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Abstract
Universal style transfer (UST) infuses styles from arbitrary reference images into content 
images. Existing methods, while enjoying many practical successes, are unable of explain-
ing experimental observations, including different performances of UST algorithms in pre-
serving the spatial structure of content images. In addition, methods are limited to cum-
bersome global controls on stylization, so that they require additional spatial masks for 
desired stylization. In this work, we first provide a systematic Fourier analysis on a gen-
eral framework for UST. We present an equivalent form of the framework in the frequency 
domain. The form implies that existing algorithms treat all frequency components and pix-
els of feature maps equally, except for the zero-frequency component. We connect Fourier 
amplitude and phase with a widely used style loss and a well-known content reconstruc-
tion loss in style transfer, respectively. Based on such equivalence and connections, we can 
thus interpret different structure preservation behaviors between algorithms with Fourier 
phase. Given the interpretations, we propose two plug-and-play manipulations upon style 
transfer methods for better structure preservation and desired stylization. Both qualitative 
and quantitative experiments demonstrate the improved performance of our manipulations 
upon mainstreaming methods without any additional training. Specifically, the metrics are 
improved by 6% in average on the content images from MS-COCO dataset and the style 
images from WikiArt dataset. We also conduct experiments to demonstrate (1) the above-
mentioned equivalence, (2) the interpretability based on Fourier amplitude and phase and 
(3) the controllability associated with frequency components.

Keywords  Universal style transfer · Fourier transform · Structure preservation · Phase and 
amplitude

1  Introduction

Style transfer deals with the problem of synthesizing an image which has the style char-
acteristics from a style image and the content representation from a content image. The 
seminal work of Gatys et al. (2016) uses Gram matrices of feature maps to model style 

Editors: Vu Nguyen, Dani Yogatama.

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9633-0033
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06435-5&domain=pdf


3486	 Machine Learning (2024) 113:3485–3503

1 3

characteristics and optimizes reconstruction losses between the reference images and 
the  stylized images iteratively. For the purpose of gaining vivid visual styles and less 
computation cost, more trained feed-forward networks are proposed (Chen et al., 2017; 
Dumoulin et al., 2017; Johnson et al., 2016; Li et al., 2017a; Li & Wand, 2016; Sheng 
et  al., 2018; Wang et  al., 2020). Recent works focus on arbitrary style transfer (Chen 
et al., 2021; Park & Lee, 2019), or artistic style ((Chen et al., 2021)). These works cap-
ture limited types of style and cannot well generalize to unseen style images (Hong 
et al., 2021).

To obtain the generalization ability for arbitrary style images, many methods are pro-
posed for the task of universal style transfer (UST). Essentially, the main challenge of UST 
is to properly extract the style characteristics from style images and transfer them onto 
content images without any prior knowledge of target style. The representative methods 
of UST consider various notions of style characteristics. For example, AdaIN (Huang & 
Belongie, 2017a) aligns the channel-wise means and variances of feature maps between 
content images and style images, and WCT (Li et al., 2017b) further matches up the covari-
ance matrices of feature maps by means of whitening and coloring processes, leading to 
more expressive colors and intensive stylization.

While both approaches and their subsequent works exhibit remarkable stylization capa-
bilities, they demonstrate different behavior in terms of generation, including the reten-
tion of the underlying structure of content images. For example, it is observed that the 
operations performed by WCT might introduce structural artifacts and distortions. Many 
follow-up works focus on alleviating the problem of WCT (Chiu & Gurari, 2022; Li et al., 
2018; Yoo et al., 2019), but seldom can analytically and systematically explain what makes 
the difference. In the field of UST, we need an analytical theory to bridge algorithms with 
experimental phenomena for better interpretability, potentially leading to better stylization 
controls. To this end, we resort to apply Fourier transform for deep analysis, aiming to 
find new equivalence in the frequency domain and bring new interpretations and practical 
manipulations to existing style transfer methods.

In this work, we first revisit and expand the framework by Li et al. (2017b) which uni-
fies several well-known UST methods. Based on the framework, we derive an equivalent 
form for it in the frequency domain, which has the same simplicity with its original form 
in the spatial domain. Accordingly, the derived result demonstrates that these UST meth-
ods perform a uniform transformation in the frequency domain except for the origin point. 
Furthermore, these UST methods transform frequency components (excluding the zero-fre-
quency component) and spatial pixels of feature maps in an identical manner. Thus, these 
UST methods perform manipulations on the whole frequency domain instead of specific 
subsets of frequencies (either high frequencies or low frequencies).

Secondly, through the lens of the Fourier transform, we further explore the relation of 
Fourier phase and amplitude with key notions in style transfer, and then we present new 
interpretations based on the equivalence we have. On one hand, we prove that a content 
reconstruction loss between two feature maps reaches a local minimum when they have 
identical Fourier phase, which implies that the Fourier phase of feature maps contributes 
to the structure of stylized results. On the other hand, we prove that the Fourier amplitude 
of feature maps determines the style loss between feature maps, which implies that Fourier 
amplitude contributes to the intensity information of stylization presentations in images. 
Next, We demonstrate that WCT does not preserve the Fourier phase of feature maps 
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compared with MCCNet and AdaIN, and we interpret the different behaviors between the 
UST methods in structure preservation as a consequence of their different treatment with 
the Fourier phase of feature maps.

Thirdly, based on the connection we establish between style transfer and Fourier 
transfer, we propose two manipulations on the frequency components of feature maps: 
(1) a phase replacement operation to keep the phase of feature maps unchanged dur-
ing stylization for better structure preservation. (2) a feature combination operation to 
assign different weights to different frequency components of feature maps for desired 
stylization. We then conduct extensive experiments to validate their efficacy.

The contributions of this paper are summarized as follows:

•	 Equivalence We present a theoretically equivalent form for several state-of-the-art 
UST methods in the frequency domain and reveal their effects on frequencies. We 
conduct corresponding experiments to validate the equivalence.

•	 Interpretability We connect Fourier amplitude and phase with key losses in style 
transfer and present new interpretations on different behaviors of UST methods. 
The interpretations are validated by experiments.

•	 Controllability We propose two manipulations for structure preservation and 
desired stylization. We have experimental validation for their efficacy and control-
lability.

2 � Preliminaries

2.1 � Fourier transform

The Fourier transform has been widely used for the analysis of the frequency compo-
nents in signals, including images and feature maps in the shallow layers of neural net-
works. Given an image F ∈ ℝ

C×H×W , the discrete Fourier transform (DFT) (Jenkins & 
Desai, 1986) decomposes it into a unique representation F ∈ ℂ

C×H×W in the frequency 
domain as follows:

where (h, w) and (u, v) are the indices on the spatial dimensions and the frequency dimen-
sions, respectively. Since images and feature maps consist of multiple channels, we here 
apply the Fourier transform upon each channel separately and omit the explicit notation of 
channels. Each frequency component Fu,v can be decomposed into its amplitude |Fu,v| and 
its phase ∠Fu,v:

where Ru,v and Iu,v are the real part and the imaginary part of the complex frequency com-
ponent Fu,v , respectively. Intuitively, as for images, amplitude carries much of intensity 
information, including the contrast or the difference between the brightest and darkest 

(1)Fu,v =

H−1∑
h=0

W−1∑
w=0

Fh,we
−j2�
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, ∠Fu,v = �����(Iu,v,Ru,v),
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peaks of images, and phase crucially determines the spatial content of images (Gonzalez 
& Woods, 2008).

2.2 � A unified framework for universal style transfer

To better demonstrate the connection between style transfer and the Fourier transform, 
a unified framework of different style transfer methods is preferred to serve as a bridge. 
Given a content image Ic and a style image Is , we denote the feature maps of Ic and Is as 
Fc ∈ ℝ

C×Hc×Wc and Fs ∈ ℝ
C×Hs×Ws respectively, where C denotes the number of channels, 

Hc (Hs) the height and Wc (Ws) the width. For a majority of UST methods, their goal is to 
transform the content image feature maps Fc into stylized feature maps Fcs , whose first-
order and second-order statistics are aligned with those of the style image feature maps 
Fs . Accordingly, their methods mainly depend on the corresponding channel-wise mean 
vectors �c,�s ∈ ℝ

C and the covariance matrices Σc,Σs ∈ ℝ
C×C of Fc and Fs , respectively.

A framework is proposed in (Lu et al., 2019) for unifying several well-known methods 
[AdaIN (Huang & Belongie, 2017a), WCT (Li et al., 2017b), and OptimalWCT (Lu et al., 
2019)] under the same umbrella. To expand upon this framework, we have identified sev-
eral following methods that could be integrated into the framework, including LinearWCT 
(Li et al., 2019), MAST (Huo et al., 2021) and MCCNet (Deng et al., 2021), which provide 
additional insights for the refinement and improvement of the existing framework. Specifi-
cally, each pixel Fc

h,w
 of Fc is first centralized by subtracting the mean vector �c , where h 

and w are indices on spatial dimensions. Then the framework linearly transforms Fc
h,w

 with 
the transformation matrix T ∈ ℝ

C×C and re-centers Fc
h,w

 by adding the mean vector �s of 
the style. Each pixel Fcs

h,w
∈ ℝ

C of stylized feature maps can be represented as follows:

where the transformation matrix T has multiple forms based on a variety of configurations 
of different methods. We here demonstrate the relation between the unified framework and 
several methods in details. 

1.	 AdaIN In Adaptive Instance Normalization (AdaIN) (Huang & Belongie, 2017a), the 
transformation matrix T = ����(Σs)∕����(Σc) , where ����(Σ) denotes the diagonal 
matrix of a given matrix Σ and / denotes the element-wise division. Because of the 
characteristics of diagonal matrices, only the means and variances within each single 
feature channel of Fcs are matched up to those of Fs , ignoring the correlation between 
channels.

2.	 WCT​ Instead of shifting a single set of intra-channel statistics, Li et al. (2017b) propose 
a Whitening and Coloring Transform (WCT) that focuses further on the alignment 
of covariance matrices. Similar with AdaIN, the transformation matrix for WCT is 
T = (Σs)

1

2 (Σc)−
1

2 , leading to well-aligned second-order statistics.
3.	 OptimalWCT​ Similarly, OptimalWCT (Lu et al., 2019) is proposed to derive a closed-

form solution for T without the help of an optimization process: 

(3)Fcs
h,w

= T
(
Fc
h,w

− �c
)
+ �s,

(4)T = (Σc)−
1

2

(
(Σc)

1

2Σs(Σc)
1

2

) 1

2

(Σc)−
1

2 .
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 Their method reaches the theoretical local minimum for the content loss 
Lc = ‖Fc − Fcs‖2

F
 , which is widely-used in style transfer (Gatys et al., 2016; Huang & 

Belongie, 2017a; Lu et al., 2019) for the structure preservation of content images.
4.	 LinearWCT​ While WCT generates stylized images more expressively, it is still compu-

tationally expensive because of the high dimensions of feature maps in neural networks. 
Li et al. (2019) propose LinearWCT to use light-weighted neural networks to model 
the linear transformation T by optimizing the Gram loss, known as a widely-used style 
reconstruction objective function: 

where FcsFcs⊤ is the Gram matrix for Fcs and ‖ ⋅ ‖2
F
 denotes the squared Frobenius 

norm of the differences between given matrices.
5.	 MAST Different with WCTs and derivative works, Huo et al. (2021) view style transfer 

as an alignment of two multi-manifold distributions and propose a Manifold Alignment 
based Style Transfer (MAST) method with transformation matrix: 

where Ucs are regularized affinity matrices to indicate the neighbors in feature space for 
manifold alignment.

6.	 MCCNet Deng et al. (2021) propose to realign and mix style features based on their 
similarity to content features with transformation matrix: 

where I is the identity matrix, W is a learnable diagonal matrix for weighting and 
Σ(WFs) represents the covariance matrix of WFs.

3 � Method

In this section, we first show an equivalent form of the framework in the frequency domain. 
In this way, all the methods based on the framework in Sect.  2.2 can be interpreted as 
effecting on the frequency domain. We further connect amplitude and phase with exist-
ing concepts in the context of style transfer, and explain why WCT might not preserve the 
structure of content images. Finally, we propose two operations for better structure preser-
vation and desired stylization.

3.1 � The equivalent form of the framework in the frequency domain

We theoretically analyze the unified framework from the angle of 2-D DFT. We denote the 
DFT of Fcs as Fcs ∈ ℂ

C×Hc×Wc , where ℂ is the set of complex numbers. According to the 
unified framework in Eq. (3), we can derive each complex frequency component Fcs

u,v
 as:

(5)T = argmin
T

‖FcsFcs⊤ − FsFs⊤‖2
F
,

(6)T =
(
FcDcFc⊤

)−1(
FcUcsFs⊤

)
.

(7)T = I + diag
(
Σ
(
WFs

))
,
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where u and v are indices upon the frequency dimensions, and Fc and Fs are the DFTs of 
Fc and Fs , respectively. According to the Fourier transform in Eq.  (1), 
F0,0 =

∑H−1

h=0

∑W−1

w=0
Fh,w = HW� . Thus, we have Fcs

u,v
= HcWc�s =

(
HcWc

HsWs

)
F

s
0,0

 when 
u = v = 0 . Therefore, in the frequency domain, style transfer methods based on the unified 
framework are essentially linear transformations on Fc except for the zero-frequency com-
ponent Fc

0,0
 , which is replaced with the re-scaled zero-frequency component of Fs.

From Eq.  (8), we find that each individual frequency component (excluding the zero-
frequency component) has an identical linear transformation with pixels on the feature 
maps. In this way, there is no entanglement between different frequencies in the process 
of style transfer. Thus, it is feasible to treat and manipulate each frequency component of 
F

cs as an individual for practical usage. Therefore, it is justified that mainstream methods 
in Sect. 2.2 for UST are not sole transfer on specific subsets of frequencies (either high fre-
quencies or low frequencies), but essentially on the whole frequency domain.

3.2 � Connections and interpretations: amplitude and phase

To better bridge style transfer with the Fourier transform, we connect phase and amplitude 
with a reconstruction loss and a widely-used style loss in style transfer, respectively.

Phase and the content loss We here demonstrate the relation between phase and the 
content loss, which widely serves as a construction loss for optimizing the distances  of 
spatial arrangement between stylized images Ics and content images Ic . Given their feature 
maps Fcs,Fc ∈ ℝ

C×H×W , corresponding DFTs Fcs,Fc , Fourier amplitude |Fcs|, |Fc| and 
Fourier phase ∠Fcs,∠Fc , the content loss between Fcs and Fc can be derived as:

where the second equality is held by the Parseval’s theorem and k, (h, w) and (u, v) are 
indices on channels, spatial dimensions and frequency dimensions, respectively. When Fcs 

(8)
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(9)
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is optimized for the content loss, since |Fcs
k,u,v

| and |Fc
k,u,v

| are non-negative numbers, the 
content loss Lc reaches a local minimum when ∠Fcs

k,u,v
= ∠Fc

k,u,v
 for all (k, u, v). Further-

more, whenever ∠Fcs
k,u,v

 gets closer to ∠Fc
k,u,v

 , the content loss decreases, demonstrating 
the crucial role of the phase of feature maps in determining the spatial information of cor-
responding decoded images. Therefore, we can interpret the structure preservation abilities 
of methods from the perspective of Fourier phase. Furthermore, we can manipulate Fourier 
phase for better performances in structure preservation.

Interpretations on structure preservation Based on the equivalent form in Eq.  (8) 
and the relation between Fourier phase and the content loss, we can give interpreta-
tions to different behaviors of methods in structure preservation. Concerning AdaIN, 
WCT and MCCNet as instances of the equivalent framework in the frequency domain, 
we have Fcs

u,v
= TFc

u,v
 when (u, v) ≠ (0, 0) . Note that for AdaIN and MCCNet (the lat-

ter is directly designed for the better preservation of the content structure), their trans-
formation matrices T = ����(Σs)∕����(Σc) and T = I + diag

(
Σ
(
WFs

))
 are real diagonal 

matrices, which have the same scaling upon the real part and the imaginary part of Fc . 
In this way, AdaIN and MCCNet preserve the phase in each feature channel and keep 
the content loss of feature maps in a local minimum. As a result, they have the abil-
ity to better preserve the content structure. While WCT provides a non-diagonal matrix 
T = (Σs)

1

2 (Σc)−
1

2 for transformation, the information between different channels is con-
sequently entangled, the phase of each channel is disturbed and the content loss after 
the process of WCT is likely to increase much more than the ones after the process 
of AdaIN and MCCNet. Additionally, similar ideas emerge in Huo et  al. (2021) with 
explanations from the perspective of self-similarity, which accords with our interpreta-
tions. In this way, WCT needs more efforts to preserve the spatial information of content 
images, resulting in its less appealing performances in structure preservation.

Amplitude and the style loss We theoretically demonstrate the connection between 
the Fourier amplitude of feature maps and a style loss. Given feature maps F ∈ ℝ

C×H×W , 
corresponding Fourier amplitude |F| and Fourier phase ∠F  of their DFT F  , the style 
loss between Fcs and Fs can be derived as:

where (∗) represents complex conjugate. The observation that the style loss can be 
expressed as the squared sum of squared differences between Fourier amplitude compo-
nents suggests that these components have a direct influence on the style loss. Therefore, 
if we only manipulate the Fourier phase of the DFTs of feature maps and keep Fourier 

(10)
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amplitude unchanged, it can be expected that the stylization intensity and presentations of 
the corresponding decoded images are roughly the same.

3.3 � Training‑free manipulations on stylized feature maps in the frequency domain

The equivalent form in Eq. (8) and abovementioned connections enable further manipulations 
for better structure preservation or desired stylization. We propose two simple but effective oper-
ations upon the frequency components of feature maps called phase replacement and frequency 
combination, both of which are training-free and plug-and-play for the style transfer models.

3.3.1 � Phase replacement

Given the DFT of the content feature maps Fc and the DFT of the stylized feature maps 
F

cs , we calculate the phase of Fc , denoted as ∠Fc ∈ [0, 2�)C×H
c×Wc

 and the amplitude of 
F

cs , denoted as |F|cs ∈ ℝ
C×Hc×Wc

+
 , where ℝ+ denotes the set of non-negative real numbers. 

We then reconstruct Fcs as:

where cos and sin are element-wise operators on vectors (e.g., cos� = [cos�1,… , cos�C] ), 
⊙ is the element-wise multiplication and j is the imaginary unit. Based on the connec-
tions established in Sect. 3.2, when we replace the phase of Fcs with ∠Fc , the content loss 
between Fcs and Fc is reduced and in this way, the structure of content images is more 
preserved in Fcs . In addition, since the amplitude of Fcs is not changed, the style loss stays 
unchanged and so does the style information of the generated results.

We provide the sketched style transfer methods with phase replacement as Algorithm 1 
shows. It is worth noting that the phase replacement works in a plug-and-play manner con-
trolled by users flag and we perform Fast Fourier Transform only for once thanks to the equiv-
alence proved in Eq. (8). As a result, we achieve controllable structure preservation without 
any additional training with limited cost.

Algorithm 1    Style transfer methods with phase replacement.

(11)F
cs
u,v

= |F|cs
u,v

⊙ cos∠Fc
u,v

+ j|F|cs
u,v

⊙ sin∠Fc
u,v
,
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3.3.2 � Frequency combination

To accommodate different requirements from users, appropriate control on stylization is 
needed for practical usage. Plenty of works for style transfer use linear combination of content 
feature maps Fc and stylized feature maps Fcs as shown in Eq. (12):

where � is the weight for controlling on the stylization. In this way, all the global character-
istics of images (e.g., the sharp edges of trees and the smooth background of sky) are com-
bined uniformly. While in most cases, users are expecting for customized global changes 
on images (e.g., having the details of trees less stylized but keeping the sky moderately 
stylized). Since high frequencies determine the details and low frequencies determine the 
overview of images, we can accommodate the customized needs of users with a combina-
tion of frequencies in different proportions.

Given the DFT of content feature maps Fc and the DFT of stylized feature maps Fcs , we 
first rearranges their frequency components with the zero-frequency components in the center 
point (u0, v0) , following a common technique in digital image processing. In this way, the fre-
quency components close to (u0, v0) are low-frequency components whereas the rest of com-
ponents represent high frequencies. Next, we combine Fcs and Fc using a weighting function 
� ∶ ℝ

2
→ [0, 1]:

where � serves as the stylization weighting function dependent on the indices (u, v). For 
example, if users want to have the details less stylized, higher frequencies of Fcs need to be 
less weighted, and accordingly a lower value of � can be set for (u, v) indexing higher fre-
quencies. In practice, the function � is set to be controlled by a hyper-parameter �:

where � represents the degree for combining the low frequencies of Fcs . When � gets 
larger, the value of �(u, v) increases for every (u, v). In this way, more low frequencies of 
F

cs (indexed by (u, v) close to (u0, v0) ) are gradually kept. We provide the sketched style 
transfer methods with our frequency combination as Algorithm 2 shows.

(12)Fcs = �Fcs + (1 − �)Fc,

(13)F
cs
u,v

= �(u, v)Fcs
u,v

+ [1 − �(u, v)]Fc
u,v
,

(14)�(u, v) = exp

[
−

(
u − u0

)2
+
(
v − v0

)2
�

]
,
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4 � Experiments

In this section, we first introduce our method specification and implementation details. We 
implement our method upon the state-of-the-art style transfer methods and make compari-
son in terms of visual effect and structure preservation.

Method specification Based on the equivalence and connections mentioned above, the 
proposed phase replacement manipulation performs on the basis of UST algorithms in the 
frequency domain. In practice, we choose to implement our method in conjunction with 
WCT (Li et al., 2017b), OptimalWCT (Lu et al., 2019) and MAST (Huo et al., 2021). We 
skip AdaIN (Huang & Belongie, 2017b) and MCCNet (Deng et  al., 2021) because their 
phase of stylization results has been the same with that of content images. We also pass 
over LinearWCT (Li et al., 2019) because its official implementation does not strictly fol-
low the unified framework in Eq.  (5). In regards to WCT, OptimalWCT and MAST, we 
adopt the phase replacement onto three mentioned algorithms by substituting the Fourier 
phase of stylized feature maps with that of content feature maps. Since the phase replace-
ment can optimize the content loss to a local minimum according to Eq. (9), the structure 
of content images is preserved and the overwhelming stylization is alleviated. Finally, the 
proposed method uses inverse discrete Fourier transform to reverse the frequency compo-
nents back to the spatial domain. It is worth noting that the our phase replacement needs 
no additional training or fine-tuning and works in a plug-and-play manner, which could be 
activated to the discretion of users.
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4.1 � Qualitative comparison

We first conduct a qualitative comparison on visual effect and structure preservation. To be 
more specific, we implement our phase replacement manipulation upon mentioned meth-
ods and visualize the results for the comparison.

Results In Fig. 1, we show some visualization results of the qualitative comparison 
between the state-of-the-art UST methods with and without the proposed phase replace-
ment manipulation [i.e., WCT (Li et  al., 2017b), OptimalWCT (Lu et  al., 2019) and 

Style

Content

WCT
w/ PR

WCT

OptimalWCT 
w/ PR

OptimalWCT

MAST
w/ PR

MAST

Fig. 1   Qualitative comparison on the state-of-the-art UST algorithms. The proposed phase replacement 
(abbr. PR) could improve the preservation of content structure while maintaining the stylization presenta-
tions
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MAST (Huo et  al., 2021)]. We observe that WCT and OptimalWCT could introduce 
intensive but distorted artistic style and yield images less similar with content images 
in structure (e.g., 2nd and 4th columns). The visual effect of their stylization results is 
less attractive especially when content images belong to human portraits (e.g., 1st, 3rd, 
and 5th columns). MAST does preserve the spatial structure of content images, but the 
stylization does not well in the shadow and illumination. (e.g., 1st and 4th columns). 
Comparatively, the proposed method improves the preservation of the spatial structure 
for content images, including the details (e.g., the spatial arrangements of human faces 
and the contours of leaves and ships) and the overview (e.g., better presentation of blue 
sky and more vivid illustration of human faces) of images. Additionally, we observe 
that with better spatial arrangements, phase replacement generally keeps the stylization 
intensity, including the color and the contrast for stylization, which accords with our 
theoretical findings in Eq. (10).

4.2 � Quantitative comparison

In addition to the qualitative comparison, we conduct quantitative comparison on visual 
effect, structure preservation and computing time. In particular, we implement the pro-
posed phase replacement manipulation upon mentioned methods and present correspond-
ing quantitative scores with multiple metrics to comprehensively evaluate the performance.

Metrics For the quantitative comparison, we adopt three objective metrics: (1) Learned 
Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), which aims to judge the 
perceptual similarity between two images. (2) the Peak Signal-to-noise ratio (PSNR), 
which is widely used to measure the quality of image reconstruction. (3) the Structural 
Simiarlity Index (SSIM) (Wang et  al., 2004), which is a well known quality metric for 
the similarity between images. As for the visual effect, we also include human evaluation 
scores on stylization artistic presentation and overall visual preference, which is represent-
ative in image generation tasks.

Evaluation details We randomly choose 15 images from MS-COCO dataset (Lin et al., 
2014) as content images and 20 images from WikiArt dataset (Nichol, 2016) as style 

Table 1   The LPIPS scores ( ↓ ), the PSNR scores ( ↑ ), the SSIM scores ( ↑ ) and the user study results [artistic 
scores ( ↑ ) and preference ratings ( ↑ )] for different UST methods

PR, Art. and Pref. represent the acronym for Phase Replacement, Artistic scores and Preference scores, 
respectively. Our proposed phase replacement manipulation maintains the artistic ratings and improves all 
the other metrics (denoted in bold fonts) on the performance of structure preserving and visual effect, which 
accords with our theoretical findings and interpretations

Methods LPIPS ( ↓) PSNR ( ↑) SSIM ( ↑) Art. ( ↑) Pref. ( ↑)

AdaIN 0.630 11.382 0.309 5.727 6.588
MCCNet 0.612 11.872 0.404 6.875 7.188
LinearWCT​ 0.591 11.771 0.398 7.142 7.235
WCT​ 0.737 9.473 0.237 6.121 6.628
WCT w/PR 0.704 10.032 0.254 6.143 6.978
OptimalWCT​ 0.710 9.627 0.252 6.676 6.779
OptimalWCT w/PR 0.687 10.334 0.275 6.339 6.952
MAST 0.538 12.568 0.465 7.443 7.413
MAST w/PR 0.466 13.763 0.489 7.312 7.677



3497Machine Learning (2024) 113:3485–3503	

1 3

images. Then we synthesize 300 groups of stylized images with each group corresponding 
to a combined content-style image pair. All the objective metrics are evaluated and aver-
aged upon these image groups. In regard to the human evaluation, we invite 30 participants 
to rate the synthesized image groups given each content-style pair considering the artistic 
effect and visual preference. Overall, we get 300 ratings and calculate the average rating for 
artistic scores and human preference scores.

Results and analysis As shown in Table 1, the proposed phase replacement maintains 
the artistic scores of the mainstream style transfer methods and improves all the other 
metrics by an average of 6%, including 7.03% in LPIPS scores (better perceptual similar-
ity with content images), 7.58% in PSNR scores (less introduced noise), 7.15% in SSIM 
scores (better structural similarity with content images) and 3.79% in human preference 
scores (better visual effect). The results show that phase replacement could improve the 
performances in structure preservation and visual effect due to the introduction of Fourier 
phase of content images, while maintaining the artistic intensity of stylization at the same 
time by keeping the original Fourier amplitude. The improved metrics (denoted in bold 
fonts) accord with our theoretical findings in Sect. 3 and fully validate our interpretations 
on the structure preservation behaviors between methods.

Time costs Regarding the computing time, we evaluate the average time cost for style 
transfer methods with and without the proposed phase replacement. As shown in Table 2, 
the additional time cost for phase replacement is limited (less than 0.01 s) and users could 
choose to activate the manipulation since the manipulation is implemented in a plug-and-
play manner. It is worth noting that due to the equivalence proved in Eq. (8), we perform 
Fast Fourier Transform only for content feature maps alone. As a result, the additional time 
cost for phase replacement is largely cut off and therefore becomes limited.

Table 2   The time cost (seconds) 
for different UST methods with 
and without phase replacement 
(abbr. PR)

It is worth noting that the additional time cost for phase replacement 
is limited (less than 0.01 s) and could be activated to the discretion of 
users

Method WCT​ OptimalWCT​ MAST

Time 0.3167 0.6247 0.058
Time (w/PR) 0.3273 0.6321 0.065

Fig. 2   Visualized results on the validation of equivalence. Results w/Fcs are synthesized following Eq. (8) 
in the frequency domain, which perform equivalent stylization with the results of original methods, denoted 
as Results w/o Fcs . The results validate the equivalence established in Sect. 3.1
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5 � Discussions

In this section, we conduct more experiments to validate the equivalence presented in 
Eq. (8), the interpretations on Fourier amplitude and phase introduced in Sect. 3.2, and the 
efficacy of manipulations proposed in Sect. 3.3.

Validation of equivalence On the validation of the equivalence stated in our theoretical 
findings, we implement multiple style transfer method in the frequency domain based on 
Eq. (8), including AdaIN, WCT, OptimalWCT and MAST. As shown in Fig. 2, it can be 
observed that these implemented UST methods in the frequency domain produce the same 
visual effect with original methods. This observation validates the proposed equivalence, 
which lays solid foundation for the following interpretations and manipulations.

Interpretations on amplitude and phase To validate the roles of amplitude and phase, 
we replace the Fourier amplitude or the Fourier phase of stylized feature maps in each layer 
during the stylization and present the results in Fig. 3. It can be observed that feature maps 
with the same Fourier phase produce images with highly similar spatial arrangements. This 
observation matches up with our interpretations on phase, provided by its connection with 

Fig. 3   Synthesized results with replaced Fourier amplitude or phase. The results validate the interpretable 
roles of Fourier amplitude (encoding the style presentations) and phase (attending to the image structure) in 
style transfer
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the content loss in Eq. (9). On the other hand, feature maps with same Fourier amplitude 
produces images with highly similar contrast and intensities in colors. This observation 
aligns with our interpretations on amplitude, which states that the  Fourier amplitude of 
feature maps has strong connection with style losses in Eq. (10). 

Efficacy of phase replacement We empirically display the effect of phase replacement 
in Sect. 3.3 for image stylization, whose results are shown in Fig. 4. It can be observed 
that for results without phase replacement, the details (e.g., contours of the eyes and the 
nose) and the overview (e.g., the sky and the sea) become messier and more distorted, 
yielding unappealing distortions. Considering these observations, we give the extended 
interpretation that phase replacement preserves the phase for both high frequencies and 
low frequencies, which are responsible for the spatial arrangement of the details and 
overview of images, respectively.

Additionally, we visualize the average Fourier amplitude of stylization results in 
Sect. 4.2 to validate that phase replacement does maintain the amplitude which encodes 
stylization presentation implied in Eq.  (10). As shown in Fig.  5, the results with and 
without phase replacement bear a strong resemblance on the amplitude to each other. 
This validates the efficacy of phase replacement which effectively maintains the Fourier 
amplitude and thus maintains the stylization intensity and the presentations.

Fig. 4   Visualized results on the efficacy of phase replacement (abbr. PR). The results validate the efficacy 
of phase replacement which could effectively preserve the structure of content images and better arrange 
image in details (corresponding to phase of high frequencies) and overview presentation (corresponding to 
phase of low frequencies)

Fig. 5   Visualized Fourier amplitude of stylization results for the efficacy of phase replacement (abbr. PR). 
The observation is that the results with and without phase replacement bear a strong resemblance on the 
amplitude to each other. The observation validates the efficacy of phase replacement which effectively 
maintain the Fourier amplitude
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Efficacy of frequency combination To demonstrate the manipulations of frequency 
combination in Sect.  3.3, we present an example in Fig.  6. We choose the weighting 
function � in Eq. (14) and adjust the hyper-parameter � for stylization controls. In Fig. 6, 
with an appropriate value of � , frequency combination can have the details less stylized 
(e.g., more colorful and more vivid buildings and ships in the 4th column) while keep-
ing the background moderately stylized (e.g., the sky with more intensive sketch style 
in the 4th column). In this way, users could have access to the customization of their 
own stylization results for various purposes by imposing different stylization effect upon 
local or global parts of images.

Controllability of frequency combination It is worth noting that the linear combination 
in Eq.  (12) can be viewed as a specialized instance of frequency combination by setting 
the weighting function �(u, v) as a simple scalar for any (u, v), which equivalently means 
to combine all the frequencies, including low frequencies and high frequencies, with the 
same weight � . Therefore, the controllability of the proposed frequency combination is bet-
ter than that of linear combination considering more degrees of freedom brought by the 
frequency combination.

6 � Conclusion

In this paper, we apply Fourier analysis to a unified framework of UST algorithms. We 
present the equivalent form of the framework and reveal the connections between the con-
cepts of Fourier transform with those of style transfer. We give interpretations on the dif-
ferent performances between UST methods in structure preservation. We also present two 
operations for structure preservation and desired stylization. Extensive experiments are 
conducted to demonstrate (1) the equivalence between the framework and its proposed 
form, (2) the interpretability prompted by Fourier analysis upon style transfer and (3) the 

Fig. 6   Comparison between c linear combination and d frequency combination. It is worth noting that the 
proposed method helps the background remain stylized (e.g., the sky more sketch-stylized than (c)) while 
renders the details more realistic (e.g., the buildings and the sailboat more realistic than (c)). Note that the 
proposed method achieves this performance without any spatial masks to identify where to stylize. The 
hyper-parameter � for results in (d) is set to 0.9
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controllability through manipulations on frequency components. Future work could further 
(1) expand work scope to include diverse artistic styles beyond WikiArt and (2) investigate 
model fine-tuning techniques, including leveraging Wasserstein distance.
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