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Abstract
Graph-based fraud detection methods have recently attracted much attention due to the rich 
relational information of graph-structured data, which may facilitate the detection of fraud-
sters. However, the GNN-based algorithms may exhibit unsatisfactory performance faced 
with graph heterophily as the fraudsters usually disguise themselves by deliberately mak-
ing extensive connections to normal users. In addition to this, the class imbalance problem 
also causes GNNs to overfit normal users and perform poorly for fraudsters. To address 
these problems, we propose an Imbalanced Graph Structure Learning framework for fraud 
detection (IGSL for short). Specifically, nodes are picked with a devised multi-relational 
class-balanced sampler for mini-batch training. Then, an iterative graph structure learn-
ing module is proposed to iteratively construct a global homophilic adjacency matrix in 
the embedding domain. Further, an anchor node message passing mechanism is proposed 
to reduce the computational complexity of the constructing homophily adjacency matrix. 
Extensive experiments on benchmark datasets show that IGSL achieves significantly better 
performance even when the graph is heavily heterophilic and imbalanced.

Keywords Fraud detection · Graph structure learning · Homophily · Heterophily

1 Introduction

With the booming of the Internet and telecommunication industries, various fraud activi-
ties have emerged in the fields of finance (Wang et al., 2019; Zhong et al., 2020), social 
security (Van Vlasselaer et al., 2017), and healthcare (Zhang et al., 2022), leading to user 
privacy breaches, personal property losses, and so on. Since frauds often occur in graph-
like data such as the Internet, graph-based methods are widely used to detect fraudsters. 
Compared with traditional graph-based methods, GNN-based methods leverage the rich 
feature information and structural information of fraudsters, and thus gain more and more 
attention.
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Although these GNN-based fraud detection methods have made much progress, there 
still exist the following two main challenges.

Graph Heterophily. Generally, GNNs are essentially established on the homo-
phily assumption that linked nodes tend to share similar features or have the same 
labels(Hamilton et  al., 2017; Abu-El-Haija et  al., 2019), which is exactly the oppo-
site of fraud detection (Liu et  al., 2021). Specifically, as confirmed by some 
researchers(Kaghazgaran et  al., 2019; Ge et  al., 2018), fraudsters deliberately make 
extensive connections with normal users and try to prevent contact with fraudsters to 
camouflage themselves, leading to an increase in graph heterophily in the local social 
network. To illustrate this phenomenon with statistics, we calculate the heterophily 
ratio of heterophilic edges to all adjacent edges of each fraudster in different relational 
subgraphs (i.e., meta-paths) from two opinion fraud detection datasets Amazon and 
Yelpchi (see Section  5.1 for details), and calculate the proportion of the number of 
fraudsters with the corresponding heterophily ratio to all the fraudsters in the whole 
graph from low to high. As Fig. 1 shows, these relational subgraphs, except the rela-
tion R-U-R of YelpChi, include a large number of fraudsters whose heterophily ratio 
is very high. Specifically, more than 80% of the fraudsters on Amazon have more than 
50% heterophily; more than 70% of the fraudsters on the relation R-T-R and the rela-
tion R-S-R of Yelchi have more than 50% heterophily ratio. It is worth noting that 
more than 35% of fraudsters on Amazon have 100% heterophilic edges, which means 
that when simply aggregating their neighbor attributes based on GNNs, the fraudster’s 
features will be completely swamped inside the normal users and will be difficult to 
identify correctly. To address this problem, several improved GNN-based algorithms 
have been proposed and they mainly fall into three directions, namely neighbor fil-
tering-based methods (Dou et  al., 2020; Liu et  al., 2021), neighbor extension-based 
methods (Pei et  al., 2019; Chien et  al., 2020) and graph partitioning-based methods 
(Manaskasemsak et al., 2021; Corizzo & Slenn, 2022; Xu et al., 2021). However, it is a 
significant challenge to set personalized neighborhood sizes or fraud subgraphs for the 
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Fig. 1  Evidence of graph heterophily. The x-coordinate represents the graph heterophily ratios and y-coor-
dinate represents the proportion of fraud nodes with corresponding graph heterophily ratios." NN" denotes 
a fraud node with no neighbors
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different fraudsters. Meanwhile, fraudsters excluded from the neighborhood or fraud 
subgraph are ignored for aggregation, resulting in valuable information being lost.

Class Imbalance. Another challenge is the class imbalance problem. In general, 
fraudsters usually make up a fewer proportion than normal users, showing a highly 
skewed distribution. As shown in Table 2, in the Amazon dataset, 90.5% of the nodes 
are normal users while only 9.5% are fraudsters and in the Yelpchi dataset, 85.5% 
of the nodes are normal users while only 14.5% are fraudsters. The class imbalance 
problem poses a challenge to existing GNN-based methods because the majority of 
class may dominate the loss function of the GNN, making the trained GNN overfit the 
majority class (i.e., the normal users) and fail to predict accurately for the minority 
class (i.e., the fraudsters). Unfortunately, considering that a fraudster may still have the 
majority of his/her connections to the normal users, the class imbalance exacerbates 
the graph heterophily with more difficulties for identification. Though some recent 
works (Liu et al., 2021; Shi et al., 2020; Zhang et al., 2021) have noticed similar chal-
lenges, their solutions either use a single-relational balanced sampler or an imbalanced 
distribution-oriented loss function, both of which fail to consider differences in the 
prevalence of nodes under different relationships, making them difficult to apply to the 
problem of fraud detection under multiple relationships.

To address the above challenges, we propose an Imbalanced Graph Structure Learn-
ing framework (IGSL) for fraud detection. Specifically, IGSL is composed of four 
module layers: (1) a multi-relational class-balanced sampler layer. To alleviate the 
effects of class imbalance, a multi-relational class-balanced nodes sampler is designed 
with the consideration of nodes’ prevalence (i.e., degree) under different relationships 
and corresponding label class frequency; (2) a graph-independent embedding layer, 
which is used to roughly pre-process the raw graph to alleviate the graph heterophily 
by a structure-independent embedding; (3) an iterative graph structure learning layer. 
We introduce an iteration metric within the graph convolution framework to iteratively 
construct the global homophilic adjacency matrix, making homophilic nodes con-
nected and heterophilic nodes disconnected from each other; (4) an embedding aggre-
gation layer, which combines the intermediate embeddings to be the final representa-
tion of nodes. We summarize the main contributions of our paper as:

• We formulate the graph-based fraud detection problem as an imbalanced heteroph-
ily graph node classification task and propose an imbalanced graph structure learn-
ing framework to deal with the heterophily and class imbalance problem on graphs.

• An iterative deep graph structure learning method that iteratively constructs the 
global homophilic adjacency matrix is further developed to make the reconstructed 
graph structure and node embeddings optimal for fraud detection. A multi-rela-
tional class-balanced sampler is proposed to reinforce the learning of the minority 
class.

• Experiments on two public datasets demonstrate that IGSL outperforms the state-
of-the-art baselines.

The rest of our paper is organized as follows. Section 2 reviews relevant studies in the 
literature. Section 3 details the definition and problem statement. Section 4 describes 
the model design of our method. Section  5 presents the experimental setup and the 
corresponding results. Finally, in Sect. 6, we summarize the paper and discuss future 
work.
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2  Related work

Graph-based fraud detection aims at identifying fraudsters from normal users in graph-
structured data. Due to the excellent representation capabilities of GNNs, GNNs are 
widely used in fraud detection. However, classic GNN-based fraud detectors are vul-
nerable to topology inconsistency and class imbalance problems, and current scholars 
are dedicated to designing robust GNNs to defend against the problems in graph data. 
GraphConsis (Liu et  al., 2020) is a pioneer work concerning topology inconsistency 
in fraud detection by implementing dissimilar neighbors filters for nodes based on a 
pre-defined threshold. CARE-GNN (Dou et al., 2020) adopts a reinforcement learning-
based module to extend the neighbor filtering operation to make the thresholds adap-
tive. PC-GNN (Liu et  al., 2021) adopts a label-balanced sampler and neighbors over-
sampling/under-sampling strategy to solve the class imbalance problem and topology 
inconsistency problem. FRAUDRE (Zhang et  al., 2021) adopts an imbalance-oriented 
classification module to solve the class imbalance problem in fraud detection. AO-GNN 
(Huang et al., 2022) adopts AUC-maximization to resolve the label-imbalance problem 
for GNNs. Most of the mentioned approaches adopt the simple neighbor filtering-based 
method or neighbor extension-based method to address the hererophily problem on 
graphs. Different from them, we formulate the fraud detection problem as an imbal-
anced graph structure learning task and learn a task-relevant graph structure and node 
representation on the imbalanced graph to yield optimal results compared to the above 
methods.

3  Definition and problem statement

In this section, we first give the conception of homophily and heterophily, imbalanced 
graph, and multi-relational imbalanced graph. Then, we formulate the graph-based fraud 
detection problem. Furthermore, we summarize important symbols, as shown in Table 1.

3.1  Definition

Definition 1 (Homophily and Heterophily): For a graph, an edge (connection) is homo-
philic if the two nodes connected by an edge belong to the same class. Otherwise, this edge 
is heterophilic. A graph consisting of homophilic edges is called a homophilic graph, and a 
graph consisting of heterophilic edges is called a heterophilic graph. In particular, a fraud 
graph has both homophilic and heterophilic edges.

Definition 2 (Imbalanced Graph): Given a series of labels Y = {y1, y2, ..., yi} in graph G , 
where i denotes the total number of label classes. We use class imbalance ratio � to meas-
ure the extent of class imbalance.

where maxi(|yi|) and mini(|yi|) return the maximum and minimum class size over all i 
classes, respectively. If 𝜌 > 1 , the class with the maximum size is called the majority class, 

(1)� =
maxi(|yi|)
mini(|yi|) ,
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and the class with the minimum size is called the minority class. If � is far larger than 1, we 
call G an imbalanced graph, otherwise, the graph is balanced.

Definition 3 (Multi-relational Imbalanced Graph): Let G = (V,E,A,X,Y) be an undi-
rected multi-relational graph. Specifically, V = {v1, ..., vN} denotes a set of nodes; 
E = {E1, E2, ..., ER} is the edges set of R relationships, where er

i,j
∈ Er indicates that there is 

an edge between node i and j under the r-th relationship; A = {A1,A2, ...,AR} denotes the 
responding adjacency matrix of relationships where Ar

i,j
= 1 if er

i,j
∈ Er ; X = {x1, x2, ..., xN} 

is the attribute vector of node and xi ∈ ℝ
d ; Y = {y1, y2, , ..., yN} is the label set in which 

yv ∈ {0, 1} , where 1 represents fraudster and 0 represents normal user, if the class imbal-
ance ratio � of G is far larger than 1, we call G a multi-relational imbalanced graph.

Table 1  Glossary of notations

Symbol Definition

G ; V ; E ; A ; X Graph; Node set; Relation set; Adjacency matrix set;
Node attribute vector set

yv ; Y Label for node v; Node label set
maxi ; mini ; � Maximum class size; Minimum class size; Class imbalance ratio
r; R Relation; Total number of relations
l; L GNN layer number; Total number of layers
Vtrain ; Vp Nodes in the training set; Set of picked nodes
Dr

v
Degree of node v under relation r

LF(Y(v)) Frequency of labels for the class Y(v)
Er Edge under relation r
Ar Adjacency matrice under relation r
W1 Learnable weight matrix for MLP
� Activation function
f i Soft assignment matrix
er
i,j

Edge between nodes vi and vj under relation r
ēr
i,j

Edge between nodes vi and vj under relation r after edge pruning
ẽr
i,j

Edge between nodes vi and vj under relation r after
graph-independent embedding

�− ; �+ Threshold of pruning edges; Threshold of oversampling

Ãr
Adjacency matrix under relation r after
graph-independent embedding

A
(l)
r,t

Adjacency matrix under relation r at the l-th layer
in t-th iteration

H(l)
r,t

Node embedding under relation r at the l-th layer in t-th iteration

Γ(l)
r

K-head weighted cosine similarity function

W(l)
r

Learnable weight matrix under relation r in l-th layer

K(l)

r,t
Node-Anchor homophilic matrix under relation r at the l-th layer
in t-th iteration

� Threshold of dynamic stopping
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3.2  Problem statement

Definition 4 (Graph-based Fraud Detection): Given a multi-relational imbalanced graph 
G = (V,E,A,X,Y) defined in definition 3 where each node has a ground truth label of 
fraudster or normal user. In this study, the graph-based fraud detection is considered as 
a transductive semi-supervised binary classification problem on graph G where both the 
training and testing samples are accessed during the training phase. The graph-based 
fraud detector is trained based on the labeled node information and the graph consisting of 
homophilic edges and heterophilic edges under multiple relationships. The trained model is 
then used to predict the probability of suspiciousness of unlabeled nodes.

4  Methodology

We first give a brief overview of our approach and then specify the proposed novel method, 
including a detailed description of each component.

4.1  Overview

In this section, we give details of the proposed framework IGSL. An illustration of the pro-
posed framework is shown in Fig. 2. IGSL is composed of four components: a multi-rela-
tional class-balanced sampler module, a graph-independent embedding module, an itera-
tive graph structure learning module, and an aggregation module. Next, we give details of 
each component.

4.2  Multi‑relational class‑balanced sampler

We devise a multi-relational class-balanced sampler to pick nodes for training. The key idea 
lies in incorporating node prevalence in different relationships and class frequency into the 

Fig. 2  The figure demonstrates the framework of IGSL. The example graph has seven nodes, the cyan lines 
indicate heterophilic connections and the dark lines indicate homophilic connections. The nodes in red are 
fraudsters and blue are normal users. Firstly, a graph-independent embedding module using a multi-layer 
perceptron to roughly adjust the original structure. Secondly, an iterative graph structure learning module 
obtains the global homophilic adjacency matrix for fraud detection by performing iterative similarity learn-
ing on the node embeddings. Finally, nodes under different relationships are connected to obtain the final 
representation
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sampling process. For node samplers, those of the minority class with more prevalence have a 
higher sampling probability than the majority class with less prevalence.

Formally, G = (V,E,A,X,Y) is a multi-relational imbalanced graph, where 
A = {A1,A2, ...,AR} denotes adjacency matrix of relationships. For node v ∈ V , its sam-
pling probability pr,v under relation r is defined as Eq.(2)

where Dr,v =
∑

i∈Nr,v
Ar,v,i is the degree of node v under relation r which denotes the preva-

lence of node, Nr,v denotes the neighbors of v under relation r, and LF(yv) denotes the fre-
quency of labels for the class yv . Note that, Dr,v means that more “popular” nodes are more 
likely to selected, and LF(yv) means the more “rare” nodes are more likely to be selected. 
Therefore, the set of picked nodes Vp is marked as:

where Vtrain denotes the training set, and Pick denotes sampling function.

4.3  Graph‑independent embedding

According to Wu et al. (2019), most of the graph heterophily in fraud detection is caused 
by the extensive illegitimate connections that fraudsters intentionally establish with nor-
mal users. A straightforward approach is to remove heterophilic edges and add homophilic 
edges using a structure-independent approach to the original structure, thus avoiding pit-
falls. We apply a graph-agnostic multi-layer perceptron (MLP) to extract class-aware infor-
mation from the original node attributes:

where xv ∈ X  is the attribute vector of node v, W1 ∈ ℝ
d×C is the learnable weight matrix 

for MLP, � is the activation function, and hv denotes the output of the final layer of MLP. 
We can obtain the soft assignment matrix f v ∈ ℝ

1×C as follows:

 where f v,c ∈ f v denotes the probability that node v belongs to class C. Let all parameters 
of the MLP be �m , then the optimal �∗

m
 is obtained by minimizing the loss of the following 

predicted labels by the MLP:

Since f v is under the guidance of partially known labels, it can capture class-aware infor-
mation in attributes. Then, based on the matrix f v , we can calculate the probability that 
two nodes vi and vj belong to the same class:

Then we prune edges whose scores are below a threshold �− under all relationships:

(2)pr,v ∝
Dr,v

LF(yv)
,

(3)Vp =
∑

v∈Vtrain

∑R

r=1
Pick(pr,v),

(4)hv = �(xvW1),

(5)f v = sof tmax(hv),

(6)�∗
m
= argmin

�m

Lpre = argmin
�m

−
∑
v∈Vp

[yvlogf v + (1 − yv) log(1 − f v)].

(7)Sij = f i ⋅ f
T
j
.
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where er
i,j
∈ Er is an edge between node i and j under the r-th relation. Inspired by PC-

GNN(Liu et  al., 2021), we pay more attention to the fraud nodes. On the one hand, we 
remove the heterophilic edges between in the training set, and on the other hand, we over-
sample the neighbor of fraud nodes. We set a threshold �+ to control the oversampling, and 
fraud nodes with high similarity create links:

where y(i) denotes the label class of node i. It is worth noting that the adjacency matrix Ãr 
after graph-independent embedding responding to ẽr

i,j
 is estimated based on node features, 

which are not constrained by the heterophily of networks.

4.4  Iterative graph structure learning

Although the heterophily of the graphs is somewhat alleviated by the graph-independent 
embedding layer, it is still not possible to eliminate the heterophily as the structural 
features of the user are ignored. Motivated by IDGL (Chen et al., 2020), we define the 
problem as an iterative graph structure learning process, learning a global homophilic 
adjacency matrix that is optimal for fraud detection.

Specifically, we use a GNN to learn t-th iteration node representations H(l)
r,t

 under 
relation r in t-th iteration by utilizing the message passing scheme to aggregate informa-
tion from nodes’ neighbors:

where Ãr,ini = Ãr is the adjacency matrix of the initial graph obtained in graph-independent 
embedding layer, Ã(l)

r,t−1
 is the t-1-th homophilic adjacency matrix learned under relation r 

in layer l, H(l)

r,t−1
 is the t-1-th iteration node embedding under relation r in layer l, H(0)

r,0
= X  

is the raw attribute vector of node, and � is a weight to balance the trade-off of initial graph 
structure and the homophilic adjacency matrix learned. Specifically, we choose the graph 
convolutional network (GCN) as the basic GNN. For a relation r, we perform metric learn-
ing on the node embedding and obtain homophilic adjacency matrix Ã(l)

r,t by the learned 
embedding similarity, where the homophily probability between nodes i and j is obtained 
by:

where �(l)
r
∈ [−1, 1] is the threshold that controls the sparsity, hr,t,i ∈ Hr,t is the embedding 

of node i under relation r in t-th interation, and Γ(l)
r

 is a K-head weighted cosine similarity 
function defined as:

(8)ēr
i,j
=

{
er
i,j

Sij > 𝜏−

0 Sij < 𝜏−,

(9)�er
i,j
=

⎧
⎪⎨⎪⎩

0 y(i) ≠ y(j)

1 y(i) = y(j) = 1 and Sij > 𝜏+

ēr
i,j

otherwise,

(10)H(l)
r,t

= �Aggr(Ãr,ini,H
(l)

r,t−1
) + (1 − �)Aggr(Ã

(l)

r,t−1
,H

(l)

r,t−1
),

(11)Ã(l)
r,t[i, j] =

{

Γ(l)
r (h(l)r,t,i, h

(l)
r,t,j) Γ(l)

r (h(l)r,t,i, h
(l)
r,t,j) ≥ �(l)r

0 otherwise,
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where ⊙ denotes the Hadamard product, W(l)
r

 is the learnable weight matrix that weights 
the importance of different dimensions of the feature vectors under relation r in l-th layer.

Node-anchor homophilic matrixHowever, Eq. (12) calculates the similarity score for all 
pairs of graph nodes under all relationships in all iterations with a computational com-
plexity of O(N2 ∗ r ∗ t ∗ K) , which is difficult to apply to fraud detection in large graphs. 
Inspired by anchor-based methods, we design an anchor-based similarity learning which 
learns a node-anchor matrix K ∈ ℝ

(N×s) with a computational complexity of O(ns) where 
s is the number of anchors. Specifically, we randomly select a set of s ∈ V anchors nodes, 
where the number of s is usually much smaller than N. Thus, Eq. (11) can be rewritten as 
follows:

where k is the anchor node. Similarly, we adopt a threshold �(l)
r
∈ [−1, 1] to control the 

sparsity of the node-anchor graph K(l)
r,t

.
Node-anchor message passing According to the stationary Markov random walk theory, 

the homophilic adjacency matrix A(l)

r,t−1
can be fully recovered by the node-anchor homo-

philic matrix K(l)

r,t−1
.

Further, we decompose graph embedding based on the learned adjacency matrix into 
two steps to reduce the computational complexity. 1): compute the message propagation 
using the anchor-node matrix K(l)T

t−1
 and 2): compute the message propagation using the 

node-to-anchor matrix K(l)

t−1
 . Thus, the GCN(A(l)

r,t−1
,H

(l)

r,t−1
) could be explained as follows,

where Δkk =
∑n

i=1
K

(l)

ik
 and Λii =

∑s

k=1
K

(l)

ik
.

Dynamic stopping strategy we define the dynamic stopping strategy for graph structure 
learning as:

where | ⋅ |F denotes the Frobenius norm of a matrix, � is the threshold of dynamic stopping. 
This means that graph structure learning converges in the two most recent iterations and 
indicates that an optimal homophilic adjacency matrix for fraud detection is found. After 
dynamic stopping, the current node embeddings H(l)

r,t
 are used for the fraud detection.

4.5  Embedding aggregation

After the dynamic stopping, we have obtained the optimal node embedding H(l)
r
∈ ℝ

(N×dl) at 
layer l under relation r, where r = 1, ...R , l = 1, ...L and L is the number of layers. We adopt 

(12)Γ
(l)

r,ij
=

1

K

K∑
p=1

cos(W(l)
r,p

⊙ hr,t,i,W
(l)
r,p

⊙ hr,t,j),

(13)(l)
r,t[i, k] =

{

Γ(l)
r (h(l)r,t,i, h

(l)
r,t,k) Γ(l)

r (h(l)r,t,i, h
(l)
r,t,k) ≥ �(l)r

0 otherwise,

(14)
H

(l)

r,t−1
= Λ−1K

(l)T

r,t−1
H

(l)

r,t−1

GCN(A
(l)

t−1
,H

(l)

r,t−1
) = Δ−1K

(l)

r,t−1
H

(l)

r,t−1
,

(15)
|K(l)

t
−K

(l)

(t−1)
|2
F

|K(l)
t
|2
F

> 𝛿,
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concatenation to aggregate the embeddings of nodes under different layers and different rela-
tionships, which is illustrated as Eq. (16) and Wl ∈ ℝ

(dl×(dl−1+R⋅dl)) is the learnable weight 
matrix.

The loss function of fraud detection is defined as follows:

(16)H(l) = ReLU(W(l)(H(l−1) ⊕H(l) ⊕H
(l)

2
⋯H

(l)

R
)).

(17)
LGNN = −

∑
v∈Vp

[yv log zv + (1 − yv) log(1 − zv)]

zv = MLP(H(l)
v
),

Algorithm 1  Learning strategy of the IGSL
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where LGNN refers to the cross-entropy loss between the prediction result and the ground 
truth, MLP refers to the multi-layer perceptron, yv is either equal to 1 or 0 for the ground 
truth, and zv refers to the identification probability for the H(l)

v
 outputted by MLP.

The overall loss function of model is formulated as Eq. (18), where � is weights to bal-
ance the importance of different losses, ‖�‖2 is the regularization term to avoid over-fitting, 
and � is the regularization coefficient.

The overall training algorithm is summarized in Algorithm 1.

5  Experimental evaluation

In this section, we investigate the effectiveness and robustness of the proposed IGSL 
model for graph-based opinion fraud detection tasks. Our goal is to answer the following 
questions.

• RQ1: Does IGSL outperform the state-of-the-art methods for graph-based fraud detec-
tion?

• RQ2: Does IGSL benefit from all four modules?
• RQ3: How robust is IGSL on different heterophily and class-imbalance rates?
• RQ4: How efficient is IGSL to run?
• RQ5: How does the hyperparameters affect the performance of IGSL ?

5.1  Experimental setup

Dataset. We adopt two multi-relational opinion fraud detection datasets Amazon (McAu-
ley & Leskovec, 2013) and YelpChi (Rayana & Akoglu, 2015) to validate the performance 
of IGSL. The statistical information of these two datasets is shown in Table 2. The Amazon 
dataset includes both legitimate and fraud reviews under the musical instrument category. In 
the Amazon dataset, nodes are users with 25-dimensional features and three manually defined 
relational graphs (i.e., meta-paths) are contained: 1) Relation U-P-U connects users who have 
reviewed more than one same product; 2) Relation U-S-U connects users who have more 

(18)LModel=LGNN+�Lpre+
�

2
‖�‖2.

Table 2  Statistics of multi-relational opinion fraud detection datasets

Dataset Node (Fraudster%) � Relations Avg.Label
Similarity

Avg.feature
Similarity

Amazon 9.9 U-P-U 0.19 0.61
11,944 U-S-U 0.04 0.64
(9.5%) U-V-U 0.03 0.71

ALL 0.05 0.65
YelpChi 5.8 R-U-R 0.90 0.83

45,954 R-S-R 0.05 0.77
(14.5%) R-T-R 0.05 0.79

ALL 0.07 0.77
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than one same star rating in a week; 3) Relation U-V-U connects users with top 5% of mutual 
review TF-IDF similarities among all users. Similarly, the YelpChi dataset includes both 
legitimate and fraudulent reviews of restaurants and hotels. In the YelpChi dataset, nodes are 
reviews with 32-dimensional features. Analogous to the Amazon dataset, this dataset includes 
three manually defined relational graphs: 1) Relation R-U-R connects reviews posted by the 
same user; 2) Relation R-S-R connects reviews with the same star rating (1–5 stars) under the 
same product; 3) Relation R-T-R connects reviews posted under the same product in the same 
month. All graphs under different relationships are merged together to form the single-relation 
ALL.

5.2  Baselines

We compare several GNN-based fraud detection algorithms to demonstrate the effectiveness 
and superiority of our method in identifying fraudsters.

Classical GNN-based model: GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), 
DR-GCN (Shi et al., 2020), GraphSAGE (Hamilton et al., 2017), GraphSAINT (Zeng et al., 
2019).

Classical graph structure learning model: IDGL (Chen et  al., 2020) and Pro-GNN (Jin 
et al., 2020).

State-of-the-art GNN-based fraud method: GraphConsis (Liu et  al., 2020), CARE-GNN 
(Dou et al., 2020), PC-GNN (Liu et al., 2021), FRAUDRE (Zhang et al., 2021), AO-GNN 
(Huang et al., 2022).

Among those baselines, GCN, GAT, DR-GCN, GraphSAGE, GraphSAINT, IDGL, and 
Pro-GNN are run on the single-relational graph (i.e., relation ALL in Table 2, where all rela-
tionships are merged while GraphConsis, CARE-GNN, PC-GNN, FRAUDRE, AO-GNN, and 
IGSL are run on the multi-relational graph.

5.3  Experimental setting and implementation

We use the Adam optimizer to optimize the parameters of the IGSL with the learning rate set 
to 0.01, and the weight decay is 0.001. In the IGSL, Nepoch = 150 , L = 1 , batch size Nbatch set 
to 256 (Amazon) and 1024 (YelpChi), � = 0.5 , �(l)

r
 ( � for all relations and layers) set to 0.5 

(Amazon) and 0 (YelpChi), �− = 0.2 , and �+ is decided by the top-k distance of the minority 
class, where k equals half the average neighbor size of the minority class. � and � in the over-
all loss function are set to 2 and 0.002, respectively. For the training set and test set split, we 
follow FRAUDRE (Zhang et al., 2021) with the same random seed. For baselines of state-of-
the-art GNN fraud method, we use the default hyperparameter settings according to published 
papers. For the remaining baselines (i.e., classical GNN models), we refer to the hyperparam-
eters provided by previous research works, such as PC-GNN. Additionally, IGSL is imple-
mented in torch 1.10.1 with Python 3.8 and all experiments are run on Ubuntu 20.04.1 LTS 
server with Cuda 11.4. Our source code is available at https:// github. com/ Ling- Fei- Ren/ IGSL. 
git

For class imbalance classification, the evaluation metrics should be unbiased for any class 
(Luque et  al., 2019). Like previous work (Liu et  al., 2021), we utilize ROC-AUC (AUC), 
F1-macro, and GMean to evaluate the overall performance of all models.

https://github.com/Ling-Fei-Ren/IGSL.git
https://github.com/Ling-Fei-Ren/IGSL.git
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5.4  Performance comparison (RQ1)

To answer RQ1, we compare the proposed framework IGSL with the baselines in the opin-
ion fraud detection task. The corresponding AUC, F1-macro, and GMean on Amazon and 
YelpChi are reported in Table 3. We can make following observations:

Firstly, IGSL outperforms the baselines in terms of AUC, F1-macro, and GMean met-
rics at different training percentages. For example, when the training percentage is set to 
40%, IGSL achieves performance improvements of 1.42%, 2.51%, and 0.73% on the Ama-
zon dataset in terms of AUC, F1-macro, and GMean compared with the state-of-the-art 
baseline model. On the Yelpchi dataset, the performance gap is 2.86%, 2.64%, and 1.54%, 
respectively. This is because IGSL employs an iterative graph structure learning process 
to learn a global homophilic graph that is optimal for downstream fraud detection tasks, 
which could be a better graph input for GNNs to learn better node embeddings. In contrast, 
neighbor filtering-based methods in state-of-the-art baselines tend to fall into local optima. 
In addition, a multi-relational balanced sampler can further alleviate the problem of graph 
heterophily increasing due to class imbalance by considering the prevalence of nodes 
under different relationships. Therefore, the proposed model exhibits superior performance 
compared to all baselines. However, it is worth noting that in some cases the IGSL model 
does not achieve the best performance. For example, when the training ratio is set to 30%, 
the AO-GNN model achieved a higher GMean score on the Amazon dataset compared to 
IGSL. This is due to the fact that AO-GNN employs both classifier parameter search and 
edge pruning policy search methods, respectively. The former mitigates the problem of 
class imbalance, and the latter policy searching is designed for graph noise removal.

Secondly, GraphConsis, CARE-GNN, PC-GNN, FRAUDRE, and AO-GNN are five 
state-of-the-art multi-relational graph-based fraud detection methods, in which GraphCon-
sis and CARE-GNN only focus on the heterophily problems while PC-GNN and FRA-
UDRE focus on both graph heterophily and the class imbalance at the same time. PC-
GNNN, FRAUDRE and AO-GNN perform better than GraphConsis and CARE-GNN in 
all these metrics, which indicates that solving the class imbalance problem is helpful for 
fraud detection. Meanwhile, PC-GNN and AO-GNN performs better than FRAUDRE, 
indicating the contribution of modifying the local structure to fraud detection.

Thirdly, IDGL and Pro-GNN are two representative graph structure learning on the bal-
anced graph. However, they perform worse than IGSL, which indicates that classical graph 
structure learning models are not suitable for fraud detection where classes are imbalanced.

Fourthly, GCN, GAT, DR-GNN, GraphSAGE, and GraphSAINT are five classical 
GNN-based methods implemented in the single-relational graph ALL. The performance 
of these methods is generally worse than that of GraphConsis, CARE-GNN, PC-GNN, and 
FRAUDRE which run in a multi-relational graph. The reason for this is, on the one hand, 
none of these methods take any measures to alleviate the class imbalance. On the other 
hand, a single-relational graph loses multi-relational profiles, leading to the aggravation of 
graph heterophily.

5.5  Ablation study (RQ2)

To answer RQ2, we conduct ablation experiments to verify the contribution of each mod-
ule. The three variants are (1) IGSL ∖p: which does not include the multi-relational class-
balanced sampler module, so the nodes are sampled with the same probability. (2) IGSL 
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∖e: which does not include the graph-independent embedding module, so the iterative 
graph structure learning module is performed on the raw graph directly. (3) IGSL ∖c: which 
switches the graph structure learning to GCN so the neighbor aggregated as the raw graph. 
As shown in Fig. 3, IGSL is superior to the above three variants w.r.t. all evaluation metrics 
as the percentage of training samples varies from 40% to 10%. Specially, we can observe:

The performance of IGSL ∖p is comparably worse than IGSL, which shows the neces-
sity of a multi-relational class-balanced sampler, which is better at finely modeling the 
importance of different classes under different relationships than a simple single-relational 
imbalanced sampler.

The performance of IGSL ∖c is comparably worse than IGSL, which demonstrates that 
graph structure learning has a contribution to solving the graph heterophily problem.

5.6  Robustness comparison (RQ3)

To answer RQ3, we evaluate the robustness of IGSL in defending against graph hetero-
phily and class imbalance. We only report results on Amazon, since similar patterns are 
observed in YelpChi.

Fig. 3  Ablation study

Fig. 4  Robustness for graph heterophily
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Robustness for graph heterophily. To evaluate the robustness of IGSL to graph 
heterophily, we vary the heterophilic edges proportion in the multi-relational graph. 
We randomly select part of fraud nodes (100 nodes for example) and add heterophilic 
edges with 10, 20, 30, 40, 50, 60, and 70 normal users with highly similar features (fea-
ture similarity > 0.8) to each fraud node in the raw graphs. Every experiment is con-
ducted 10 times and the average results are presented in Fig. 4, IGSL achieves better 
performance compared to PC-GNN, CARE-GNN, and FRAUDRE. We speculate that 
the local neighbors filtering strategy cannot completely filter the heterophilic edges, 
leading to sub-optimal results, while the graph structure learning method obtains the 
global homophily adjacency matrix for fraud detection in an iterative manner, which is 
robust to heterophily.

Robustness for class imbalance. To evaluate the robustness of IGSL to class imbal-
ance, we vary the class imbalance rate by randomly deleting 10%, 20%, 30%, 40%, 
50%, 60%, and 70% of the fraud nodes from the training set. Every experiment is 
conducted 10 times and the average results are presented. As shown in Fig. 5, IGSL 
achieves better results for different class imbalance ratios compared to PC-GNN, 
CARE-GNN, and FRAUDRE.

Fig. 5  Robustness for class imbalance

Fig. 6  Time efficiency analysis on Amazon and YelpChi
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5.7  Time efficiency (RQ4)

To answer RQ4, we evaluate the run-time performance of IGSL and the baselines and 
record the average training time per epoch, with the proportion of training data varying 
from 10% to 40%. As shown in Fig.  6, IGSL has obvious advantages in running speed 
compared to the multi-relational graph-based fraud detection algorithms (e.g., CARE-
GNN, PC-GNN, and FRAUDRE).

5.8  Hyper‑parameter sensitivity (RQ5)

IGSL involves several hyperparameters. In this section, we study the hyperparameters that 
we consider critical for IGSL (i.e., batch size Nbatch , balance weight � , and sparsity thresh-
old � ) and investigate the robustness of IGSL to various parameter settings. For a fair com-
parison, we only vary the value of the investigated parameter with all other parameters 
fixed.

5.8.1  Effect of batch size N
batch

To investigate the effect of batch size Nbatch on the final detection, we varied the value of 
batch size Nbatch in the range of [64, 2048]. The results are shown in Fig. 7a, and it can be 
observed that the performance improves as the batch size increases. In fact, too small a 
batch size leads to instability in network convergence. Too large a batch size means less 
training time but requires large running memory requirements and can easily fall into local 
optimum. To make a tradeoff between performance and training time, we finally set the 
batch sizes Nbatch to 512 and 1024 for Amazon and Yelpchi, respectively.

5.8.2  Effect of balance weight ˇ

To investigate the effect of the balance weight � on the final detection, we varied the value 
of the balance weight � in the range of [0.1, 0.9]. Specifically, � can influence the impor-
tance of the initialized adjacency matrix in iterative graph structure learning. A smaller � 
indicates a smaller weight of the initialized adjacency matrix and vice versa. The results 
are shown in Fig. 7b, and it can be observed that the detection performance increases with 
� increasing, which means that the increased � can capture the useful information in the 
original graph structure. When 𝛽 > 0.5 , the detection performance fluctuates, which means 

(a) F1-score with
varying Nbatch

(b) F1-score with
varying β

(c) F1-score with
varying ε

Fig. 7  Hyper-parameter sensitivity
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a too-large � further captures the noise in the original graph structure. Generally, the per-
formance F1-score is best when the balance weight � is 0.5 for both datasets.

5.8.3  Effect of sparsity threshold "

To investigate the effect of the sparse threshold �(l)
r

 ( � for all relationships and layers in the 
experiment) on the final detection, we vary the value of the sparse threshold � in the range 
of [− 1, 1]. Specifically, � can affect the sparsity of the learned adjacency matrix. A smaller 
� indicates a smaller sparsity of the learned adjacency matrix and more computational 
resources required, and vice versa. The results are shown in Fig. 7c, where the performance 
of Amazon is best when � = 0.5 and the performance of Yelpchi is best when � = 0.

6  Conclusion and future work

In this paper, we propose an imbalanced graph structure learning framework called IGSL 
to solve the graph heterophily and class imbalance problems in fraud detection. To solve 
the graph heterophily problem, we further develop an iterative graph structure learning 
module to iteratively aggregate global homophilic neighbors to learn a homophilic graph 
structure, which helps to make nodes with the same class have similar embedding rep-
resentations while nodes with different classes have different embedding representations. 
For the class imbalance problem, a multi-relational class-balanced sampler is designed that 
considers the nodes’ prevalence under different relationships and corresponding class fre-
quencies, which helps the model to eliminate the bias towards the major class (i.e., normal 
users) and focus more on the valuable minority class (i.e., fraudsters). Extensive experi-
ments on two public fraud datasets demonstrate the effectiveness of our approach.

For future work, there are some research directions worth studying: (1) Fraud detec-
tion on dynamic graphs. In fact, user behaviors and social structures keep changing over 
time, and some studies (Rao et  al., 2022; Jiang et  al., 2022) have demonstrated that the 
dynamic evolution patterns of fraudsters differ significantly from those of normal users, 
and that fraud can be better modeled using dynamic graph-based methods. (2) Fraud detec-
tion based on non-manually defined meta-paths. Manually defined meta-paths require same 
priori knowledge from domain experts, which makes wide application limited. However, 
some current works (Hussein et al., 2018; Petković et al., 2022) have made it possible to 
extract meta-paths automatically, or without the need to define them in advance. They 
inspire us to study fraud detection based on non-manually defined meta-paths in future 
work.
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