
Vol.:(0123456789)

Machine Learning (2024) 113:121–158
https://doi.org/10.1007/s10994-023-06483-x

1 3

Feature extractor stacking for cross‑domain few‑shot
learning

Hongyu Wang1  · Eibe Frank1 · Bernhard Pfahringer1 · Michael Mayo1 ·
Geoffrey Holmes1

Received: 24 October 2022 / Revised: 20 October 2023 / Accepted: 24 October 2023 /
Published online: 30 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
Cross-domain few-shot learning (CDFSL) addresses learning problems where knowledge
needs to be transferred from one or more source domains into an instance-scarce target
domain with an explicitly different distribution. Recently published CDFSL methods gen-
erally construct a universal model that combines knowledge of multiple source domains
into one feature extractor. This enables efficient inference but necessitates re-computation
of the extractor whenever a new source domain is added. Some of these methods are also
incompatible with heterogeneous source domain extractor architectures. We propose fea-
ture extractor stacking (FES), a new CDFSL method for combining information from a
collection of extractors, that can utilise heterogeneous pretrained extractors out of the box
and does not maintain a universal model that needs to be re-computed when its extractor
collection is updated. We present the basic FES algorithm, which is inspired by the classic
stacked generalisation approach, and also introduce two variants: convolutional FES (Con-
FES) and regularised FES (ReFES). Given a target-domain task, these algorithms fine-
tune each extractor independently, use cross-validation to extract training data for stacked
generalisation from the support set, and learn a simple linear stacking classifier from this
data. We evaluate our FES methods on the well-known Meta-Dataset benchmark, targeting
image classification with convolutional neural networks, and show that they can achieve
state-of-the-art performance.

Keywords  Cross-domain few-shot learning · Pretrained feature extractors · Stacking

Editor: Steven Schockaert.

 *	 Hongyu Wang
	 hw168@students.waikato.ac.nz

1	 Department of Computer Science, University of Waikato, Knighton Road, Hamilton 3240,
Waikato, New Zealand

http://orcid.org/0000-0002-2898-0771
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06483-x&domain=pdf

122	 Machine Learning (2024) 113:121–158

1 3

1  Introduction

Cross-domain few-shot learning (CDFSL) addresses the problem that deep learning
methods, such as convolutional neural networks (CNN) for image classification, gener-
ally require a large amount of labelled training data to achieve high predictive accuracy
when trained from scratch. CDFSL algorithms are designed for scenarios where only a few
labelled training instances are available in the form of a so-called “support set”. The aim
is to nevertheless achieve high accuracy when predicting labels for instances of the target
domain that have never been seen before, i.e., the so-called “query set”. This can gener-
ally only be achieved by applying transfer learning: taking knowledge gleaned from one or
several source domains with large-scale training data and using this knowledge to inform
learning in a few-shot target domain.

In CDFSL, the source domain(s) and the target domain are assumed to have potentially
very distinct properties. This cross-domain setting is arguably more realistic than the “in-
domain” scenario, used in some few-shot learning literature (Vinyals et al., 2016), where
the source and the target domains comprise mutually exclusive sets of classes obtained
from the same dataset.1 It also yields harder learning problems due to greater domain shift.

In a CDFSL setting with multiple source domains, an algorithm needs to both select
relevant source domains and effectively transfer their knowledge into a target domain using
a few-shot support set. Performance is measured by “meta-testing”—transferring model(s)
using target domain support sets and evaluating their predictive accuracy on corresponding
query sets. Recent work considering performance in image classification, which is the set-
ting we also focus on in this paper, shows that single-domain learning (SDL) and vanilla
multi-domain learning (MDL), which applies one feature extractor and multiple classifi-
cation heads, fail to achieve competitive performance compared to methods specifically
designed for CDFSL (Triantafillou et al., 2020; Li et al., 2021).

A majority of recently published CDFSL methods involve building a universal model
from a collection of extractors, with each extractor pretrained in a distinct source domain.
This comprises the so-called “meta-training” phase, which is performed before meta-test-
ing begins. The universal-model paradigm is generally efficient when performing meta-
testing because a single universal feature extractor is used and fine-tuned on the support
set, usually in conjunction with a simple robust classifier that turns extracted feature vec-
tors into predictions. However, training the universal model is computationally expensive,
and some methods constrain all extractors to the same architecture as the intended univer-
sal model (Triantafillou et al., 2021), rendering them inapplicable to heterogeneous extrac-
tor collections that are likely to occur in real-world practice. Moreover, they may require
adjustment based on pre-existing domain knowledge to function well. For example, given
a source domain/extractor collection for image classification consisting of ImageNet (Deng
et al., 2009; Russakovsky et al., 2015), along with other, less comprehensive source
domains, authors often assign greater importance to the ImageNet extractor during train-
ing (Triantafillou et al., 2021; Li et al., 2021). This achieves good performance on bench-
marks, which normally include target domains such as CIFAR-10 that are quite similar to
ImageNet in nature, but may not be as useful in real-world applications involving less simi-
lar data. Lastly, the process of deriving a universal model is non-incremental, which means

1  Note that, strictly speaking, this also creates distinct domains because the joint probability distributions
will differ. However, they will be strongly related.

123Machine Learning (2024) 113:121–158	

1 3

it needs to be re-run whenever an extractor is updated or added, and normally requires
access to the entire meta-training dataset (Triantafillou et al., 2021; Li et al., 2021).

As an alternative approach that avoids these shortcomings, we propose a novel “lazy”
CDFSL method, termed feature extractor stacking (FES), that fine-tunes each extrac-
tor independently and trains a classifier using a form of stacked generalisation (Wolpert,
1992) during meta-testing. The “meta-training” phase in FES consists solely of training
individual feature extractors, one for each source domain, using standard single-domain
supervised learning. In practical applications, it may be possible to skip meta-training
entirely if a set of suitable feature extractors has been obtained from other sources. FES is
fully compatible with heterogeneous extractor collections, imposing no constraints on their
architecture or fine-tuning configuration. It assumes equal importance of the extractors a
priori, determining their task-specific relevance based purely on the support set, and does
not require derivation of a universal model.

Along with the basic FES algorithm, which applies a simple linear stacking classifier
and is described in Sect. 3.1, we present two variants: convolutional FES (ConFES) in
Sect. 3.3 and regularised FES (ReFES) in Sect. 3.4. ConFES replaces the flat global ker-
nel of FES with a hierarchy of depthwise convolutional kernels, reducing the number of
parameters in the stacking classifier. ReFES applies fused lasso regularisation (Tibshirani
et al., 2005) to the stacking classifier of FES to reduce the weights of irrelevant snapshots
and induce smooth weight transition between adjacent snapshots.

We evaluate FES and its variants on the Meta-Dataset benchmark (Triantafillou et al.,
2020), which contains eight source domains and five target domains, and include five addi-
tional target domains: CropDisease, EuroSAT, ISIC, ChestX, and Food101 (Guo et al.,
2020; Bossard et al., 2014). We show that FES outperforms three recent universal-model
methods: URL (Li et al., 2021), FLUTE (Triantafillou et al., 2021), and a URL extractor
with TSA fine-tuning (Li et al., 2022), and advances the state of the art on Meta-Dataset.
We also discuss practical advantages of FES in real-world scenarios, as FES can work with
heterogeneous extractors out of the box and does not need to train a universal model.

2 � Related work

Our empirical comparison of CDFSL methods is based on the Meta-Dataset framework,
so we review this benchmark first before discussing methods that we compare to our
approach. We also briefly review other noteworthy methods in the literature.

2.1 � The Meta‑dataset benchmark

The Meta-Dataset (Triantafillou et al., 2020) benchmark has multiple configurations; we
describe the CDFSL configuration that we use—most recent publications in the field use
this configuration as well. It contains eight source domains: ILSVRC-2012 (ImageNet),
Omniglot, Aircraft, CUB-200-2011 (Birds), Describable Textures, Quick Draw, Fungi, and
VGG Flower. Recent work utilising Meta-Dataset (Requeima et al., 2019) has extended
its original set of two target domains, Traffic Signs and MSCOCO, by adding three more:
MNIST, CIFAR10, and CIFAR100. For an even more comprehensive evaluation, we add
four target domains from the CDFSL benchmark in Guo et al. (2020)—CropDisease, Euro-
SAT, ISIC, and ChestX—but additionally also employ Food101 (Bossard et al., 2014).
Only the 250 sanitised test images in each Food101 class are used in our experiments.

124	 Machine Learning (2024) 113:121–158

1 3

The Meta-Dataset framework splits each source domain into three partitions: training,
validation, and test. The partitions are mutually exclusive in terms of their classes, with the
training partition containing approximately 70% of source domain classes and the valida-
tion and test partitions containing approximately 15% each. The training and validation
partitions are made available to the CDFSL method for “meta-training”, where the training
partition is generally used to train extractors and the validation split to aid hyperparameter
tuning. The test partition is reserved for evaluating the CDFSL method by sampling few-
shot episodes (i.e., meta-testing): the term “episode” refers to the process of sampling a
support set and a query set, training a classifier on the support set, and evaluating it on the
query set.

In contrast, the entire target domain data can be used for sampling episodes to evaluate
few-shot learning in these domains. It is important to note that, by definition, only tasks
sampled from target domains truly measure CDFSL performance. Using terminology that
is common in this context, good performance in these domains indicates “strong generali-
sation”; good performance on tasks sampled from source domain test partitions indicates
“weak generalisation”.

The most commonly used method to evaluate CDFSL algorithms on Meta-Dataset is to
generate 600 any-way any-shot episodes from each dataset, and measure each algorithm’s
mean classification accuracy on these 600 episodes, as well as the 95% confidence interval.
Any-way any-shot sampling means the number of classes for each episode and the number
of support instances per class are arbitrary, leading to imbalanced support sets more repre-
sentative of real-world scenarios than fixed-way fixed-shot episodes. The query set is bal-
anced in the Meta-Dataset setting. We adhere to this evaluation method in our experiments.

2.2 � Methods included in the experimental comparison

Two recently published CDFSL methods that advanced the state-of-the-art on Meta-Data-
set are Few-shot Learning with a Universal TEmplate (FLUTE) (Triantafillou et al., 2021)
and Universal Representation Learning (URL) (Li et al., 2021). Even more recently, based
on a URL universal model, a fine-tuning method using Task-Specific Adaptors (TSA) (Li
et al., 2022) improved accuracy on some target domains even further. We compare our new
FES approach to these methods in our experiments.

2.2.1 � Few‑shot learning with a universal template

Based on the FiLM approach (Perez et al., 2018), FLUTE trains a universal model in the
source domains, employing the ResNet18 architecture (He et al., 2016) widely used in
CDFSL, but maintaining a separate set of batch normalisation (Ioffe & Szegedy, 2015)
parameters for each domain. The ResNet “template” contains one set of convolutional
weights shared across all source domains, and only the batch normalisation parame-
ters are specific to each source domain. FLUTE jointly trains the template in all source
domains. At each training iteration, a random source domain is selected—with Ima-
geNet having a 50% probability of being selected and the other seven source domains
evenly sharing the other 50% probability—and a batch of input data is sampled from
the selected source domain. In forward propagation, the input batch flows through the
shared convolutional layers and the selected domain’s set of batch normalisation layers,
and loss is computed by applying a cosine classifier (Chen et al., 2019, 2021). A nuance
of FLUTE training is that backpropagation is performed using a “meta-batch” of eight

125Machine Learning (2024) 113:121–158	

1 3

individual batches: the intention is to stabilise training by aggregating loss values across
multiple domains. Hyperparameter tuning is performed using episodes sampled from
source domain validation partitions.

When the template is trained, snapshots are frequently saved. The final template is
chosen as the snapshot that performs best on the source domains’ validation partitions.
To establish performance, few-shot episodes are sampled from these partitions. For
each episode, feature vectors are extracted using the shared convolutional layers and
the domain’s set of batch normalisation layers. Accuracy is computed using a nearest-
centroid classifier (Mensink et al., 2013; Snell et al., 2017).

One more component of FLUTE, produced in a separate meta-training phase, is
a blender network, which is a dataset classifier based on a permutation-invariant set
encoder (Zaheer et al., 2017) followed by a linear layer. Given a batch of instances, the
blender predicts, as a probability distribution, the source domain from which the batch
is sampled. It is trained on batches sampled from the source domains’ training parti-
tions, and the final blender model is chosen using batches from the validation partitions.

Given a few-shot episode at meta-test time, the blender uses the support set to pro-
duce a probability distribution. These probabilities in turn are used to form a linear
combination of the source-domain-specific batch normalisation weights. Along with the
shared convolutional weights from the template, this forms the initial set of parameters
for the ResNet18 feature extractor, which is applied in conjunction with a nearest-cen-
troid classifier. The model’s batch normalisation parameters are then fine-tuned on the
support set while its convolutional weights remain fixed.

2.2.2 � Universal representation learning

The URL algorithm also generates a universal model. It first pretrains domain-specific
ResNet18 extractors independently. Then, a separate ResNet18 feature extractor is
trained to form a universal model by distillation. This model is trained to match each
extractor’s output feature vectors and logits using instances sampled from the extrac-
tor’s corresponding domain. To this end, the universal model contains pairs of auxiliary
domain-specific components that each comprise 1) a projection layer that transforms the
universal extractor’s feature vectors to match those of each domain-specific extractor,
and 2) a classifier layer trained to match the logits produced by each extractor.

In the experiments by Li et al. (2021), ImageNet is made more prominent in distillation:
ImageNet instances make up 50% of each mini-batch and the other seven source domains
evenly make up the rest. Snapshots of the universal feature extractor are saved at predefined
intervals during knowledge distillation. Episodes sampled from source domain validation
partitions are used to select the best snapshot as a form of early stopping.

After meta-training, the auxiliary components of the universal model are discarded,
leaving only the feature extractor. During meta-testing, this extractor is frozen, and a
projection layer is initialised with an identity weight matrix and trained using the sup-
port set. The projected feature vectors are used to build a nearest-centroid classifier.
Cosine similarity values between a feature vector to be classified and the centroids are
used as logits. Fine-tuning minimises cross-entropy loss on the support set. Note that
during fine-tuning, as the projection layer is optimised, projected support feature vectors
change, and their centroids change as well. The fine-tuning effect can be interpreted as
forming better clusters with projected support feature vectors.

126	 Machine Learning (2024) 113:121–158

1 3

2.2.3 � Task‑specific adaptors

TSA (Li et al., 2022) is a fine-tuning method suitable for CDFSL. Given a pretrained
extractor, trainable task-specific adaptors are attached to it, and the support set is used to
optimise the adaptors with the extractor’s original weights frozen. Like URL, TSA also
attaches a trainable linear projection layer and a robust classifier to the end of the feature
extractor during fine-tuning, but it adds further adaptor components. Among multiple
configurations examined, the most effective approach for few-shot image classification
found by Li et al. (2022) is to attach channel projection matrices as residual connections
to a model’s convolutional layers. Li et al. (2022) used TSA in conjunction with a URL-
distilled universal extractor, but TSA can be applied to other CNN architectures as well.

2.3 � Other work on CDFSL

We review additional noteworthy CDFSL methods here. These methods precede
FLUTE, URL, and TSA chronologically and achieve lower accuracy than results pre-
sented by Triantafillou et al. (2021) and Li et al. (2021, 2022). Hence, in the experi-
ments presented in this paper, we only compare to FLUTE, URL, and a URL extractor
with TSA fine-tuning.

2.3.1 � Selecting relevant features from a Universal representation

SUR (Dvornik et al., 2020) is a CDFSL method that utilises independently pretrained
feature extractors directly for meta-testing. Each extractor is used to extract a set of fea-
ture vectors from the support set, with a trainable weight assigned to it. Feature vec-
tors are multiplied by their respective weights and concatenated to provide input to a
nearest-centroid classifier. The weights are trained by optimising loss of the classifier on
the support set. SUR is similar to URL in the meta-testing phase, as both make predic-
tions with a nearest-centroid classifier and optimise parameters on the support set; the
primary difference is that URL maintains a universal model while SUR uses the original
extractors directly.

2.3.2 � Universal representation transformer

URT (Liu et al., 2021) also assigns a weight to each source domain extractor during
meta-testing. However, it utilises a weight assignment model learned using meta-train-
ing instead of direct optimisation on the support set to obtain the weights. To this end,
URT trains an attention mechanism (Vaswani et al., 2017) that learns to assign appropri-
ate weights to source domain feature extractors given a few-shot episode. The weight
assignment model is trained and has its hyperparameters selected using episodes sam-
pled from the source domains’ training and validation partitions.

2.3.3 � Conditional neural adaptive processes

The CNAPs method, as proposed in Requeima et al. (2019), uses an extractor pretrained
in a large source domain, e.g., ImageNet (Deng et al., 2009; Russakovsky et al., 2015),

127Machine Learning (2024) 113:121–158	

1 3

and meta-trains adaptation networks, using episodes sampled from the source domains,
to produce task-specific FiLM (Perez et al., 2018) transformations and a linear classifier
for each few-shot episode.

A variant, Simple CNAPs (Bateni et al., 2020), was later proposed utilising a non-para-
metric Mahalanobis distance (Galeano et al., 2015) measure in place of the classifier adap-
tation network of CNAPs, reducing the parameter count and improving CDFSL perfor-
mance. A transductive version of Simple CNAPs was subsequently also proposed (Bateni
et al., 2022), making use of clustering of query instances in feature space to achieve bet-
ter performance than Simple CNAPs, assuming that the query set is available as a batch
instead of a sequential stream of incoming instances. As most other CDFSL methods do
not rely on such an assumption, they cannot be compared to transductive CNAPs on an
even footing.

2.3.4 � Multi‑mode modulator

Tri-M (Liu et al., 2021), akin to CNAPs, uses an extractor pretrained in a large-scale source
domain, and meta-trains a modulation network using source domain episodes to generate
appropriate FiLM transformations for each few-shot episode. Tri-M maintains two sets of
transformations—a domain-specific one and a domain-cooperative one—and its resulting
FiLM transformation is a combination of the two. Tri-M determines a source domain for its
domain-specific transformation in a way similar to how FLUTE (Triantafillou et al., 2021)
utilises its blender network and uses an attention mechanism (Vaswani et al., 2017) to com-
pose its domain-cooperative transformation from relevant source domains.

3 � Cross‑domain few‑shot learning using stacking

Considering the CDFSL methods discussed in the previous section, the SUR method
stands out because its meta-training process is straightforward: all it involves is pretraining
individual source domain feature extractors. Once these have been obtained, SUR performs
“lazy” learning in the sense that significant work is only performed once the support set
for a few-shot episode becomes available. This makes it very flexible because new extrac-
tors can be added at any time. However, SUR does not yield state-of-the-art performance.
The new methods presented in this paper are inspired by SUR and the old and established
method of applying stacked generalisation to learning a classifier that combines predictions
of multiple base classifiers. Henceforth, we will refer to this classifier as the “stacking clas-
sifier”. There are four primary differences between SUR and our stacking-based methods:
1) the source domain extractors are fined-tuned on the support set to extract more informa-
tion from this data by attaching appropriate classifier layers to them, 2) two-fold cross-vali-
dation is used to generate training data for the stacking classifier to tackle overfitting, 3) the
feature vectors of this training data consist of logits obtained from classifier layers attached
to the extractors, and 4) multiple snapshots of each extractor are stored during fine-tuning
and used to obtain sets of logits, adding further richness to the data available for training
the stacking classifier.

In the following, we first explain the basic method of feature extractor stacking (FES)
in detail and prove convexity of its optimisation, before describing two variants: convolu-
tional FES (ConFES) and regularised FES (ReFES).

128	 Machine Learning (2024) 113:121–158

1 3

3.1 � Feature extractor stacking

Given pretrained feature extractors, FES has three key components: fine-tuning extrac-
tors to obtain snapshots, two-fold cross-validation to produce training data for the stack-
ing classifier, and training of the stacking classifier. Figure 1 depicts the FES framework.

3.1.1 � Fine‑tuning the extractors

We use fΦ1
, fΦ2

, ..., fΦK
 (or just Φ1,Φ2, ...,ΦK for brevity) to denote the collection of pre-

trained feature extractors, where Φ represents the corresponding extractor’s parameters
and K is the number of source domains. The support set of a few-shot episode is denoted
S and the query set Q. S contains N instances belonging to C classes. We fine-tune each
extractor independently on S. As fΦ is a feature extractor, a classifier g with parameters
Θ1 is attached to fΦ to produce logits. Auxiliary components with parameters Θ2 may
also be introduced to the model to aid fine-tuning, such as with TSA (Li et al., 2022).
The resulting model is defined as hΨ = gΘ1

◦f(Φ,Θ2)
 , where we use Ψ to denote the com-

bination of all parameters. It is possible for Θ2 to be ∅ , as auxiliary fine-tuning compo-
nents are optional. J snapshots are saved sequentially at different fine-tuning iterations
of hΨ . Each snapshot contains parameters Ψj

k
[S] , where k ∈ [1,K] and j ∈ [1, J] , with S

denoting the fine-tuning set used.

3.1.2 � Cross‑validation to obtain training data for stacked generalisation

In stacked generalisation (Wolpert, 1992), cross-validation is employed to obtain train-
ing data for the stacking classifier to combat overfitting, and it is applied in FES as well.
More specifically, we apply stratified two-fold cross-validation to the support set S, pro-
ducing two splits S1 and S2 , which will take turns serving as the training split Strain and
the test split Stest . It is possible to employ more folds in FES, but using additional folds
did not yield performance gains in our experiments.

Training on one of the training splits amounts to fine-tuning a network hΨ on this
data. In principle, this could be done for a fixed number of iterations, and once com-
plete, logits on the corresponding test split could be obtained as training data for the
stacking classifier. However, this naive approach may not work well because it is not
known how many iterations should be performed for fine-tuning to maximise accu-
racy of the full learning system. The approach we propose and evaluate in this paper is
instead based on the idea that we can take multiple snapshots of the models during fine-
tuning and use all the snapshots’ logits on the test folds for training the stacking classi-
fier. In other words, the learning algorithm for the stacking classifier will be responsible
for deciding which extractor snapshots are the most useful ones for making accurate
predictions on the test folds.

More specifically, given a pair (Strain, Stest) and an extractor hΨ , we fine-tune hΨ on Strain
with the same configuration used to obtain hΨj[S] , e.g., optimiser, learning rate, etc., and
save snapshots hΨj[Strain] at the same iterations as hΨj[S] . Logits Lj[Stest] are extracted from
Stest with each hΨj[Strain] , i.e., Lj[Stest] = hΨj[Strain](S

test) . Using this approach, the two splits S1
and S2 can be used to alternately fine-tune extractors and produce logits Lj[S1] and Lj[S2] ,
which are combined into Lj[CV] , i.e., logits for every support set instance extracted using
cross-validation. Considering the logits from all K extractors jointly, LJ

K
[CV] is a tensor of

129Machine Learning (2024) 113:121–158	

1 3

Fi
g.

 1
  

Fr
am

ew
or

k
of

 F
ES

. G
iv

en
 a

n
ex

tra
ct

or
 c

ol
le

ct
io

n
w

ith
 K

 e
xt

ra
ct

or
s,

ea
ch

 e
xt

ra
ct

or
 Φ

 is
 s

et
 u

p
as

 a
 n

et
w

or
k
Ψ

 fo
r fi

ne
-tu

ni
ng

. T
he

 s
up

po
rt

se
t S

 is
 s

pl
it

in
to

 S
1
 a

nd
 S

2

us
in

g
str

at
ifi

ed
 c

ro
ss

-v
al

id
at

io
n.

 E
ac

h
ne

tw
or

k
Ψ

 is
 fi

ne
-tu

ne
d

on
 o

ne
 s

pl
it,

 p
ro

du
ci

ng
 J

 s
na

ps
ho

ts
 in

 th
e

pr
oc

es
s,

an
d

th
es

e
sn

ap
sh

ot
s

ar
e

us
ed

 to
 e

xt
ra

ct
 lo

gi
ts

 fr
om

 th
e

ot
he

r
sp

lit
. L

og
its

 e
xt

ra
ct

ed
 fr

om
 b

ot
h

sp
lit

s a
re

 c
om

bi
ne

d
in

to
 c

ro
ss

-v
al

id
at

ed
 lo

gi
ts

 o
f t

he
 fu

ll
su

pp
or

t s
et

, w
hi

ch
 a

re
 u

se
d

to
 tr

ai
n

a
st

ac
ki

ng
 c

la
ss

ifi
er

 W
 to

 fi
t S

’s
 la

be
ls

. T
he

 fu
ll

S
is

 th
en

 u
se

d
to

 fi
ne

-tu
ne

 Ψ
 , p

ro
du

ci
ng

 sn
ap

sh
ot

s t
o

ex
tra

ct
 lo

gi
ts

 fo
r t

he
 q

ue
ry

 se
t Q

. W
 ta

ke
s Q

’s
 lo

gi
ts

 a
s i

np
ut

 a
nd

 p
re

di
ct

s Q
’s

 la
be

ls

130	 Machine Learning (2024) 113:121–158

1 3

shape N × K × J × C , i.e., N support instances converted into logits for C classes extracted
by K × J snapshot models, ready to serve as training data for the stacking classifier.

3.1.3 � Stacking classifier training

The FES stacking classifier is a weight matrix W of shape K × J , with Wj

k
 representing Ψj

k
 ’s

weight. Given an instance l of shape K × J × C , the stacking classifier’s output logits lW are
obtained using a simple weighted average:

where c is one of the C classes. We compute the cross-entropy loss using the N support set
logits LW output by the stacking classifier and the one-hot-encoded labels Y, i.e.,

−
N∑
n=1

Yn log(softmax(LW
n
)) , which we minimise by training W. For interpretability, we con-

strain all values in W to be non-negative by clipping negative weights with ReLU. The FES
stacking classifier is shown in Fig. 2.

After training, W is used with Eq. 1 to compute meta logits for the query set Q using the
logits LJ

K
[Q] computed by the saved snapshots ΨJ

K
[S] . Then, a softmax function is used to

obtain class probability estimates.

3.2 � Proof of convexity

Given a stacking instance l consisting of base logits obtained from the extractor snapshots,
which the stacking classifier transforms into meta-level logits lW , and the label cy , the nega-
tive log-likelihood loss � associated with the stacking classifier’s parameters W is

To prove that optimising FES is a convex problem, we show that for any two values of W,
named A and B, a linear combination of the loss on A and the loss on B is never smaller

(1)lW [c] =

K∑

k=1

J∑

j=1

W
j

k
⋅ l

j

k
[c],

(2)�(W) = log

(
C∑

i=1

el
W [ci]

)
− lW [cy].

Fig. 2   FES uses a global kernel to compute stacking classifier logits from the snapshots’ base logits. The
global kernel is essentially flat since it makes no use of the snapshots’ temporal relations. For demonstration
purposes, this figure and the following ones assume three extractors ( K = 3 ), five fine-tuning snapshots per
extractor ( J = 5 ), and a two-class problem ( C = 2)

131Machine Learning (2024) 113:121–158	

1 3

than the loss obtained for the corresponding linear combination of the parameter values A
and B, i.e.,

Applying Eq. 2 to Eq. 3, we get

which can be simplified into

because using Eq. 1, we have

Similarly, Eq. 4 can be transformed using Eq. 1 into

It is known that the LogSumExp function LSE(x) = log(
n∑
i=1

exi) is convex. Therefore, we

have

Hence, Eq. 5 is true because we can make the following assignments:

(3)�(�A + (1 − �)B) ≤ ��(A) + (1 − �)�(B), � ∈ [0, 1].

log(

(
C∑

i=1

el
(�A+(1−�)B)[ci]

)
− l(�A+(1−�)B)

[
cy
]
≤

�

(
log

(
C∑

i=1

el
A[ci]

)
− lA[cy]

)
+ (1 − �)

(
log

(
C∑

i=1

el
B[ci]

)
− lB[cy]

)
,

(4)log

(
C∑

i=1

el
(�A+(1−�)B)[ci]

)
≤ � log

(
C∑

i=1

el
A[ci]

)
+ (1 − �) log

(
C∑

i=1

el
B[ci]

)
,

l(�A+(1−�)B)[cy]

=

K∑

k=1

J∑

j=1

(�A
j

k
+ (1 − �)B

j

k
) ⋅ l

j

k
[cy]

=

K∑

k=1

J∑

j=1

�A
j

k
⋅ l

j

k
[cy] +

K∑

k=1

J∑

j=1

(1 − �)B
j

k
⋅ l

j

k
[cy]

=�

K∑

k=1

J∑

j=1

A
j

k
⋅ l

j

k
[cy] + (1 − �)

K∑

k=1

J∑

j=1

B
j

k
⋅ l

j

k
[cy]

=�lA[cy] + (1 − �)lB[cy].

(5)log

(
C∑

i=1

e�l
A[ci]+(1−�)l

B[ci]

)
≤ � log

(
C∑

i=1

el
A[ci]

)
+ (1 − �) log

(
C∑

i=1

el
B[ci]

)
.

(6)∀n ∈ ℤ
+, �, � ∈ ℝ

n ∶ LSE(�� + (1 − �)�) ≤ �LSE(�) + (1 − �)LSE(�).

n = C,

�i = lA[ci],

�i = lB[ci].

132	 Machine Learning (2024) 113:121–158

1 3

This completes the proof of Eq. 3, and thus optimising FES on a single instance l is a
convex problem. As the sum of convex functions is a convex function, optimising FES on
a full batch L is also a convex problem. Therefore, FES is a convex optimisation problem.

3.3 � Convolutional feature extractor stacking

The basic FES approach does not exploit the temporal relation between logits obtained
from adjacent snapshots produced during fine-tuning. Convolutional FES (ConFES)
replaces the global kernel of FES with a kernel hierarchy, as shown in Fig. 3, to treat the
collection of logits as a time series. The hierarchy comprises one or more lower-level
one-dimensional depthwise convolutional kernels and a top-level global kernel. The
depthwise kernels condense the logit output sequence from each extractor’s snapshots
into a 1D feature map, while keeping the extractors separate, and the global kernel sum-
marises the feature maps produced by the lower-level kernels.

ConFES is motivated by the assumption that when each extractor is fine-tuned on the
support set, it undergoes gradual changes between iterations, and the logits output by
sequentially saved snapshots can be considered a time series. Therefore, 1D convolu-
tions can be used to discern informative patterns in the time series data and compute
feature maps, which are smaller in size than the raw logit time series, and therefore
require fewer parameters in the global kernel than standard FES.

Given K extractors and J snapshots for each extractor, FES requires K × J param-
eters. Assuming a two-level ConFES hierarchy, with a base-level convolutional kernel
of size Jb and stride T, the feature map for each extractor will be of length Jm =

J−Jb

T
+ 1 ,

leading to a global kernel size of K × (
J−Jb

T
+ 1) . Including the K × Jb parameters in the

convolutional kernel, ConFES contains K × (
J−Jb

T
+ 1 + Jb) parameters. In practice, it

can generally be assumed that J ≫ 1 : a two-level ConFES architecture should be con-
figured so that J ≫ Jb ≥ T ≫ 1 in order to cover all snapshots with significantly fewer
parameters than FES.

ConFES utilises the sequential relation of each extractor’s snapshots through
its lower-level 1D depthwise convolutional layers and exhibits substantially fewer

Fig. 3   ConFES replaces the flat kernel of FES with a two-level kernel hierarchy. The base-level kernel is
a one-dimensional depthwise, i.e., feature-extractor-wise, convolutional kernel, with predefined kernel and
stride sizes. The high-level kernel is global like the one in FES but applied to the output of the base-level
kernel, which requires substantially fewer parameters

133Machine Learning (2024) 113:121–158	

1 3

parameters than FES, making it less prone to overfitting. Note that Fig. 3 is simpli-
fied for demonstration purposes and does not reflect well that ConFES maintains fewer
parameters; for a practical example of ConFES kernels, please refer to Fig. 12.

3.4 � Regularised feature extractor stacking

To combat overfitting, an alternative to reducing the number of parameters is to per-
form regularisation. Regularised FES (ReFES) introduces fused lasso regularisa-
tion (Tibshirani et al., 2005) to the stacking classifier used in FES, as shown in Fig. 4.
Non-zero weights are penalised with a strength of �1 , and each feature-extractor-wise
weight sequence is smoothed with a strength of �2 . The loss is a combination of cross-
entropy loss and depthwise fused lasso loss, as formulated in Eq. 7, given K extractors,
J snapshots per extractor, and a 2D global kernel W of shape K × J.

In addition to encouraging sparse weights like standard lasso, fused lasso also encourages
smaller differences between adjacent weights (Tibshirani et al., 2005). Each extractor’s
snapshots are ordered by their fine-tuning iterations, and adjacent snapshots are likely to be
similar. By applying fused lasso regularisation, differences between adjacent weights are
penalised, and weight sequences are smoothed.

The stratified two-fold splits S1 and S2 can be used to select appropriate �1 and �2 val-
ues for a few-shot episode. In the spirit of grid search with cross-validation, a ReFES
stacking classifier is trained on the logits of one split, e.g., LJ

K
[S1] , and tested on the

logits of the other split, e.g., LJ
K
[S2] . Different values for �1 and �2 can be explored and

the best configuration selected based on the combined accuracy on the two folds. This
configuration is then used to train a newly initialised ReFES stacking classifier on the

(7)� = �cross-entropy + �1

K�

k=1

J�

j=1

‖Wj

k
‖ + �2

K�

k=1

J−1�

j=1

‖Wj

k
−W

j+1

k
‖.

Fig. 4   ReFES uses the same global kernel as FES and applies fused lasso regularisation to the kernel’s
training process. Fused lasso drives each individual weight towards zero with a regularisation strength of �

1

and applies depthwise smoothing to the weight matrix by penalising the weight difference between adjacent
snapshots with a regularisation strength of �

2

134	 Machine Learning (2024) 113:121–158

1 3

full set of cross-validation logits LJ
K
[CV] , and this stacking classifier is used to label

the query set instances Q based on their logits LJ
K
[Q].

3.5 � Handling single‑instance classes

Meta-Dataset’s sampling scheme (Triantafillou et al., 2020) sometimes produces sup-
port sets containing single-instance classes. During cross-validation, single-instance
classes need to be removed: if a class’ only instance is in the test split Stest , then the
training split Strain will have no instance of that class. FES and its variants can train their
stacking classifiers on a subset of the support classes Csub ≤ C , because their kernels
only encode the weights of the snapshots, and are inherently independent of the number
of classes C. In Figs. 2, 3, and 4, C can simply be replaced by Csub during training.

Given a strict one-shot problem, where all classes exhibit exactly one instance, FES
cross-validation is infeasible, as all classes need to be removed during cross-validation,
leading to LJ

K
[CV] = ∅ . Therefore, support logits obtained from ordinary fine-tuning

need to be used in place of cross-validation logits, i.e., LJ
K
[S] is used to train the FES

classifier W instead of using LJ
K
[CV].

4 � Experimental setup

To evaluate FES and its variants on the Meta-Dataset benchmark described in Sect. 2.1,
we use an extractor collection containing eight extractors, each independently pretrained
on a Meta-Dataset source domain. In our primary set of experiments, all extractors are
ResNet18 models (He et al., 2016) and identical to the source domain extractors used in
the publication introducing URL (Li et al., 2021). Note that the extractors are trained on
the training split of the source domain data only. The source domain validation split is
used to select a trained checkpoint.

FES is compatible with any fine-tuning algorithm that is applicable to the individual
extractors. In our experiments, we save a snapshot of each extractor before fine-tuning
and save a snapshot after each iteration. We evaluate FES with three fine-tuning meth-
ods used by state-of-the-art CDFSL methods in the literature:

•	 TSA (Li et al., 2022)—matrix residual adaptors attached to convolutional layers, and
a fully-connected layer to project feature vectors.

•	 URL (Li et al., 2021)—only a fully-connected layer to project feature vectors.
•	 FLUTE (Triantafillou et al., 2021)—scaling and shift factors of batch normalisation

layers.

When performing each fine-tuning method for FES, we use the hyperparameters as
stated in the source publications, including optimiser type, learning rate, number of iter-
ations, etc., and we compare FES to each source method. The URL (Li et al., 2021) and
TSA (Li et al., 2022) papers fine-tune their feature extractors for 40 iterations, leading to
41 FES snapshots per extractor. The FLUTE (Triantafillou et al., 2021) paper fine-tunes
its feature extractor for six iterations, leading to seven FES snapshots per extractor.

135Machine Learning (2024) 113:121–158	

1 3

We adhere to the TSA, URL, and FLUTE papers when replicating and evaluating
their methods as benchmarks. Pretrained universal extractors are obtained from the offi-
cial repositories, and hyperparameter settings are consistent with the papers’ specifica-
tions. Note that both the URL and TSA papers used the same URL-distilled universal
extractor, and their difference is in fine-tuning, i.e., only fine-tuning a feature projection
(URL) or additionally fine-tuning convolutional channel projections (TSA).

We use an LBFGS optimiser to train the stacking classifier, applying its default hyper-
parameters in the PyTorch library (Paszke et al., 2019), except that we utilise its line search
function. A ridge regularisation of strength 1e−2 is applied to FES and ConFES to make
the LBFGS optimiser more numerically stable. Adjusting the regularisation strength up or
down by an order of magnitude does not substantially affect classification accuracy.

Meta-Dataset’s sampling randomness may cause one or two percent accuracy fluctua-
tion of evaluated methods between different runs, as also stated in URL and TSA’s code
repositories (Li et al., 2022). This fluctuation may exceed the 95% confidence interval of
most results, so to eliminate it, we sample 600 episodes from each domain once in Meta-
Dataset. The sampled episodes are cached and then used to evaluate all CDFSL methods.
In a dataset, the numbers of classes and instances are randomly sampled for each episode,
which means that different episodes can contain different numbers of classes and instances.
In an episode, the number of instances is randomly sampled for each class, which means
that different classes can contain different numbers of instances, and episodes can be class-
imbalanced. However, the query set is stratified and always contains 10 instances per class.

Triantafillou et al. (2021) pointed out that Meta-Dataset instances need to be shuffled
during sampling in case of datasets with particular ordering, e.g., traffic_sign contains con-
secutive frames from the same video, but their shuffling solution was implemented as a

Table 1   Meta-Dataset episode statistics

Datasets Support size Class count Mean shot

min mean max min mean max min mean max

ilsvrc_2012 8 380.28 498 6 15.13 50 1 33.53 83.00
omniglot 5 94.38 378 5 19.11 47 1 4.86 9.20
aircraft 5 333.92 497 5 10.04 15 1 35.05 76.60
cu_birds 8 318.22 494 5 17.46 30 1 19.69 46.20
dtd 5 290.94 498 5 6.00 7 1 48.64 97.20
quickdraw 9 410.91 497 5 27.47 50 1 19.83 84.60
fungi 6 350.79 494 5 26.38 50 1 16.31 65.43
vgg_flower 7 290.72 497 5 10.55 16 1 28.36 73.80
traffic_sign 11 416.66 497 5 24.54 43 1 22.03 98.40
mscoco 9 418.97 498 5 23.07 40 1 23.10 96.60
mnist 5 325.46 498 5 7.52 10 1 44.33 99.60
cifar10 7 318.78 498 5 7.47 10 1 44.16 99.40
cifar100 9 409.28 497 5 27.32 50 1 19.74 84.60
CropDisease 8 425.02 498 5 21.77 38 1 24.30 95.40
EuroSAT 5 332.65 498 5 7.54 10 1 45.39 99.60
ISIC 5 282.67 498 5 6.01 7 1 47.45 99.60
ChestX 5 280.74 498 5 5.91 7 1 47.54 99.40
Food101 7 420.13 498 5 26.99 50 1 20.53 98.40

136	 Machine Learning (2024) 113:121–158

1 3

moving window of size 1,000 for streams of instances of each class, which we found to
be potentially insufficient, leading to approximately 1% better accuracy in mscoco and 3%
better accuracy in ChestX than true random sampling. We found that a window size of
10,000 yielded virtually the same level of accuracy as true random sampling, but neverthe-
less use true random sampling in our experiments, i.e., instances in each class are fully ran-
domised and have equal chance of being selected, and episodes are completely independent
of each other. Statistics of our sampling run are shown in Table 1. Using exactly the same
sampled episodes for each learning scheme compared also allows us to perform a paired
t-test on a per-dataset basis as a more sensitive statistical difference test than simply com-
paring two algorithms’ mean accuracy and confidence intervals. In addition, we rank the
algorithms and show their critical difference diagrams (Demsar, 2006) in weak and strong
generalisation.

Considering the complexity of the optimisation problem when learning the stacking
classifier, it is worth noting that the FES and ReFES stacking classifiers each maintain
8 × 41 = 328 parameters if the extractors are fine-tuned for 40 iterations, and 8 × 7 = 56
parameters if the extractors are fine-tuned for 6 iterations.

ConFES is applied with a two-level hierarchy, i.e., a low-level depthwise 1D convo-
lutional kernel and a high-level global kernel. For 40-iteration fine-tuning, the convolu-
tional kernel has size L = 9 with stride T = 4 , leading to a feature sequence/global ker-
nel of length 9. Consequently, ConFES has 8 × 9 + 8 × 9 = 144 parameters in total. For

Table 2   Meta-Dataset results with TSA fine-tuning

Dataset TSA FES ConFES ReFES

ilsvrc_2012 56.8±1.1 56.2±1.1 ∙ 56.3±1.1 ∙ 56.2±1.2 ∙

omniglot 95.0±0.4 93.3±0.6 ∙ 93.3±0.7 ∙ 93.6±0.6 ∙

aircraft 88.4±0.5 87.6±0.8 ∙ 87.9±0.7 ∙ 87.9±0.8 ∙

cu_birds 81.5±0.7 79.9±0.8 ∙ 80.0±0.8 ∙ 79.8±0.9 ∙

dtd 77.1±0.7 76.2±0.8 ∙ 76.3±0.8 ∙ 76.4±0.8 ∙

quickdraw 82.0±0.6 83.4±0.6 ◦ 83.5±0.6 ◦ 83.4±0.6 ◦

fungi 68.3±1.1 69.4±1.1 ◦ 69.7±1.1 ◦ 69.6±1.1 ◦

vgg_flower 92.1±0.5 91.9±0.7 91.9±0.7 92.1±0.6
mean WG acc 80.15 79.74 79.86 79.88
mean WG rank 2.58 2.50 2.45 2.47
traffic_sign 82.8±0.9 84.9±1.0 ◦ 85.1±1.0 ◦ 85.2±1.0 ◦

mscoco 53.8±1.1 54.1±1.0 ◦ 54.4±1.0 ◦ 54.4±1.0 ◦

mnist 96.6±0.4 97.1±0.5 ◦ 97.1±0.5 ◦ 97.2±0.5 ◦

cifar10 79.9±0.8 78.1±0.9 ∙ 78.2±0.9 ∙ 78.8±0.9 ∙

cifar100 70.3±1.0 70.4±1.1 70.6±1.0 ◦ 70.8±1.0 ◦

CropDisease 84.4±0.8 88.1±0.7 ◦ 88.3±0.7 ◦ 88.3±0.7 ◦

EuroSAT 89.6±0.5 88.8±0.6 ∙ 89.1±0.6 ∙ 89.3±0.6
ISIC 48.4±0.9 49.5±0.9 ◦ 49.3±0.9 ◦ 48.9±0.9 ◦

ChestX 27.2±0.6 27.7±0.6 ◦ 27.7±0.6 ◦ 27.8±0.6 ◦

Food101 53.4±1.2 55.2±1.1 ◦ 55.5±1.1 ◦ 55.2±1.1 ◦

mean SG acc 68.64 69.39 69.53 69.59
mean SG rank 2.85 2.49 2.34 2.32

137Machine Learning (2024) 113:121–158	

1 3

6-iteration fine-tuning, the convolutional kernel has size 3 with stride 2, leading to a global
kernel of length 3, and therefore ConFES contains 8 × 3 + 8 × 3 = 48 parameters in total.
All parameters are initialised with a constant (1e−3)

1

h , where h is the number of hierarchical
levels in the stacking classifier. Therefore, FES and ReFES are initialised with 1e−3 , and a
two-level ConFES hierarchy is initialised with (1e−3)

1

2 . This initialisation is deterministic
and ensures that the product of weights from all levels is close to 1e−3 , which is small
enough for optimisation to go in either direction, but also big enough to avoid exceedingly
small derivatives in gradient-based optimisers.

To facilitate grid search for the �1 and �2 values of ReFES, a pool of eight potential val-
ues is provided for each hyperparameter: 1, 1e−1 , 1e−2 , 1e−3 , 1e−4 , 1e−5 , 1e−6 , and 0.

5 � Results

We present CDFSL results of FES, ConFES, ReFES, and the competing methods URL,
FLUTE, and a URL extractor with TSA fine-tuning, on the Meta-Dataset benchmark and
show that FES and its variants advance the state of the art on this benchmark. We then vis-
ually analyse an example of trained FES, ConFES, and ReFES kernels. Lastly, we examine
the ability of FES, ConFES, and ReFES to omit snapshots with their non-negative kernels.

5.1 � Meta‑dataset results

Results are organised by fine-tuning algorithms used, to provide a comparison between
different CDFSL algorithms with the same fine-tuning scheme. The universal model of
URL (Li et al., 2021), applied with TSA fine-tuning (Li et al., 2022), is the most recent
and strongest CDFSL approach in the literature. Hence, we compare to this universal-
model approach first, applying TSA fine-tuning in our FES methods as well in this com-
parison. Following that, we present experiments with the simpler fine-tuning approach
used in the original URL (Li et al., 2021) paper. Finally, we evaluate FLUTE (Triantafillou
et al., 2021) fine-tuning, which fine-tunes batch norm parameters only, and compare to the
FLUTE universal template model.

Results with TSA fine-tuning are shown in Table 2, and paired t-test results based on
the 600 individual accuracy values per dataset are shown in Table 3. Results with URL
fine-tuning are shown in Tables 4 and 5, and those with FLUTE fine-tuning are shown
in Tables 6 and 7.

Table 3   Statistically significant number of wins of column algorithm over row algorithm using paired t-test
results with TSA fine-tuning

WG TSA FES ConFES ReFES SG TSA FES ConFES ReFES

TSA – 2 2 2 TSA – 7 8 8
FES 5 – 4 3 FES 2 – 6 6
ConFES 5 0 – 2 ConFES 2 0 – 3
ReFES 5 1 1 – ReFES 1 1 2 –

138	 Machine Learning (2024) 113:121–158

1 3

In these tables, mean accuracy over 600 episodes and 95% confidence intervals are
shown for each algorithm and dataset, and weak and strong generalisation accuracy and
ranks averaged over all individual episodes are listed below the datasets. The best result
of each row is shown in bold. If a paired t-test between a FES algorithm and the corre-
sponding universal model/template (in the leftmost column) returns a p value less than
0.05, the null hypothesis (that there is no statistically significant difference) is rejected,
and the FES result is marked with either ◦ if it has higher accuracy, or ∙ if its competitor
has higher accuracy.

The tables showing paired t-test results are split by weak generalisation (the eight
source domains) and strong generalisation (the ten target domains). Each value indicates
the number of datasets where the algorithm in the value’s column significantly outper-
forms the algorithm in its row according to the paired t-test.

Figures 5, 6, 7, 8, 9, and 10 are critical difference diagrams produced by the Nemenyi
test applied with � = 0.05 , where algorithms are ranked using all relevant accuracy val-
ues (8 datasets × 600 episodes for weak generalisation, and 10 datasets × 600 episodes
for strong generalisation). A Friedman test is first performed on all algorithms with the
same � to reject the null hypothesis. A Nemenyi test is then performed to group algo-
rithms with no statistically significant difference into cliques via horizontal lines. Note
that the Friedman p value is greater than � for URL weak generalisation, i.e., Fig. 7, and
the null hypothesis over all classifiers cannot be rejected in this case.

When using the same fine-tuning scheme, FES and its variants outperform their com-
petitor CDFSL algorithms—building a universal model using knowledge distillation
for URL and its TSA fine-tuning variant, and training a universal template with FiLM
layers for FLUTE—in strong generalisation, where learning problems qualify as being
cross-domain. The FES algorithms achieve better average accuracy and obtain more
wins than losses in paired t-tests. They also rank higher than their competitors in the
critical difference diagram.

Considering results with all three fine-tuning methods, the FES algorithms consist-
ently outperform their competitors by a substantial margin on traffic_sign, CropDisease,
and Food101, while being outperformed on cifar10 and cifar100. This phenomenon may
indicate that FES and its variants perform better in domains that are more specialised,
while their competitors gain an edge on datasets more similar to ImageNet, such as the
CIFAR datasets. This speculation is supported by the fact that the competitor methods

Fig. 5   TSA weak generalisation critical difference diagram

Fig. 6   TSA strong generalisation critical difference diagram

139Machine Learning (2024) 113:121–158	

1 3

artificially attach greater importance to ImageNet when their universal models are
obtained (Triantafillou et al., 2021; Li et al., 2021, 2022).

All three FES variants exhibit good CDFSL performance. Which variant is to be pre-
ferred depends on each specific use case: FES is the simplest and most versatile; Con-
FES maintains a smaller number of parameters and therefore a more manipulable search
space; and ReFES uses regularisation to achieve smoother and more interpretable snap-
shot selections.

5.2 � Weight visualisation

Weights of the FES, ConFES, and ReFES kernels after fine-tuning with TSA on traffic_
sign are visualised in Figs. 11, 12, and 13. The weights are averaged over 600 episodes.

ConFES maintains two kernels: a low-level depthwise 1D convolutional kernel (12a)
and a high-level global kernel (12b). The two kernels can be expanded back into a global
kernel (12c) for interpretation because the output of the convolutional kernel 12a serves
as direct input to the global kernel 12b, without any intermediate non-linear activation.
Figure 12 demonstrates how ConFES emulates a 328-parameter FES kernel with only 144
parameters. The stepped pattern in the expanded ConFES kernel, where every fourth snap-
shot is assigned relatively greater weight than its neighbours, is an artefact of 1D convolu-
tion—with a kernel size of 9 and a stride size of 4, this pattern results from kernel overlaps.

Table 4   Meta-Dataset results with URL fine-tuning

Dataset URL FES ConFES ReFES

ilsvrc_2012 56.6±1.1 56.1±1.1 ∙ 56.1±1.1 ∙ 55.9±1.2 ∙

omniglot 94.5±0.4 93.1±0.6 ∙ 93.4±0.6 ∙ 93.5±0.6 ∙

aircraft 87.7±0.5 87.1±0.8 ∙ 87.5±0.7 87.5±0.7
cu_birds 80.7±0.7 79.1±0.8 ∙ 79.2±0.8 ∙ 79.0±0.8 ∙

dtd 76.1±0.6 75.0±0.8 ∙ 75.1±0.8 ∙ 74.9±0.8 ∙

quickdraw 82.0±0.6 83.2±0.6 ◦ 83.2±0.6 ◦ 83.1±0.6 ◦

fungi 69.5±1.1 69.6±1.1 69.8±1.1 69.6±1.1
vgg_flower 91.4±0.5 90.7±0.7 ∙ 90.5±0.7 ∙ 90.8±0.6 ∙

mean WG acc 79.81 79.24 79.35 79.29
mean WG rank 2.52 2.50 2.47 2.51
traffic_sign 62.6±1.2 65.2±1.2 ◦ 65.3±1.2 ◦ 65.0±1.2 ◦

mscoco 52.7±1.0 52.6±1.0 52.7±1.0 52.8±1.0
mnist 94.6±0.4 96.3±0.5 ◦ 96.4±0.5 ◦ 96.5±0.5 ◦

cifar10 71.4±0.8 71.7±0.8 71.9±0.8 71.9±0.8
cifar100 62.6±1.1 62.7±1.1 62.7±1.1 62.8±1.1
CropDisease 80.5±0.8 87.2±0.7 ◦ 87.2±0.7 ◦ 87.4±0.7 ◦

EuroSAT 86.6±0.5 86.1±0.6 ∙ 86.1±0.6 ∙ 86.3±0.6
ISIC 45.5±0.8 48.4±0.9 ◦ 48.3±0.9 ◦ 48.9±0.9 ◦

ChestX 26.5±0.6 27.2±0.6 ◦ 27.1±0.6 ◦ 27.1±0.6 ◦

Food101 51.9±1.1 53.9±1.1 ◦ 53.9±1.1 ◦ 53.9±1.1 ◦

mean SG acc 63.49 65.13 65.16 65.26
mean SG rank 2.96 2.40 2.34 2.31

140	 Machine Learning (2024) 113:121–158

1 3

FES determines that the fine-tuned ilsvrc_2012 (ImageNet) and quickdraw extractors
are the most prominent contributors to its predictions, indicated by the dark regions on the
right end of these two extractors’ rows in Fig. 11. ConFES and ReFES arrive at similar
conclusions regarding contributors, but exhibit characteristics that reflect their classifiers’
behaviours: ConFES shows stepped patterns due to 1D convolution as in Fig. 12; ReFES
shows smoother weight changes due to fused lasso regularisation as in Fig. 13.

Additional heatmaps visualising kernel weights on the other target domains are in
Appendix A, shown by Figs. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39 and 40.

5.3 � Snapshot omission

As FES kernels are constrained to be non-negative by clipping their weights with ReLU,
some snapshots may have their corresponding weights set to 0 after clipping, which means
logits from these snapshots do not contribute to the aggregated meta logits, and these snap-
shots can be omitted, i.e., they do not need to be saved and are not used for inference.

Table 8 shows the average percentage of snapshots omitted by a FES, ConFES, or
ReFES stacking classifier, using TSA, URL, or FLUTE fine-tuning. Note that ConFES
omission rates are computed using the expanded kernel, because zero values need to exist
in the expanded kernel, instead of merely in one of ConFES’ hierarchical kernels, for the
corresponding snapshots to be omitted. A higher omission percentage is considered bet-
ter because omitting snapshots saves storage space and inference computation. Among the
three methods, FES achieves the highest percentage of omission, generally between 60%
and 80%, followed by ConFES, which achieves 30% to 70% omission in general, while
ReFES achieves the least amount of omission, mostly below 40%. FES achieves higher

Table 5   Statistically significant number of wins of column algorithm over row algorithm using paired t-test
results with URL fine-tuning

WG URL FES ConFES ReFES SG URL FES ConFES ReFES

URL – 1 1 1 URL – 6 6 6
FES 6 – 3 2 FES 1 – 3 5
ConFES 5 1 – 1 ConFES 1 0 – 3
ReFES 5 3 3 – ReFES 0 1 1 –

Fig. 7   URL weak generalisation critical difference diagram ( p > 𝛼)

Fig. 8   URL strong generalisation critical difference diagram

141Machine Learning (2024) 113:121–158	

1 3

Table 6   Meta-Dataset results with FLUTE fine-tuning

Dataset FLUTE FES ConFES ReFES

ilsvrc_2012 50.2±1.1 54.1±1.1 ◦ 54.1±1.1 ◦ 53.9±1.2 ◦

omniglot 93.9±0.5 94.3±0.6 ◦ 94.8±0.5 ◦ 94.9±0.5 ◦

aircraft 86.8±0.6 87.4±0.7 ◦ 87.1±0.9 87.4±0.7 ◦

cu_birds 79.3±0.8 78.4±0.9 ∙ 78.5±0.9 ∙ 78.3±0.9 ∙

dtd 68.8±0.8 74.3±0.9 ◦ 74.3±0.8 ◦ 74.2±0.9 ◦

quickdraw 79.1±0.7 82.9±0.6 ◦ 83.0±0.6 ◦ 82.7±0.6 ◦

fungi 59.4±1.2 68.7±1.1 ◦ 69.1±1.1 ◦ 68.8±1.1 ◦

vgg_flower 91.0±0.6 92.5±0.6 ◦ 92.5±0.6 ◦ 92.6±0.6 ◦

mean WG acc 76.06 79.08 79.18 79.10
mean WG rank 3.24 2.27 2.22 2.27
traffic_sign 57.9±1.1 72.6±1.1 ◦ 72.8±1.1 ◦ 72.3±1.1 ◦

mscoco 48.2±1.0 51.7±1.1 ◦ 51.8±1.1 ◦ 51.8±1.1 ◦

mnist 95.7±0.4 97.4±0.4 ◦ 97.6±0.3 ◦ 97.5±0.4 ◦

cifar10 78.6±0.7 75.2±0.9 ∙ 75.2±0.9 ∙ 75.1±0.9 ∙

cifar100 67.5±1.0 67.2±1.1 ∙ 67.2±1.0 67.0±1.1 ∙

CropDisease 78.0±0.8 86.5±0.7 ◦ 86.4±0.7 ◦ 86.5±0.7 ◦

EuroSAT 81.6±0.6 88.3±0.6 ◦ 88.3±0.6 ◦ 88.0±0.6 ◦

ISIC 46.1±1.0 48.7±1.0 ◦ 48.7±1.0 ◦ 48.1±0.9 ◦

ChestX 26.3±0.5 27.8±0.6 ◦ 27.7±0.6 ◦ 27.8±0.6 ◦

Food101 45.7±1.1 52.1±1.1 ◦ 52.0±1.1 ◦ 52.0±1.1 ◦

mean SG acc 62.56 66.75 66.77 66.61
mean SG rank 3.24 2.23 2.21 2.32

Table 7   Statistically significant number of wins of column algorithm over row algorithm using paired t-test
results with FLUTE fine-tuning

WG FLUTE FES ConFES ReFES SG FLUTE FES ConFES ReFES

FLUTE – 7 6 6 FLUTE – 7 8 8
FES 1 – 7 5 FES 3 – 9 8
ConFES 1 0 – 0 ConFES 2 0 - - 1
ReFES 1 0 7 – ReFES 2 1 6 –

Fig. 9   FLUTE weak generalisation critical difference diagram

Fig. 10   FLUTE strong generalisation critical difference diagram

142	 Machine Learning (2024) 113:121–158

1 3

omission rates than ConFES and ReFES, but trades off mean strong generalisation accu-
racy as shown in Tables 2, 4, and 6.

6 � Ablation study

We perform an ablation study by removing cross-validation from the framework and/or
using only the first or last snapshots in fine-tuning. When cross-validation is not used,
training logits for the “stacking” classifier are extracted from the support set using snap-
shots fine-tuned on the entire support set, akin to how one-shot episodes are handled in
Sect. 3.5. When using only the first or last snapshots, the stacking classifier is a degenerate
weight kernel with a singleton dimension for fine-tuning iterations, simply containing one

Fig. 11   FES kernel for traffic_sign

Fig. 12   ConFES kernels for traffic_sign

Fig. 13   ReFES kernel for traffic_sign

143Machine Learning (2024) 113:121–158	

1 3

weight value for each extractor. Results are shown in Tables 9, 10, and 11, organised by the
fine-tuning algorithm used.

The results show that methods using cross-validation outperform their counterparts
without cross-validation. Moreover, using all snapshots achieves better performance than
using only the first or last snapshots in terms of mean strong generalisation performance for
URL and TSA fine-tuning. For strong generalisation with FLUTE fine-tuning, using only
the last snapshots leads to better performance. This could be due to the smaller number of
fine-tuning iterations performed by FLUTE, as the last snapshots constitute a more sub-
stantial part of all snapshots. It is worth noting that cross-validation is helpful even when
only using the first snapshots before any fine-tuning because the training logits are com-
puted using a nearest centroid classifier, and cross-validation keeps the support instances
for logit extraction separate from those used to compute the centroids, hence avoiding
instance re-use and reducing overfitting.

7 � Heterogeneous extractors

FES and its variants operate in logit space, which means they are independent of the archi-
tecture and feature size of each extractor. Therefore, they can naturally work with hetero-
geneous extractor collections. We demonstrate this by replacing the ResNet18 ImageNet
extractor in the source domain collection with a more advanced Small EfficientNetV2
model (Tan & Le, 2021) pretrained on the 21K-class version of ImageNet, while keeping
the seven other source domain ResNet18 extractors unchanged. The Small EfficientNetV2

Table 8   Percentage of snapshots omitted by the stacking classifier

FES ConFES ReFES

Dataset TSA URL FLUTE TSA URL FLUTE TSA URL FLUTE

ilsvrc_2012 72.2 72.4 65.9 58.1 56.0 33.5 38.2 38.3 40.0
omniglot 51.2 51.0 45.5 42.7 43.5 36.2 22.1 27.0 24.0
aircraft 71.0 72.5 58.6 50.6 48.3 32.5 37.0 37.1 30.7
cu_birds 73.2 71.3 68.3 62.5 58.4 48.8 46.6 45.2 41.8
dtd 68.6 72.5 64.8 53.4 56.6 34.5 30.7 39.5 28.7
quickdraw 69.0 70.0 69.1 58.6 57.7 34.5 31.7 36.5 42.3
fungi 73.2 74.1 71.9 65.3 64.2 46.8 46.3 46.5 42.5
vgg_flower 64.2 66.3 46.7 40.2 42.5 26.3 24.4 28.6 24.3
traffic_sign 75.6 79.1 81.6 61.9 73.3 74.5 29.7 55.6 70.5
mscoco 79.2 76.8 70.2 60.6 55.3 38.1 35.0 34.8 39.4
mnist 62.5 68.6 51.4 39.3 44.9 34.8 19.4 21.0 27.2
cifar10 78.6 80.3 68.0 67.4 65.1 37.3 37.4 35.3 39.9
cifar100 78.1 74.3 65.0 61.0 56.8 28.8 35.4 32.9 40.3
CropDisease 73.4 73.7 52.2 51.2 48.8 20.6 23.9 23.1 26.2
EuroSAT 75.6 74.8 61.6 62.4 63.3 32.1 28.2 27.3 29.6
ISIC 70.1 72.1 67.0 58.6 62.1 40.0 25.7 33.7 25.6
ChestX 85.2 82.9 77.3 75.4 67.8 44.8 44.3 44.2 42.2
Food101 80.6 76.5 61.4 62.9 53.7 26.9 53.6 37.4 36.9

144	 Machine Learning (2024) 113:121–158

1 3

model produces feature vectors of length 1280, as opposed to feature vectors of length 512
generated by ResNet18.

URL-style fine-tuning is used, i.e., a square matrix is used for feature projection and the
matrix is initialised as an identity matrix. The results are shown in Table 12, and are compared
to results of all eight extractors being ResNet18 models. Usage of the EfficientNetV2 model
consistently improves FES performance in both weak and strong generalisation. Note that the
evaluation’s main purpose is to show FES compatibility with heterogeneous model zoos, and
its results are not directly comparable to the main results because the 21K-class ImageNet
dataset used to pretrain the EfficientNetV2 model contains the Meta-Dataset ImageNet test
split, which makes the ImageNet evaluation over-optimistic; moreover, test classes in the other
domains may also be present in the 21K pretraining classes.

Since the EfficientNetV2 model is much more advanced than ResNet18, we investigate
whether it dominates the extractor collection and effectively makes the other ResNet18 extrac-
tors irrelevant by performing FES using the single EfficientNetV2 extractor, with results in
Table 13. Interestingly, all three FES variants obtain very similar accuracy when applied
to only one EfficientNetV2 extractor, while their differences are shown more clearly when
applied to a collection of eight extractors. Although using only EfficientNetV2 leads to better
performance in a number of ImageNet-adjacent domains, e.g., ilsvrc_2012, dtd, vgg_flower,
mscoco, and cifar10, it under-performs in most other domains, especially those significantly
different from ImageNet, e.g., omniglot, aircraft, quickdraw, fungi, traffic_sign, mnist, Crop-
Disease, ISIC, and ChestX.

Table 9   Ablation results with TSA fine-tuning

FES without cross-validation FES

Dataset first last all first last all

ilsvrc_2012 52.3±1.2 52.7±1.2 53.5±1.2 54.5±1.1 56.4±1.2 56.2±1.1
omniglot 94.5±0.5 90.2±0.7 90.6±0.7 94.5±0.5 93.3±0.7 93.3±0.6
aircraft 85.7±0.7 78.5±1.1 78.1±1.1 87.1±0.6 87.7±0.8 87.6±0.8
cu_birds 75.9±0.9 73.1±1.1 74.2±1.1 78.9±0.8 79.8±0.9 79.9±0.8
dtd 72.2±0.8 75.5±0.9 75.9±0.8 72.9±0.8 76.8±0.8 76.2±0.8
quickdraw 82.8±0.6 81.9±0.8 82.5±0.7 83.0±0.6 83.4±0.6 83.4±0.6
fungi 64.6±1.2 57.8±1.3 59.1±1.3 69.2±1.1 69.2±1.1 69.4±1.1
vgg_flower 90.0±0.6 89.9±0.8 90.1±0.7 90.3±0.6 92.1±0.7 91.9±0.7
mean WG acc 77.25 74.95 75.50 78.80 79.84 79.74
traffic_sign 48.9±1.1 84.8±1.0 85.0±1.0 49.2±1.1 85.8±0.9 84.9±1.0
mscoco 45.9±1.1 49.8±1.0 51.9±1.0 48.3±1.0 53.6±1.0 54.1±1.0
mnist 95.8±0.4 96.5±0.5 96.7±0.5 95.6±0.5 97.2±0.5 97.1±0.5
cifar10 66.9±0.9 72.2±1.0 74.8±1.0 68.6±0.8 78.6±0.9 78.1±0.9
cifar100 57.0±1.1 65.2±1.1 68.0±1.1 59.1±1.1 70.7±1.0 70.4±1.1
CropDisease 81.9±0.8 87.0±0.7 87.8±0.7 82.6±0.7 88.0±0.7 88.1±0.7
EuroSAT 81.3±0.6 87.7±0.7 88.5±0.6 81.5±0.6 89.5±0.6 88.8±0.6
ISIC 46.2±0.8 47.0±0.9 47.8±0.9 46.4±0.8 47.9±0.9 49.5±0.9
ChestX 25.0±0.5 27.2±0.6 27.6±0.6 24.7±0.5 27.2±0.6 27.7±0.6
Food101 49.4±1.2 50.9±1.2 51.9±1.2 52.3±1.1 54.5±1.1 55.2±1.1
mean SG acc 59.83 66.83 68.00 60.83 69.30 69.39

145Machine Learning (2024) 113:121–158	

1 3

Our EfficientNetV2 evaluation indicates: 1) FES and its variants are compatible with het-
erogeneous extractor collections, and 2) they are robust to discrepancies in extractor architec-
tures and able to select relevant models from a diverse model zoo.

8 � Limitations and discussion

FES requires no universal extractor, which means the meta-training phase only requires
pretraining a collection of extractors, similar to SUR. The cost for this is reduced to zero
if pretrained extractors are readily available. However, FES is more expensive in the meta-
testing phase in terms of both computation and storage, as it needs to fine-tune each extrac-
tor and save their snapshots instead of utilising a single universal extractor. The good per-
formance of FES could be attributed to its increased capacity, as it maintains individual
extractors instead of a single universal extractor. In the context of Meta-Dataset, FES main-
tains eight extractors, which means 8× parameters compared to a universal model of the
same architecture. Hence, in an additional experiment, we investigate larger universal mod-
els with capacities comparable to FES.

Originally, Li et al. (2021) distill eight ResNet18 extractor into a universal ResNet18
extractor. We distilled a universal ResNet152 (He et al., 2016) extractor using the same
process. ResNet18 has 11 M parameters while ResNet152 has 60 M. We elected to use
the same eight ResNet18 extractors for distillation, because pretraining eight ResNet152

Table 10   Ablation results with URL fine-tuning

FES without cross-validation FES

Dataset first last all first last all

ilsvrc_2012 52.3±1.2 52.6±1.2 52.8±1.2 54.5±1.1 56.3±1.2 56.1±1.1
omniglot 94.5±0.5 90.1±0.7 90.8±0.7 94.5±0.5 93.0±0.7 93.1±0.6
aircraft 85.7±0.7 82.0±1.1 82.3±1.0 87.1±0.6 87.3±0.8 87.1±0.8
cu_birds 75.9±0.9 73.8±1.0 74.4±1.0 78.9±0.8 79.0±0.9 79.1±0.8
dtd 72.2±0.8 73.9±0.8 73.7±0.8 72.9±0.8 75.4±0.8 75.0±0.8
quickdraw 82.8±0.6 82.1±0.7 82.3±0.7 83.0±0.6 83.1±0.6 83.2±0.6
fungi 64.6±1.2 62.2±1.3 63.0±1.3 69.2±1.1 69.5±1.1 69.6±1.1
vgg_flower 90.0±0.6 89.7±0.8 89.5±0.7 90.3±0.6 90.9±0.7 90.7±0.7
mean WG acc 77.25 75.80 76.10 78.80 79.31 79.24
traffic_sign 48.9±1.1 65.0±1.2 65.2±1.2 49.2±1.1 65.4±1.2 65.2±1.2
mscoco 45.9±1.1 49.3±1.1 49.9±1.1 48.3±1.0 51.2±1.0 52.6±1.0
mnist 95.8±0.4 96.3±0.5 96.5±0.5 95.6±0.5 96.4±0.5 96.3±0.5
cifar10 66.9±0.9 69.8±0.9 70.6±0.9 68.6±0.8 71.1±0.8 71.7±0.8
cifar100 57.0±1.1 60.8±1.2 61.6±1.2 59.1±1.1 62.8±1.1 62.7±1.1
CropDisease 81.9±0.8 86.6±0.7 86.7±0.7 82.6±0.7 87.0±0.7 87.2±0.7
EuroSAT 81.3±0.6 86.1±0.6 86.3±0.6 81.5±0.6 86.0±0.6 86.1±0.6
ISIC 46.2±0.8 46.7±0.9 45.7±0.9 46.4±0.8 47.6±0.9 48.4±0.9
ChestX 25.0±0.5 27.3±0.6 27.4±0.6 24.7±0.5 26.4±0.6 27.2±0.6
Food101 49.4±1.2 49.5±1.2 50.2±1.2 52.3±1.1 53.1±1.1 53.9±1.1
mean SG acc 59.83 63.74 64.01 60.83 64.70 65.13

146	 Machine Learning (2024) 113:121–158

1 3

extractors from scratch is prohibitively expensive for us, and this avoids introducing a con-
founding factor to meta-model evaluation because different base-model architectures may
encompass source domain semantics differently. We also pretrained a universal ResNet152
model using “vanilla” multi-domain learning (MDL), i.e., one feature extractor is pre-
trained with all eight source domains’ data using eight classification heads, one for each
domain. Compared to official ResNet18 URL training, we halved the mini-batch size (and
doubled the number of iterations) to fit ResNet152 URL or MDL training in the 48GB
memory of an NVIDIA A6000 GPU—the most advanced at our disposal. Tables 14 and 15
show their results with URL or TSA fine-tuning respectively, and compare them to using
the official ResNet18 URL model, as well as FES variants with ResNet18 extractor collec-
tions. As TSA fine-tuning has high memory consumption, we forwent adaptors in the first
and second convolutional blocks (shown to have a small impact on accuracy by Li et al.
(2022)) to fit the ResNet152 TSA experiments on our NVIDIA A6000 GPU. In both tables,
the ResNet152 URL model generally outperforms the ResNet18 URL and ResNet152
MDL models, and it achieves best average weak generalisation accuracy. Its mean strong
generalisation accuracy is comparable to that of the FES variants, but individual results
show that the methods excel at different tasks: the ResNet152 URL model performs better
on mscoco, cifar10, cifar100, EuroSAT, and Food101, while the FES methods perform bet-
ter on traffic_sign, mnist, CropDisease, ISIC, and ChestX—it appears that the ResNet152
URL model is better at ImageNet-adjacent tasks, while the FES methods are better at tasks
that differ more substantially from ImageNet.

Table 11   Ablation results with FLUTE fine-tuning

FES without cross-validation FES

Dataset first last all first last all

ilsvrc_2012 49.9±1.2 50.5±1.2 50.6±1.2 53.2±1.1 53.5±1.2 54.1±1.1
omniglot 93.0±0.6 93.2±0.6 93.3±0.6 94.1±0.5 94.2±0.6 94.3±0.6
aircraft 83.7±0.9 83.1±1.0 83.2±1.0 86.9±0.7 87.3±0.8 87.4±0.7
cu_birds 72.7±1.0 73.4±1.1 73.7±1.1 76.8±0.9 78.3±0.9 78.4±0.9
dtd 72.0±0.8 73.9±0.9 73.9±0.9 72.5±0.8 74.5±0.9 74.3±0.9
quickdraw 81.2±0.7 81.2±0.7 81.4±0.7 82.7±0.6 81.8±0.6 82.9±0.6
fungi 60.4±1.3 59.0±1.3 59.3±1.3 68.7±1.1 67.5±1.1 68.7±1.1
vgg_flower 90.9±0.7 91.7±0.7 91.7±0.7 91.8±0.6 92.6±0.6 92.5±0.6
mean WG acc 75.48 75.75 75.89 78.34 78.71 79.08
traffic_sign 53.0±1.1 71.7±1.1 71.0±1.1 53.2±1.1 72.9±1.1 72.6±1.1
mscoco 44.5±1.1 49.0±1.1 49.0±1.1 47.1±1.0 51.6±1.1 51.7±1.1
mnist 96.0±0.4 97.1±0.5 97.1±0.5 96.2±0.4 97.5±0.4 97.4±0.4
cifar10 68.3±0.9 73.6±0.9 73.7±0.9 70.1±0.8 75.4±0.9 75.2±0.9
cifar100 59.0±1.2 64.2±1.2 64.2±1.2 61.4±1.1 67.3±1.0 67.2±1.1
CropDisease 83.1±0.8 86.1±0.7 85.6±0.7 84.2±0.7 86.5±0.7 86.5±0.7
EuroSAT 86.2±0.6 88.2±0.6 88.1±0.6 86.1±0.6 88.5±0.6 88.3±0.6
ISIC 48.2±0.9 45.0±0.9 45.0±0.9 48.8±0.9 48.8±0.9 48.7±1.0
ChestX 26.2±0.5 27.5±0.6 27.4±0.6 25.9±0.6 27.8±0.6 27.8±0.6
Food101 45.7±1.2 48.1±1.2 48.2±1.2 49.0±1.1 51.9±1.1 52.1±1.1
mean SG acc 61.02 65.05 64.93 62.20 66.82 66.75

147Machine Learning (2024) 113:121–158	

1 3

Table 16 compares the cost of FES inference using an NVIDIA A6000 GPU to that of
URL ResNet18 and ResNet152 extractors. TSA fine-tuning is used by all methods in this
table. It is worth pointing out that due to the few-shot nature of each episode, meta-testing
is generally not time consuming. Table 16 represents the approximate upper bound of FES
computation cost, because 1) the time presented in the table was measured using the largest
traffic_sign episode in our cached sample, which contains 497 support instances, whereas
smaller episodes consume less time, 2) URL and FLUTE fine-tuning are much less time-
consuming than TSA, and 3) Sect. 5.3 shows that a portion of the snapshots does not in fact
need to be computed and stored.

FES requires approximately 2 × K as much backpropagation as a universal extractor fine-
tuned once, where 2 represents one fine-tuning run on the cross-validated support set (per-
formed in two splits) and another on the full support set, and K represents the number of
extractors. This is reflected in Table 16 as fine-tuning time for the FES methods is approxi-
mately 16 times that of fine-tuning the URL ResNet18 model. Time required to train a FES
or ConFES stacking classifier is relatively trivial, while ReFES requires more time to deter-
mine its regularisation strength using grid search with cross-validation. FES stores multi-
ple snapshots of each extractor during fine-tuning, but not all model parameters need to be
saved. Only weights that are updated during fine-tuning need to be saved in snapshots, as the
other unchanged weights can be loaded from the original extractor. Common CDFSL fine-
tuning algorithms only update a relatively small set of weights: FLUTE fine-tunes batch

Table 12   Results of replacing the ResNet18 ImageNet extractor with a Small EfficientNetV2 pretrained on
the 21K version of ImageNet, while the other seven extractors remain the same

ResNet18 EfficientNetV2Small21K

Dataset FES ConFES ReFES FES ConFES ReFES

ilsvrc_2012 56.1±1.1 56.1±1.1 55.9±1.2 63.5±1.0 63.7±1.0 63.1±1.1
omniglot 93.1±0.6 93.4±0.6 93.5±0.6 93.0±0.7 93.5±0.6 93.3±0.6
aircraft 87.1±0.8 87.5±0.7 87.5±0.7 87.4±0.8 87.7±0.7 87.5±0.8
cu_birds 79.1±0.8 79.2±0.8 79.0±0.8 80.6±0.8 80.9±0.8 80.4±0.9
dtd 75.0±0.8 75.1±0.8 74.9±0.8 81.5±0.8 81.7±0.7 81.0±0.8
quickdraw 83.2±0.6 83.2±0.6 83.1±0.6 83.3±0.6 83.3±0.6 83.2±0.6
fungi 69.6±1.1 69.8±1.1 69.6±1.1 70.0±1.1 70.2±1.1 70.0±1.1
vgg_flower 90.7±0.7 90.5±0.7 90.8±0.6 96.2±0.5 96.9±0.3 96.2±0.5
mean WG acc 79.24 79.35 79.29 81.94 82.24 81.84
traffic_sign 65.2±1.2 65.3±1.2 65.0±1.2 65.6±1.1 65.5±1.1 65.4±1.2
mscoco 52.6±1.0 52.7±1.0 52.8±1.0 60.7±1.0 60.8±1.0 60.0±1.0
mnist 96.3±0.5 96.4±0.5 96.5±0.5 96.3±0.5 96.5±0.5 96.6±0.5
cifar10 71.7±0.8 71.9±0.8 71.9±0.8 82.9±0.7 83.0±0.8 82.7±0.8
cifar100 62.7±1.1 62.7±1.1 62.8±1.1 73.9±1.0 74.0±1.0 73.8±1.0
CropDisease 87.2±0.7 87.2±0.7 87.4±0.7 89.6±0.6 89.5±0.6 89.5±0.6
EuroSAT 86.1±0.6 86.1±0.6 86.3±0.6 89.1±0.6 89.2±0.6 89.0±0.6
ISIC 48.4±0.9 48.3±0.9 48.9±0.9 48.6±0.9 48.5±0.9 48.9±0.9
ChestX 27.2±0.6 27.1±0.6 27.1±0.6 26.7±0.6 26.6±0.6 26.8±0.6
Food101 53.9±1.1 53.9±1.1 53.9±1.1 61.7±1.0 61.8±1.0 61.6±1.0
mean SG acc 65.13 65.16 65.26 69.51 69.54 69.43

148	 Machine Learning (2024) 113:121–158

1 3

normalisation weights, URL fine-tunes a feature projection, and TSA fine-tunes channel pro-
jections and a feature projection. Therefore, FES snapshots are normally lightweight. Table 16
shows that FES with TSA fine-tuning needs to store approximately 580 M parameters—
2.32GB—which can fit in most modern GPUs during inference. As FES can fine-tune its
extractors sequentially, its memory requirement is comparable to fine-tuning a single extractor
with the same method. On the other hand, FES can easily be parallelised to fine-tune multiple
extractors at once, should multiple GPUs be available.

Considering computational effort required for meta training, it is worth noting that even
though a universal extractor only needs to be trained once, this training process may take days
(for ResNet18) to weeks (for ResNet152) on an NVIDIA A6000 GPU; if an individual extrac-
tor is added or updated, training of a universal extractor needs to be performed again.

The official URL model was distilled in a process favouring ImageNet by including as
many ImageNet instances as the other seven source domains combined in each mini-batch (Li
et al., 2021). We distilled an alternative URL model while treating all source domains equally.
Their comparison is shown in Table 17. The official model performs better in a majority of
domains. This indicates that URL distillation may require external knowledge to focus on the
right domains to achieve optimal performance. FES and its variants treat all extractors equally
a priori and determine their task-specific relevance based purely on the support set.

Table 13   Comparison between applying FES to an ImageNet-pretrained EfficientNetV2 extractor alone and
applying FES to an extractor collection containing it and the seven other ResNet18 source domain extrac-
tors

EfficientNetV2 only EfficientNetV2 and ResNet18s

Dataset FES ConFES ReFES FES ConFES ReFES

ilsvrc_2012 64.0±1.0 64.0±1.0 63.9±1.0 63.5±1.0 63.7±1.0 63.1±1.1
omniglot 58.0±1.3 58.1±1.3 57.6±1.3 93.0±0.7 93.5±0.6 93.3±0.6
aircraft 63.9±1.0 63.8±1.0 63.6±1.0 87.4±0.8 87.7±0.7 87.5±0.8
cu_birds 76.0±0.8 76.0±0.8 76.0±0.8 80.6±0.8 80.9±0.8 80.4±0.9
dtd 82.2±0.6 82.2±0.6 82.1±0.6 81.5±0.8 81.7±0.7 81.0±0.8
quickdraw 60.0±1.0 60.0±1.0 59.8±1.0 83.3±0.6 83.3±0.6 83.2±0.6
fungi 51.0±1.2 51.0±1.2 50.9±1.2 70.0±1.1 70.2±1.1 70.0±1.1
vgg_flower 97.2±0.2 97.2±0.2 97.2±0.2 96.2±0.5 96.9±0.3 96.2±0.5
mean WG acc 69.04 69.04 68.89 81.94 82.24 81.84
traffic_sign 60.3±1.2 60.2±1.2 60.5±1.2 65.6±1.1 65.5±1.1 65.4±1.2
mscoco 61.1±1.0 61.2±1.0 60.6±1.0 60.7±1.0 60.8±1.0 60.0±1.0
mnist 87.1±0.7 87.1±0.7 87.2±0.7 96.3±0.5 96.5±0.5 96.6±0.5
cifar10 83.3±0.6 83.3±0.6 83.2±0.6 82.9±0.7 83.0±0.8 82.7±0.8
cifar100 73.7±0.9 73.7±0.9 73.7±0.9 73.9±1.0 74.0±1.0 73.8±1.0
CropDisease 85.5±0.7 85.4±0.7 85.4±0.7 89.6±0.6 89.5±0.6 89.5±0.6
EuroSAT 87.1±0.6 87.0±0.6 87.0±0.6 89.1±0.6 89.2±0.6 89.0±0.6
ISIC 46.1±0.9 46.0±0.9 46.0±0.9 48.6±0.9 48.5±0.9 48.9±0.9
ChestX 25.2±0.5 25.2±0.5 25.1±0.5 26.7±0.6 26.6±0.6 26.8±0.6
Food101 61.2±1.0 61.2±1.0 61.0±1.0 61.7±1.0 61.8±1.0 61.6±1.0
mean SG acc 67.06 67.03 66.97 69.51 69.54 69.43

149Machine Learning (2024) 113:121–158	

1 3

9 � Future work

FES exhibits good CDFSL performance with multiple source domains. It may be feasible
to generalise it to other multi-domain learning problems, e.g., multi-domain transfer learn-
ing with a more substantial amount of labelled target domain training data.

The heatmaps show that FES generally assigns significant weights to only a small subset
of extractor snapshots, implicitly nullifying a majority of snapshots that it deems irrelevant.
Pruning strategies may be applied to FES to explicitly eliminate irrelevant snapshots to
reduce computational costs.

FES maintains no prior bias to any source domain extractor, and its posterior bias
depends on the support set only. In scenarios where prior knowledge is available regarding
source and target domain relations, it may be beneficial to enable the user to apply explicit
prior biases to certain source domains. This could be achieved in the form of regularisa-
tion, e.g., different regularisation pressures are applied to weights associated with different
source domains.

10 � Conclusion

We present the stacking-based CDFSL method FES and the variants ConFES and ReFES.
The FES algorithms create snapshots from fine-tuning independent extractors on the
support set, use cross-validation to avoid overfitting from support data reuse, and train a

Table 14   ResNet152 feature extractors with URL fine-tuning

Dataset URL_18 MDL_152 URL_152 FES_18 ConFES_18 ReFES_18

ilsvrc_2012 56.6±1.1 59.3±1.1 59.3±1.1 56.1±1.1 56.1±1.1 55.9±1.2
omniglot 94.5±0.4 94.5±0.4 94.8±0.4 93.1±0.6 93.4±0.6 93.5±0.6
aircraft 87.7±0.5 90.7±0.4 91.3±0.4 87.1±0.8 87.5±0.7 87.5±0.7
cu_birds 80.7±0.7 85.0±0.6 84.9±0.6 79.1±0.8 79.2±0.8 79.0±0.8
dtd 76.1±0.6 77.7±0.6 78.3±0.6 75.0±0.8 75.1±0.8 74.9±0.8
quickdraw 82.0±0.6 83.3±0.6 83.3±0.6 83.2±0.6 83.2±0.6 83.1±0.6
fungi 69.5±1.1 73.3±1.0 74.9±1.0 69.6±1.1 69.8±1.1 69.6±1.1
vgg_flower 91.4±0.5 93.3±0.4 91.9±0.5 90.7±0.7 90.5±0.7 90.8±0.6
mean WG acc 79.81 82.14 82.34 79.24 79.35 79.29
traffic_sign 62.6±1.2 57.2±1.2 61.9±1.2 65.2±1.2 65.3±1.2 65.0±1.2
mscoco 52.7±1.0 52.3±1.0 55.1±1.0 52.6±1.0 52.7±1.0 52.8±1.0
mnist 94.6±0.4 93.6±0.5 92.9±0.5 96.3±0.5 96.4±0.5 96.5±0.5
cifar10 71.4±0.8 73.2±0.7 75.7±0.7 71.7±0.8 71.9±0.8 71.9±0.8
cifar100 62.6±1.1 65.7±1.0 67.3±1.0 62.7±1.1 62.7±1.1 62.8±1.1
CropDisease 80.5±0.8 81.0±0.8 82.0±0.7 87.2±0.7 87.2±0.7 87.4±0.7
EuroSAT 86.6±0.5 86.1±0.6 87.0±0.5 86.1±0.6 86.1±0.6 86.3±0.6
ISIC 45.5±0.8 45.5±0.8 45.4±0.8 48.4±0.9 48.3±0.9 48.9±0.9
ChestX 26.6±0.6 25.9±0.5 26.3±0.5 27.2±0.6 27.1±0.6 27.1±0.6
Food101 51.9±1.1 55.3±1.1 55.4±1.0 53.9±1.1 53.9±1.1 53.9±1.1
mean SG acc 63.50 63.58 64.90 65.13 65.16 65.26

150	 Machine Learning (2024) 113:121–158

1 3

simple stacking classifier to appropriately weight the snapshots. FES, ConFES, and ReFES
advance the state-of-the-art on the Meta-Dataset benchmark.

Perhaps more importantly, the FES approaches have some practical advantages in real-
world scenarios compared to recent methods based on universal models. FES can work
with out-of-the-box heterogeneous extractors. If the extractors are readily available, FES

Table 15   ResNet152 feature extractors with TSA fine-tuning

 Note that the “URL” in the column titles refers to the universal representation learning process used to
meta-train the models, not the feature projection fine-tuning used by the URL algorithm during meta-test.
All methods in this table use TSA fine-tuning

Dataset URL_18 MDL_152 URL_152 FES_18 ConFES_18 ReFES_18

ilsvrc_2012 56.8±1.1 59.3±1.1 59.9±1.1 56.2±1.1 56.3±1.1 56.2±1.2
omniglot 95.0±0.4 94.7±0.4 95.0±0.4 93.3±0.6 93.3±0.7 93.6±0.6
aircraft 88.4±0.5 91.2±0.4 92.2±0.4 87.6±0.8 87.9±0.7 87.9±0.8
cu_birds 81.5±0.7 84.8±0.6 85.0±0.6 79.9±0.8 80.0±0.8 79.8±0.9
dtd 77.1±0.7 78.9±0.7 79.2±0.7 76.2±0.8 76.3±0.8 76.4±0.8
quickdraw 82.0±0.6 83.4±0.6 83.4±0.6 83.4±0.6 83.5±0.6 83.4±0.6
fungi 68.3±1.1 73.0±1.0 74.5±1.0 69.4±1.1 69.7±1.1 69.6±1.1
vgg_flower 92.1±0.5 93.4±0.5 92.2±0.6 91.9±0.7 91.9±0.7 92.1±0.6
mean WG acc 80.15 82.34 82.68 79.74 79.86 79.88
traffic_sign 82.8±0.9 76.4±1.0 80.0±0.9 84.9±1.0 85.1±1.0 85.2±1.0
mscoco 53.8±1.1 54.1±1.0 56.9±1.0 54.1±1.0 54.4±1.0 54.4±1.0
mnist 96.6±0.4 95.5±0.5 95.4±0.5 97.1±0.5 97.1±0.5 97.2±0.5
cifar10 79.9±0.8 79.3±0.8 81.6±0.7 78.1±0.9 78.2±0.9 78.8±0.9
cifar100 70.3±1.0 70.5±1.0 73.1±1.0 70.4±1.1 70.6±1.0 70.8±1.0
CropDisease 84.4±0.8 82.7±0.8 84.4±0.7 88.1±0.7 88.3±0.7 88.3±0.7
EuroSAT 89.6±0.5 88.6±0.6 89.6±0.5 88.8±0.6 89.1±0.6 89.3±0.6
ISIC 48.4±0.9 45.6±0.9 47.3±0.9 49.5±0.9 49.3±0.9 48.9±0.9
ChestX 27.2±0.6 25.5±0.6 27.3±0.6 27.7±0.6 27.7±0.6 27.8±0.6
Food101 53.4±1.2 56.2±1.1 57.3±1.1 55.2±1.1 55.5±1.1 55.2±1.1
mean SG acc 68.64 67.44 69.29 69.39 69.53 69.59

Table 16   Computational resource consumption of FES variants using TSA fine-tuning, compared to the
official TSA algorithm applied to a URL ResNet18 or ResNet152 extractor

From left to right: CDFSL method, fine-tuning time, stacking classifier training time, number of pretrained
parameters that are frozen during fine-tuning, number of trainable parameters during fine-tuning, number of
parameters that need to be stored, number of stacking classifier parameters, and amount of GPU memory
required for fine-tuning

method FT time MC time frozen P trainable P stored P MC P FT memory

URL_18 10.13s – 11 M 1.5M 11 M +
1.5M

– 8.2GB

URL_152 103.88s – 60 M 7.3M 60 M +
7.3M

– 32.7GB

FES_18 151.29s 0.06s 11 M×8 1.5M×8 11 M× 8 +
1.5M×8×41

328 8.3GB
ConFES_18 0.06s 144 8.3GB
ReFES_18 9.45s 328 8.3GB

151Machine Learning (2024) 113:121–158	

1 3

does not require their pretraining data down-stream. Its stacking classifier requires little
hyperparameter tuning. FES is also computationally cheaper, unless the number of few-
shot learning tasks is very large, e.g., in the thousands, where the total cost of performing
FES on all tasks begins to exceed that of training a universal model once. Therefore, to
field practitioners who wish to use extractors and fine-tuning algorithms specific to their
work, FES is likely more flexible and user-friendly than universal-model methods.

Appendix A: Additional heatmaps

Additional heatmaps visualising kernel weights on target domains with TSA fine-tuning
are shown by Figs. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34 35, 36, 37, 38, 39 and 40.

Table 17   Comparing the official
URL model to a URL model
distilled without favouring
ImageNet

Dataset URL_official URL_equal

ilsvrc_2012 56.6±1.1 52.6±1.1
omniglot 94.5±0.4 95.0±0.4
aircraft 87.7±0.5 88.6±0.5
cu_birds 80.7±0.7 80.0±0.7
dtd 76.1±0.6 72.0±0.7
quickdraw 82.0±0.6 82.1±0.6
fungi 69.5±1.1 68.4±1.1
vgg_flower 91.4±0.5 89.5±0.6
mean WG acc 79.81 78.53
traffic_sign 62.6±1.2 63.0±1.2
mscoco 52.7±1.0 47.2±1.0
mnist 94.6±0.4 95.1±0.4
cifar10 71.4±0.8 66.5±0.8
cifar100 62.6±1.1 56.9±1.1
CropDisease 80.5±0.8 79.9±0.8
EuroSAT 86.6±0.5 83.5±0.6
ISIC 45.5±0.8 44.8±0.8
ChestX 26.6±0.6 26.6±0.6
Food101 51.9±1.1 49.0±1.1
mean SG acc 63.50 61.25

Fig. 14   FES kernel for mscoco

152	 Machine Learning (2024) 113:121–158

1 3

Fig. 17   FES kernel for mnist

Fig. 18   ConFES kernel for mnist

Fig. 19   ReFES kernel for mnist

Fig. 20   FES kernel for cifar10

Fig. 16   ReFES kernel for mscoco

Fig. 15   ConFES kernel for mscoco

153Machine Learning (2024) 113:121–158	

1 3

Fig. 21   ConFES kernel for cifar10

Fig. 22   ReFES kernel for cifar10

Fig. 23   FES kernel for cifar100

Fig. 24   ConFES kernel for cifar100

Fig. 25   ReFES kernel for cifar100

Fig. 26   FES kernel for CropDisease

154	 Machine Learning (2024) 113:121–158

1 3

Fig. 27   ConFES kernel for CropDisease

Fig. 28   ReFES kernel for CropDisease

Fig. 29   FES kernel for EuroSAT

Fig. 30   ConFES kernel for EuroSAT

Fig. 31   ReFES kernel for EuroSAT

155Machine Learning (2024) 113:121–158	

1 3

Fig. 32   FES kernel for ISIC

Fig. 33   ConFES kernel for ISIC

Fig. 34   ReFES kernel for ISIC

Fig. 35   FES kernel for ChestX

Fig. 36   ConFES kernel for ChestX

156	 Machine Learning (2024) 113:121–158

1 3

Author Contributions  All authors contributed to the study conception and design. Material preparation and
data collection and analysis were performed by Hongyu Wang. The first draft of the manuscript was written
by Wang and all authors commented on previous versions of the manuscript. All authors read and approved
the final manuscript.

Funding  This research is funded by the Ministry of Business, Innovation and Employment of New Zealand
as part of a Smart Ideas project entitled “User-friendly Deep Learning”, please refer to https://​www.​mbie.​
govt.​nz/​scien​ce-​and-​techn​ology/​scien​ce-​and-​innov​ation/​fundi​ng-​infor​mation-​and-​oppor​tunit​ies/​inves​tment-​
funds/​endea​vour-​fund/.

Availability of data and materials  All data used can be acquired publicly via https://​github.​com/​google-​resea​
rch/​meta-​datas​et for the official Meta-Dataset, https://​github.​com/​cambr​idge-​mlg/​cnaps for three additional
target domains, https://​github.​com/​IBM/​cdfsl-​bench​mark for four additional target domains, and https://​
data.​vision.​ee.​ethz.​ch/​cvl/​datas​ets_​extra/​food-​101/ for one additional target domain.

Fig. 37   ReFES kernel for ChestX

Fig. 38   FES kernel for Food101

Fig. 39   ConFES kernel for Food101

Fig. 40   ReFES kernel for Food101

https://www.mbie.govt.nz/science-and-technology/science-and-innovation/funding-information-and-opportunities/investment-funds/endeavour-fund/
https://www.mbie.govt.nz/science-and-technology/science-and-innovation/funding-information-and-opportunities/investment-funds/endeavour-fund/
https://www.mbie.govt.nz/science-and-technology/science-and-innovation/funding-information-and-opportunities/investment-funds/endeavour-fund/
https://github.com/google-research/meta-dataset
https://github.com/google-research/meta-dataset
https://github.com/cambridge-mlg/cnaps
https://github.com/IBM/cdfsl-benchmark
https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/

157Machine Learning (2024) 113:121–158	

1 3

Code availability  The implementation and the computational work are done using the Python programming
language and the PyTorch deep learning library (Paszke et al., 2019). The code and data files are available
via GitHub at https://​github.​com/​Hongy​uJerr​yWang/​Featu​reExt​racto​rStac​king.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author states that there is no conflict of inter-
est.

References

Bateni, P., Barber, J., van de Meent, J., Wood, F. (2022). Enhancing fewshot image classification with unla-
belled examples. IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI,
USA (pp. 1597-1606). IEEE.

Bateni, P., Goyal, R., Masrani, V., Wood, F., Sigal, L. (2020). Improved few-shot visual classification. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA (pp. 14481-
14490). Computer Vision Foundation / IEEE.

Bossard, L., Guillaumin, M., Gool, L.V. (2014). Food-101 - mining discriminative components with random
forests. Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland (Vol. 8694,
pp. 446-461). Springer.

Chen, W., Liu, Y., Kira, Z., Wang, Y.F., Huang, J. (2019). A closer look at few-shot classification. 7th Inter-
national Conference on Learning Representations, New Orleans, LA, USA. OpenReview.net.

Chen, Y., Liu, Z., Xu, H., Darrell, T., Wang, X. (2021). Meta-baseline: Exploring simple meta-learning
for few-shot learning. 2021 IEEE/CVF international conference on computer vision, Montreal, QC,
Canada (pp. 9042-9051). IEEE.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learn-
ing Research, 7, 1–30.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image
database. IEEE computer society conference on computer vision and pattern recognition, Miami, Flor-
ida, USA (pp. 248-255). IEEE Computer Society.

Dvornik, N., Schmid, C., Mairal, J. (2020). Selecting relevant features from a multi-domain representation
for few-shot classification. Computer Vision- ECCV 2020 - 16th European Conference, Glasgow, UK
(Vol. 12355, pp. 769-786). Springer.

Galeano, P., Joseph, E., & Lillo, R. E. (2015). The Mahalanobis distance for functional data with applica-
tions to classification. Technometrics, 57(2), 281–291.

Guo, Y., Codella, N., Karlinsky, L., Codella, J.V., Smith, J.R., Saenko, K.,. . . Feris, R. (2020). A broader
study of cross-domain few-shot learning. Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK (Vol. 12372, pp. 124-141). Springer.

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition, Las Vegas, NV, USA (pp. 770-778). IEEE Com-
puter Society.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. Proceedings of the 32nd international conference on machine learning, Lille,
France (Vol. 37, pp. 448-456). JMLR.org.

Li, W., Liu, X., Bilen, H. (2021). Universal representation learning from multiple domains for few-shot
classification. 2021 IEEE/CVF international conference on computer vision, Montreal, QC, Canada
(pp.9506-9515). IEEE.

Li, W., Liu, X., Bilen, H. (2022). Cross-domain few-shot learning with task-specific adapters. IEEE/CVF
conference on computer vision and pattern recognition, New Orleans, LA, USA (pp. 7151-7160).
IEEE.

Li, W.-h., Liu, X., Bilen, H. (2022). Universal representation learning and task-specific adaptation for few-
shot learning. https://github.com/VICO-UoE/URL. (Accessed: 2022-09-29)

Liu, L., Hamilton, W.L., Long, G., Jiang, J., Larochelle, H. (2021). A universal representation transformer
layer for few-shot image classification. 9th international conference on learning representations, Vir-
tual Event, Austria. OpenReview.net.

Liu, Y., Lee, J., Zhu, L., Chen, L., Shi, H., Yang, Y. (2021). A multi-mode modulator for multi-domain
few-shot classification. 2021 IEEE/CVF international conference on computer vision, Montreal, QC,
Canada (pp. 8433-8442). IEEE.

https://github.com/HongyuJerryWang/FeatureExtractorStacking

158	 Machine Learning (2024) 113:121–158

1 3

Mensink, T., Verbeek, J., Perronnin, F., & Csurka, G. (2013). Distance-based image classification: Gener-
alizing to new classes at near-zero cost. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 35(11), 2624–2637.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. Advances in Neural Information Processing
Systems 32, Vancouver, BC, Canada (pp. 8024-8035).

Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.C. (2018). FiLM: Visual reasoning with a
general conditioning layer. Proceedings of the Thirty-Second AAAI Conference on Artificial Intel-
ligence, the 30th innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence, New Orleans, Louisiana, USA (pp. 3942-3951). AAAI
Press.

Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., Turner, R.E. (2019). Fast and flexible multi-task classi-
fication using conditional neural adaptive processes. Advances in Neural Information Processing Sys-
tems 32, Vancouver, BC, Canada (pp. 7957-7968).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., & Fei-Fei, L. (2015). Imagenet large
scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.

Snell, J., Swersky, K., Zemel, R.S. (2017). Prototypical networks for few-shot learning. Advances in Neural
Information Processing Systems 30, Long Beach, CA, USA (pp. 4077-4087).

Tan, M., & Le, Q.V. (2021). Efficientnetv2: Smaller models and faster training. Proceedings of the 38th
International Conference on Machine Learning, Virtual Event (Vol. 139, pp. 10096-10106). PMLR.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the
fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(1), 91–108.

Triantafillou, E., Larochelle, H., Zemel, R.S., Dumoulin, V. (2021). Learning a universal template for few-
shot dataset generalization. Proceedings of the 38th international conference on machine learning, Vir-
tual Event (Vol. 139, pp. 10424-10433). PMLR.

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci, U., Xu, K., . . . Larochelle, H. (2020). Meta-
dataset: A dataset of datasets for learning to learn from few examples. 8th International conference on
learning representations, Addis Ababa, Ethiopia. OpenReview.net.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., . . . Polosukhin, I. (2017).
Attention is all you need. Advances in Neural Information Processing Systems 30, Long Beach, CA,
USA (pp. 5998-6008).

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D. (2016). Matching networks for
one shot learning. Advances in Neural Information Processing Systems 29, Barcelona, Spain (pp.
3630-3638).

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
Zaheer, M., Kottur, S., Ravanbakhsh, S., Póczos, B., Salakhutdinov, R., Smola, A.J. (2017). Deep sets.

Advances in Neural Information Processing Systems 30, Long Beach, CA, USA (pp. 3391-3401).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

	Feature extractor stacking for cross-domain few-shot learning
	Abstract
	1 Introduction
	2 Related work
	2.1 The Meta-dataset benchmark
	2.2 Methods included in the experimental comparison
	2.2.1 Few-shot learning with a universal template
	2.2.2 Universal representation learning
	2.2.3 Task-specific adaptors

	2.3 Other work on CDFSL
	2.3.1 Selecting relevant features from a Universal representation
	2.3.2 Universal representation transformer
	2.3.3 Conditional neural adaptive processes
	2.3.4 Multi-mode modulator

	3 Cross-domain few-shot learning using stacking
	3.1 Feature extractor stacking
	3.1.1 Fine-tuning the extractors
	3.1.2 Cross-validation to obtain training data for stacked generalisation
	3.1.3 Stacking classifier training

	3.2 Proof of convexity
	3.3 Convolutional feature extractor stacking
	3.4 Regularised feature extractor stacking
	3.5 Handling single-instance classes

	4 Experimental setup
	5 Results
	5.1 Meta-dataset results
	5.2 Weight visualisation
	5.3 Snapshot omission

	6 Ablation study
	7 Heterogeneous extractors
	8 Limitations and discussion
	9 Future work
	10 Conclusion
	Appendix A: Additional heatmaps
	References

