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Abstract
Pseudo-labeling methods are popular in semi-supervised learning (SSL). Their perfor-
mance heavily relies on a proper threshold to generate hard labels for unlabeled data. To 
this end, most existing studies resort to a manually pre-specified function to adjust the 
threshold, which, however, requires prior knowledge and suffers from the scalability issue. 
In this paper, we propose a novel method named Meta-Threshold, which learns a dynamic 
confidence threshold for each unlabeled instance and does not require extra hyperparame-
ters except a learning rate. Specifically, the instance-level confidence threshold is automati-
cally learned by an extra network in a meta-learning manner. Considering limited labeled 
data as meta-data, the overall training objective of the classifier network and the meta-net 
can be formulated as a nested optimization problem that can be solved by a bi-level opti-
mization scheme. Furthermore, by replacing the indicator function existed in the pseudo-
labeling with a surrogate function, we theoretically provide the convergence of our training 
procedure, while discussing the training complexity and proposing a strategy to reduce its 
time cost. Extensive experiments and analyses demonstrate the effectiveness of our method 
on both typical and imbalanced SSL tasks.

Keywords Semi-supervised learning · Confidence thresholds · Meta-learning · Bi-level 
optimization

1 Introduction

Semi-supervised learning (SSL) (Zhu and Goldberg 2009; Sohn et  al. 2020) aims to 
improve model performance by leveraging both abundant unlabeled data and limited 
labeled data. SSL algorithms provide a solution to explore the latent pattern underlying 
unlabeled data, which reduces requirements of a large amount of annotations (Sohn et al. 
2020). Most of the previous SSL studies heavily rely on the pseudo-labeling strategy (Lee 
2013; Sohn et al. 2020) that generates a hard label for unlabeled sample and trains the deep 
model on these pseudo-labels.
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For pseudo-labeling methods (Lee 2013; Sohn et al. 2020; Zhang et al. 2021; Xu et al. 
2021), it is essential to set a proper threshold for selecting reliable pseudo-labels for unla-
beled data. For example, FixMatch (Sohn et  al. 2020) selected high-confidence pseudo-
labels via a fixed threshold (e.g., 0.95 for CIFAR Krizhevsky and Hinton (2009) and 0.65 
for ImageNet (Deng et  al. 2009)). However, as reported in Xu et  al. (2021), fixing the 
threshold in the entire training process could mitigate the learning efficiency and raise the 
error rate of pseudo-labels, especially in the early learning stage.

To address this issue, subsequent works (Xu et al. 2021; Guo and Li 2022; Zhang et al. 
2021; Saito et al. 2021) that dynamically generate the threshold to enable more robust SSL 
have been proposed. For instance, Xu et al. (2021) translated the fixed threshold to a loss 
threshold and selected the unlabeled data whose loss values (evaluated on pseudo-labels) 
are smaller than the loss threshold. Then, these selected data are incorporated into the train-
ing set, while the loss threshold gradually decreases over training iterations. Zhang et al. 
(2021) leveraged the idea of curriculum learning (Bengio et al. 2009) to take into account 
the learning status of each class and flexibly adjusted thresholds for different classes at 
each time step via a preset function.

Despite the decent performance of the pseudo-labeling methods mentioned above, they 
share two common drawbacks. Firstly, they (Xu et al. 2021; Guo and Li 2022; Zhang et al. 
2021) always resort to manually pre-specified functions to adjust the threshold. This tends 
to be infeasible when we know little knowledge of underlying datasets or when the label 
conditions are too complicated. Secondly, these methods (Xu et al. 2021; Guo and Li 2022; 
Zhang et al. 2021) usually involve at least two hyper-parameters, which requires complex 
cross-validation phase and thus suffer from the scalability issue (Franceschi et  al. 2018) 
when we apply them to real-world application.

To address the two drawbacks mentioned above, this paper presents a simple yet effec-
tive strategy to automatically learn sample-aware confidence thresholds for each unla-
beled data. In contrast with previous works, our method does not resort prior knowledge 
to pre-define a function for adjusting thresholds while including only one hyper-parameter. 
Besides, to the best of our knowledge, we for the first time introduce instance-level thresh-
olds, which is inspired by that the deep model has different learning capabilities for differ-
ent categories even for different examples. Figure 1a shows a practical example. Intuitively, 
setting instance-level thresholds is more logical and beneficial to generate more accurate 
pseudo-labels for unlabeled instances, further facilitating deep model’s learning.

Specifically, we leverage the idea of meta-learning (Finn et  al. 2017) to construct a 
lightweight meta-net (e.g., three-layer MLP) for explicitly modeling the instance-level 
thresholds (finally obtain a set of thresholds for all unlabeled data). Thanks to the univer-
sal approximation theorem (Hornik et  al. 1989) of multilayer feedforward networks, our 
meta-net can be considered as a generalized version of the pre-defined functions mentioned 
above (Zhang et al. 2021; Xu et al. 2021). In this way, our framework contains a classifier 
network and a meta-net, where the training problem of two networks is in a nested opti-
mization scheme. This optimization problem can be solved by a bi-level strategy, which is 
presented as 1) Inner loop. Generate instance-level thresholds for all unlabeled instances 
and utilizes the hard pseudo labels to train the classifier network, 2) Outer loop. Update 
all parameters of the meta-net by a small scale of meta-data which are constructed on the 
labeled data.

An appealing feature of this formulation is that the inner loop can be viewed as a map-
ping from the sample threshold space into the meta-net parameter space, and the outer 
loop performs the optimization on thresholds. Since the indicator function 1(⋅) , which is 
non-differentiable, explicitly exists in the pseudo-labeling framework, we thus leverage 
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a surrogate function to approximate it, making the bi-level optimization problem reach-
able. In Fig. 1b, we compare our method with vanilla FixMatch (Sohn et al. 2020) and two 
improved methods (Xu et al. 2021; Zhang et al. 2021), which highlights the merits of our 
method such as avoiding preset function and no prior knowledge is required.

Our contributions can be summarized as follows:

• We propose a simple yet effective training framework (named Meta-Threshold, Meta-
T) based on bi-level optimization for threshold-based SSL, which enjoys the following 
benefits: 1) Meta-T learns thresholds of unlabeled sample automatically through bi-
level optimization, avoiding the the pathology of conventional threshold-based meth-
ods’ reliance on strong prior knowledge on data. 2) Meta-T only includes one extra 
hyper-parameter, i.e., the learning rate of the meta-net, which is not sensitive and thus 
does not require complex cross-validation.

• We introduce the surrogate function to replace the indicator function. Further, we theo-
retically provide the convergence of our framework and demonstrate that it enjoys a 
convergence rate of O(1∕�2).

• We integrate the proposed Meta-T into the framework of curriculum learning dubbed 
Green Meta-T, which significantly reduce the training cost of our learning algorithm 
with only slight loss of accuracy.

• Our method can be applied to solve both the conventional and imbalanced SSL tasks, 
exhibiting great potential in real-world applications.

2  Related work

Deep Semi-Supervised Learning As a common learning paradigm, deep SSL exhibits 
remarkable performance in leveraging a great deal of unlabeled data to train the deep 
model. Current deep SSL methods can be roughly divided into three categories: con-
sistency-based methods, pseudo-labeling methods, and hybrid methods. The key idea 

Fig. 1  a An example illustrates that deep models have different learning capabilities for different examples 
in class tiger. b Review of the pseudo-labeling training framework and comparison FixMatch (Sohn et al. 
2020) with three improved algorithms on the fixed confidence threshold. Compared to decayed and class-
level thresholds in Dash (Xu et al. 2021) and FlexMatch (Zhang et al. 2021), our method designs a meta-net 
which generates a more refined confidence threshold for each unlabeled example (i.e., sample-level thresh-
olds)
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of consistency-based methods is that forcing the model’s output of original unlabeled 
data and perturbed unlabeled data to keep the same (Laine and Aila 2016; Tarvainen 
and Valpola 2017; Xie et al. 2020). Pseudo-labeling methods, which are also called self-
learning in previous works, belong to an iterative mechanism that uses limited labeled 
data to train the model to predict unlabeled data. Then, the generated labels of unla-
beled data are introduced to train the model Lee (2013). Hybrid approaches (Sohn et al. 
2020; Zhang et al. 2021; Xu et al. 2021) always integrate the above two methods with 
strong augmentation strategies (e.g., RandAugment (Cubuk et  al. 2020) and CTAug-
ment (Berthelot et al. 2019)).

Imbalanced Semi-Supervised Learning To improve the universality of SSL algo-
rithms, some works (Kim et al. 2020; Wei et al. 2021; Guo and Li 2022) turn attention 
to more challenging settings like SSL under class-imbalanced label distribution. DARP 
(Kim et  al. 2020) designed a distribution-aligning manner to modify biased pseudo-
labels to match the true class distribution. However, this method requires prior knowl-
edge about data distribution, which is hard to fulfill in real applications. For this, DARP 
manages to estimate the class distribution by a confusion matrix between labeled and 
unlabeled data. CReST (Wei et al. 2021) is based on a typical self-training strategy that 
adaptively adds pseudo-labeled data to the training set according to the label frequency.

Meta-Learning also known as “learning to learn", has been widely applied to sev-
eral weakly-supervised tasks, such as noisy labels learning (Shu et al. 2019; Sun et al. 
2022), out-of-distribution learning (Guo et  al. 2020), and semi-supervised learning 
(Wang et al. 2020; Xiao et al. 2021). In SSL fields, some works introduce the idea of 
meta-learning to learn a set of parameters. For example, Wang et  al. (2020) proposed 
a framework to learn sample weights for all unlabeled data, which aims to give high 
weights to more reliable pseudo-labels. Xiao et al. (2021) proposed to learn soft labels 
for unlabeled data while designing a one-order update strategy for bi-level framework.

Relations Two works L2RW (Ren et  al. 2018) and MW-Net (Shu et  al. 2019) 
employed bi-level to efficiently learn a set of hyper-parameter. Our work bears three 
critical differences. 

(1) Problem setting: (Ren et al. 2018; Shu et al. 2019) focus on improving the generaliza-
tion performance of deep models under noisy labels learning, while our work aims to 
enhance the quality of generated pseudo-labels for unlabeled data in semi-supervised 
learning.

(2) Methodology: (Ren et al. 2018; Shu et al. 2019) learn a set of sample weights for 
training (label-corrupted) samples and then minimize the product of training loss and 
corresponding weight, while our framework generates thresholds which are used to 
select the high-reliability pseudo-labels instead of directly participating in model’s 
training. Besides, our method obeys the framework of the pseudo-labeling method 
and thus suffers from the non-differentiable issue of the indicator function, which can 
be solved by a surrogate function. Eventually, we joint the bi-level training framework 
with curriculum learning, significantly reducing the cost of bi-level strategy.

(3) Theory: We introduce a surrogate function to replace the indicator function and provide 
the convergence guarantee of our learning algorithm when the upper bound of the sur-
rogate function is given. Besides, we simply give an analysis of training costs of both 
Meta-T and Green Meta-T.
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3  Preliminaries

Problem setting. In a C-class classification task, we have a set of training data 
which contains N labeled examples Dl = {(xl1, y

l
1), ⋅ ⋅ ⋅, (x

l
N , y

l
N )} and M unlabeled examples 

Du = {x1, ⋅ ⋅ ⋅, xM} , where x ∈ X ⊆ ℝ
d denotes the input d-dimensional feature vector 

and y ∈ Y is one-hot label. Given a deep model f with learnable parameters w and a 
classification loss function H(⋅) (e.g., cross-entropy loss), the training objective in typi-
cal supervised learning is Ls = �(x,y)∼DlH(f (x), y) . To achieve higher performance, the 
training objective of SSL algorithms can be summarised as Ls + �uLu , where Lu is con-
structed on Du and the trade-off coefficient �u satisfies 𝜆u > 0.

3.1  Confidence thresholds in semi‑supervised learning

Due to its simplicity yet great performance, we select FixMatch (Sohn et al. 2020) as an 
example to illustrate the usage of confidence threshold in pseudo-labeling methods.

The core idea of FixMatch is the introduction of confidence threshold and strong 
augmentation strategies. To train the classifier on unlabeled data, FixMatch first com-
putes the pseudo-label on the weakly-augmented version of image. For each unlabeled 
data xm ∈ Du , the prediction of classification network is pm = f (Aw(xm);w) , where 
Aw denotes weak augmentation strategies, and the pseudo-label can be written as 
ŷm = argmax(pm) . Due to the property of function argmax , ŷm is a one-hot probability 
distribution. Then, the training loss of xm can be summarised as

where 1(⋅) is an indicator function and denotes the selection of high-reliability of pseudo-
label, As denotes strong augmentation strategies, and � is a fixed constant. Eventually, the 
training objective of all unlabeled data is L

u
=

1

M

∑

x
m
∈Du �x

m

.
As mentioned before, many related works (Zhang et al. 2021; Xu et al. 2021) modi-

fied the fixed constant � to improve the universality of pseudo-labeling algorithms. 
However, they always resort to prior knowledge and further design a task-specific func-
tion to adjust this value, limiting their application in practice. Thus, in the next section, 
we devise a framework that does not require pre-defined functions yet enables sample-
aware confidence thresholds.

4  Proposed method

Overview. We construct a meta-net (threshold generation network, or TGN) for dynam-
ically produce sample-level threshold. First, we rewrite the learning objective for 
threshold-based SSL methods. Second, we introduce the architecture of TGN. Then, we 
solve this meta-optimization problem via bi-level strategy which alternatively trains the 
classifier and TGN. Eventually, we analyse the convergence of our algorithm and pro-
vide a green version of our method which enjoys lower training time.

(1)𝓁
xm

= 1(max(pm) > 𝜏) ⋅ H(ŷm, f (A
s(xm);w)),
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4.1  Learning with sample‑level thresholds

To alleviate the aforementioned issues of previous methods, we want to construct a meta-
learning framework that could generate a sample-level confidence threshold for all unla-
beled data in each training step. To be specific, given a meta-net V with parameters Θ , 
the confidence threshold of unlabeled data xm can be written as �m ← Vm(w,Θ) , while the 
architecture and input of V is detailedly illustrated in Sect. 4.2. Then, the fixed constant � in 
Eq. (1) can be replaced with a sample-level threshold �m and the loss of unlabeled data xm 
is formulated as

However, due to the non-differentiable property of the indicator function 1(⋅) , computing 
partial derivative with respect to Θ in Eq. (2) is infeasible. In the practical training phase, 
we introduce a modified sigmoid function to replace it, which can be written as 
S(x) =

1

1+exp−�x
 where the input is max(f (Aw(xm);w)) − Vm(w,Θ) and � is the slope param-

eter to control the shape of the function.
Discuss about the approximate function S(⋅) . In Fig.  2, we compare the difference 

between the indicator function 1(⋅) and the suggorate function S(⋅) . We can observe that the 
input of function satisfies max(f (Aw(xm);w) − Vm(w,Θ)) ∈ [−1, 1] . Meanwhile, the first-
order and second-order gradient of sigmoid function obviously exist, making backpropaga-
tion of the training loss in Eq. (2) possible.

Eventually, the optimal classifier parameters w∗ can be calculated by minimizing the 
loss

4.2  Threshold generation network TGN

In this subsection, we design a threshold generation network (TGN), serving as a meta 
model. By summarizing previous works (Zhang et al. 2021; Guo and Li 2022), we found 
that considering average class confidence provides more valuable information for gener-
ating threshold and improves the applicability of methods on extreme data distribution. 
Thus, we construct the meta-net which learns from instance confidence and average class 
confidence simultaneously and outputs sample-aware threshold for unlabeled data.

(2)𝓁
xm
(w,Θ) = 1(max(pm) > Vm(w,Θ)) ⋅ H(ŷm, f (A

s(xm);w)).

(3)w
∗(Θ) = argmin

w

Lu =
1

M

∑

xm∈D
u
�
xm
(w,Θ).

Fig. 2  Compare the indicator 
function with the approximate 
function S(⋅) with varying �
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Formally, given a weakly-augmented version of unlabeled data xm , the classifier 
network f

w
 gives the prediction result (a soft label) g(ptm) in t-th iteration, where g(⋅) 

denotes Softmax function. Further, the pseudo-label is ŷtm = argmax(g(ptm)) . Meanwhile, 
the average class confidence can be represented as ptc = 1

M

∑M
m=1 g(p

t
m|c = ŷtm) . Note that pt

c
 

can be regarded as an average soft label of class c in time t. Therefore, for unlabeled 
data xm , the generated threshold in t-th iteration is

As shown in Fig. 3b, we illustrate the architecture of proposed TGN, which belongs to a 
lightweight net (e.g., three full-connected layers). For xm , we connect its prediction result 
g(pt

m
) (a C-dimension soft label) with the average class confidence pt

c
 (a C-dimension vec-

tor). Therefore, the input layer in TGN is 2C dimension.

4.3  Meta‑optimization problem

There are two networks in our training framework, including a classification network f
w
 

and a meta-net VΘ . The parameters w and Θ can be optimized by the meta-learning idea 
(Andrychowicz et  al. 2016; Shu et  al. 2019). Specifically, we require a small amount of 
meta-data set which can be sampled from labeled data in SSL task. Since some works (Shu 
et al. 2019; Sun et al. 2022) proved that the generalization performance of the meta-model 
largely benefits from a large scale of meta-data, we straightforwardly represent this meta-
data set as Dmeta = Dl = {(xl

i
, yl

i
)}N

i=1
 (i.e., we use the total labeled data for constructing the 

meta-data set). The optimal parameters Θ∗ can be obtained by minimizing the following 
loss

For clarity, we represent Hi(w) as H(yl
i
, f (xl

i
;w)).

Obtaining the optimal parameters w∗ in Eq. (3) and Θ∗ in Eq. (5) is a nested optimi-
zation problem. For this, we resort to bi-level training strategy as MAML (Finn et al. 

(4)� t
m
= V(g(f (xm;w)), p

t

c
;Θ).

(5)Θ∗ = argmin
Θ

Lmeta(w
∗(Θ)) =

1

N

∑N

i=1
Hi(w

∗(Θ)).

Fig. 3  a Flowchart of our learning algorithm. The solid and dashed lines represent forward and backward 
propagation, respectively. In each iteration, overall training process contains six phases. Step 1: feed weak-
augmented images to the classifier network and attain pseudo-labels with prediction confidence. Step 2: 
input a pair of average class confidence and predicted confidence into the meta-net TGN. Step 3: leverage 
generated sample-level threshold � to select high-reliability data and compute the loss L

u
 . Step 4: update the 

classifier parameters while holding the computation graph for its gradient. Step 5: feed the meta-data into 
the meta-net, compute the loss Lmeta and update Θ . Step 6: recompute the gradient of L

u
 w.r.t. w and update 

w . b Architecture of TGN. Given an unlabeled sample x
m
 , TGN’s input consists of two parts
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2017) and update parameters of meta-net with online strategy. To be specific, the train-
ing loss of classifier network and meta-net (Eq. (3) and Eq. (5)) can be optimized via the 
SGD optimizer. In each training iteration, given a mini-batch size number n, we have 
two batches of meta data and unlabeled data and represent them as {(xl

1
, yl

1
), ..., (xl

n
, yl

n
)} 

and {x1, ..., x(�×n)} , respectively. Note that we can increase � to expand the size of unla-
beled data in one iteration. In t-th iteration, we formulate the parameter of classifier 
network as w(t) and the parameters of the meta-net as Θ(t) . The updates of two networks 
are as the following three phases.

Algorithm 1  Learning algorithm of Meta-T.

• Formulating learning manner of classifier network. Given the learning step with 
a size of � , the descent direction of the objective loss in Eq.  (3) on a mini-batch 
unlabeled data is 

 where �
xi
 is calculated by Eq. (2).

• Updating parametersΘ  As we obtain parameter ŵ(t)(Θ) with fixed Θ in Eq. (6), 
the update of our meta-net TGN can be achieved by a mini-batch of meta-data 
{(xl

1
, yl

1
), ..., (xl

n
, yl

n
)} . Specifically, Θ(t) moves along the direction of direction of gra-

dients w.r.t. the objective in Eq. (5) 

 where � denotes the learning step of the SGD optimizer. Note that Θ in this equation is 
a variable, which enables gradient computation of 𝜕ŵ

(t)(Θ)

Θ
.

• Updating parameters w of classifier network. Eventually, we utilize the updated 
TGN Θ(t+1) to regenerate confidence threshold for unlabeled data and update the 
parameters w of classifier network 

We illustrate the flowchart of our learning algorithm in Fig. 3a, where Step 4,5,6 repre-
sent Eqs. (6), (7) and (8), respectively. Meanwhile, we summarize the overall updating 
steps in Algorithm 1. Compared to current SSL methods, Meta-T does not rely on any 

(6)ŵ
(t)(Θ) = w

(t) − 𝛼
1

n𝜇

∑n𝜇

i=1
∇

w
�
xi
(w(t),Θ(t)),

(7)Θ(t+1) = Θ(t) − 𝜓
1

n

∑n

i=1
∇ΘHi(ŵ

(t)(Θ)),

(8)w
(t+1) = w

(t) − �
1

n�

∑n�

i=1
∇

w
�
xi
(w(t),Θ(t+1)).
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prior knowledge to predefine the function for adjusting the threshold. We believe that 
this merit would expand applicability of our method in certain environments where we 
cannot model the data distribution.

4.4  Convergence analysis

We analyze the convergence of Meta-T and give a rigorously theoretical guarantee.

Lemma 1 (Smoothness). Suppose the loss function H is L-Lipschitz and smooth, and the 
approximate function S is �-Lipschitz, and V(⋅) is differential with �-bounded gradient and 
twice differential with B-bounded Hessian, and the loss function H have �-bounded gradi-
ents w.r.t. training/meta data and has upper bound with � . Replacing indicator function 
with S , the gradient of Θ w.r.t. the meta loss is Lipschitz continuous.

The Proof is shown in Appendix A.1 and Lemma 1 implies that the meta loss w.r.t. the 
meta-network is smooth-bounded.

Theorem 1 (Convergence) Based on Lemma 1, let the learning rate �t satisfies �t = min{1, k
T
} , 

for some k > 0 , such that k
T
< 1 , and �t , 1 ≤ t ≤ T  is a monotone descent sequence, 

�t = min{ 1
L
, c
�
√

T
} for some c > 0 , such that �

√

T
c

≥ L and 
∑∞

t=1
�t ≤ ∞,

∑∞

t=1
�2
t
≤ ∞ . Then we 

have 1
T

∑T
t=1 �

[

‖

‖

‖

‖

∇Lmeta

(

ŵ(t)(Θ(t))
)

‖

‖

‖

‖

2

2

]

≤ ( 1
√

T
).

The Proof is shown in Appendix A.2. To be specific, Theorem  1 means that the our 
algorithm can achieve �

[

‖

‖

‖

‖

∇Lmeta

(

ŵ(t)(Θ(t))
)

‖

‖

‖

‖

2

2

]

≤ � in O(1∕�2) steps, and would eventually con-

vergence to a stationary point with the training iteration step increases.

4.5  Green meta‑T: training with lower complexity

Training complexity analysis. Compared with the single-step training procedure, the 
training process of Meta-T can be divided into three parts, (1) forward and backward passes 
of the classifier network for computing ŵ(Θ) ; (2) forward and backward passes of TGN for 
updating Θ ; (3) forward and backward passes of classifier network for updating w . Hence, 
compared with FixMatch, which only involves one forward and backward pass, Meta-T 
requires approximately three times of training time.

As summarized by Xu et al. (2021), the main cost of training time is caused by the back-
propagation in updating the parameters Θ of the meta-net since the meta-gradient in Eq. (7) 
needs to compute the similarity between each meta-data and unlabeled data. Therefore, 
reducing the computation of ŵ(Θ) would significantly decrease training time. To this end, 
we change the training procedure that integrates our proposed Meta-T algorithm with cur-
riculum learning and name it Green Meta-T. Specifically, we conduct the bi-level strategy 
(i.e. Meta-T) once for learning the classifier network and TGN, and then continuously do k
-step classifier learning. Then, we give the training complexity of Green Meta-T as follows.

Proposition 1 Suppose a fixed training iteration T, the training time of FixMatch and Meta-
T can be represented as T  and 3T  , respectively. Given a hyper-parameter k , the training 
time of Green Meta-T is k+2

k
T .
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Proposition 1 means that the training complexity of Green Meta-T could gradually 
reduce to T  with the value of k increases.

5  Experiments

5.1  Experimental settings

Datasets. We select five image classification datasets and three text classification data-
sets to evaluate the effectiveness of Meta-T, including five image benchmarks CIFAR-10  
(Krizhevsky and Hinton 2009), CIFAR-100 (Krizhevsky and Hinton 2009), SVHN (Coates 
et  al. 2011), SLT-10 (Netzer et  al. 2011), and ImageNet (Deng et  al. 2009), three text 
benchmarks IMDb (Maas et al. 2011), Amazon-5 (Zhang et al. 2015) and Yelp-5 (Zhang 
et al. 2015). Detailed statistics of these datasets are shown in Table 1.

Implementation Details. Our code is implemented by Pytorch 1.9.0 with GTX 3090. 
We leverage a pytorch library called Higher (Grefenstette et al. 2019) to implement our 
algorithm, which provides support for higher-order optimization. For all experiments, we 
repeat five times with different random seeds. Others for two networks are shown below

• For the classifier, more information about data preprocessing and training procedure 
can be found in Table 2.

• For TGN, we set the size of meta-data as 32 and utilize Adam optimizer with 1e-3 
learning rate for all training epoches. We construct the three-layers fully-connected 
MLP for TGN, whose structure is {2C, h, 1} . Notably, h is set as 100 for all image data-
sets and 1000 for all text datasets and C is the number of categories.

5.2  Results on typical SSL task

Baselines. We categorize compared methods into two types. 1) Threshold-based meth-
ods, including Pseudo-Labeling (PL) Lee (2013), FixMatch (Sohn et al. 2020), FlexMatch 
(Zhang et al. 2021) and Dash (Xu et al. 2021). 2) others, including Π-Model (Sajjadi et al. 
2016), MixMatch (Berthelot et al. 2019), UDA (Xie et al. 2020), CoMatch (Li et al. 2021) 
and SimMatch (Zheng et al. 2022).

Results on four image datasets. We conduct experiments on CIFAR-10, CIFAR-100, 
SVHN, SLT-10 and ImageNet. The results are shown in Tables 3 and 4. On CIFAR-10 & 

Table 1  Details about five tested benchmarks

Image Datasets Text Datasets

CIFAR-10 CIFAR-100 SVHN SLT-10 ImageNet IMDb Amazon-5 Yelp-5

Classes 10 100 10 10 1000 2 5 5
Labeled data 50000 50000 73257 5000 1200000 50000 250000 250000
Unlabeled data – – – 100000 – 2000 50000 50000
Test data 10000 10000 26032 8000 15000 25000 5000 5000
Image size 32 × 32 32 × 32 32 × 32 96 × 96 224 × 224 – – –
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100, Meta-T outperforms previous methods in the majority of settings. Under an extremely 
small size of the labeled set, the superiority of our method is significant. For example, we 
achieve 1.64% Top-1 accuracy improvements on CIFAR-100 with only 4 samples per class. 
Compared with threshold-based methods (Lee 2013; Sohn et al. 2020; Zhang et al. 2021; 
Xu et  al. 2021), the improvement of our method is significant. On all settings, Meta-T 

Table 3  Error rates (%) for previous SOTA methods on CIFAR-10 and CIFAR-100 with varying size of 
labeled set

The best and the second best performance are highlighted by bold and underline, respectively

CIFAR-10   (Wide ResNet-28-2) CIFAR-100   (Wide ResNet-28-8)

Methods 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels

Π-Model – 54.26±3.97 14.01±0.38 – 57.25±0.48 37.88±0.11
VAT 74.66±2.12 41.03±1.79 10.51±0.12 85.20±1.40 46.84±0.79 32.14±0.19
MixMatch 47.54±11.50 11.05±0.86 6.42±0.10 67.61±1.32 39.94±0.37 28.31±0.33
UDA 29.05±5.93 8.82±1.08 4.88±0.18 59.28±0.88 33.13±0.22 24.50±0.25
CoMatch 6.91±1.39 4.91±0.33 – – – –
SimMatch 5.60±1.37 4.84±0.39 3.96±0.01 37.81±2.21 25.07±0.32 20.58±0.11
Pseudo-labeling – 49.78±0.43 16.09±0.28 – 57.38±0.46 36.21±0.19
FixMatch 11.39±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12
Dash 9.16±4.31 4.78±0.12 4.13±0.06 44.83±1.36 27.18±0.21 21.97±0.14
FlexMatch 4.97±0.06 4.98±0.09 4.19±0.01 39.94±1.62 26.49±0.20 21.90±0.15
Meta-T (ours) 4.39±0.28 4.10±0.20 4.01±0.09 36.17±1.40 25.81±0.72 20.74±0.23

Table 4  (Left) Error rates (%) for previous methods on SVHN and STL-10 with varying size of labeled set

(Right top) Top-1 and Top-5 accuracy (%) on ImageNet test set with varying ratio of labeled samples. 
(Right bottom) Error rates (%) for previous methods on three text datasets
The best and the second best performance are highlighted by bold and underline, respectively

Error rates (%) ↓ Top-1 / Top-5 accuracy (%) ↑

SVHN STL-10 ImageNet

Methods 40 labels 250 labels 1000 labels 1% 10% 100%
Π-Model – 18.96±1.92 26.23±0.82 Sup. base-

line
25.4 / 48.4 56.4 / 80.4

VAT 74.75±3.38 4.33±0.12 37.95±1.12 FixMatch 53.4 / 74.4 70.8 / 89.0
MixMatch 42.55±14.53 3.98±0.23 10.41±0.61 CoMatch 66.0 / 86.4 73.6 / 91.6 80.4 / 94.6
UDA 52.63±20.51 5.69±2.76 7.66±0.56 SimMatch 67.2 / 87.1 74.4 / 91.6
ReMixMatch 3.34±0.20 2.92±0.48 5.23±0.45 Meta-T 

(ours)
67.7 / 87.9 75.0 / 91.7

Error rates (%)↓
IMDb Amazon-5 Yelp-5

PL – 20.21±1.09 27.99±0.83 UAD 18.33±0.61 50.29±4.6 47.49±6.83
FixMatch 3.14±1.60 2.64±0.64 5.17±0.63 FixMatch 7.59±0.28 42.70±0.53 39.56±0.70
Dash 3.03±1.59 2.17±0.10 3.96±0.25 FlexMatch 7.80±0.23 42.34±0.62 39.01±0.17
FlexMatch 8.19±3.20 – 5.77±0.18 SoftMatch 7.48±0.12 42.14±0.92 39.31±0.45
Meta-T 

(ours)
2.89±0.92 2.29±0.51 3.51±0.34 Meta-

T(ours)
7.20±0.20 42.60±0.41 38.44±0.37
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constantly outperforms their performance. Eventually, our method also achieved the SOTA 
performance on ImageNet. By leveraging only 1% labeled data, Meta-T attains 67.7% top-1 
accuracy on the test set. Compared to the previous state-of-the-art method SimMatch, the 
obtained improvement of 0.5% is significant in ImageNet. The superiority of Meta-T on 
ImageNet can already demonstrate its effectiveness on real-world SSL tasks.

Results on three text datasets. For a fair comparison, we keep the same training proce-
dure with SoftMatch. Under two text benchmarks, including IMBb and Yelp-5, our method 
consistently achieves the best top-1 accuracy. Especially in Yelp-5 dataset, Meta-T outper-
forms the second-best method FlexMatch with 0.57% accuracy, which is a huge improve-
ment in such a large-scale dataset.

5.3  Results on imbalanced SSL task

We categorized compared methods into two parts. 1) Threshold-based methods, FixMatch 
(Sohn et al. 2020, Dash Xu et al. 2021) and FlexMatch (Zhang et al. 2021). 2) Others, cRT 
(Kang et  al. 2019), LDAM, MixMatch (Berthelot et  al. 2019), ReMixMatch (Berthelot 
et  al. 2019), DARP (Kim et  al. 2020), CReST (Wei et  al. 2021) and Adsh (Guo and Li 
2022). For constructing imbalanced datasets, we refer to Guo and Li (2022). Specificlly, we 
write the size of two training sets as N =

∑C

c=1
Nc and M =

∑C

c=1
Mc . To construct imbal-

anced datasets, two parameters (imbalance ratio) �l, �u is introduced, i.e., �l = Nl

NC
, �2 =

M1
MC

 . 
Once �l, �u and N1,M1 are given, we set Nc = N1 ⋅ �

− c−1
C−1

l ,Mc = M1 ⋅ �
− c−1

C−1
u  for 1 < c ≤ C . We con-

duct experiments on two settings, i.e., N1 = 500,M1 = 4000 and N1 = 1500,M1 = 3000 
with varying imbalanced ratios �1, �2 ∈ [50, 100, 150].

In Table  5, we conduct the comparison experiments on the settings � = �1 = �2 and 
report the results. From the results, we can see that (1) our proposed Meta-T achieves 
the state-of-the-art performance in most cases, showing its robustness in such a data-
imbalanced case; (2) with the imbalanced ratio increasing, the performance of our algo-
rithm becomes more significant. Compared to the second best performance (i.e., Adsh), 
we achieve 1.43% top-1 accuracy improvements under � = 100 and 2.42% improvements 
under � = 150 . The performance of Meta-T is slightly lower than that of Adsh on the case 
N1 = 500,M1 = 4000, � = 50.

5.4  Effectiveness analysis

Pseudo-labels. We verify the quality of produced pseudo-labels on both typical and imbal-
anced SSL settings.

• Typical SSL. In Fig. 4a, b left, Meta-T shows greater performance in generating correct 
pseudo-labels, which benefits from the higher quality of thresholds produced by TGN. 
In the early learning stage, the number of correct labels in our method is remarkably 
higher than that in FixMatch, reflecting the superiority of sample-level thresholds. In 
Fig. 4a, b right, we exhibit the results of the number of wrong labels. Due to the poor 
performance of TGN in the early learning stage, some thresholds with low quality are 
produced, causing a greater number of wrong pseudo-labels compared with determinis-
tic methods such as FlexMatch. Fortunately, the number of wrong labels decrease with 
the learning process and is lastly lower than that of FixMatch.
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• Imbalanced SSL. We conduct experiments from the perspective of the confusion 
matrix on unlabeled data and show results in Fig. 5. Thanks to the average class confi-
dence, which is input into the TGN, we believe that TGN can learn the classifier con-
fidence scores regarding varying categories under imbalanced settings and thus adap-
tively generate class-balanced confidence thresholds. Experimentally, FixMatch focuses 

Table 5  Top-1 test accuracy (%) on imbalanced CIFAR-10 under three imbalanced ratio and two different 
size of labeled set. The backbone is Wide ResNet-28-2

The best and the second best performance are highlighted by bold and underline, respectively

N
1
= 1500,M

1
= 3000 N

1
= 500,M

1
= 4000

Methods � = 50 � = 100 � = 150 � = 50 � = 100 � = 150

Supervised 65.23±0.05 58.94±0.13 55.63±0.38 51.31±0.34 45.82±0.41 40.90±0.39
cRT 67.82±0.14 63.43±0.45 59.56±0.44 56.28±1.45 48.11±0.79 45.02±1.08
LDAM 68.91±0.10 63.15±0.24 58.68±0.30 56.41±0.92 49.27±0.88 45.10±0.75
MixMatch 73.59±0.46 65.03±0.26 62.71±0.29 65.32±1.20 56.41±1.96 52.38±1.88
ReMixMatch 78.96±0.29 72.88±0.12 68.61±0.40 76.83±0.98 70.12±1.23 59.58±1.30
DARP 81.60±0.31 75.23±0.14 69.31±0.26 76.72±0.46 69.41±0.50 61.23±0.31
CReST 82.03±0.26 75.08±0.41 69.84±0.39 76.18±0.36 69.50±0.70 60.81±0.55
Adsh 83.38±0.06 76.52±0.35 71.49±0.30 79.27±0.38 70.97±0.46 62.04±0.51
FixMatch 79.10±0.14 71.50±0.31 68.47±0.15 77.34±0.96 68.45±0.94 60.10±0.82
Dash 81.93±0.10 74.62±0.26 72.29±0.42 77.90±0.39 70.41±0.27 62.11±0.32
FlexMatch 82.86±0.25 75.47±0.41 70.62±0.30 78.69±0.50 71.80±0.29 62.85±0.39
Meta-T (ours) 83.94±0.12 77.80±0.39 73.07±0.58 78.41±0.22 72.40±0.42 64.46±0.60

Fig. 4  Visualization of the curve of correct and error pseudo-labels in the selected set with varying training 
epochs.Note that Setting 1: keep the identical training time (FixMatch / FlexMatch: 1000 epochs, Ours: 300 
epochs), Setting 2: keep the same training epochs as FixMatch

Fig. 5  From the perspective of the confusion matrix, we compare Meta-T with FixMatch and FlexMatch 
under CIFAR-10 with � = �

l
= �

u
= 100,N1 = 1500,M1 = 3000
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on the studies of majority categories and thus produces unreliable pseudo-labels for 
minority classes. However, Meta-T achieves significant results on tailed classes and 
attains more than 80% accuracy on all classes.

Sample-level thresholds. We show the learned thresholds from three aspects to demon-
strate the effectiveness of Meta-T.

• Accuracy. Figure  6a shows the learned confidence thresholds on CIFAR-10 and 
CIFAR-100. We can observe that (1) the main learned sample-level thresholds are in 
the interval of [0.9,  1.0], supporting the prior knowledge that the confidence thresh-
old should be set as 0.95 for CIFAR. The results verify that competitive sample-level 
thresholds can be learned by TGN; (2) some thresholds less than 0.95 are learned by 
our algorithm, where the samples can be regarded as hard (or boundary) samples. For 
this, it is reasonable that TGN gives them relatively low thresholds, which benefits the 
model’s learning for these samples.

• Robustness. Figure 6b visualize the produced thresholds and test accuracy (%) under 
long-tail semi-supervised learning. We can see that our proposed Meta-T learns lower 
thresholds for tailed classes while keeping high thresholds for many-shot classes. Since 
a small number of tailed classes, the classifier has moderate or low confidence for these 
samples. For this, Meta-T produces relatively small thresholds (around 0.5) and thus 
enables the classifier to learn from more long-tailed unlabeled samples.

• Stability. Figure 6c shows the comparison results from dynamic threshold generation. 
In the beginning, Meta-T tends to initialize thresholds of all unlabeled data as 0.5 and 
then immediately grow up to 0.95, which is identical to the setting in FixMatch. This 
result demonstrates thresholds learned by Meta-T are close to the optimal thresholds.

5.5  Sensitivity analysis

We conduct experiments to analyse the sensitivity of Meta-T in three aspects.
The architecture of TGN. To exhibit the impact of the architecture of TGN, we try dif-

ferent MLP architecture settings with different depths and widths and show the results in 
Table 6 left. It can be seen that varying (five) MLP settings have unsubstantial effects on 
the final result. Therefore, we prefer to adopt the simple yet effective one, i.e., {2C, 100, 1} , 

Fig. 6  Results about learned confidence thresholds from three aspects. (a) Visualization of gener-
ated sample-level thresholds � for all unlabeled data on balanced CIFAR-10 (250 labels) and CIFAR-
100 (2500 labels). (b) Visualization of generated thresholds under imbalanced SSL (CIFAR-10 with 
N1 = 1500,M1 = 3000, �1 = �2 = 100 ). (c) Visualization of class-average confidence threshold v.s. learning 
processes. We compare Meta-T with others under balanced SLT-10 w/ 40 labels
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for all datasets. Meanwhile, we consider that TGN can attain great performance even under 
a small-scale meta-data due to its tiny number of parameters.

The learning rate � w.r.t. the meta-net. Compared with existing methods, our frame-
work introduces an extra hyper-parameter (i.e., the learning rate of meta-net � ), which 
does not require complex cross-validation process. Experimentally, we conduct ablation 
studies and show results with different settings of optimization for TGN in Table 6 right. 
We can conclude that our algorithm is insensitive to the hyperparameter � . Thus, we select 
a normal setting, i.e., Adam optimizer with 1e-3 learning rate.

The slope parameter � . We conduct experiments with varying settings, 
� ∈ {1, 10, 50, 100, 1000} . As shown in Figure  7a, b, the generalization performance 
improves as � increases at the beginning. When � exceeds 100, the improvement of the 
performance can be trivial. We thus set � = 100 for all experiments.

5.6  Efficiency analysis

The step number k of Green Meta-T. We make ablation studies on two SSL settings with 
k ∈ {1, 2, ..., 10} . In Fig. 7c, d, we can observe that (1) with k increases, the error rate of 
Green Meta-T gradually increases compared to Meta-T. It is reasonable that the learning of 
TGN would significantly decrease when conducting more rounds of classifier learning in 
the outer loop of curriculum learning. (2) A relatively large k might not degrade the perfor-
mance of Green Meta-T under a mild SSL setting.

To demonstrate efficiency of Green Meta-T, we plot learning curves whose abscissa is 
the number of accumulative floating point operations (FLOPs). FLOPs are from both the 

Table 6  Ablation studies of different settings of the meta-net TGN

(Left): Architecture of TGN. (Right): Training strategies of TGN. Note that “Setting 1”: Adam w/ 1e-3 
(Ours), “Setting 2”: Adam w/ 5e-4, “Setting 3”: SGD w/ CosineAnnealingLR [1e-3, 1e-4], “Setting 4”: 
ASGD w/ MultiSteps [1e-3, 5e-4, 1e-4], “Setting 5”: keep the same as FixMatch

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

{2C, h
1
, ..., h

n
, 1} # 40 # 250 # 400 # 2500 Strategy # 250 # 2500

2C - 10 - 1 4.39 4.26 36.17 25.81 Setting 1 4.10 25.81
2C - 100 - 1 (Ours) 4.21 4.10 36.98 26.27 Setting 2 4.21 26.50
2C - 1000 - 1 4.49 4.29 37.02 26.19 Setting 3 4.02 26.14
2C - 10 - 10 - 1 4.78 4.55 37.11 25.42 Setting 4 4.39 26.42
2C −100−100 −1 4.91 4.49 37.04 26.98 Setting 5 4.17 26.03

Fig. 7  Sensitivity analysis of the slope parameter � in the surrogate function (a,b) and the step number k of 
Green Meta-T (c, d)
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forward and backward propagation. To show the efficiency of Green Meta-T, we plot train 
loss, train accuracy, test loss, test accuracy with identical numbers of FLOPs for two learning 
algorithms in Figure 8. Since the number of epoch for two algorithms is identical, the learn-
ing process of Green Meta-T ends after approximately 240k FLOPs. We highlight that Green 
Meta-T achieves faster convergence than Meta-T when accumulative FLOPs are identical and 
reduces the computation cost from the second-order derivative at the meta-learning phase.

6  Conclusion

In this paper, we consider sample-level thresholds for pseudo-labeling methods in semi-
supervised learning while a simple yet effective framework Meta-T is proposed. Compared 
with previous methods, Meta-T only contains one hyperparameter and does not rely on pre-
set adjustment functions. By constructing a lightweight meta-net, the sample-aware thresholds 
can be automatically generated by this network. The update of the classifier network and meta-
network can be achieved via bi-level strategy. We also design a surrogate function to replace 
the indicator function in typical pseudo-labeling methods. Further, we theoretically analyze 
the convergence of Meta-T and provide a solution to reduce training complexity, called Green 
Meta-T. Extensive experiments on typical and imbalanced SSL demonstrate its effectiveness.

Appendix A: Theoretical proof of our method

A.1 Proofs of smoothness

Given a small amount of meta dataset with n samples {(xl
1
, yl

1
), ..., (xl

n
, yl

n
)} and another 

unlabeled data {x1, ..., x(�×n)} with size of � × n . By replacing the indicator function with 
the approximate function, the meta loss is Lmeta(w

∗(Θ)) =
1

n

∑n

i=1
H(yl

i
, f (xl

i
;w∗(Θ))) and 

the training loss is

where Si(w,Θ) = S(max(f (Aw(xi;w))) − Vi(w,Θ)).
Firstly, we recall the update equation of the parameters of TGN as follows:

To be concise, we formulate H(yl
i
, f (xl

i
;ŵ(t)(Θ))) as Hmeta

i
(ŵ(t)(Θ)) . Then, the computation 

of backpropagation for the above equation can be written as

(A1)Ltrain(w,Θ) =
1

n𝜇

∑n𝜇

i=1
1(max(f (Aw(xi);w)) > Vi(w,Θ)) ⋅ H(ŷi, f (A

s(xi);w)),

(A2)Θ(t+1) = Θ(t) − 𝜓
1

n

∑n

i=1
∇ΘH(yl

i
, f (xl

i
;ŵ(t)(Θ))).

Fig. 8  Results w.r.t. accumulative FLOPs on CIFAR-100 with 1000 labels
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Let Vj(Θ) = Vj(w
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Lagrange mean value theorem, we have:
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|ŵ
(t)

∑n𝜇

j=1

𝜕�
xj
(Sj(w))

𝜕Sj(w)

𝜕Sj(w)

𝜕w

|

|

|w(t)

𝜕Vj(w
(t);Θ)

𝜕Θ

|

|

|Θ(t)

=
−𝛼

n𝜇

∑n𝜇

j=1

(

1

n

∑n

i=1

𝜕Hmeta

i
(ŵ)
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�ŵ
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ŵ(t)

��xj (j(w))

�j(w)
�j(w)
�w

|

|

|w(t)

) �j(w(t);Θ)
�Θ

|

|

|Θ(t)
.

(A6)

∇2

Θ2H
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𝜕ŵ2

|

|

|ŵ
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A.2 Proofs of convergence

Proof The update of parameters Θ in t-th iteration can be written as 
Θ(t+1) = Θ(t) − 𝜓
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For term2 , considering Lipschitz continuity of ∇Hmeta(ŵ
(t)(Θ)) demonstrated in Lemma 

1, we can obtain the following:

Summing up the Eq.  (A12)  (A13), the Eq.  (A11) can be summarized as
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�������������������������������������������������������

term 2

.
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∇Hmeta(ŵ(t)(Θ(t)))
‖

‖

‖

2

2
+

L𝜓2
t

2

‖

‖

‖

𝜀(t)
‖

‖

‖

2

2
− (𝜓

t
− L𝜓2

t
)
⟨

H
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Summing up the above inequalities and rearranging the terms, we can obtain

We take the expectations w.r.t. �(N) on both size of Eq.  (A14), then we have:
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ŵ
(t)(Θ(t))

)

‖

‖

‖

2

2
+

L𝜓2
t

2

‖

‖

‖

𝜀(t)
‖

‖

‖

2

2

− (𝜓t − L𝜓2
t
)
⟨

Hmeta(ŵ(t)(Θ(t))), 𝜀(t)
⟩

.

(A14)

∑T

t=1
(𝜓t −

L𝜓2
t

2
)
‖

‖

‖
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Hmeta(ŵ(t)(Θ(t))), 𝜀(t)
⟩

+
L

2

∑T

t=1

‖

‖

‖

𝜀(t)
‖

‖

‖

2

2
.

∑T

t=1
(𝜓t −

L𝜓2
t

2
)E𝜀(N)

‖

‖

‖
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2Hmeta(ŵ(1)(Θ(1))) +
∑T

t=1
��2(2 + �tL) + L�2

∑T

t=1
�2
t

]

≤ 1
T�t

[
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