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Abstract
Extracting causal relations between events from text is vital in natural language processing. 
Existing methods, which explore the text shallowly, usually aim at casual connection words 
but neglect implicit causal cues. Furthermore, most of them represent words based solely 
on contextual semantics, without explicitly considering information related to causality. All 
of these factors contribute to the inaccuracy of causal relation extraction. To address these 
issues, in this paper, we propose an event causality extraction method based on external 
event Knowledge Learning and Polyhedral Word Embedding to alleviate these issues. Spe-
cifically, the related background knowledge in knowledge bases is embedded into a vector 
initially. This infusion of information beyond the sentence allows for the discovery of latent 
causal relationships. Additionally, we enhance the causal semantic features of words by 
utilizing their part-of-speech and character features, which helps distinguish causal-related 
words in sentences. The experimental results on an extended SemEval dataset indicate that 
our method achieves the best results compared to other existing methods.
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1  Introduction

Event causality extraction aims to identify causal relations between events in natural lan-
guage text. For example, in Fig. 1, the sparks are the cause of the explosion in the sentence 
“The explosion was caused by sparks". It plays an important role in question answering 
(Oh et al., 2013; Dalal et al., 2021), event detection (Radinsky et al., 2012), scene genera-
tion (Hashimoto et al., 2014), and other task applications. In texts, the causality of events 
is expressed in complex forms. The causal relationship between some events is often based 
on common sense, which means there are cases where the sentence lacks words such as 
“because" and “therefore" that can clearly indicate the causal connection. This type of 
causal relationship is called implicit causal relationship, which brings a great challenge to 
the task of extracting the causal relationship between events.

Recent work (De Silva et  al., 2017; Kadowaki et  al., 2019) typically divides the cau-
sality extraction process into two steps: First, selecting candidate causal event pairs from 
the text, and then classifying the relationships between these candidate event pairs. But 
these methods have the problem of error propagation (Yan et al., 2021; Chen et al., 2020). 
The extraction error of candidate causal event pairs will affect the accuracy of the sub-
sequent relationship classification task. Since joint extraction can mitigate the impact of 
error propagation (Miwa & Bansal, 2016; Zheng et al., 2017), some researchers use end-
to-end models to extract entities and relations simultaneously. The information interaction 
between entities and relationships is enhanced by enabling the two sub-processes to share 
the underlying parameters of the network. However, most of the existing work only uses the 
given text to analyze the causal relationships between events, and it is difficult to discover 
the implicit causal relationships when explicit causal correlation words are not available. 
Besides, although existing work considers the influence of contextual information when 
embedding words, the relevant features of the causality extraction task are still insufficient, 
so it is difficult to highlight possible causal-related words in a sentence.

To this end, we introduce external knowledge from the knowledge graph into our model. 
Try to enhance the model’s ability to uncover implicit causal links between events by add-
ing related knowledge of events. Moreover, we integrate the character features of the words 
as well as the POS properties to address the problem of insufficient causal features. The 
knowledge graph is a semantic network that contains rich entity relationships. Through 
the triples in the knowledge graph, we can obtain knowledge related to event entities. For 
example, background knowledge related to “hurricane" can be described as (hurricane - 
IsA - natural disaster), (hurricane - Causes - house collapse), etc. The model can make 
use of the knowledge associated with these events to deduce the hidden causal relation-
ship between events in the absence of explicit causal correlation words in the text, so as to 
improve the extraction effect of an implicit causal relationship. Besides, most of the event 
words indicating causality are usually composed of nouns and verbs, and the POS proper-
ties of the word have a strong correlation with the causal labels corresponding to the word. 
And there are similar word morphological features among some of the causal words, as 

Fig. 1   An example of a sentence 
that contains a causal relation-
ship
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shown in Fig. 2 1. Therefore, we capture the character morphological features of words, 
and enhance the information of words combined with the POS features to improve the 
degree of differentiation between causal event words and other words.

Specifically, to model the event-related knowledge representation, we consider the 
neighbors of the current event in the knowledge graph. Encoding the related knowledge 
representation of the current event based on the association relationships and weights 
among those nodes. Meanwhile, we use convolutional neural networks to obtain the char-
acter-level feature of input words, and then combine the POS feature to obtain the enhanced 
word representation of words. After obtaining the related knowledge representation and 
the word-enhanced information representation, we fuse them with the word representation 
generated by BERT (Kention & Toutanova, 2019). Feeding them into Bi-directional Gated 
Recurrent Unit (Bi-GRU) (Cho et  al., 2014) to capture the global features based on the 
sentence context. Finally, by combining Conditional Random Field (CRF) (Lafferty et al., 
2001), we predict the causal role label corresponding to each word in the text.

The contributions of this paper can be summarized as follows:

•	 To solve the problem of lacking explicit causal correlation words, we introduce exter-
nal knowledge into our model, so that the model can use the event-related knowledge to 
establish the implied causal links between events.

•	 To solve the problem that word representation lacks features related to the causality 
extraction task, we propose a word information enhancement method. Getting addi-
tional information on words from its POS and character features to highlight possible 
causal-related words in the sentence.

•	 Experimental results and analysis indicate that our proposed model (KLPWE) has 
achieved the best results and outperformed other previous state-of-the-art methods.

The structure of the paper is as follows: Sect.  2 introduces related work; In Sect.  3, we 
present the overall framework and each module of our model; In Sect. 4, we analyze the 
experimental results and verify the effectiveness of our method; Finally, in Sect.  5, we 
summarize the work of this paper and discuss the possible future research directions.

2 � Related work

Our work focuses on using external knowledge to enrich the representation of events, and 
combining the character morphology and POS of words to enhance the causal seman-
tic features of words, to extract the causal relationship of events in the text. Therefore, it 
is highly related to Causal Extraction Methods, External Knowledge-Based Methods, 

Fig. 2   Some causal words with similar character structures

1  As result words, “died", “destroyed", and “fired" all have the same suffix in character morphology “ed", 
with the cause event marked in blue and the effect event marked in red in the figure.
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Character-Level Feature-Based Methods, and POS-Based Methods. Thus, in this section, 
we will briefly summarize some of the above-mentioned works.

2.1 � Causal extraction methods

The early task of extracting event causality mainly adopted the methods based on pattern 
matching (Ittoo & Bouma, 2011; Kim et al., 2018; Hashimoto et al., 2015). For instance, 
Khoo et al. (2000) propose an extraction method by combining syntactic trees for causal 
relationships in the medical domain, Mirza et al. (2014) propose a method for causal labe-
ling between event pairs based on the properties of events. Some studies have used a com-
bination of syntactic patterns and statistical features to extract causal relationships (Luo 
et al., 2016; Gao et al., 2019). Girju (2003) proposes an inductive learning approach, learn-
ing syntactic and semantic constraints of causality by automatic induction of syntactic pat-
terns; For the extraction of causality in medical diseases, Lee and Shin (2017) present a 
method based on causality frequency and the strength of association between causal event 
pairs. In recent years, many researchers have started trying to apply deep learning to event 
causality extraction tasks. Some works (Feng et al., 2018; Khetan et al., 2022; Kadowaki 
et  al., 2019) convert the causal extraction problem into determining whether there is a 
causal relationship between two events. However, these methods not only rely on the cor-
rectness of the event extraction task, but also need to pair all the extracted events. In addi-
tion, since a pipeline-based approach is employed in the work, it is difficult to avoid the 
problem of error propagation and entity redundancy. To address the impact of the afore-
mentioned problems, joint extraction methods (Fu et  al., 2011; Martínez-Cámara et  al., 
2017) based on sequence annotation schemes have emerged. Li et  al. (2021) proposed 
SCITE, and transfer the Flair embedding (Akbik et al., 2018) into their model; Xu et al. 
Jinghang et al. (2020) extend syntactic dependency trees to syntactic dependency graphs, 
and propose a graph attention network based on syntactic dependency graphs for identify-
ing event causalities. However, these studies usually focus on the analysis of causality from 
a given text, and it is often difficult to find more causal clues when the text lacks sufficient 
causal information.

2.2 � External lnowledge‑based methods

With the development of the knowledge graph, many researchers begin to apply external 
knowledge to natural language processing. Yang and Mitchell propose KBLSTM (Yang & 
Mitchell, 2017), using external knowledge bases to improve recurrent neural networks for 
machine reading. BP Majumder et  al. Majumder et  al. (2022) inject external knowledge 
into the reply of dialogue models. In terms of event causality extraction, Kruengkrai et al. 
(2017) retrieve descriptions related to a given causality candidate pair from a large number 
of knowledge sources, and input them into the multi-column convolutional neural network. 
Cao et al. propose Latent Structure Induction Network (LSIN) (Cao et al., 2021), learning 
descriptive knowledge and relational knowledge of events respectively through two differ-
ent modules, and inferences the causal relationship of events according to the inductive 
structure. Although previous work has shown that introducing external knowledge can help 
models better identify causal relationships between events, not all external knowledge is 
useful in this task. Besides, there are also differences in the importance of knowledge.



5451Machine Learning (2024) 113:5447–5466	

1 3

2.3 � Character‑level feature‑based methods and POS‑based methods

In terms of character morphological features, the character-level CNN model was first used 
to deal with text classification (Zhang et al., 2015). Chung (Chung et al., 2016) proposes 
a character-level decoder without explicit segmentation; Lee et al. (2017) propose a fully 
character-level Neural Machine Translation (NMT) model, which proved that character-
level CNN could effectively alleviate the problem of Out-Of-Vocabulary (OOV); Chiu and 
Nichols (2016), Santos and Guimarães (2015) use CNN to learn character-level features 
of words; The study of Cherry et al. (2018) show that the character-level model can out-
perform the word-level model with sufficient time and model capacity; R Van Noord et al. 
(2020) combine the character-level model with the context language model, and find that 
adding character-level information can still improve the performance of the model even 
when large pre-trained language models have become very popular. Different from our 
approach, these studies focus on using character-level information to improve the perfor-
mance of language models, ignoring the fact that morphological similarity in words can 
also be used as a feature.

In terms of POS, Fabio (Celli, 2010) adds part-of-speech counting in the process of 
relation extraction, and finds that POS information was useful for predicting the position 
of entities in relation. Cai et al. (2019) improve the accuracy of entity boundary detection 
with the help of POS. For Japanese named entity recognition, M Suzuki et al. Suzuki et al. 
(2018) use POS tagging to fine-tune name entity recognition (NER), to learn a NER model 
with high performance. Although POS information has been used in many NLP tasks, few 
researchers have noticed the association between causal words and POS.

2.4 � Similarities and Differences Between KLPWE and Other Methods

In general, existing causality extraction methods focus on how to mine as much causal 
information as possible from a given text, and it is difficult to discover deep implicit 
causality when the information contained in the text is limited. Therefore, our approach 
introduces external knowledge into this task, thus providing additional information to the 
model. Moreover, unlike other external knowledge-based methods, KLPWE also considers 
the importance of different knowledge. Besides, existing character-level and POS feature-
based approaches have demonstrated that the above features are useful in some NLP tasks. 
Therefore, we introduce them into the event causality extraction task and use these features 
to improve the differentiation of causal event words.

3 � Our KLPWE method

In this section, we will introduce the details of our proposed model named KLPWE. We 
first split a text into a sequence of words, where some words are related to event entities in 
a knowledge graph. Then, as shown in Fig. 3, our model is divided into four main modules: 
(1) Entity embedding module, which forms entity representations through their neighbors 
in a knowledge graph; (2) Static word embedding module, which generates static word 
representations according to the POS and character-level morphological characteristics of 
words. This representation is shared across different sentences. (3) Dynamic word embed-
ding module, which outputs dynamic word representation by a Bert model. The semantic 
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meaning of each word would be different in different sentences. (4) Causal reasoning mod-
ule, which utilizes the combination of entity representations, static word representations, 
and dynamic word representation to construct a more informative token representation. 
The token representation is then fed to a Bi-GRU to evaluate the causal role of each token 
in a sentence. Finally, CRF is adopted to jointly decode the label sequence, to assign cor-
responding causal labels to each word.

The design of KLPWE can incorporate external knowledge graph information, static 
word morphological characteristics, and dynamic word semantic information, simultane-
ously. Thus, it can promote the performance of causal reasoning. Next, we will introduce 
each module of KLPWE in detail.

3.1 � Entity embedding module

Just as humans can infer implicit causal connections between two event entities with 
their prior knowledge, as a large-scale semantic network constructed by connections 
among many entities, the knowledge graph provides a rich source of knowledge for com-
puters to make causal inferences through connections among entities. We use Concept-
Net as the source of external knowledge. As one of the most commonly used knowledge 
graphs, ConceptNet (Speer et al., 2017) contains more than 8 million nodes and 21 mil-
lion edges, and it assigns weights to each edge according to the strength of association 
between nodes. Besides, in this module, we recode the knowledge representation of events 
by using Numberbatch2. Numberbatch is a set of static word vectors based on ConceptNet. 

Fig. 3   The overall framework of our model

2  https://​github.​com/​commo​nsense/​conce​ptnet-​numbe​rbatch

https://github.com/commonsense/conceptnet-numberbatch
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In constructing Numberbatch, the ConceptNet graph is represented as a sparse matrix, and 
Speer et al. (2017) computes the word embeddings of Numberbatch from this sparse matrix 
following the same method as Levy et  al. (2015). Since it utilizes both semi-structured 
knowledge and textual information in ConceptNet, it has some semantic features that may 
not be learned from the trained text corpus alone. The structure of this module is shown in 
Fig. 4.

Specifically, the entity embedding module consists of two parts: relation filtering and 
knowledge encoding.

3.1.1 � Knowledge filtering

In the Knowledge Graph, not all neighbor nodes associated with event entities can be used as 
the source of event-related knowledge representation in causal extraction tasks. Considering 
that in ConceptNet, the weight value of a node is calculated based on the credibility of the 
message, the node with higher credibility has a higher weight. Therefore, we believe that the 
neighbor nodes with higher weights are more able to represent the knowledge associated with 
the event. So, when facing a huge amount of related knowledge, selecting the knowledge with 
a higher weight can better highlight the associated knowledge features of the event.

Thus, for a given event node E, we search for neighboring nodes associated with it 
in ConceptNet and filter these nodes according to the type of relationship between these 
neighboring nodes and E. Neighbor nodes with relationships such as “Antonym" and 
“ExternalURL" with E will be excluded. We only choose “Causes", “HasSubbevent", 
“Capable of" and other types of relations that can clearly indicate causality or can be used 
for causal reasoning. And we retain the top n neighbor nodes 

{

N1,N2,N3,… ,Nn

}

 with the 
highest relevance and their corresponding association weights 

{

W1,W2,W3,… ,Wn

}

.

3.1.2 � Knowledge encoding

After obtaining the neighbors’ information related to the given event, we encode the related 
knowledge representation of this event based on these neighbor nodes and their weights. 
At this stage, we normalize the weight of each neighbor node. The final event-related 
knowledge representation is formed by combining multiple knowledge representation vec-
tors according to their normalized weights. For each neighbor Nj , We define its normalized 
weights according to the following equation:

Fig. 4   Entity embedding module
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Where Wj denotes the weight value of the associated edge between �j and E. After that, we 
calculate the related knowledge representation Fknowl of event node E according to equation 
(2):

where vj is the feature vector of Nj in Numberbatch.

3.2 � Static word embedding module

In the event causality extraction task, our goal is to identify the event words in sentences 
with causal semantic role labels, and distinguish these words from others that are not caus-
ally related. Previous methods usually obtain the contextual features of words directly based 
on the initial semantic vector, but this is not enough to highlight the causal features of words. 
Especially when the context lacks connecting words such as “because" and “cause", which can 
explicitly indicate causality. Since causal words often have similar character-level morphologi-
cal features among themselves, so we extract the character morphological features of the word 
as an enhanced Information representation of it. In addition, since causal events in sentences 
are usually composed of verbs and nouns, there is a certain correlation between word POS and 
causal semantic role labels. So, we add the POS feature as part of the enhanced information 
as well. Combining character morphological features and POS features together to construct 

(1)�j =
Wj

∑n

i=1
Wi

(2)Fknowl =

n
∑

j=1

�jvj

Fig. 5   Static word embedding module
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static word embeddings, to highlight the causal features of words. The structure of this module 
is shown in Fig. 5.

The module consists of two parts: character feature capture and POS feature capture, which 
will be shown in detail in the following subsections.

3.2.1 � Character feature capture

Often these words have the same place in the syntactic structure of the sentence. Learning the 
character morphological representation of these words can highlight the local vocabulary in 
the sentence, and then better help the model learn the common position of causal words in the 
sentence structure.

Previous studies (Santos & Guimarães, 2015; Labeau et al., 2015) have demonstrated the 
effectiveness of CNN in extracting word character-level features. To capture the character fea-
tures of causal words, we use the same convolutional neural network as Chiu et al Chiu and 
Nichols (2016), splitting the words into multiple characters for convolution. In the convolution 
process, to avoid the problem of information loss, we first fill the boundaries of the word. For a 
given word W of length t, we split it by character to obtain the set of characters 

{

c1, c2,… , ct
}

 . 
Subsequently, we look up the character feature vector vi corresponding to each character ci 
from the character-to-character feature mapping table and construct the character feature vec-
tor matrix Rm×d corresponding to W by combining the features of the filled character. Let the 
set of convolution kernels K =

{

k1, k2,… , kn
}

 , then for a local feature f c
i
 , it can be calculated 

by the following equation:

where w ∈ Rm∗d , l is the window length of the convolution kernel ki , b is the bias value, 
f c
i
 denotes the feature obtained by the i-th filter, and f is the activation function Relu. 

We compute the convolution of features for each window that ki slides through, get 
Fc
i
=
{

f c
1
, f c
2
,… , f c

m−l+1

}

 . And then perform maximum pooling to obtain the feature 
F̃c
i
= max

(

Fc
i

)

 corresponding to this convolution kernel. Eventually, for a given word W, its 
character features under the action of n convolutional kernels in the set K of convolutional 
kernels are represented as:

3.2.2 � POS feature capture

In general, the words with causal role labels are usually the core ones in causal sentences. 
Considering that in the event causality extraction task, words such as determiners, gerunds, 
complements, and other modifying and restricting words are relatively less important in the 
sentence and not usually in the key structure of the sentence. So, we can distinguish the POS 
of words to further highlight the influence that each word has on the sentence. Based on the 
above, we build a POS table and initialize the feature vector for each POS in the table. For the 
input sentence, we perform part-of-speech tagging on each word in the sentence to obtain the 
POS of word W. After this, we look up the corresponding POS feature embedding Fp of W in 
the POS table according to its POS.

(3)f c
i
= f

(

w ⋅ vi∶i+l−1 + b
)

(4)Fc =
{

F̃c
1
, F̃c

2
,… , F̃c

n

}

(5)Fword = Fp ⊕ Fc
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3.3 � Dynamic word embedding module

In this module, we combine the related knowledge feature and word information enhance-
ment feature with the dynamic word vector from the pre-trained language model, and get 
the final word representation as the input of the neural network layer.

To perform the feature fusion, we need to convert the input text into the corresponding 
word vector representation. BERT is a pre-trained language model built on the bidirec-
tional transformer. Since BERT is pre-trained with the help of MLM (Masked Language 
Model) and NSP (Next Sentence Prediction) tasks, it has a powerful semantic acquisition 
capability and can effectively solve the problem of multiple meanings of words.

In our model, we use BERT-base to model the text. For each word wi in input sentence 
S =

{

w1,w2,… ,wt

}

 , after BERT encoding, we use the output Fbert
i

 as the word embed-
ding, and fuse it with the previously obtained background knowledge representation and 
word information enhancement representation to obtain the final representation of words:

3.4 � Causal reasoning module

In this module, we predict the causal label with the highest probability for each word in the 
sentence based on the output of the dynamic word embedding module.

Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) is a special kind 
of recurrent neural network structure. It regulates the sequence of information by designing 
a structure called “gates", which can selectively preserve the contextual information in sen-
tences. We use the Gated Recurrent Unit to model the global semantic feature of a word. 
GRU is a variant of the LSTM network, which has a simpler structure and faster train-
ing speed compared with LSTM. For the input semantic feature vector, GRU is calculated 
using the following formula:

where � is the sigmoid activation function, Fi represents the fused feature vector corre-
sponding to the i-th word in the input sentence, Wz,Wr,Wh,Uz,Ur,Uh is the weight matrix 
in GRU, bz and br are the bias variables.

Considering that the cause event and effect event in the sentence is context-dependent, 
the forward GRU can only consider the text before the current word, so we add the back-
ward GRU and use the bidirectional GRU to obtain global semantic features. Finally, the 
output ht of GRU layer is determined by both the forward and backward GRU:

where ��⃗ht, �⃖�ht respectively denotes the output vector after Fi goes through forward GRU and 
backward GRU, and concat denotes the splicing function between vectors.

(6)Fi = Fbert
i

⊕ Fknowl
i

⊕ Fword
i

(7)

zi = 𝜎
(

WzFi + Uzhi−1 + bz
)

ri = 𝜎
(

WrFi + Urhi−1 + br
)

h̃i = tanh
(

WhFi + Uh

(

ri × hi−1
)

+ bh
)

hi = zi × hi−1 +
(

1 − zi
)

× h̃i

(8)ht = concat
(

��⃗ht,
�⃖�ht

)
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In the causal extraction task, there is usually a strong dependency between the causal 
semantic role label of words. For an “Effect" label, there must be a corresponding “Cause" 
label. To use the constraint relationship between causal labels, we take Conditional Ran-
dom Field (CRF) to assign final causal semantic role labels for words in the sentence, and 
obtain a globally optimal label chain for the given input sequence. CRF is a special case of 
Markov random field, which is able to predict the conditional probability distribution of 
the output sequence corresponding to a set of given input sequences. We take the global 
semantic feature vector of sentence S after passing through the Bi-GRU network layer as 
the input of the CRF layer. For the given sentence S =

{

w1,w2,… ,wn

}

 and label sequence 
y =

{

y1, y2,… , yn
}

 , CRF uses the following formula for scoring:

where A is the transfer matrix, Ayi,yi+1
 denotes the transfer score from the label yi to yi+1 , and 

Pi,yi
 denotes the probability that the i-th word is labeled as yi . For input sentence S, we cal-

culated the probability of tag sequence y based on the above scoring formula:

where YS denotes all possible label combinations of S, and ỹ denotes the real label. The 
model is trained by the maximum likelihood function to maximalize p(y ∣ S):

Finally, the highest scoring predicting label sequence will be output by the following 
formula:

4 � Experiments

4.1 � Dataset

We extend the annotation of causal sentences based on SemEval 2010 Task8 (Hendrickx 
et al., 2010). There are some ambiguous annotations in the original annotations of the data-
set. For example, in the sentence “These <e1>germs</e1> cause illnesses ranging from 
common ailments, like the cold and <e2>flu</e2>, to disabling.", “cold" and “flu" are 
specific cases under the concept of “illnesses". The original dataset, however, only labels 
“flu" as the effect. To address the impact of ambiguous annotations on reliability and accu-
racy in the original dataset, we relabled the original dataset and extended it. For these 
ambiguous annotations, we use the word with the highest conceptual level in the sentence 
as the final annotation. In the above example, “illnesses" will be labeled as “Effect". In 
addition, for the annotation of phrase types, we uniformly select the most core word in the 
phrase as the annotation result. Finally, our corpus consists of 3000 sentences with 1331 

(9)score(S, y) =

n
∑

i=0

Ayi,yi+1
+

n
∑

i=1

Pi,yi

(10)p(y ∣ S) =
escore(S,y)

∑

ỹ∈YS
score(S, ỹ)

(11)log(p(y ∣ S)) = score(S, y) − log

(

∑

ỹ∈YS

e score (S,ỹ)

)

(12)y∗ = argmax
ỹ∈YS

score(S, ỹ)
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causal instances. We divide our dataset into train set, validation set, and test set by the ratio 
of 4.5:1:1.

4.2 � Evaluation metrics

Same as the previous method, we use Precision, Recall, and F1-score as evaluation metrics, 
which can be calculated by the following formulas:

Where TP is True Positive, denotes the predicted value is true and the actual value is true. 
FP is False Positive, which denotes the predicted value is true and the actual value is false. 
FN is False Negative, which denotes the predicted value is false and the actual value is 
true.

4.3 � Experimental settings

We use the “bert-base-uncased” model under BERT to get the embedding representation of 
input text. Set the batch size to 8, the learning rate to 1 × 10−5 , the epoch of training to 50, 
and the hidden size layer of GRU to 256. And based on the average length of sentences in 
the dataset, the maximum length of sentences is set to 64. In the entity embedding module, 
we keep the top 10 neighbor nodes with the highest relevance and set the dimension of 
background knowledge embedding to 300. In the static word embedding module, we use 
CNN with 128 convolution kernels, set the window size of convolution to 3, and obtain 37 
different word properties based on NLTK’s word annotation library.

4.4 � Results and analysis

We compared our model with baselines and conducted ablation experiments as a way to 
demonstrate the effectiveness of our work. Each experiment has been performed five times, 
and then evaluation metrics were calculated based on multiple experiments. We selected 
IDCNN, CLSTM, and other mainstream methods for comparison:

IDCNN-CRF (Strubell et al., 2017): The model uses Iterated Dilated Convolutions to 
replace Bi-LSTM, which allows convolutions of fixed depth to run in parallel throughout 
the document. The Iterated Dilated Convolutions significantly improves the speed of train-
ing while maintaining the same accuracy as Bi-LSTM.

CLSTM-BiLSTM-CRF (Lample et al., 2016): The model uses a bidirectional LSTM 
as a character encoder (Char LSTM) to generate word embeddings deriving from char-
acters, which are connected to pre-trained word vectors in the word table as input to the 
lower-level model. The bidirectional LSTM encoder enables the model to benefit from 
both word and character-level representations.

(13)Precision =
TP

TP + FP

(14)Recall =
TP

TP + FN

(15)F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall
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CCNN-BiLSTM-CRF (Ma et al., 2016): Similar to the previous model, but the differ-
ence is that this model uses CNN as a character encoder (Char CNN) to learn word features 
instead of CLSTM.

BERT-BiLSTM-CRF: This is a widely used model in sequence annotation tasks and 
extended on the basis of Huang et al. (2015). The model uses BERT as a pre-trained model 
to obtain dynamic word vectors based on contextual contexts as input to the lower-level 
model, which can handle the presence of multiple meanings of a word.

Table 1 shows the experimental results of different models for the causal extraction task. 
We can find that our model has achieved an F1 score of 0.8175 in test sets, outperforming 
the other models, thus confirming the validity of our work. Meanwhile, to verify the role of 
the entity embedding module and the static word embedding module, we conduct ablation 
experiments on our model. We test the performance of our model in the absence of entity 
embedding module and static word embedding module respectively. The final results show 
that adding both modules has improved the performance to different degrees, and both 
achieved better results than the baseline model. Moreover, using both modules together can 
further improve the model’s performance, thus verifying the effectiveness of our proposed 
module for the event causality extraction task.

4.5 � The effect of causal connection words

To explore the impact of causal connection words in sentences for model extraction perfor-
mance, we select the sentences with causal instances in the test set and manually classify 
these sentences into explicit causal sentences with causal connection words and implicit 
causal sentences without causal connection words. Finally, we obtain 176 explicit causal 
sentences and 52 implicit causal sentences. We only use the selected explicit and implicit 
causal sentences as the test set for the experiments in this section, and test the performance 
of different models in extracting explicit and implicit causal relationships between events, 
respectively, and the results are shown in FIG.6.

We observe the following: (1) Compared with extracting explicit causality, the per-
formance of each model decreases to different degrees when extracting implicit causal-
ity, which indicates that the lack of causal correlation words brings difficulties in min-
ing the deep implicit causality in sentences. (2) Compared with the baseline model, our 

Table 1   The performance of 
different models on the test set

Best results of each column are highlighted in bold
KLPWE w/o word and KLPWE w/o knowl respectively denote mod-
els without the static word embedding module and the entity embed-
ding module

Model Precision Recall F1

IDCNN-CRF 0.7560 0.5960 0.6665
CNN-BiLSTM-CRF 0.7457 0.7030 0.7237
CLSTM-BiLSTM-CRF 0.7757 0.7592 0.7674
BERT-BiLSTM-CRF 0.7893 0.8263 0.8073
KLPWE w/o word 0.8123 0.8175 0.8149
KLPWE w/o knowl 0.8040 0.8210 0.8124
KLPWE 0.8073 0.8280 0.8175
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model achieves the best results on both tasks, especially getting a larger improvement in 
the implicit causality extraction task. It achieves an improvement of 0.38% on the explicit 
causality extraction task and 2.24% on the implicit causality extraction task. It is confirmed 
that our method can effectively alleviate the problem of missing causal correlation words 
in the sentence, and provide more information on causal clues for the causality extraction 
task.

4.6 � The effect of neighbor node counts

To investigate the effect of the number of relevant neighbor nodes on model extraction 
results, we select the top 3, 5, 10, 15, and 20 neighbor nodes with the highest relevance 
ranking to event nodes as the background knowledge sources for knowledge representation 
encoding, and conduct comparative experiments. Fig. 7 shows the experimental results.

In Fig. 7, we can observe that the F1 score of our model increases with the number of 
selected neighbors, and reaches the highest score when the number of selected neighbor 
nodes increases to 10. As the number of selected neighbor nodes continues to increase, the 
F1 score starts to show a decreasing trend. When the number of selected neighbor nodes 

Fig. 6   The performance of different models in extracting explicit and implicit causality tasks

Fig. 7   F1 scores with the different numbers of neighbor nodes
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reaches 20, the score decreases instead by 0.24% compared with the benchmark model with 
no related knowledge representation. We have analyzed this, the reason is probably that the 
small number of relevant neighbor nodes limits the scope that event-related knowledge can 
cover, leading to a less comprehensive knowledge representation generated. So, a proper 
number of neighbor nodes can contribute to providing a more adequate representation of 
event-related knowledge features. When selecting too many neighbor nodes, those related 
knowledge features with a high association will be diluted, which results in lower quality of 
the generated event knowledge representation. These excessively-diluted related knowledge 
features not only make it difficult to represent the relevant knowledge of the event, but even 
bring negative effects to the model.

4.7 � Analysis of static word embedding module

To further analyze the effect of the static word embedding module on the representation of 
causal semantic features, we divide the test set into Short (0 < l < 15) , Mid (15 ≤ l < 25) , 
and Long (25 ≤ l) according to the length l of the sentence, with a ratio of roughly 2:2:1. 
And we conduct experiments on the segmented test set respectively based on baseline 
model (BERT-BiLSTM-CRF), model without the static word embedding module (KLPWE 
w/o word), and the final completed model (KLPWE). As shown in Fig. 8, on each test set 
with different sentence lengths, models using the static word embedding module obtained 
a certain degree of improvement compared with the baseline model. It is worth noting 
that compared with the model without the static word embedding module, the F1 score 
of the completed model only improved by 0.17% on the short-sentence test set. However, 
the improvement of the completed model reached 0.4% and 0.95% on the mid and long-
sentence test sets respectively. This demonstrates that in the case of longer sentences, the 
model with static word embedding module can effectively highlight important words with 
causal relevance among numerous words, which verifies the effectiveness of this module in 
enhancing the representation of word causal semantic features.

Fig. 8   Results on test sets of different lengths
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4.8 � Case study

In Table 2, we present some representative examples to illustrate the differences between 
our proposed approach and other approaches. For each example, we show the input sen-
tence and the causal event words contained in the sentence in the first line. The remaining 
lines show the causal extraction results of our model and other models.

Sentences 1 and 2 are examples of explicit causality. From this, we observe that explicit 
causal correlation words can help to extract causal relationships to a certain extent. Most 
methods can identify explicit causal relationships when the distance between events is 
close. However, when explicit causal relationships are far apart, even if “caused" can serve 
as an indicator of causality, methods that do not use pre-trained language models cannot 
correctly extract the causal relationships. We analyzed this situation, and the reason may 
be that pre-trained language models can dynamically generate word vectors based on the 
sentence context, resulting in more accurate semantic representations of words. Therefore, 

Table 2   Result of causality extraction, where the correct part is shown in underlined italic, and the wrong 
part is shown in bold italic. We use bold to highlight cause-and-effect words in sentences

Sentence 1 Merlin Lindeman (animal sciences) then pooled 
their expertise to
show that the caterpillars caused the disease.

True Causal Labels
{

Cause ∶ caterpillars,Effect ∶ disease
}

IDCNN
{

Cause ∶ None,Effect ∶ disease
}

CNN-BiLSTM-CRF
{

Cause ∶ caterpillars,Effect ∶ disease
}

CLSTM-BiLSTM-CRF
{

Cause ∶ caterpillars,Effect ∶ disease
}

BERT-BiLSTM-CRF
{

Cause ∶ caterpillars,Effect ∶ disease
}

KLPWE
{

Cause ∶ caterpillars,Effect ∶ disease
}

Sentence 2 Landslides caused the majority of the deaths.

True Causal Labels
{

Cause ∶ Landslides,Effect ∶ deaths
}

IDCNN
{

Cause ∶ Landslides, deaths,Effect ∶ None
}

CNN-BiLSTM-CRF
{

Cause ∶ None,Effect ∶ deaths
}

CLSTM-BiLSTM-CRF
{

Cause ∶ Landslides,Effect ∶ majority, deaths
}

BERT-BiLSTM-CRF
{

Cause ∶ Landslides,Effect ∶ deaths
}

KLPWE
{

Cause ∶ Landslides,Effect ∶ deaths
}

Sentence 3 Methadone gives a buzz too, but it’s the most 
effective way to reel in
heroin addicts into treatment and real life.

True Causal Labels
{

Cause ∶ Methadone,Effect ∶ buzz
}

IDCNN {Cause ∶ None,Effect ∶ None}

CNN-BiLSTM-CRF {Cause ∶ addicts,Effect ∶ None}

CLSTM-BiLSTM-CRF {Cause ∶ None,Effect ∶ None}

BERT-BiLSTM-CRF
{

Cause ∶ reel,Effect ∶ buzz, treatment
}

KLPWE
{

Cause ∶ Methadone,Effect ∶ buzz
}
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compared to methods that do not use pre-trained language models, they can achieve better 
results.

Sentence 3 is an example of implicit causality. From this, we observe that the lack of 
explicit causal correlation words in sentences presents a significant challenge for learning 
implicit causal relationships. In this example, only KLPWE can correctly extract the under-
lying causal relationships between events when compared with other models.

5 � Conclusion

In this paper, we propose a method for event causality extraction based on external event 
knowledge learning and polyhedral word embedding. To alleviate the problem that the 
model has difficulty in discovering implicit causal associations between events in the 
absence of causal clues in the text, we generated related knowledge representation for 
events through external knowledge. In addition, to address the lack of causal extraction 
task-related features in semantic representations of words, we performed an information 
enhancement representation of the word to highlight the causal-related features. The exper-
imental results verified the effectiveness of our proposed method.

In future work, we will try to extract multiple causal relationships simultaneously from 
sentences, and extend the extraction of causality from one causal pair to multiple causal 
pairs. Furthermore, the event-related knowledge can be further extended based on nodes 
on the multi-hop paths in the knowledge graph. Therefore, investigating how to utilize the 
relevant knowledge on multi-hop paths for causality extraction is also a potential direction 
for future research.
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