| + C∗|Iup(�)| ∶= lk(�).

(29)lk+1(𝜃) − lk(𝜃) = −C|Ilow
k+1

(𝜃)| − C|Iup
k+1

(𝜃)| < 0.

(30)H1(|z|) = R0(z) + R0(−z) + const,
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Then, according to the artificial labeled samples (14), the expression in (31) is in the new 
formulation:

where the constant does not affect the optimization problem obviously, and we can just 
ignore it.

Finally, original objective function is in the formulation of
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