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Abstract
A popular approach to model interactions is to represent them as a network with nodes 
being the agents and the interactions being the edges. Interactions are often timestamped, 
which leads to having timestamped edges. Many real-world temporal networks have a 
recurrent or possibly cyclic behaviour. In this paper, our main interest is to model recur-
rent activity in such temporal networks. As a starting point we use stochastic block model, 
a popular choice for modelling static networks, where nodes are split into R groups. We 
extend the block model to temporal networks by modelling the edges with a Poisson pro-
cess. We make the parameters of the process dependent on time by segmenting the time 
line into K segments. We require that only H ≤ K different set of parameters can be used. 
If H < K , then several, not necessarily consecutive, segments must share their parameters, 
modelling repeating behaviour. We propose two variants where a group membership of a 
node is fixed over the course of entire time line and group memberships are allowed to vary 
from segment to segment. We prove that searching for optimal groups and segmentation in 
both variants is NP-hard. Consequently, we split the problem into 3 subproblems where we 
optimize groups, model parameters, and segmentation in turn while keeping the remain-
ing structures fixed. We propose an iterative algorithm that requires O

(

KHm + Rn + R
2
H
)

 
time per iteration, where n and m are the number of nodes and edges in the network. We 
demonstrate experimentally that the number of required iterations is typically low, the 
algorithm is able to discover the ground truth from synthetic datasets, and show that cer-
tain real-world networks exhibit recurrent behaviour as the likelihood does not deteriorate 
when H is lowered.
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1 Introduction

A popular approach to model interactions between set of agents is to represent them as a 
network with nodes being the agents and the interactions being the edges. Naturally, many 
interactions in real-world datasets have a timestamp, in which case the edges in networks 
also have timestamps. Consequently, developing methodology for temporal networks has 
gained attention in data mining literature (Holme & Saramäki, 2012).

Many temporal phenomena have recurrent or possibly cyclic behaviour. For example, 
social network activity may be heightened during certain hours of day. Our main interest 
is to model recurrent activity in temporal networks. As a starting point we use stochastic 
block model, a popular choice for modelling static networks. We can immediately extend 
this model to temporal networks, for example, by modelling the edges with a Poisson pro-
cess. Furthermore, Corneli et al. (2018) modelled the network by also segmenting the time-
line and modelled each segment with a separate Poisson process.

To model the recurrent activity we can either model it explicitly, for example, by mod-
elling explicitly cyclic activity, or we can use more flexible approach where we look for 
segmentation but restrict the number of distinct parameters. Such notion was proposed 
by  Gionis and Mannila (2003) in the context of segmenting sequences of real valued 
vectors.

In this paper we extend the model proposed by Corneli et al. (2018) using the ideas pro-
posed by Gionis and Mannila (2003). More formally, we consider the following problem: 
given a temporal graph with n nodes and m edges, we are looking to partition the nodes 
into R groups and segment the timeline into K segments that are grouped into H levels. 
Note that a single level may contain non-consecutive segments. An edge e = (u, v) is then 
modelled with a Poisson process with a parameter �ijh , where i and j are the groups of u 
and v, and h is the level of the segment containing e.

This paper is an extension of a conference paper (Arachchi & Tatti, 2022). The model 
considered in the conference version did not allow node groups to vary over time. We 
extend the approach in this paper by also considering a variant where the node groups 
depend on the level.

To obtain good solutions for both of the variants, we rely on an iterative method by split-
ting the problem into three subproblems: (i) optimize groups while keeping the remaining 
parameters fixed, (ii) optimize model parameters Λ while keeping the groups and the seg-
mentation fixed, (iii) optimize the segmentation while keeping the remaining parameters 
fixed. We approach the first subproblem by iteratively optimizing group assignment of each 
node while maintaining the remaining nodes fixed. We show that such single round can be 
done in O

(

m + Rn + R2H + K
)

 time, where n is the number of nodes and m is the number 
of edges. Fortunately, the second subproblem is trivial since there is an analytic solution 
for optimal parameters, and we can obtain the solution in O

(

m + R2H + K
)

 time. Finally, 
we show that we can find the optimal segmentation with a dynamic program. Using a stock 
dynamic program leads to a computational complexity of O

(

m2KH
)

 . Fortunately, we show 
that we can speed up the computation by using a SMAWK algorithm  (Aggarwal et  al., 
1987), leading to a computational complexity of O

(

mKH + HR2
)

.
In summary, we extend a model by Corneli et  al. (2018) to have recurring segments. 

We prove that the two variants of our main problem is NP-hard as well as several related 
optimization problems where we fix a subset of parameters. Navigating around these 
NP-hard problems we propose an iterative algorithm where a single iteration requires 
O
(

KHm + Rn + R2H
)

 time, a linear time in edges and nodes.
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The rest of the paper is organized as follows. First we introduce preliminary notation, 
the model, and the optimization problems in Sect. 2. We then proceed to describe the itera-
tive algorithm in Sect. 3. We present the related work in Sect. 4. Finally, we present our 
experiments with both fixed-membership and level-dependent membership problems in 
Sect. 5 and conclude the paper with discussion in Sect. 6. The computational complexity 
proofs are provided in Appendix.1

2  Preliminary notation and problem definition

Assume an undirected temporal graph G = (V ,E) , where V is a set of nodes and E is a set 
of edges, where each edge is tuple (u, v, t) with u, v ∈ V  and t being the timestamp. We will 
use n = |V| to denote the number of nodes and m = |E| the number of edges. For simplic-
ity, we assume that we do not have self-loops, though the models can be adjusted for such 
case. We write t(e) to mean the timestamp of the edge e. We also write N(u) to denote all 
the edges adjacent to a node u ∈ V .

Perhaps the simplest way to model a graph (with no temporal information) is with 
Erdos–Renyi model, where each edge is sampled independently from a Bernoulli prob-
ability parameterized with q. Let us consider two natural extensions of this model. The first 
extension is a block model, where nodes are divided into k groups, and an edge (u, v) are 
modelled with a Bernoulli probability parameterized with qij , where i is the group of u and 
j is the group of v. Given a graph, the optimization problem is to cluster nodes into groups 
so that the likelihood of the model is optimized. For the sake of variability we will use the 
words group and cluster interchangeably.

A convenient way of modelling events in temporal data is using Poisson process: 
Assume that you have observed c events with timestamps t1,… , tc in a time interval T 
of length Δ . The log-likelihood of observing these events at these exact times is equal to 
c log � − �Δ , where � is a model parameter. Note that the log-likelihood does not depend 
on the individual timestamps.

If we were to extend the block model to temporal networks, the log-likelihood of c 
edges occurring between the nodes u and v in a time interval is equal to c log �ij − �ijΔ , 
where �ij is the Poisson process parameter and i is the group of u and j is the group of v. 
Note that �ij does not depend on the time, so discovering optimal groups is very similar to 
discovering groups in a static model.

A natural extension of this model, proposed by  Corneli et  al. (2018), is to make the 
parameters depend on time. Here, we partition the model into k segments and assign differ-
ent set of � s to each segment.

More formally, we define a time interval T to be a continuous interval either containing 
the starting point T = [t1, t2] or excluding the starting point T = (t1, t2] . In both cases, we 
define the duration as Δ(T) = t2 − t1.

Given a time interval T, let us define

to be the number of edges between u and v in T.
The log-likelihood of Poisson model for nodes u, v and a time interval T is

c(u, v, T) = |{e = (u, v, t) ∈ E ∣ t ∈ T}|

1 The appendix is available as a supplementary material, and also at https:// arxiv. org/ abs/ 2205. 09862.

https://arxiv.org/abs/2205.09862
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We extend the log-likelihood between the two sets of nodes U and W, by writing

where U ×W is a set of all node pairs {u,w} with u ∈ U and w ∈ W and u ≠ v . We con-
sider {u,w} and {w, u} the same, so only one of these pairs is visited.

Given a time interval D = [a, b] , a K-segmentation T = T1,… , TK is a sequence of K 
time intervals, such that T1 = [a, t1], T2 = (t1, t2],… Ti = (ti−1, ti],… , and TK = (tK−1, b] . 
For notational simplicity, we require that the boundaries ti must collide with the times-
tamps of individual edges. We also assume that D covers the edges. If D is not specified, 
then it is set to be the smallest interval covering the edges.

Given a K-segmentation, a partition of nodes P = P1,… ,PR into R groups, and a set of 
KR(R + 1)∕2 parameters Λ =

{

�ijk
}

,2 the log-likelihood is equal to

This leads immediately to the problem considered by Corneli et al. (2018).

Problem  2.1 (SFix  ) Given a temporal graph G, a time interval D, integers R and K, 
find a node partition with R groups, a K-segmentation, and a set of parameters Λ so that 
�(P, T,Λ) is maximized.

We should point out that for fixed P and T  , the optimal Λ is equal to

In this paper we consider an extension of (K, R) model. Many temporal network exhibit 
cyclic or repeating behaviour. Here, we allow network to have K segments but we also limit 
the number of distinct parameters to be at most H ≤ K . If we select H < K , then we are 
forcing that certain segments share their parameters, that is, we force repeating behaviour. 
We do not know beforehand which segments should share the parameters.

We can express this constraint more formally by introducing a mapping g ∶ [K] → [H] 
that maps a segment index to its matching parameters. We can now define the likelihood as 
follows: given a K-segmentation, a partition of nodes P = P1,… ,PR into R groups, a map-
ping g ∶ [K] → [H] , and a set of HR(R + 1)∕2 parameters Λ =

{

�ijh
}

 , the log-likelihood is 
equal to

We will refer to g as level mapping.
This leads to the following optimization problem.

�(u, v, T , �) = c(u, v, T) log � − �Δ(T).

�(U,W,T , �) =
∑

u,w∈U×W

�(u,w,T , �),

�(P, T,Λ) =

R
∑

i=1

R
∑

j=i

K
∑

k=1

�
(

Pi,Pj, Tk, �ijk
)

.

�ijk =
c
(

Pi,Pj, Tk
)

|

|

|

Pi × Pj
|

|

|

Δ
(

Tk
)

.

�(P, T, g,Λ) =

R
∑

i=1

R
∑

j=i

K
∑

k=1

�
(

Pi,Pj, Tk, �ijg(k)
)

.

2 For notational simplicity we will equate �ijh and �jih.
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Problem 2.2 (RSFix ) Given a temporal graph G, a time interval D, integers R, H, and K, 
find a node partition with R groups, a K-segmentation, a level mapping g ∶ [K] → [H] , and 
parameters Λ maximizing �(P, T, g,Λ).

We will refer to this problem as fixed membership problem.
Next we extend the previous model by allowing group memberships to vary over time. 

More specially, group membership of a node is attached to a level, similar to Λ . Hence, a node 
partition which is constrained on level is denoted as P =

{

Pih

}

 . The log-likelihood of this new 
model is given by

Problem  2.3 (RSDep  ) Given a temporal graph G, a time interval D, integers R, H, 
and K, find a set of H partitions of nodes Ph = P1h,… ,PRh , for all h = 1,… ,H , into R 
groups, a K-segmentation, a level mapping g ∶ [K] → [H] , and parameters Λ maximizing 
�(P, T, g,Λ).

We will refer to this problem as level-dependent membership problem.
Toy examples of both models is given in Fig. 1.

�(P, T, g,Λ) =

R
∑

i=1

R
∑

j=i

K
∑

k=1

�
(

Pig(k),Pjg(k), Tk, �ijg(k)
)

.

Fig. 1  Toy examples of models with 4 groups, 5 segments, and 3 levels. The lightness of the color in the 
matrices illustrates the parameters Λ while the color indicates which segments share the same parameters. 
For illustrative purposes the node groups are shown as continuous regions in matrices
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3  Fast algorithm for obtaining good model

In this section we will introduce an iterative, fast approach for obtaining a good model. 
The computational complexity of one iteration is O

(

KHm + Rn + R2H
)

 , which is linear 
in both the nodes and edges.

3.1  Iterative approach

Unfortunately, finding optimal solution for RSFix and RSDep is NP-hard.

Proposition 1 Problems 2.2–2.3 are NP-hard, even for H = K = 1 and R = 2.

Proof of Proposition 1 is in Appendix.
Consequently, we resort to a natural heuristic approach, where we optimize certain 

parameters while keeping the remaining parameters fixed.

Algorithm 1  Main loop of the algorithm

We split RSFix  into 3 subproblems as shown in Algorithm  1. First, we find good 
groups, then update Λ , and then optimize segmentation, followed by yet another 
update of Λ.

When initializing, we select groups P and parameters Λ randomly, then proceed to 
find optimal segmentation, followed by optimizing Λ.

The following proposition states the the complexity of Algorithm 1, and it is proven 
in the following subsections.

Proposition 2 The computational complexity of a single iteration of Algorithm  1 is 
O
(

KHm + Rn + R2H
)

.

Proof The proof follows from Lemmas 3.1, 3.2, and 3.3.   ◻

Next we will explain each step in details followed by their computational complexi-
ties. Finally, we describe the difference in algorithm for RSDep .
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3.2  Finding groups

Our first step is to update groups P while maintaining the remaining parameters fixed. 
Unfortunately, finding the optimal solution for this problem is NP-hard.

Proposition 3 Finding optimal partition P for fixed Λ , T  and g is NP-hard, even for 
H = K = 1 and R = 2.

Proof of Proposition 3 is in Appendix.
Due to the previous proposition, we perform a simple greedy optimization where each 

node is individually reassigned to the optimal group while maintaining the remaining 
nodes fixed.

We should point out that there are more sophisticated approaches, for example based 
on SDP relaxations, see a survey by Abbe (2017). However, we resort to a simple greedy 
optimization due to its speed.

A naive implementation of computing the log-likelihood gain for a single node may 
require Θ(m) steps, which would lead in Θ(nm) time as we need to test every node. Luckily, 
we can speed-up the computation using the following straightforward proposition.

Proposition 4 Let P be the partition of nodes, Λ set of parameters, and T  and g the seg-
mentation and the level mapping. Let Sh =

{

Tk ∈ T ∣ h = g(k)
}

 be the segments using the 
hth level.

Let u be a node, and let Pb be the set such that u ∈ Pb . Select Pa , and let P′ be the parti-
tion where u has been moved from Pb to Pa . Then

where Z is a constant, not depending on a, th = Δ
(

Sh

)

 is the total duration of the segments 
using the hth level and cjh = c

(

u,Pj,Sh

)

 , is the number of edges between u and Pj in the 
segments using the hth level.

Proof Let us write Q to be the partition obtained from P by deleting u, that is Qb = Pb ⧵ {u} 
and Qj = Pj for j ≠ b . Note that

for any T and � . Moreover, �
(

P�
i
,P�

j
, T , �

)

= �
(

Qi,Qj, T , �
)

 if i, j ≠ a . Write, for brevity, 
Δ = �

(

P
�, T, g,Λ

)

− �(Q, T, g,Λ) . The score difference is equal to

�
(

P
�, T, g,Λ

)

− �(P, T, g,Λ) = Z +

H
∑

h=1

�bahth +

R
∑

j=1

cjh log �ajh −
|

|

|

Pj
|

|

|

�ajhth,

�

(

P�
a
,P�

j
, T , �

)

− �
(

Qa,Qj, T , �
)

= �

(

u,P�
j
, T , �

)
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Here we used the fact that c
(

u,Pj,Sh

)

= c
(

u,P�
j
,Sh

)

 . The claim follows by setting 
Z = �(Q, T, g,Λ) − �(P, T, g,Λ) .   ◻

The proposition leads to the pseudo-code given in Algorithm 2. The algorithm com-
putes an array c and then uses Proposition  4 to compute the gain for each swap, and 
consequently to find the optimal gain.

Algorithm 2  Algorithm FINDGROUPS (P,Λ) for finding groups for a fixed segmentation T  , g 
and parameters Λ

Δ =
∑

i≤j

K
∑

k=1

�

(

P�
i
,P�

j
, Tk, �ijg(k)

)

− �
(

Qi,Qj, Tk, �ijg(k)
)

=

R
∑

j=1

K
∑

k=1

�

(

P�
a
,P�

j
, Tk, �ajg(k)

)

− �
(

Qa,Qj, Tk, �ajg(k)
)

=

R
∑

j=1

K
∑

k=1

�

(

u,P�
j
, Tk, �ajg(k)

)

=

R
∑

j=1

H
∑

h=1

�

(

u,P�
j
,Sh, �ajh

)

=

R
∑

j=1

H
∑

h=1

c
(

u,P�
j
,Sh

)

log �ajh − th
|

|

|

Qj
|

|

|

�ajh

=

R
∑

j=1

H
∑

h=1

cjh log �ajh − th
|

|

|

Qj
|

|

|

�ajh

=

H
∑

h=1

�bahth +

r
∑

j=1

cjh log �ajh − th
|

|

|

Pj
|

|

|

�ajh .



5631Machine Learning (2024) 113:5623–5653 

1 3

Lemma 3.1 FindGroups runs in O
(

m + Rn + R2 H + K
)

 time.

Proof Computing the array requires iterating over the adjacent edges, leading to O(|N(v)|) 
time where |N(v)| = 2m . Computing the gains requires O

(

R2H
)

 time.
The running time can be further optimized by modifying Line 8. There are at most 2m 

non-zero c[i, j] entries (across all v ∈ V  ), consequently we can speed up the computation 
of a second term by ignoring the zero entries in c[i, j]. In addition, for each a, the remain-
ing terms

can be precomputed in O(RH) time and maintained in O(1) time. In line 9, for each node 
we pick the group that maximizes the gain which requires O(Rn) time. This leads to a run-
ning time of O

(

m + Rn + R2H + K
)

 .   ◻

3.3  Updating Poisson process parameters

Our next step is to update Λ while maintaining the rest of the parameters fixed. This refers to 
UpdateLambda in Algorithm 1. Fortunately, this step is straightforward as the optimal param-
eters are equal to

where Sh =
{

Tk ∈ T ∣ h = g(k)
}

 are the segments using the hth level.

Lemma 3.2 Updating the Λ parameters requires O
(

m + R2H + K
)

 time.

Proof First we need to count the number of interactions between ith group and jth group 
within hth level by iterating over the edges which requires O

(

m + R2H
)

 time. Comput-
ing Δ

(

Sh

)

 requires O(K + H) time. Next we update parameters by executing a triple loop 
which runs twice over the groups and once over the levels, requiring O

(

R2H
)

 time. Conse-
quently, updating the parameters requires O

(

m + R2 H + K
)

 time which proves the claim.  
 ◻

In practice, we would like to avoid having � = 0 as this forbids any edges occurring in the 
segment, and we may get stuck in a local maximum. We approach this by shifting � slightly by 
using

where � and � are user parameters.

H
∑

h=1

�bahd[h] −

R
∑

j=1

|

|

|

Pj
|

|

|

�ajhd[h]

�ijh =
c
(

Pi,Pj,Sh

)

|

|

|

Pi × Pj
|

|

|

Δ
(

Sh

)

,

�ijh =
c
(

Pi,Pj,Sh

)

+ �

|

|

|

Pi × Pj
|

|

|

Δ
(

Sh

)

+ �
,
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3.4  Finding segmentation

Our final step is to update the segmentation T  and the level mapping g, while keeping Λ and 
P fixed. Luckily, we can solve this subproblem in linear time.

Note that we need to keep Λ fixed, as otherwise the problem is NP-hard.

Proposition 5 Finding optimal Λ , T  and g for fixed P is NP-hard.

Proof of Proposition 5 is in Appendix.
On the other hand, if we fix Λ , then we can solve the optimization problem with a dynamic 

program. To be more specific, assume that the edges in E are ordered, and write o[e, k] to 
be the log-likelihood of k-segmentation covering the edges prior and including e. Given two 
edges s, e ∈ E , let y(s, e; h) be the log-likelihood of a segment (t(s), t(e)] using the hth level of 
parameters, �

⋅⋅h . If s occurs after e we set y to be −∞ . Then the identity

leads to a dynamic program.
Using an off-the-shelf approach by Bellman (1961) leads to a computational complexity of 

O
(

m2KH
)

 , assuming that we can evaluate y(s, e; h) in constant time.
However, we can speed-up the dynamic program by using the SMAWK algorithm (Aggar-

wal et  al., 1987). Given a function x(i,  j), where i, j = 1,… ,m , SMAWK computes 
z(j) = argmaxi x(i, j) in O(m) time, under two assumptions. The first assumption is that we 
can evaluate x in constant time. The second assumption is that x is totally monotone. We say 
that x is totally monotone, if x(i2, j1) > x(i1, j1) , then x(i2, j2) ≥ x(i1, j2) for any i1 < i2 and 
j1 < j2.

We have the immediate proposition.

Proposition 6 Fix h. Then the function x(s, e) = y(s, e;h) + o[s, k − 1] is totally monotone.

Proof Assume four edges s1 , s2 , e1 and e2 with t(s1) ≤ t(s2) and t(e1) ≤ t(e2) . We can safely 
assume that t(s2) ≤ t(e1) . We can write the difference as

Thus, if x(s2, e1) > x(s1, e1) , then x(s2, e2) > x(s1, e2) , completing the proof.   ◻

Our last step is to compute x in constant time. This can be done by first precomputing 
f[e, h], the log-likelihood of a segment starting from the epoch and ending at t(e) using the 
hth level. The log-likelihood of a segment is then y(s, e;h) = f [e, h] − f [s, h] , which we can 
compute in constant time.

o[e, k] = max
h

max
s

y(s, e;h) + o[s, k − 1]

x(s1, e2) − x(s1, e1) = y(e1, e2;h) = x(s2, e2) − x(s2, e1).
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Algorithm  3  Algorithm FINDSEGMENTS (P,Λ) for finding optimal segmentation for fixed 
groups P and parameters Λ

The pseudo-code for finding the segmentation is given in Algorithm 3. A more detailed 
version of the pseudo-code is given in Appendix. Here, we first precompute f[e, h]. We 
then solve segmentation with a dynamic program by maintaining 3 arrays: o[e, k] is the 
log-likelihood of k-segmentation covering the edges up to e, q[e, k] is the starting point of 
the last segment responsible for o[e, k], and r[e, k] is the level of the last segment responsi-
ble for o[e, k].

In the inner loop we use SMAWK to find optimal starting points. Note that we have 
to do this for each h, and only then select the optimal h for each segment. Note that we 
do define x on Line 5 but we do not compute its values. Instead this function is given to 
SMAWK and is evaluated in a lazy fashion.

Once we have constructed the arrays, we can recursively recover the optimal segmenta-
tion and the level mapping from q and r, respectively.

Lemma 3.3 FindSegments runs in O
(

mKH + HR2
)

 time.

Proof SMAWK runs in O(m) time and we need to call SMAWK O(HK) times. Therefore 
it requires O(mKH) time to find the optimal segmentation, given precomputed f mentioned 
in Line 2 in Algorithm 3. To compute f, we need to compute � as stated in Line 5 of the 
detailed version of the algorithm; Algorithm 5. To compute � , we loop over the groups 
twice and once over the levels which requires O

(

HR2
)

 time. Consequently, computational 
complexity of FindSegments is O

(

mKH + HR2
)

 .   ◻

We were able to use SMAWK because the optimization criterion turned out to be totally 
monotone. This was possibly only because we fixed Λ . The notion of using SMAWK to 
speed up a dynamic program with totally monotone scores was proposed by  Galil and 
Park (1990). Fleischer et al. (2006); Hassin and Tamir (1991) used this approach to solve 
dynamic program segmenting monotonic one-dimensional sequences with L1 cost.
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We fixed Λ because Proposition  5 states that the optimization problem for H < K 
cannot be solved in polynomial time if we optimize T  , g, and Λ at the same time. Prop-
osition 5 is the main reason why we cannot use directly the ideas proposed by Corneli 
et al. (2018) as the authors use the dynamic program to find T  and Λ at the same time.

However, if K = H , then the problem is solvable with a dynamic program but requires 
O
(

Km2R2
)

 time. This may be impractical for large values of m, so using Algorithm 1 may 
be preferable even when K = H . The downside of the approach is that having more vari-
ables fixed may lead to the algorithm getting to the local optimum.

We should point out we can also approximate the aforementioned segmentation prob-
lem, if we consider it as a minimization problem and shift the cost with a constant so that 
it is always positive, then using algorithms by  Tatti (2019); Guha et  al. (2006) we can 
obtain (1 + �)-approximation with O

(

K3 logK logm + K3�−2 logm
)

 number of cost evalu-
ations. Finding the optimal parameters and computing the cost of a single segment can be 
done in O

(

R2
)

 time with O
(

R2 + m
)

 time for precomputing. This leads to a total time of 
O
(

R2(K3 logK logm + K3�−2 logm) + m
)

 for the special case of K = H.

Algorithm 4  Modified algorithm FINDGROUPS (P,Λ) for finding level-specific groups for a 
fixed segmentation T  , g and parameters Λ

At the end of each subproblem, the log-likelihood either improves or stays constant. 
Therefore our algorithm always converges and have a finite number of iterations.

3.5  Solving level‑dependent membership problem

Next we present the algorithm for solving RSDep .
Finding groups We continue to use a similar greedy approach as in Algorithm 2. The 

only difference is that when computing gain of a node, we pick only the adjacent edges 
residing in a particular level and then iterate over all levels in a separate fashion. We adopt 
Proposition 4, except now we apply it only for one level. The modified algorithm is stated 
in Algorithm 4. Moreover, the running time, O

(

m + R2Hn + K
)

 , remains the same as of 
Algorithm 2.
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Finding Poisson parameters and segmentation These algorithms for these two subprob-
lems remain essentially unchanged: the only difference is that we use Pih whenever Pi is 
involved.

4  Related work

The closest related work is the paper by Corneli et al. (2018) which can be viewed as a 
special case of our approach by requiring K = H , in other words, while the Poisson pro-
cess may depend on time they do not take into account any recurrent behaviour. Having 
K = H simplifies the optimization problem somewhat. While the general problem still 
remains difficult, we can now solve the segmentation T  and the parameters Λ simulta-
neously using a dynamic program as was done by Corneli et al. (2018). In our problem 
we are forced to fix Λ while solving the segmentation problem. Interestingly enough, 
this gives us an advantage in computational time: we only need O

(

KHm + HR2
)

 time 
to find the optimal segmentation while the optimizing T  and Λ simultaneously requires 
O
(

R2Km2
)

 time. On the other hand, by fixing Λ we may have a higher chance of getting 
stuck in a local maximum.

The other closely related work is by Gionis and Mannila (2003), where the authors pro-
pose a segmentation with shared centroids. Here, the input is a sequence of real valued 
vectors and the segmentation cost is either L2 or L1 distance. Note that there is no notion of 
groups P , the authors are only interested in finding a segmentation with recurrent sources. 
The authors propose several approximation algorithms as well as an iterative method. The 
approximation algorithms rely specifically on the underlying cost, in this case L1 or L2 dis-
tance, and cannot be used in our case. Interestingly enough, the proposed iterative method 
did not use SMAWK optimization, so it is possible to use the optimization described in 
Sect. 3 to speed up the iterative method proposed by Gionis and Mannila (2003).

In this paper, we used stochastic block model (see  (Holland et al., 1983; Anderson 
et al., 1992), for example) as a starting point and extend it to temporal networks with 
recurrent sources. Several past works have extended stochastic block models to tempo-
ral networks: Yang et al. (2011); Matias and Miele (2017) proposed an approach where 
the nodes can change group memberships over time. In a similar fashion, Xu and Hero 
(2014) proposed a model where the adjacency matrix snapshots are generated with a 
logistic function whose latent parameters evolve over time. The main difference with our 
approach is that in these models the group memberships of nodes are changing while in 
our case we keep the memberships constant and update the probabilities of the nodes. 
Moreover, these methods are based on graph snapshots while we work with temporal 
edges. In another related work, Matias et al. (2018) modelled interactions using Poisson 
processes conditioned by stochastic block model. Their approach was to estimate the 
intensities non-parametrically through histograms or kernels while we model intensities 
with recurring segments. For a survey on stochastic block models, including extensions 
to temporal settings, we refer the reader to a survey by Lee and Wilkinson (2019).

Stochastic block models group similar nodes together; here similarity means that 
nodes in the same group have the similar probabilities connecting to nodes from other 
group. A similar notion but a different optimization criterion was proposed by Arocki-
asamy et al. (2016). Moreover, Henderson et al. (2012) proposed a method where nodes 
with similar neighborhoods are discovered.
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In this paper we modelled the recurrency by forcing the segments to share their 
parameters. An alternative approach to discover recurrency is to look explicitly for 
recurrent patterns (Ozden et al., 1998; Han et al., 1998, 1999; Ma & Hellerstein, 2001; 
Yang et al., 2003; Galbrun et al., 2019). We should point out that these works are not 
design to work with graphs; instead they work with event sequences. We leave adapting 
this methodology for temporal networks as an interesting future line of work.

Using segmentation to find evolving structures in networks have been proposed in the 
past: Kostakis et al. (2017) introduced a method where a temporal network is segmented 
into k segments with h < k summaries. A summary is a graph, and the cost of an indi-
vidual segment is the difference between the summary and the snapshots in the segment. 
Moreover, Rozenshtein et al. (2020) proposed discovering dense subgraphs in individual 
segments.

5  Experimental evaluation

The goal in this section is to experimentally evaluate our algorithm. Towards that end, we 
first test how well the algorithm discovers the ground truth using synthetic datasets. Next 
we study the performance of the algorithm on real-world temporal datasets in terms of run-
ning time and likelihood. We compare our results to the following baselines: the running 
times are compared to a naive implementation where we do not utilize SMAWK algorithm, 
and the likelihoods are compared to the likelihoods of the (R, K) model.

We implemented the algorithm in Python3 and performed the experiments using a 
2.4 GHz Intel Core i5 processor and 16 GB RAM.

5.1  Experiments with fixed membership model

Synthetic datasets To test our algorithm, we generated 5 temporal networks with known 
groups and known parameters Λ which we use as a ground truth. To generate data, we first 
chose a set of nodes V, number of groups R, number of segments K, and number of levels 
H. Next we assumed that each node has an equal probability of being chosen for any group. 
Based on this assumption, the group memberships were selected at random.

We then randomly generated Λ from a uniform distribution. More specifically, we gen-
erated H distinct values for each pair of groups and map them to each segment. Note that, 
we need to ensure that each distinct level is assigned to at least one segment. To guaran-
tee this, we first deterministically assigned the set of H levels to first H segments and the 
remaining ( K − H ) segments are mapped by randomly selecting ( K − H ) elements from H 
level set.

Given the group memberships and their related Λ , we then generated a sequence of 
timestamps with a Poisson process for each pair of nodes. The sizes of all synthetic data-
sets are given in Table 1.

Real-world datasets We used 7 publicly available temporal datasets. Email-Eu-1 and 
Email-Eu-2 are collaboration networks between researchers in a European research institu-
tion.4 Math Overflow contains user interactions in Math Overflow web site while answering 
to the questions.4 CollegeMsg is an online message network at the University of California, 

3 The source code is available at https:// versi on. helsi nki. fi/ dacs/.
4 http:// snap. stanf ord. edu.

https://version.helsinki.fi/dacs/
http://snap.stanford.edu
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Irvine.4 MOOC contains actions by users of a popular MOOC platform.4 Bitcoin contains 
member rating interactions in a bitcoin trading platform.4 Santander contains station-to-
station links that occurred on Sep 9, 2015 from the Santander bikes hires in London.5 The 
sizes of these networks are given in Table 2.

Results for synthetic datasets To evaluate the accuracy of our algorithm, we compare 
the set of discovered groups with the ground truth groups. Here, our algorithm found 
the ground truth: in Table  1 we can see that Rand index  (Rand, 1971) (column G) is 
equal to 1,

Next we compare the log-likelihood values from true models against the log-likelihoods 
of discovered models. To evaluate the log-likelihoods, we normalize the log-likelihood, 
that is we computed �(P, T, g,Λ)∕�

(

P
�, T�, g�,Λ�

)

 , where P�, T�, g�,Λ� is a model with a 
single group and a single segment. Since all our log-likelihood values were negative, the 
normalized log-likelihood values were between 0 and 1, and smaller values are better.

Table 1  Experiments for the 
synthetic datasets

Here, n is the number of nodes, m is the number of edges, R is the 
number of groups, K is the number of segments, H is the number of 
levels, LLg is the normalized log-likelihood for the ground truth, G is 
the Rand index, LLf  is the discovered normalized log-likelihood, I is 
the number of iterations, and CT is the computational time in seconds

Dataset n m R K H LLg G LLf I CT

Synthetic-1 50 76,332 2 2 2 0.95 1 0.94 2 2.81 s
Synthetic-2 30 95,889 3 3 3 0.94 1 0.94 3 5.36 s
Synthetic-3 20 65,056 3 3 3 0.97 1 0.97 3 3.91 s
Synthetic-4 60 537,501 3 4 3 0.94 1 0.93 3 23.13 s
Synthetic-5 10 33,475 2 10 5 0.91 1 0.91 4 10.27 s

Table 2  Sizes and computational times for the real-time datasets

Here, n is the number of nodes, m is the number of edges, R is the number of groups, K is the number of 
segments, H is the number of levels, LLd and LLf  are the discovered normalized log-likelihoods using the 
respective level dependent membership model and fixed membership model, I is the number of iterations, 
and CT is the computational time in seconds

Dataset n m R K H RSFix  RSDep 

LLf I CT LLd I CT

Email-Eu-1 309 61,046 3 10 7 0.8935 12 188 s 0.8875 18 531 s
Email-Eu-2 162 46,772 4 8 7 0.872 9 177 s 0.8559 26 575 s
MathOverflow 21,688 107,581 2 3 2 0.9087 20 263 s 0.9082 21 313 s
CollegeMsg 899 59 835 3 8 5 0.8711 19 662 s 0.8503 20 592 s
MOOC 7047 411,749 2 3 2 0.811 6 208 s 0.7968 6 216 s
Bitcoin 3783 24,186 3 5 3 0.9272 17 25 s 0.901 19 29 s
Santander 735 33,116 3 7 5 0.9404 20 60 s 0.8923 5 1 s

5 https:// cycli ng. data. tfl. gov. uk.

https://cycling.data.tfl.gov.uk
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As demonstrated in column LLg and column LLf  of Table 1, we obtained similar normal-
ized log-likelihood values when compared to the normalized log-likelihood of the ground 
truth. The obtained normalized log-likelihood values were all slightly better than the log-
likelihoods of the generated models, that is, our solution is as good as the ground truth.

An example of the discovered parameters, �11 and �12 , for Synthetic-4 dataset are shown 
in Fig. 2. The discovered parameters matched closely to the generated parameters with the 
biggest absolute difference being 0.002 for Synthetic-4. The figures for other values and 
other synthetic datasets are similar.

Computational time Next we consider the computational time of our algorithm. We var-
ied the parameters R, K, and H for each dataset. The model parameters and computational 
times are given in Table 2 under RSFix section. From the last column of CT in RSFix sec-
tion, we see that the running times are reasonable despite using inefficient Python libraries: 
for example we were able to compute the model for MOOC dataset, with over 400,000 
edges, under four minutes. This implies that the algorithm scales well for large networks. 
This is further supported by a low number of iterations, column I in RSFix  section of 
Table 2.

Next we study the computational time as a function of m, number of edges.
We first prepared 4 datasets with different number of edges from a real-world data-

set; Santander-large. To vary the number of edges, we uniformly sampled edges without 
replacement. We sampled like a .4, .6, .8, and 1 fraction of edges.

Next we created 4 different Synthetic-large dataset with 30 nodes, 3 segments with 
unique � values but with different number of edges. To do that, we gradually increase the 
number of Poisson samples we generated for each segment.

From the results in Fig.  3 we see that generally computational time increases as |E| 
increases. For instance, a set of 17,072 edges accounts for 18.46 s whereas a set of 34,143 
edges accounts for 36.36 s w.r.t Santander-large. Thus a linear trend w.r.t |E| is evident via 
this experiment.

Fig. 2  Discovered parameters �
11
(t) , �

12
(t) for the Synthetic-4 dataset. Parameter �

12
(t) implies the Poisson 

process parameter between group 1 and group 2 as a function of time

Fig. 3  Computational time as a function of number of temporal edges ( |E| ) for Synthetic-large (a, c) and 
Santander-large (b, d). This experiment was done with R = 3 , K = 5 , and H = 3 using SMAWK algorithm 
(a–b) and naive dynamic programming (c–d). The times are in seconds in (a–c) and in hours in (d)



5639Machine Learning (2024) 113:5623–5653 

1 3

To emphasize the importance of SMAWK, we replaced it with a stock solver of the 
dynamic program, and repeat the experiment. We observe in Fig. 3 that computational time 
has increased drastically when stock dynamic program algorithm is used. For example, 
a set of 34,143 edges required 3.7  h for Santander-large dataset but only 36.36  s when 
SMAWK is used.

Likelihood vs number of levels Our next experiment is to study how normalized log-
likelihood behaves upon the choices of H. We conducted this experiment for K = 20 and 
vary the number of levels (H) from H = 1 to H = 20 . The results for the Santander, Bit-
coin, Synthetic-5, and Email-Eu-1 dataset are shown in Fig. 4. From the results we see that 
generally normalized log-likelihood decreases as H increases. That is due to the fact that 
higher the H levels, there exists a higher degree of freedom in terms of optimizing the like-
lihood. Note that if H = K , then our model corresponds to the model studied by Corneli 
et al. (2018). Interestingly enough, the log-likelihood values plateau for values of H ≪ K 
suggesting that existence of recurring segments in the displayed datasets.

Effect of Λ Next we study how does � parameter affect the performance of our algo-
rithm. To conduct our study with fixed membership model, we first prepared a collection of 
datasets with R = 2 , K = 4 , H = 2 , and varying � values. Since H = 2 , we set two specific 
� values for each pair of groups. We generate Λ as a function of � such that �11⋅ = (�, 0.01) , 
�22⋅ = (0.01, �) , and �12⋅ = (�, �) . Next, we vary � parameter from 0.01 to 0.1. When 
� = 0.01 , each pair of � s are set with equal values and then we gradually increase the dif-
ference between them by varying � parameter from 0.01 to 0.1. The case � = 0.01 cor-
responds to the event where all pairs of � values are equal to 0.01. � = 0.1 corresponds to 
the case where 2 distinct � s are the furthest away from each other for both �11 and �22 . We 
generated 20 number of such datasets for each � and used the same method of generating 
synthetic datasets as described in Sect. 5.1.

Fig. 4  Normalized log-likelihood as a function of number of levels (H) for the Santander dataset (a), bit-
coin dataset (b), Synthetic-5 dataset (c), and Email-Eu-1 dataset (d). This experiment is done for R = 2 , 
K = 20 , and H = 1,… , 20

Fig. 5  a Gives Rand index as a function of � and b gives number of iterations as a function of � . This exper-
iment is conducted for R = 2 , K = 4 , and H = 2 with fixed membership model
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Next we ran our algorithm across 20 different datasets for each � , and reported maxi-
mum, minimum, and average Rand indices for both group memberships and segments. To 
check the speed of convergence, we recorded maximum, minimum, and average number 
of iterations for the convergence. Interestingly, for all the datasets our algorithm always 
achieved Rand index of 1 for discovered groups with compared to the ground truth. Next, 
we will see how did the Rand index for segments vary with �.

First, let us look at Fig. 5a which shows the average, maximum, and minimum Rand 
index for segments as a function of � . First we observe the blue curve which corresponds 
to the maximum Rand index obtained. We can conclude that unless � s are too closer to 
each other; i.e 𝛿 < 0.02 , our algorithm always produced maximum Rand index more than 
0.9 which indicates the ability to produce good solutions even when the datasets get more 
difficult to cope up. Next let us observe the average case which reaches Rand index close to 
1 after � = 0.03 . Therefore we can conclude that the accuracy of discovered segments are 
very high as � approaches 0.03. Similar to average case, minimum case achieves its max at 
0.03 and continues the value of 0.99 afterwards. In summary, at � = 0.03 , all three curves 
approximately coincide with each other and maintain the same streak beyond.

Second, let us observe Fig. 5b which shows the number of iterations took until the con-
vergence. We can observe that minimum number of iterations is always 2 over all � values 
that we experimented. Furthermore, average number of iterations always lies between 2 
and 3.1. In the maximum case we see that the number of iterations lies between 3 and 6 
which implies a fast convergence. Finally, we can conclude that the number of iterations 
are not directly correlated with the ground truth � values of the dataset.

5.2  Experiments with level‑dependent membership model

Synthetic datasets When generating synthetic datasets for level-dependent model, we used 
the same procedure as with the fixed membership model, except we assigned a group to a 
node depending on its specific current level. That means that a node can have several group 
memberships over the course of timeline depending on its timestamp instance. We pre-
pared 5 synthetic datasets in total; characteristics and results are shown in Table 3.

First, for each dataset, we compare the normalized log-likelihood values from the 
ground truth model against the fixed membership and level-dependent membership mod-
els. We observe that in these datasets, discovered normalized log-likelihood value obtained 
using level-dependent membership model (column LLd ) is always approximately equal and 

Table 3  Experiments for the synthetic datasets

Here, n is the number of nodes, m is the number of edges, R is the number of groups, K is the number of 
segments, H is the number of levels, LLg is the ground truth normalized log-likelihood, G is the Rand index, 
LLd and LLf  are the discovered normalized log-likelihoods using the respective level depedendent and fixed 
membership models, I is the number of iterations, and CT is the computational time in seconds

Dataset n m R K H LLg LLd LLf G I CT

Synthetic-d-1 40 207,428 2 4 2 0.8698 0.8676 0.9278 1 3 15 s
Synthetic-d-2 20 45,868 2 3 2 0.8557 0.8541 0.9427 1 2 2 s
Synthetic-d-3 20 159,974 2 5 3 0.9457 0.9449 0.9541 1 3 23 s
Synthetic-d-4 15 151,332 2 8 4 0.9613 0.9597 0.9697 0.93 5 33 s
Synthetic-d-5 30 374,442 3 6 3 0.8858 0.8843 0.9173 1 4 46 s
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even slightly better than the ground truth  (column LLg ). As shown in LLf  column, even 
though fixed membership model produces a competitive score, the values are always worse 
than the ground truth. Next, we compare the group sets discovered using level-dependent 
model, with the ground truth groups. Here, we can see that Rand index (column G) is equal 
to 1 except for Synthetic-d-4. Finally, we see the running times which are shown in last 
column of Table 3. For over 100,000 edges, our algorithm converges in less than a minute.

Real-world datasets For each dataset, we conducted the experiments based on two 
group membership models. The statistics of discovered log-likelihood values for real-
world datasets are shown in Table  2 under RSDep  section. First, let us look at col-
umn LLd and LLf  in RSDep  section. For all datasets, normalized log-likelihood val-
ues obtained for level-dependent membership model are better than fixed membership 
model. This phenomenon illustrates that level-dependent membership model utilizes 
its higher degree of freedom while optimizing group memberships with compared to 
the case where memberships remain constant. The datasets Email-Eu-2, CollegeMsg, 
and MOOC have a significant gap between the likelihood values of two models indicat-
ing that the level-dependent model fit these datasets better. Nevertheless, MathOverflow 
dataset creates nearly equal likelihood results with both models that group membership 
of a node stays almost constant over all the segments is evident.

Likelihood vs number of levels Next we study the effect of H towards obtained nor-
malized log-likelihood. We conducted this experiment for K = 20 and R = 2 , then vary 
the number of levels (H) from H = 1 to H = 20 . For each level, we repeated the experi-
ment 20 times and took the minimum of normalized log likelihood values over all such 
repetitions. The results for the Synthetic-2, Santander, Bitcoin, and Email-Eu-2 dataset 
are shown in Fig. 6. From the results we see that generally normalized log-likelihood 
decreases as H increases. That is due to the fact that higher the H levels, there exists 
more flexibility in terms of optimizing the group memberships. For Synthetic-2 the log-
likelihood values generally are plateauing indicating no significant variation in model 
parameters from H = 2 which is the ground truth number of H levels. Same plateauing 
behaviour is evident in Email-Eu-2 dataset after H = 15 suggesting recurrent segments 
even if group memberships are allowed to vary from segment to segment.

Effect of Λ Next, we study the affect of � s towards the performance of our algo-
rithm using level-dependent membership model. As described at the end of Sect.  5.1, 
we adhered to the same process of generating � varying datasets. Only difference here is 
that group memberships are also allowed to vary based on the level. Over all the data-
sets, our algorithm achieved Rand index of 1 for discovered group memberships. Next, 
we will observe the Rand index for discovered segments.

First, let us look at Fig.  7a which shows the average, maximum, and minimum 
Rand index for segments as a function of � . For the max case, we can observe that 

Fig. 6  Normalized log-likelihood as a function of number of levels (H) for the Synthetic-2 dataset (a), 
Santander dataset (b), Bitcoin dataset (c), and Email-Eu-2 dataset (d). This experiment is done for R = 2 , 
K = 20 , and H = 1,… , 20 . The reported scores are minimum of 20 restarts
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unless 𝛿 < 0.02 our algorithm could discover segments with a Rand index value more 
than 0.99. For the average case, we can initially observe an increasing trend between 
� = 0.01 and � = 0.08 . Afterwards, the curve tends to fluctuate from � = 0.08 to � = 0.2 
and becomes constant at Rand index of 0.99 after � = 0.4 . For the minimum case, we 
can see that Rand index tends to fluctuate until 𝛿 < 0.2 and then reaches its maximum at 
� = 0.4 and continues to be approximately constant at its max afterwards. In summary, 
at � = 0.04 , all three curves coincide with each other at a value close to 1.

Second, let us observe Fig. 7b which shows the number of iterations took until the con-
vergence. We can observe that minimum number of iterations is always either 2 or 3. For 
the average case, average number of iterations always lies between 3 and 5 which shows a 
sufficiently fast convergence on average. Among all cases we experimented, except 2 out-
lier cases, in all other cases maximum number of iterations lies below 10. Similar to fixed 
membership model, we can not observe any trend that varies with �.

5.3  Case study

Finally we present a case study based on London cycling hire usage dataset4 in which the 
interactions were occurred on 9th of September, 2015. The size of this network is given 
in Table 2. Our goal is to discover how the clusters are partitioned, that is, can we find 
some hidden pattern behind their locations and how did the � parameters behave during 
the course of the day, that is, whether our model can discover peak and non-peak recurrent 
patterns accurately. We conducted the experiment for R = 5 , K = 5 , and H = 2 . That is, we 
are interested in segmenting the day into 5 segments with only 2 levels with the intention 
of finding peak and non-peak hours using Algorithm 1.

First, let us look at the clusters obtained from London cycling dataset which are shown 
in Fig. 8. In general, we can observe that the stations which are geographically close to 
each other are most likely to be partitioned together into the same cluster. This is due to the 
fact that the stations which are grouped together are most likely to interact with the stations 
from other clusters and the stations within the same cluster in similar fashion.

Figure  9 shows how did the � parameters vary during the day. Interestingly we can 
clearly observe 2 peak segments during the day; approximately, one peak segment lies in 
the morning from 7.15 AM to 9.30 AM and the other peak segment lies in the evening 
from 4 PM to 7.45 PM. We can observe in Fig. 9 that the highest interaction levels of 10−5 
were attained for both �14(t) and �44(t) which means that cluster 4 which has shown in 

Fig. 7  a Gives Rand index as a function of � and b gives number of iterations as a function of � . This exper-
iment is conducted for R = 2 , K = 4 , and H = 2 with level-dependent model
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Fig. 8 in blue color interacts with its geographically overlapping cluster 1 which is shown 
in pink color more frequently while keeping its intra-cluster interactions more busier with 
compared to other clusters.

Fig. 8  Clusters found by our algorithm using London cycling hire usage dataset. Cluster 1, 2, 3, 4, and 5 are 
denoted by blue, yellow, green, pink, and red markings respectively (Color figure online)

Fig. 9  Discovered parameters Λ and the segmentation for London cycling data ( R = 5 , K = 5 , and H = 2 ). 
The Λ values are scaled by 106 for the sake of presentation
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On the other hand, we can observe in Fig. 9 that �12(t) , �23(t) , and �35(t) record the least 
levels of interactions ticking. To justify our observed result, we see the geographic close-
ness between cluster 1 and 2, cluster 2 and 3, and cluster 3 and 5. It is evident in Fig. 8 
that above cluster pairs are not clustered together as its neighbouring counterparts thus the 
interaction levels have become too low when compared to other inter-cluster interactions.

6  Concluding remarks

In this paper we introduced a problem of finding recurrent sources in temporal network: 
we introduced a stochastic block model with recurrent segments. We proposed two vari-
ants of this problem where group membership of a node was fixed over the course of 
timeline and group memberships were varying from segment to segment.

We showed that finding optimal groups and recurrent segmentation in both variants 
was NP-hard. Therefore, to find good solutions we introduced an iterative algorithm 
by considering 3 subproblems, where we optimize groups, model parameters, and seg-
mentation in turn while keeping the remaining structures fixed. We demonstrate how 
each subproblem can be optimized in O(m) time. Here, the key step is to use SMAWK 
algorithm for solving the segmentation. This leads to a computational complexity of 
O
(

KHm + Rn + R2H
)

 for a single iteration. We show experimentally that the number 
of iterations is low, and that the algorithm can find the ground truth using synthetic 
datasets.

The paper introduces several interesting directions: Gionis and Mannila (2003) consid-
ered several approximation algorithms but they cannot be applied directly for our problem 
because our optimization function is different. Adopting these algorithms in order to obtain 
an approximation guarantee is an interesting challenge. We used a simple heuristic to opti-
mize the groups. We chose this approach due to its computational complexity. Experiment-
ing with more sophisticated but slower methods for discovering block models, such as 
methods discussed in Abbe (2017), provides a fruitful line of future work.

Appendix A: Proofs

Proof of Proposition 1 Assume that we are given an instance of MaxCut, that is, a static 
graph H with n nodes and m ≥ n edges. Define

The temporal graph G consists of two copies of H: we will denote the nodes of the copies 
with U = u1,… , un and V = v1,… , vn . We connect the nodes in U (and V) to match the 
edges in H at timestamp 1. We connect the corresponding nodes ui and vi with n� cross 
edges at timestamp 0. We also add two sets of r nodes, which we will denote by X and Y, 
and connect each node pair (x, y), where x ∈ X and y ∈ Y  , with � edges at timestamp 0.

We set H = K = 1 , which forces the segmentation to be a single segment [0, 1].
Set R = 2 . Let P =

{

P1,P2

}

 be the optimal solution, and let Λ be its parameters.
We will prove in Lemma A.1 that X ⊆ P1 and Y ⊆ P2 or X ⊆ P2 and Y ⊆ P1 . Moreover, 

ui ∈ P1 implies that vi ∈ P2 and vi ∈ P1 implies ui ∈ P2.

r = 26(n + 1)2 and � = max(220m2, r2) .



5645Machine Learning (2024) 113:5623–5653 

1 3

This immediately implies that �11 = �22 . Moreover, since r > n , we have 
𝜆12 > 𝛼∕4 > 1 ≥ 𝜆11.

Let us define Ci = U ∩ Pi and Di = V ∩ Pi . Write x to be the number of cross edges 
between C1 and C2.

Let C�
1
∪ C�

2
= U be the maximum cut, and let D�

1
∪ D�

2
= V  be the corresponding cut 

in V. Define P� =
{

X ∪ C�
1
∪ D�

2
, Y ∪ C�

2
∪ D�

1

}

 . Write x′ to be the number of cross edges 
between C′

1
 and C′

2
 . By optimality x′ ≥ x.

The log-likelihood of P′ is

where

We have shown that x� = x , proving the NP-hardness of finding P with the optimal likeli-
hood.   ◻

Lemma A.1 Let P be the partition as defined in the proof of Proposition 1. Then X ⊆ P1 
and Y ⊆ P2 or X ⊆ P2 and Y ⊆ P1 . Moreover, ui ∈ P1 implies that vi ∈ P2 and vi ∈ P1 
implies ui ∈ P2.

Proof To prove the lemma we will need several counters: let us define ai = |

|

Pi ∩ X|
|

 , 
bi =

|

|

Pi ∩ Y|
|

 , ci = |

|

Pi ∩ U|

|

 , and di = |

|

Pi ∩ V|
|

 . We also write xi = ai + bi , yi = ci + di and 
zi = xi + yi.

Define kij to be the number of cross edges between U and V in (i, j)th group of P . Simi-
larly, let mij to be the number of edges in U and V (that is, the cross edges are excluded) in 
(i, j)th group of P . Note that k12 + k11 + k22 = n and m12 + m11 + m22 = 2m.

The parameters for P are

and

Let us define P� = {X ∪ U, Y ∪ V} . Note that the parameters for P′ are equal to

�
(

P
�
)

≥ �
(

P
�,Λ

)

= (2m − 2x�) log �11 + 2x� log �12 + Z

≥ (2m − 2x) log �11 + 2x log �12 + Z

= �(P) ≥ �
(

P
�
)

,

Z = �(n2 + r2) log �12 − 2m − �(n2 + r2).

�12 =
�a1b2 + �a2b1 + �nk12 + m12

z1z2
,

�11 =
�a1b1 + �nk11 + m11

(

z1

2

) ,

�22 =
�a2b2 + �nk22 + m22

(

z2

2

) .

��
12

=
�n2 + �r2

(r + n)2
and ��

11
= ��

22
=

m
(

n+r

2

) .
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To prove the claim we will assume that a1b1 + a2b2 > 0 or k12 < n , and show that 
�
(

P
�
)

> �(P) which is a contradiction.
First, note that we can write the score difference as

where

and

We claim that

This proves the lemma since

We will first bound C. Since we may have at most �n edges per node pair, we have 
�11, �12, �22 ≤ �n . Moreover, since r > n , we have ��

11
≥ (r + n)−2 ≥ r−2∕4 . The bound fol-

lows from Eq. (1).
Next we will bound B. Assume that x1, x2 ≥ 2n . Our next step is to upper bound �11 and 

�22 . In order to do this, first note that since m11 ≤ �∕2 and k11 ≤ y1 , we have

In addition, since x1 ≥ 3 , we have

We can combine the two bounds, leading to

�
(

P
�
)

− �(P) = A + B + C,

A = �(a1b2 + a2b1 + nk12) log
��
12

�12
,

B = �(a1b1 + nk11) log
��
12

�11
+ �(a2b2 + nk22) log

��
12

�22
,

(1)C = m11 log
��
11

�11
+ m22 log

��
11

�22
+ m12 log

��
11

�12
.

A ≥ 0, B > 𝛼2−7, and C ≥ 2m log
1

4𝛼nr2
.

B + C > 𝛼2−7 − 2m log 4𝛼nr2

≥ 𝛼2−7 − 8m log 𝛼

≥ 𝛼2−7 − 8m
√

𝛼

=
√

𝛼

�

√

𝛼2−7 − 8m
�

≥ 0.

m11 + �nk11
(

y1

2

)

+ y1x1
≤ �

1∕2 + ny1
(

y1

2

)

+ 2ny1
≤ �

1∕2 + ny1

1 + 2ny1
= �∕2.

�
a1b1
(

x1

2

) ≤ 2�∕3 .

�11 =
�a1b1 + m11 + �nk11

(

z1

2

) =
a1b1 + m11 + �nk11
(

x1

2

)

+
(

y1

2

)

+ y1x1
≤ 2�∕3.
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The same bound holds for �22.
Since r ≥ 4n , we have ��

12
≥ 17�∕25 . Thus,

Assume now that x1 < 2n . Then a2 + b2 = x2 > 2r − 2n > 1.5r . Since a2, b2 ≤ r , we must 
have a2, b2 ≥ r∕2 . Moreover, using the previous arguments, we have

Consequently,

Finally we will bound A by showing that �12 ≤ �′
12

 . Assume for simplicity that x1 ≤ x2 . Let 
us define

Assume that z1, z2 ≥ r . We claim that N ≤ r2 + (z1 − r)(z2 − r) , which leads to

Here the first inequality holds since m12 ≤ 2m ≤ � . The right hand side achieves its maxi-
mum when z1z2 is maximized, that is, z1 = z2 = n + r . In such case, the upper bound is 
equal to �′

12
.

To prove the claim, first note that

with the equality holding if and only if k12 = y1 = y2 = n.
Assume that x1 = x2 = r . If a1b1 + a2b2 > 0 , then

Assume a1b1 + a2b2 = 0 . Then k12 < n , and the inequality is strict in Eq. (2). Consequently,

Assume now that x1 ≤ x2 − 1 . Since a node in (X ∪ Y) ∩ P1 is connected to r nodes, we 
must have a1b2 + a2b1 ≤ x1r . Due to the assumption, x1 ≤ r − 1 and x2 ≥ r + 1 , which 
leads to

B ≥ 𝛼(a1b1 + a2b2 + nk11 + nk22) log
17 × 3

25 × 2
> 𝛼2−7.

log
��
12

�22
≥ 2−7 and log

��
12

�11
≥ log

17

25n
.

B = 𝛼(a2b2 + nk22) log
𝜆�
12

𝜆22
+ 𝛼(a1b1 + nk11) log

𝜆�
12

𝜆11

≥ 𝛼

(

r2

29
− 4n2 log

25n

17

)

≥ 𝛼(8(n + 1)4 − 4n2 log 2n)

≥ 𝛼(8(n + 1)4 − 8n4) ≥ 𝛼 > 𝛼2−7.

N = a1b2 + a2b1 + 1 + nk12 .

�12 ≤ �
N

z1z2
≤ �

r2 + (z1 − r)(z2 − r)

z1z2
= � − �

2nr

z1z2
.

(2)nk12 ≤ max(y1, y2)min(y1, y2) = y1y2

N = r2 − a1b1 + a2b2 + 1 + nk12 ≤ r2 + y1y2 = r2 + (z2 − r)(z1 − r).

N = r2 + nk12 + 1 ≤ r2 + y1y2 = r2 + (z2 − r)(z1 − r)
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and

As a final case assume that z1 < r . If x1 = z1 , then

If x1 < z1 , then

and again

The case for z2 < r is symmetrical.
We have now proven our claim, and thus proved that �12 ≤ �′

12
 . Consequently, A ≥ 0 .  

 ◻

Proof of Proposition 3 To prove NP-hardness we will reduce the MaxCut problem, where 
we are asked to partition graph into 2 subgraphs and maximize cross-edges.

Assume that we given a static graph H. We will use H as our temporal graph G by set-
ting the edges to the same timestamp, say t. We also set H = K = 1 , and use R = 2 groups. 
We also set the segmentation T = [t, t].

Select two values 𝛼 < 𝛽 and set the parameters �11 = �22 = � and �12 = �.
Let P1,P2 be a partition of the nodes and let x be the number of the inner edges, that is, 

edges (u, v, t) with u, v ∈ P1 or u, v ∈ P2 . Note that m − x is the number of cross edges.
The log-likelihood is then equal to

which is maximized when m − x is maximized since 𝛽 > 𝛼 . Since m − x is the number of 
cross-edges, this completes the proof.   ◻

Proof of Proposition 5 Assume that we given an instance of 3-Matching, that is, a domain X 
of size n, where n is divisible by 3, and a collection S of m sets such that S ⊆ X and |S| = 3 
for each S ∈ S . The problem whether there is a disjoint subcollection in S covering X is 
known to be NP-complete.

k12 ≤ min(y1, y2)

= min(z1 − x1, z2 − x2)

≤ min(z1 − x1, z2 − r)

N ≤ x1r + 1 + nmin(z1 − x1, z2 − r)

≤ (r − 1)r + 1 + nmin(z1 − r + 1, z2 − r)

≤ r2 + (1 + n − r) + nmin(z1 − r, z2 − r)

≤ r2 +max(z1 − r, z2 − r)min(z1 − r, z2 − r)

= r2 + (z2 − r)(z1 − r).

�12 ≤ �
rz1

z1z2
≤ �

r

r + 2n
= �

r2

r2 + 2nr
≤ �

r2 + n2

r2 + 2nr + n2
= ��

12
.

N ≤ x1r + 1 + n(z1 − x1) ≤ z1r

�12 ≤ �
N

z1z2
≤

zr1

z1z2
≤ �′

12
.

�(P, T, g,Λ) = x log � + (m − x) log �,
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Let T = {S ⊆ X ∣ |S| = 3, S ∉ S} be the complement collection of S . For each i ≤ j ≤ n , 
define cij to be the number of sets in S containing i and j,

To construct the dynamic graph G we will use 5 sets of nodes, namely {u} , A, B, C, D. The 
first set consists only of one node u. Every edge will be adjacent to u. The second set A 
contains as many nodes as there are sets in T  . For each i ∈ Tj ∈ T  , we add an edge (u, aj) 
at timestamp i. The third set B contains 

∑

i<j cij nodes which we divide further into 
n(n − 1)∕2 sets Bij with ||

|

Bij
|

|

|

= cij . For each i < j we connect nodes in Bij with u at times-
tamp i and at timestamp j. The fourth set C contains n(m − cii) nodes which we divide fur-
ther into n sets Ci with |

|

Ci
|

|

= m − cii . For each i ≤ n we connect nodes in Ci with u at times-
tamp i. The fifth set D contains nw nodes, where w = 24n6 , which we divide further into n 
sets Di with |

|

Di
|

|

= w . For each i ≤ n we connect w nodes with u at timestamp i.
We will set K = n and H = n∕3 . We set R to be the number of nodes and set the parti-

tion P to be the partition where each node is contained in its own group. We require for a 
segmentation to start from 0. Since there are only n timestamps, the segmentation consists 
of n segments of form (i − 1, i] or [0, 1].

Let g be the optimal grouping of segments and let Λ be its parameters. We first claim 
that g groups timestamps into groups of 3. To prove this assume that there is a group of 
size y = 1, 2 . Then there is another group with a size of x ≥ 6 − y . Let g′ be a mapping 
where we move 3 − y timestamps from the larger group to the smaller group and let Λ� be 
the new optimal parameters.

The number of edges adjacent to A, B, and C can be bound by 3n3 + 2n2m + nm ≤ 6n5 . 
Moreover, the non-zero parameters can be bound by �� ≥ 1∕n and � ≤ 1 . Consequently, the 
score difference can be bound by

where Z(x) is equal to

The derivative of Z(x) with respect to x is equal to log(x∕(x − 3 + y)) > 0 , that is, Z(x) is at 
smallest when x = 6 − y . A direct calculation shows that Z(x) is the smallest when y = 2 , 
leading to

In summary, �
(

g�
)

> �(g) which is a contradiction. Thus, g groups of segments to size of 
at least 3. Since K = 3H , the groups are exactly of size 3.

Our next step is to calculate the impact of a single group to the score. In order to do that 
first note that for any i < j there are

cij = |{S ∈ S ∣ {i, j} ⊂ S}|.

�
(

g�
)

− �(g) ≥ 6n5(log 1∕n − log 1) + Z(x) ≥ 6n6 + Z(x),

w

(

(x − 3 + y) log
1

x − 3 + y
+ 3 log

1

3
− x log

1

x
− y log

1

y

)

.

�
(

g�
)

− �(g) ≥ −6n6 + w
(

6 log
1

3
− 4 log

1

4
− 2 log

1

2

)

> −6n6 + w∕4 = 0.

(

n

3

)

− cij + cij =

(

n

3

)
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edges joining the same nodes at timestamp i and timestamp j. Similarly, there are

edges adjacent to node i.
Consider a set S of size 3 induced by g. Assume that S ∉ T  . Then there are 3

(

n

3

)

 param-
eters in Λ associated with the group with value 2/3, and 3(m + w) parameters with value 
1/3. The remaining parameters are 0. Consequently, the impact to the score is equivalent to

Assume that S ∈ T  . Then using exclusion-inclusion principle, there are 3
(

n

3

)

− 3 param-
eters with value 2/3, 3(m + w) + 3 parameters with value 1/3, one parameter with value 3/3 
and the remaining parameters are 0. Consequently, the impact to the score is equivalent to

We immediately see that

Let k be the number of groups induced by g that are in S . Then the score is equal to

Since 𝛼 > 𝛽 , there is a disjoint subcollection in S covering X if and only if 
�(g) = H� − |E(G)| .   ◻

(

n

3

)

− cii +

(

∑

i<j

cij

)

+ m − cii + w =

(

n

3

)

+ m + w

� = 6

(

n

3

)

log 2∕3 + 3(m + w) log 1∕3.

� = 6

(

n

3

)

log 2∕3 − 6 log 2∕3 + 3(1 + m + w) log 1∕3 .

𝛼 − 𝛽 = 6 log 2∕3 − 3 log 1∕3 = 3 log 4∕3 > 0 .

�(g) = k� + (H − k)� − |E(G)|.
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Appendix B: Detailed pseudo‑code for FindSegments 

Algorithm  5  Algorithm FINDSEGMENTS (P,Λ) for finding optimal segmentation for fixed 
groups P and parameters Λ
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