
Vol.:(0123456789)

Machine Learning (2024) 113:5423–5445
https://doi.org/10.1007/s10994-023-06425-7

1 3

Learning sample‑aware threshold for semi‑supervised
learning

Qi Wei1,2 · Lei Feng2 · Haoliang Sun1 · Ren Wang1 · Rundong He1 · Yilong Yin1

Received: 31 May 2023 / Revised: 24 August 2023 / Accepted: 3 October 2023 /
Published online: 18 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2024

Abstract
Pseudo-labeling methods are popular in semi-supervised learning (SSL). Their perfor-
mance heavily relies on a proper threshold to generate hard labels for unlabeled data. To
this end, most existing studies resort to a manually pre-specified function to adjust the
threshold, which, however, requires prior knowledge and suffers from the scalability issue.
In this paper, we propose a novel method named Meta-Threshold, which learns a dynamic
confidence threshold for each unlabeled instance and does not require extra hyperparame-
ters except a learning rate. Specifically, the instance-level confidence threshold is automati-
cally learned by an extra network in a meta-learning manner. Considering limited labeled
data as meta-data, the overall training objective of the classifier network and the meta-net
can be formulated as a nested optimization problem that can be solved by a bi-level opti-
mization scheme. Furthermore, by replacing the indicator function existed in the pseudo-
labeling with a surrogate function, we theoretically provide the convergence of our training
procedure, while discussing the training complexity and proposing a strategy to reduce its
time cost. Extensive experiments and analyses demonstrate the effectiveness of our method
on both typical and imbalanced SSL tasks.

Keywords Semi-supervised learning · Confidence thresholds · Meta-learning · Bi-level
optimization

1 Introduction

Semi-supervised learning (SSL) (Zhu and Goldberg 2009; Sohn et al. 2020) aims to
improve model performance by leveraging both abundant unlabeled data and limited
labeled data. SSL algorithms provide a solution to explore the latent pattern underlying
unlabeled data, which reduces requirements of a large amount of annotations (Sohn et al.
2020). Most of the previous SSL studies heavily rely on the pseudo-labeling strategy (Lee
2013; Sohn et al. 2020) that generates a hard label for unlabeled sample and trains the deep
model on these pseudo-labels.

Editors: Vu Nguyen, Dani Yogatama.

Extended author information available on the last page of the article

http://orcid.org/0000-0002-4073-7598
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06425-7&domain=pdf

5424 Machine Learning (2024) 113:5423–5445

1 3

For pseudo-labeling methods (Lee 2013; Sohn et al. 2020; Zhang et al. 2021; Xu et al.
2021), it is essential to set a proper threshold for selecting reliable pseudo-labels for unla-
beled data. For example, FixMatch (Sohn et al. 2020) selected high-confidence pseudo-
labels via a fixed threshold (e.g., 0.95 for CIFAR Krizhevsky and Hinton (2009) and 0.65
for ImageNet (Deng et al. 2009)). However, as reported in Xu et al. (2021), fixing the
threshold in the entire training process could mitigate the learning efficiency and raise the
error rate of pseudo-labels, especially in the early learning stage.

To address this issue, subsequent works (Xu et al. 2021; Guo and Li 2022; Zhang et al.
2021; Saito et al. 2021) that dynamically generate the threshold to enable more robust SSL
have been proposed. For instance, Xu et al. (2021) translated the fixed threshold to a loss
threshold and selected the unlabeled data whose loss values (evaluated on pseudo-labels)
are smaller than the loss threshold. Then, these selected data are incorporated into the train-
ing set, while the loss threshold gradually decreases over training iterations. Zhang et al.
(2021) leveraged the idea of curriculum learning (Bengio et al. 2009) to take into account
the learning status of each class and flexibly adjusted thresholds for different classes at
each time step via a preset function.

Despite the decent performance of the pseudo-labeling methods mentioned above, they
share two common drawbacks. Firstly, they (Xu et al. 2021; Guo and Li 2022; Zhang et al.
2021) always resort to manually pre-specified functions to adjust the threshold. This tends
to be infeasible when we know little knowledge of underlying datasets or when the label
conditions are too complicated. Secondly, these methods (Xu et al. 2021; Guo and Li 2022;
Zhang et al. 2021) usually involve at least two hyper-parameters, which requires complex
cross-validation phase and thus suffer from the scalability issue (Franceschi et al. 2018)
when we apply them to real-world application.

To address the two drawbacks mentioned above, this paper presents a simple yet effec-
tive strategy to automatically learn sample-aware confidence thresholds for each unla-
beled data. In contrast with previous works, our method does not resort prior knowledge
to pre-define a function for adjusting thresholds while including only one hyper-parameter.
Besides, to the best of our knowledge, we for the first time introduce instance-level thresh-
olds, which is inspired by that the deep model has different learning capabilities for differ-
ent categories even for different examples. Figure 1a shows a practical example. Intuitively,
setting instance-level thresholds is more logical and beneficial to generate more accurate
pseudo-labels for unlabeled instances, further facilitating deep model’s learning.

Specifically, we leverage the idea of meta-learning (Finn et al. 2017) to construct a
lightweight meta-net (e.g., three-layer MLP) for explicitly modeling the instance-level
thresholds (finally obtain a set of thresholds for all unlabeled data). Thanks to the univer-
sal approximation theorem (Hornik et al. 1989) of multilayer feedforward networks, our
meta-net can be considered as a generalized version of the pre-defined functions mentioned
above (Zhang et al. 2021; Xu et al. 2021). In this way, our framework contains a classifier
network and a meta-net, where the training problem of two networks is in a nested opti-
mization scheme. This optimization problem can be solved by a bi-level strategy, which is
presented as 1) Inner loop. Generate instance-level thresholds for all unlabeled instances
and utilizes the hard pseudo labels to train the classifier network, 2) Outer loop. Update
all parameters of the meta-net by a small scale of meta-data which are constructed on the
labeled data.

An appealing feature of this formulation is that the inner loop can be viewed as a map-
ping from the sample threshold space into the meta-net parameter space, and the outer
loop performs the optimization on thresholds. Since the indicator function 1(⋅) , which is
non-differentiable, explicitly exists in the pseudo-labeling framework, we thus leverage

5425Machine Learning (2024) 113:5423–5445

1 3

a surrogate function to approximate it, making the bi-level optimization problem reach-
able. In Fig. 1b, we compare our method with vanilla FixMatch (Sohn et al. 2020) and two
improved methods (Xu et al. 2021; Zhang et al. 2021), which highlights the merits of our
method such as avoiding preset function and no prior knowledge is required.

Our contributions can be summarized as follows:

• We propose a simple yet effective training framework (named Meta-Threshold, Meta-
T) based on bi-level optimization for threshold-based SSL, which enjoys the following
benefits: 1) Meta-T learns thresholds of unlabeled sample automatically through bi-
level optimization, avoiding the the pathology of conventional threshold-based meth-
ods’ reliance on strong prior knowledge on data. 2) Meta-T only includes one extra
hyper-parameter, i.e., the learning rate of the meta-net, which is not sensitive and thus
does not require complex cross-validation.

• We introduce the surrogate function to replace the indicator function. Further, we theo-
retically provide the convergence of our framework and demonstrate that it enjoys a
convergence rate of O(1∕�2).

• We integrate the proposed Meta-T into the framework of curriculum learning dubbed
Green Meta-T, which significantly reduce the training cost of our learning algorithm
with only slight loss of accuracy.

• Our method can be applied to solve both the conventional and imbalanced SSL tasks,
exhibiting great potential in real-world applications.

2 Related work

Deep Semi-Supervised Learning As a common learning paradigm, deep SSL exhibits
remarkable performance in leveraging a great deal of unlabeled data to train the deep
model. Current deep SSL methods can be roughly divided into three categories: con-
sistency-based methods, pseudo-labeling methods, and hybrid methods. The key idea

Fig. 1 a An example illustrates that deep models have different learning capabilities for different examples
in class tiger. b Review of the pseudo-labeling training framework and comparison FixMatch (Sohn et al.
2020) with three improved algorithms on the fixed confidence threshold. Compared to decayed and class-
level thresholds in Dash (Xu et al. 2021) and FlexMatch (Zhang et al. 2021), our method designs a meta-net
which generates a more refined confidence threshold for each unlabeled example (i.e., sample-level thresh-
olds)

5426 Machine Learning (2024) 113:5423–5445

1 3

of consistency-based methods is that forcing the model’s output of original unlabeled
data and perturbed unlabeled data to keep the same (Laine and Aila 2016; Tarvainen
and Valpola 2017; Xie et al. 2020). Pseudo-labeling methods, which are also called self-
learning in previous works, belong to an iterative mechanism that uses limited labeled
data to train the model to predict unlabeled data. Then, the generated labels of unla-
beled data are introduced to train the model Lee (2013). Hybrid approaches (Sohn et al.
2020; Zhang et al. 2021; Xu et al. 2021) always integrate the above two methods with
strong augmentation strategies (e.g., RandAugment (Cubuk et al. 2020) and CTAug-
ment (Berthelot et al. 2019)).

Imbalanced Semi-Supervised Learning To improve the universality of SSL algo-
rithms, some works (Kim et al. 2020; Wei et al. 2021; Guo and Li 2022) turn attention
to more challenging settings like SSL under class-imbalanced label distribution. DARP
(Kim et al. 2020) designed a distribution-aligning manner to modify biased pseudo-
labels to match the true class distribution. However, this method requires prior knowl-
edge about data distribution, which is hard to fulfill in real applications. For this, DARP
manages to estimate the class distribution by a confusion matrix between labeled and
unlabeled data. CReST (Wei et al. 2021) is based on a typical self-training strategy that
adaptively adds pseudo-labeled data to the training set according to the label frequency.

Meta-Learning also known as “learning to learn", has been widely applied to sev-
eral weakly-supervised tasks, such as noisy labels learning (Shu et al. 2019; Sun et al.
2022), out-of-distribution learning (Guo et al. 2020), and semi-supervised learning
(Wang et al. 2020; Xiao et al. 2021). In SSL fields, some works introduce the idea of
meta-learning to learn a set of parameters. For example, Wang et al. (2020) proposed
a framework to learn sample weights for all unlabeled data, which aims to give high
weights to more reliable pseudo-labels. Xiao et al. (2021) proposed to learn soft labels
for unlabeled data while designing a one-order update strategy for bi-level framework.

Relations Two works L2RW (Ren et al. 2018) and MW-Net (Shu et al. 2019)
employed bi-level to efficiently learn a set of hyper-parameter. Our work bears three
critical differences.

(1) Problem setting: (Ren et al. 2018; Shu et al. 2019) focus on improving the generaliza-
tion performance of deep models under noisy labels learning, while our work aims to
enhance the quality of generated pseudo-labels for unlabeled data in semi-supervised
learning.

(2) Methodology: (Ren et al. 2018; Shu et al. 2019) learn a set of sample weights for
training (label-corrupted) samples and then minimize the product of training loss and
corresponding weight, while our framework generates thresholds which are used to
select the high-reliability pseudo-labels instead of directly participating in model’s
training. Besides, our method obeys the framework of the pseudo-labeling method
and thus suffers from the non-differentiable issue of the indicator function, which can
be solved by a surrogate function. Eventually, we joint the bi-level training framework
with curriculum learning, significantly reducing the cost of bi-level strategy.

(3) Theory: We introduce a surrogate function to replace the indicator function and provide
the convergence guarantee of our learning algorithm when the upper bound of the sur-
rogate function is given. Besides, we simply give an analysis of training costs of both
Meta-T and Green Meta-T.

5427Machine Learning (2024) 113:5423–5445

1 3

3 Preliminaries

Problem setting. In a C-class classification task, we have a set of training data
which contains N labeled examples Dl = {(xl1, y

l
1), ⋅ ⋅ ⋅, (x

l
N , y

l
N)} and M unlabeled examples

Du = {x1, ⋅ ⋅ ⋅, xM} , where x ∈ X ⊆ ℝ
d denotes the input d-dimensional feature vector

and y ∈ Y is one-hot label. Given a deep model f with learnable parameters w and a
classification loss function H(⋅) (e.g., cross-entropy loss), the training objective in typi-
cal supervised learning is Ls = �(x,y)∼DlH(f (x), y) . To achieve higher performance, the
training objective of SSL algorithms can be summarised as Ls + �uLu , where Lu is con-
structed on Du and the trade-off coefficient �u satisfies 𝜆u > 0.

3.1 Confidence thresholds in semi‑supervised learning

Due to its simplicity yet great performance, we select FixMatch (Sohn et al. 2020) as an
example to illustrate the usage of confidence threshold in pseudo-labeling methods.

The core idea of FixMatch is the introduction of confidence threshold and strong
augmentation strategies. To train the classifier on unlabeled data, FixMatch first com-
putes the pseudo-label on the weakly-augmented version of image. For each unlabeled
data xm ∈ Du , the prediction of classification network is pm = f (Aw(xm);w) , where
Aw denotes weak augmentation strategies, and the pseudo-label can be written as
ŷm = argmax(pm) . Due to the property of function argmax , ŷm is a one-hot probability
distribution. Then, the training loss of xm can be summarised as

where 1(⋅) is an indicator function and denotes the selection of high-reliability of pseudo-
label, As denotes strong augmentation strategies, and � is a fixed constant. Eventually, the
training objective of all unlabeled data is L

u
=

1

M

∑

x
m
∈Du �x

m

.
As mentioned before, many related works (Zhang et al. 2021; Xu et al. 2021) modi-

fied the fixed constant � to improve the universality of pseudo-labeling algorithms.
However, they always resort to prior knowledge and further design a task-specific func-
tion to adjust this value, limiting their application in practice. Thus, in the next section,
we devise a framework that does not require pre-defined functions yet enables sample-
aware confidence thresholds.

4 Proposed method

Overview. We construct a meta-net (threshold generation network, or TGN) for dynam-
ically produce sample-level threshold. First, we rewrite the learning objective for
threshold-based SSL methods. Second, we introduce the architecture of TGN. Then, we
solve this meta-optimization problem via bi-level strategy which alternatively trains the
classifier and TGN. Eventually, we analyse the convergence of our algorithm and pro-
vide a green version of our method which enjoys lower training time.

(1)𝓁
xm

= 1(max(pm) > 𝜏) ⋅ H(ŷm, f (A
s(xm);w)),

5428 Machine Learning (2024) 113:5423–5445

1 3

4.1 Learning with sample‑level thresholds

To alleviate the aforementioned issues of previous methods, we want to construct a meta-
learning framework that could generate a sample-level confidence threshold for all unla-
beled data in each training step. To be specific, given a meta-net V with parameters Θ ,
the confidence threshold of unlabeled data xm can be written as �m ← Vm(w,Θ) , while the
architecture and input of V is detailedly illustrated in Sect. 4.2. Then, the fixed constant � in
Eq. (1) can be replaced with a sample-level threshold �m and the loss of unlabeled data xm
is formulated as

However, due to the non-differentiable property of the indicator function 1(⋅) , computing
partial derivative with respect to Θ in Eq. (2) is infeasible. In the practical training phase,
we introduce a modified sigmoid function to replace it, which can be written as
S(x) =

1

1+exp−�x
 where the input is max(f (Aw(xm);w)) − Vm(w,Θ) and � is the slope param-

eter to control the shape of the function.
Discuss about the approximate function S(⋅) . In Fig. 2, we compare the difference

between the indicator function 1(⋅) and the suggorate function S(⋅) . We can observe that the
input of function satisfies max(f (Aw(xm);w) − Vm(w,Θ)) ∈ [−1, 1] . Meanwhile, the first-
order and second-order gradient of sigmoid function obviously exist, making backpropaga-
tion of the training loss in Eq. (2) possible.

Eventually, the optimal classifier parameters w∗ can be calculated by minimizing the
loss

4.2 Threshold generation network TGN

In this subsection, we design a threshold generation network (TGN), serving as a meta
model. By summarizing previous works (Zhang et al. 2021; Guo and Li 2022), we found
that considering average class confidence provides more valuable information for gener-
ating threshold and improves the applicability of methods on extreme data distribution.
Thus, we construct the meta-net which learns from instance confidence and average class
confidence simultaneously and outputs sample-aware threshold for unlabeled data.

(2)𝓁
xm
(w,Θ) = 1(max(pm) > Vm(w,Θ)) ⋅ H(ŷm, f (A

s(xm);w)).

(3)w
∗(Θ) = argmin

w

Lu =
1

M

∑

xm∈D
u
�
xm
(w,Θ).

Fig. 2 Compare the indicator
function with the approximate
function S(⋅) with varying �

5429Machine Learning (2024) 113:5423–5445

1 3

Formally, given a weakly-augmented version of unlabeled data xm , the classifier
network f

w
 gives the prediction result (a soft label) g(ptm) in t-th iteration, where g(⋅)

denotes Softmax function. Further, the pseudo-label is ŷtm = argmax(g(ptm)) . Meanwhile,
the average class confidence can be represented as ptc = 1

M

∑M
m=1 g(p

t
m|c = ŷtm) . Note that pt

c

can be regarded as an average soft label of class c in time t. Therefore, for unlabeled
data xm , the generated threshold in t-th iteration is

As shown in Fig. 3b, we illustrate the architecture of proposed TGN, which belongs to a
lightweight net (e.g., three full-connected layers). For xm , we connect its prediction result
g(pt

m
) (a C-dimension soft label) with the average class confidence pt

c
 (a C-dimension vec-

tor). Therefore, the input layer in TGN is 2C dimension.

4.3 Meta‑optimization problem

There are two networks in our training framework, including a classification network f
w

and a meta-net VΘ . The parameters w and Θ can be optimized by the meta-learning idea
(Andrychowicz et al. 2016; Shu et al. 2019). Specifically, we require a small amount of
meta-data set which can be sampled from labeled data in SSL task. Since some works (Shu
et al. 2019; Sun et al. 2022) proved that the generalization performance of the meta-model
largely benefits from a large scale of meta-data, we straightforwardly represent this meta-
data set as Dmeta = Dl = {(xl

i
, yl

i
)}N

i=1
 (i.e., we use the total labeled data for constructing the

meta-data set). The optimal parameters Θ∗ can be obtained by minimizing the following
loss

For clarity, we represent Hi(w) as H(yl
i
, f (xl

i
;w)).

Obtaining the optimal parameters w∗ in Eq. (3) and Θ∗ in Eq. (5) is a nested optimi-
zation problem. For this, we resort to bi-level training strategy as MAML (Finn et al.

(4)� t
m
= V(g(f (xm;w)), p

t

c
;Θ).

(5)Θ∗ = argmin
Θ

Lmeta(w
∗(Θ)) =

1

N

∑N

i=1
Hi(w

∗(Θ)).

Fig. 3 a Flowchart of our learning algorithm. The solid and dashed lines represent forward and backward
propagation, respectively. In each iteration, overall training process contains six phases. Step 1: feed weak-
augmented images to the classifier network and attain pseudo-labels with prediction confidence. Step 2:
input a pair of average class confidence and predicted confidence into the meta-net TGN. Step 3: leverage
generated sample-level threshold � to select high-reliability data and compute the loss L

u
 . Step 4: update the

classifier parameters while holding the computation graph for its gradient. Step 5: feed the meta-data into
the meta-net, compute the loss Lmeta and update Θ . Step 6: recompute the gradient of L

u
 w.r.t. w and update

w . b Architecture of TGN. Given an unlabeled sample x
m
 , TGN’s input consists of two parts

5430 Machine Learning (2024) 113:5423–5445

1 3

2017) and update parameters of meta-net with online strategy. To be specific, the train-
ing loss of classifier network and meta-net (Eq. (3) and Eq. (5)) can be optimized via the
SGD optimizer. In each training iteration, given a mini-batch size number n, we have
two batches of meta data and unlabeled data and represent them as {(xl

1
, yl

1
), ..., (xl

n
, yl

n
)}

and {x1, ..., x(�×n)} , respectively. Note that we can increase � to expand the size of unla-
beled data in one iteration. In t-th iteration, we formulate the parameter of classifier
network as w(t) and the parameters of the meta-net as Θ(t) . The updates of two networks
are as the following three phases.

Algorithm 1 Learning algorithm of Meta-T.

• Formulating learning manner of classifier network. Given the learning step with
a size of � , the descent direction of the objective loss in Eq. (3) on a mini-batch
unlabeled data is

 where �
xi
 is calculated by Eq. (2).

• Updating parametersΘ As we obtain parameter ŵ(t)(Θ) with fixed Θ in Eq. (6),
the update of our meta-net TGN can be achieved by a mini-batch of meta-data
{(xl

1
, yl

1
), ..., (xl

n
, yl

n
)} . Specifically, Θ(t) moves along the direction of direction of gra-

dients w.r.t. the objective in Eq. (5)

 where � denotes the learning step of the SGD optimizer. Note that Θ in this equation is
a variable, which enables gradient computation of 𝜕ŵ

(t)(Θ)

Θ
.

• Updating parameters w of classifier network. Eventually, we utilize the updated
TGN Θ(t+1) to regenerate confidence threshold for unlabeled data and update the
parameters w of classifier network

We illustrate the flowchart of our learning algorithm in Fig. 3a, where Step 4,5,6 repre-
sent Eqs. (6), (7) and (8), respectively. Meanwhile, we summarize the overall updating
steps in Algorithm 1. Compared to current SSL methods, Meta-T does not rely on any

(6)ŵ
(t)(Θ) = w

(t) − 𝛼
1

n𝜇

∑n𝜇

i=1
∇

w
�
xi
(w(t),Θ(t)),

(7)Θ(t+1) = Θ(t) − 𝜓
1

n

∑n

i=1
∇ΘHi(ŵ

(t)(Θ)),

(8)w
(t+1) = w

(t) − �
1

n�

∑n�

i=1
∇

w
�
xi
(w(t),Θ(t+1)).

5431Machine Learning (2024) 113:5423–5445

1 3

prior knowledge to predefine the function for adjusting the threshold. We believe that
this merit would expand applicability of our method in certain environments where we
cannot model the data distribution.

4.4 Convergence analysis

We analyze the convergence of Meta-T and give a rigorously theoretical guarantee.

Lemma 1 (Smoothness). Suppose the loss function H is L-Lipschitz and smooth, and the
approximate function S is �-Lipschitz, and V(⋅) is differential with �-bounded gradient and
twice differential with B-bounded Hessian, and the loss function H have �-bounded gradi-
ents w.r.t. training/meta data and has upper bound with � . Replacing indicator function
with S , the gradient of Θ w.r.t. the meta loss is Lipschitz continuous.

The Proof is shown in Appendix A.1 and Lemma 1 implies that the meta loss w.r.t. the
meta-network is smooth-bounded.

Theorem 1 (Convergence) Based on Lemma 1, let the learning rate �t satisfies �t = min{1, k
T
} ,

for some k > 0 , such that k
T
< 1 , and �t , 1 ≤ t ≤ T is a monotone descent sequence,

�t = min{ 1
L
, c
�
√

T
} for some c > 0 , such that �

√

T
c

≥ L and
∑∞

t=1
�t ≤ ∞,

∑∞

t=1
�2
t
≤ ∞ . Then we

have 1
T

∑T
t=1 �

[

‖

‖

‖

‖

∇Lmeta

(

ŵ(t)(Θ(t))
)

‖

‖

‖

‖

2

2

]

≤ (1
√

T
).

The Proof is shown in Appendix A.2. To be specific, Theorem 1 means that the our
algorithm can achieve �

[

‖

‖

‖

‖

∇Lmeta

(

ŵ(t)(Θ(t))
)

‖

‖

‖

‖

2

2

]

≤ � in O(1∕�2) steps, and would eventually con-

vergence to a stationary point with the training iteration step increases.

4.5 Green meta‑T: training with lower complexity

Training complexity analysis. Compared with the single-step training procedure, the
training process of Meta-T can be divided into three parts, (1) forward and backward passes
of the classifier network for computing ŵ(Θ) ; (2) forward and backward passes of TGN for
updating Θ ; (3) forward and backward passes of classifier network for updating w . Hence,
compared with FixMatch, which only involves one forward and backward pass, Meta-T
requires approximately three times of training time.

As summarized by Xu et al. (2021), the main cost of training time is caused by the back-
propagation in updating the parameters Θ of the meta-net since the meta-gradient in Eq. (7)
needs to compute the similarity between each meta-data and unlabeled data. Therefore,
reducing the computation of ŵ(Θ) would significantly decrease training time. To this end,
we change the training procedure that integrates our proposed Meta-T algorithm with cur-
riculum learning and name it Green Meta-T. Specifically, we conduct the bi-level strategy
(i.e. Meta-T) once for learning the classifier network and TGN, and then continuously do k
-step classifier learning. Then, we give the training complexity of Green Meta-T as follows.

Proposition 1 Suppose a fixed training iteration T, the training time of FixMatch and Meta-
T can be represented as T and 3T , respectively. Given a hyper-parameter k , the training
time of Green Meta-T is k+2

k
T .

5432 Machine Learning (2024) 113:5423–5445

1 3

Proposition 1 means that the training complexity of Green Meta-T could gradually
reduce to T with the value of k increases.

5 Experiments

5.1 Experimental settings

Datasets. We select five image classification datasets and three text classification data-
sets to evaluate the effectiveness of Meta-T, including five image benchmarks CIFAR-10
(Krizhevsky and Hinton 2009), CIFAR-100 (Krizhevsky and Hinton 2009), SVHN (Coates
et al. 2011), SLT-10 (Netzer et al. 2011), and ImageNet (Deng et al. 2009), three text
benchmarks IMDb (Maas et al. 2011), Amazon-5 (Zhang et al. 2015) and Yelp-5 (Zhang
et al. 2015). Detailed statistics of these datasets are shown in Table 1.

Implementation Details. Our code is implemented by Pytorch 1.9.0 with GTX 3090.
We leverage a pytorch library called Higher (Grefenstette et al. 2019) to implement our
algorithm, which provides support for higher-order optimization. For all experiments, we
repeat five times with different random seeds. Others for two networks are shown below

• For the classifier, more information about data preprocessing and training procedure
can be found in Table 2.

• For TGN, we set the size of meta-data as 32 and utilize Adam optimizer with 1e-3
learning rate for all training epoches. We construct the three-layers fully-connected
MLP for TGN, whose structure is {2C, h, 1} . Notably, h is set as 100 for all image data-
sets and 1000 for all text datasets and C is the number of categories.

5.2 Results on typical SSL task

Baselines. We categorize compared methods into two types. 1) Threshold-based meth-
ods, including Pseudo-Labeling (PL) Lee (2013), FixMatch (Sohn et al. 2020), FlexMatch
(Zhang et al. 2021) and Dash (Xu et al. 2021). 2) others, including Π-Model (Sajjadi et al.
2016), MixMatch (Berthelot et al. 2019), UDA (Xie et al. 2020), CoMatch (Li et al. 2021)
and SimMatch (Zheng et al. 2022).

Results on four image datasets. We conduct experiments on CIFAR-10, CIFAR-100,
SVHN, SLT-10 and ImageNet. The results are shown in Tables 3 and 4. On CIFAR-10 &

Table 1 Details about five tested benchmarks

Image Datasets Text Datasets

CIFAR-10 CIFAR-100 SVHN SLT-10 ImageNet IMDb Amazon-5 Yelp-5

Classes 10 100 10 10 1000 2 5 5
Labeled data 50000 50000 73257 5000 1200000 50000 250000 250000
Unlabeled data – – – 100000 – 2000 50000 50000
Test data 10000 10000 26032 8000 15000 25000 5000 5000
Image size 32 × 32 32 × 32 32 × 32 96 × 96 224 × 224 – – –

5433Machine Learning (2024) 113:5423–5445

1 3

Ta
bl

e
2

 D
et

ai
le

d
se

tti
ng

s a
bo

ut
 tr

ai
ni

ng
 p

ro
ce

du
re

 o
f t

he
 b

ac
kb

on
e

(th
e

cl
as

si
fie

r n
et

w
or

k)

C
IF

A
R-

10
C

IF
A

R-
10

0
SV

H
N

SL
T-

10
Im

ag
eN

et
IM

D
b

A
m

az
on

-5
Ye

lp
-5

B
s (

la
be

le
d/

M
et

a)
32

32
32

32
32

32
32

32
B

s (
un

la
be

le
d)

19
2

19
2

19
2

12
8

64
25

6
25

6
25

6
M

od
el

W
Re

sN
et

-2
8-

2
W

Re
sN

et
-3

7-
2

Re
sN

et
-5

0
Pr

e-
tra

in
ed

 B
ER

T-
B

as
e

O
pt

im
iz

er
SG

D
A

da
m

W
Ep

oc
h

30
0

30
0

30
0

30
0

30
0

20
0

20
0

20
0

Le
ar

ni
ng

 ra
te

0.
03

0.
03

0.
03

0.
03

0.
03

1e
−

5
W

ei
gh

t d
ec

ay
5e

−
4

1e
−

3
5e

−
4

5e
−

4
5e

−
4

–
–

–
M

om
en

tu
m

0.
9

0.
9

0.
9

0.
9

0.
9

–
–

–
Lr

 sc
he

du
le

r
di

vi
de

d
by

 1
0

at
 [1

00
,2

00
] e

po
ch

di
vi

de
d

by
 1

0
at

 [1
00

,1
50

] e
po

ch

5434 Machine Learning (2024) 113:5423–5445

1 3

100, Meta-T outperforms previous methods in the majority of settings. Under an extremely
small size of the labeled set, the superiority of our method is significant. For example, we
achieve 1.64% Top-1 accuracy improvements on CIFAR-100 with only 4 samples per class.
Compared with threshold-based methods (Lee 2013; Sohn et al. 2020; Zhang et al. 2021;
Xu et al. 2021), the improvement of our method is significant. On all settings, Meta-T

Table 3 Error rates (%) for previous SOTA methods on CIFAR-10 and CIFAR-100 with varying size of
labeled set

The best and the second best performance are highlighted by bold and underline, respectively

CIFAR-10 (Wide ResNet-28-2) CIFAR-100 (Wide ResNet-28-8)

Methods 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels

Π-Model – 54.26±3.97 14.01±0.38 – 57.25±0.48 37.88±0.11
VAT 74.66±2.12 41.03±1.79 10.51±0.12 85.20±1.40 46.84±0.79 32.14±0.19
MixMatch 47.54±11.50 11.05±0.86 6.42±0.10 67.61±1.32 39.94±0.37 28.31±0.33
UDA 29.05±5.93 8.82±1.08 4.88±0.18 59.28±0.88 33.13±0.22 24.50±0.25
CoMatch 6.91±1.39 4.91±0.33 – – – –
SimMatch 5.60±1.37 4.84±0.39 3.96±0.01 37.81±2.21 25.07±0.32 20.58±0.11
Pseudo-labeling – 49.78±0.43 16.09±0.28 – 57.38±0.46 36.21±0.19
FixMatch 11.39±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12
Dash 9.16±4.31 4.78±0.12 4.13±0.06 44.83±1.36 27.18±0.21 21.97±0.14
FlexMatch 4.97±0.06 4.98±0.09 4.19±0.01 39.94±1.62 26.49±0.20 21.90±0.15
Meta-T (ours) 4.39±0.28 4.10±0.20 4.01±0.09 36.17±1.40 25.81±0.72 20.74±0.23

Table 4 (Left) Error rates (%) for previous methods on SVHN and STL-10 with varying size of labeled set

(Right top) Top-1 and Top-5 accuracy (%) on ImageNet test set with varying ratio of labeled samples.
(Right bottom) Error rates (%) for previous methods on three text datasets
The best and the second best performance are highlighted by bold and underline, respectively

Error rates (%) ↓ Top-1 / Top-5 accuracy (%) ↑

SVHN STL-10 ImageNet

Methods 40 labels 250 labels 1000 labels 1% 10% 100%
Π-Model – 18.96±1.92 26.23±0.82 Sup. base-

line
25.4 / 48.4 56.4 / 80.4

VAT 74.75±3.38 4.33±0.12 37.95±1.12 FixMatch 53.4 / 74.4 70.8 / 89.0
MixMatch 42.55±14.53 3.98±0.23 10.41±0.61 CoMatch 66.0 / 86.4 73.6 / 91.6 80.4 / 94.6
UDA 52.63±20.51 5.69±2.76 7.66±0.56 SimMatch 67.2 / 87.1 74.4 / 91.6
ReMixMatch 3.34±0.20 2.92±0.48 5.23±0.45 Meta-T

(ours)
67.7 / 87.9 75.0 / 91.7

Error rates (%)↓
IMDb Amazon-5 Yelp-5

PL – 20.21±1.09 27.99±0.83 UAD 18.33±0.61 50.29±4.6 47.49±6.83
FixMatch 3.14±1.60 2.64±0.64 5.17±0.63 FixMatch 7.59±0.28 42.70±0.53 39.56±0.70
Dash 3.03±1.59 2.17±0.10 3.96±0.25 FlexMatch 7.80±0.23 42.34±0.62 39.01±0.17
FlexMatch 8.19±3.20 – 5.77±0.18 SoftMatch 7.48±0.12 42.14±0.92 39.31±0.45
Meta-T

(ours)
2.89±0.92 2.29±0.51 3.51±0.34 Meta-

T(ours)
7.20±0.20 42.60±0.41 38.44±0.37

5435Machine Learning (2024) 113:5423–5445

1 3

constantly outperforms their performance. Eventually, our method also achieved the SOTA
performance on ImageNet. By leveraging only 1% labeled data, Meta-T attains 67.7% top-1
accuracy on the test set. Compared to the previous state-of-the-art method SimMatch, the
obtained improvement of 0.5% is significant in ImageNet. The superiority of Meta-T on
ImageNet can already demonstrate its effectiveness on real-world SSL tasks.

Results on three text datasets. For a fair comparison, we keep the same training proce-
dure with SoftMatch. Under two text benchmarks, including IMBb and Yelp-5, our method
consistently achieves the best top-1 accuracy. Especially in Yelp-5 dataset, Meta-T outper-
forms the second-best method FlexMatch with 0.57% accuracy, which is a huge improve-
ment in such a large-scale dataset.

5.3 Results on imbalanced SSL task

We categorized compared methods into two parts. 1) Threshold-based methods, FixMatch
(Sohn et al. 2020, Dash Xu et al. 2021) and FlexMatch (Zhang et al. 2021). 2) Others, cRT
(Kang et al. 2019), LDAM, MixMatch (Berthelot et al. 2019), ReMixMatch (Berthelot
et al. 2019), DARP (Kim et al. 2020), CReST (Wei et al. 2021) and Adsh (Guo and Li
2022). For constructing imbalanced datasets, we refer to Guo and Li (2022). Specificlly, we
write the size of two training sets as N =

∑C

c=1
Nc and M =

∑C

c=1
Mc . To construct imbal-

anced datasets, two parameters (imbalance ratio) �l, �u is introduced, i.e., �l = Nl

NC
, �2 =

M1
MC

 .
Once �l, �u and N1,M1 are given, we set Nc = N1 ⋅ �

− c−1
C−1

l ,Mc = M1 ⋅ �
− c−1

C−1
u for 1 < c ≤ C . We con-

duct experiments on two settings, i.e., N1 = 500,M1 = 4000 and N1 = 1500,M1 = 3000
with varying imbalanced ratios �1, �2 ∈ [50, 100, 150].

In Table 5, we conduct the comparison experiments on the settings � = �1 = �2 and
report the results. From the results, we can see that (1) our proposed Meta-T achieves
the state-of-the-art performance in most cases, showing its robustness in such a data-
imbalanced case; (2) with the imbalanced ratio increasing, the performance of our algo-
rithm becomes more significant. Compared to the second best performance (i.e., Adsh),
we achieve 1.43% top-1 accuracy improvements under � = 100 and 2.42% improvements
under � = 150 . The performance of Meta-T is slightly lower than that of Adsh on the case
N1 = 500,M1 = 4000, � = 50.

5.4 Effectiveness analysis

Pseudo-labels. We verify the quality of produced pseudo-labels on both typical and imbal-
anced SSL settings.

• Typical SSL. In Fig. 4a, b left, Meta-T shows greater performance in generating correct
pseudo-labels, which benefits from the higher quality of thresholds produced by TGN.
In the early learning stage, the number of correct labels in our method is remarkably
higher than that in FixMatch, reflecting the superiority of sample-level thresholds. In
Fig. 4a, b right, we exhibit the results of the number of wrong labels. Due to the poor
performance of TGN in the early learning stage, some thresholds with low quality are
produced, causing a greater number of wrong pseudo-labels compared with determinis-
tic methods such as FlexMatch. Fortunately, the number of wrong labels decrease with
the learning process and is lastly lower than that of FixMatch.

5436 Machine Learning (2024) 113:5423–5445

1 3

• Imbalanced SSL. We conduct experiments from the perspective of the confusion
matrix on unlabeled data and show results in Fig. 5. Thanks to the average class confi-
dence, which is input into the TGN, we believe that TGN can learn the classifier con-
fidence scores regarding varying categories under imbalanced settings and thus adap-
tively generate class-balanced confidence thresholds. Experimentally, FixMatch focuses

Table 5 Top-1 test accuracy (%) on imbalanced CIFAR-10 under three imbalanced ratio and two different
size of labeled set. The backbone is Wide ResNet-28-2

The best and the second best performance are highlighted by bold and underline, respectively

N
1
= 1500,M

1
= 3000 N

1
= 500,M

1
= 4000

Methods � = 50 � = 100 � = 150 � = 50 � = 100 � = 150

Supervised 65.23±0.05 58.94±0.13 55.63±0.38 51.31±0.34 45.82±0.41 40.90±0.39
cRT 67.82±0.14 63.43±0.45 59.56±0.44 56.28±1.45 48.11±0.79 45.02±1.08
LDAM 68.91±0.10 63.15±0.24 58.68±0.30 56.41±0.92 49.27±0.88 45.10±0.75
MixMatch 73.59±0.46 65.03±0.26 62.71±0.29 65.32±1.20 56.41±1.96 52.38±1.88
ReMixMatch 78.96±0.29 72.88±0.12 68.61±0.40 76.83±0.98 70.12±1.23 59.58±1.30
DARP 81.60±0.31 75.23±0.14 69.31±0.26 76.72±0.46 69.41±0.50 61.23±0.31
CReST 82.03±0.26 75.08±0.41 69.84±0.39 76.18±0.36 69.50±0.70 60.81±0.55
Adsh 83.38±0.06 76.52±0.35 71.49±0.30 79.27±0.38 70.97±0.46 62.04±0.51
FixMatch 79.10±0.14 71.50±0.31 68.47±0.15 77.34±0.96 68.45±0.94 60.10±0.82
Dash 81.93±0.10 74.62±0.26 72.29±0.42 77.90±0.39 70.41±0.27 62.11±0.32
FlexMatch 82.86±0.25 75.47±0.41 70.62±0.30 78.69±0.50 71.80±0.29 62.85±0.39
Meta-T (ours) 83.94±0.12 77.80±0.39 73.07±0.58 78.41±0.22 72.40±0.42 64.46±0.60

Fig. 4 Visualization of the curve of correct and error pseudo-labels in the selected set with varying training
epochs.Note that Setting 1: keep the identical training time (FixMatch / FlexMatch: 1000 epochs, Ours: 300
epochs), Setting 2: keep the same training epochs as FixMatch

Fig. 5 From the perspective of the confusion matrix, we compare Meta-T with FixMatch and FlexMatch
under CIFAR-10 with � = �

l
= �

u
= 100,N1 = 1500,M1 = 3000

5437Machine Learning (2024) 113:5423–5445

1 3

on the studies of majority categories and thus produces unreliable pseudo-labels for
minority classes. However, Meta-T achieves significant results on tailed classes and
attains more than 80% accuracy on all classes.

Sample-level thresholds. We show the learned thresholds from three aspects to demon-
strate the effectiveness of Meta-T.

• Accuracy. Figure 6a shows the learned confidence thresholds on CIFAR-10 and
CIFAR-100. We can observe that (1) the main learned sample-level thresholds are in
the interval of [0.9, 1.0], supporting the prior knowledge that the confidence thresh-
old should be set as 0.95 for CIFAR. The results verify that competitive sample-level
thresholds can be learned by TGN; (2) some thresholds less than 0.95 are learned by
our algorithm, where the samples can be regarded as hard (or boundary) samples. For
this, it is reasonable that TGN gives them relatively low thresholds, which benefits the
model’s learning for these samples.

• Robustness. Figure 6b visualize the produced thresholds and test accuracy (%) under
long-tail semi-supervised learning. We can see that our proposed Meta-T learns lower
thresholds for tailed classes while keeping high thresholds for many-shot classes. Since
a small number of tailed classes, the classifier has moderate or low confidence for these
samples. For this, Meta-T produces relatively small thresholds (around 0.5) and thus
enables the classifier to learn from more long-tailed unlabeled samples.

• Stability. Figure 6c shows the comparison results from dynamic threshold generation.
In the beginning, Meta-T tends to initialize thresholds of all unlabeled data as 0.5 and
then immediately grow up to 0.95, which is identical to the setting in FixMatch. This
result demonstrates thresholds learned by Meta-T are close to the optimal thresholds.

5.5 Sensitivity analysis

We conduct experiments to analyse the sensitivity of Meta-T in three aspects.
The architecture of TGN. To exhibit the impact of the architecture of TGN, we try dif-

ferent MLP architecture settings with different depths and widths and show the results in
Table 6 left. It can be seen that varying (five) MLP settings have unsubstantial effects on
the final result. Therefore, we prefer to adopt the simple yet effective one, i.e., {2C, 100, 1} ,

Fig. 6 Results about learned confidence thresholds from three aspects. (a) Visualization of gener-
ated sample-level thresholds � for all unlabeled data on balanced CIFAR-10 (250 labels) and CIFAR-
100 (2500 labels). (b) Visualization of generated thresholds under imbalanced SSL (CIFAR-10 with
N1 = 1500,M1 = 3000, �1 = �2 = 100). (c) Visualization of class-average confidence threshold v.s. learning
processes. We compare Meta-T with others under balanced SLT-10 w/ 40 labels

5438 Machine Learning (2024) 113:5423–5445

1 3

for all datasets. Meanwhile, we consider that TGN can attain great performance even under
a small-scale meta-data due to its tiny number of parameters.

The learning rate � w.r.t. the meta-net. Compared with existing methods, our frame-
work introduces an extra hyper-parameter (i.e., the learning rate of meta-net �), which
does not require complex cross-validation process. Experimentally, we conduct ablation
studies and show results with different settings of optimization for TGN in Table 6 right.
We can conclude that our algorithm is insensitive to the hyperparameter � . Thus, we select
a normal setting, i.e., Adam optimizer with 1e-3 learning rate.

The slope parameter � . We conduct experiments with varying settings,
� ∈ {1, 10, 50, 100, 1000} . As shown in Figure 7a, b, the generalization performance
improves as � increases at the beginning. When � exceeds 100, the improvement of the
performance can be trivial. We thus set � = 100 for all experiments.

5.6 Efficiency analysis

The step number k of Green Meta-T. We make ablation studies on two SSL settings with
k ∈ {1, 2, ..., 10} . In Fig. 7c, d, we can observe that (1) with k increases, the error rate of
Green Meta-T gradually increases compared to Meta-T. It is reasonable that the learning of
TGN would significantly decrease when conducting more rounds of classifier learning in
the outer loop of curriculum learning. (2) A relatively large k might not degrade the perfor-
mance of Green Meta-T under a mild SSL setting.

To demonstrate efficiency of Green Meta-T, we plot learning curves whose abscissa is
the number of accumulative floating point operations (FLOPs). FLOPs are from both the

Table 6 Ablation studies of different settings of the meta-net TGN

(Left): Architecture of TGN. (Right): Training strategies of TGN. Note that “Setting 1”: Adam w/ 1e-3
(Ours), “Setting 2”: Adam w/ 5e-4, “Setting 3”: SGD w/ CosineAnnealingLR [1e-3, 1e-4], “Setting 4”:
ASGD w/ MultiSteps [1e-3, 5e-4, 1e-4], “Setting 5”: keep the same as FixMatch

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

{2C, h
1
, ..., h

n
, 1} # 40 # 250 # 400 # 2500 Strategy # 250 # 2500

2C - 10 - 1 4.39 4.26 36.17 25.81 Setting 1 4.10 25.81
2C - 100 - 1 (Ours) 4.21 4.10 36.98 26.27 Setting 2 4.21 26.50
2C - 1000 - 1 4.49 4.29 37.02 26.19 Setting 3 4.02 26.14
2C - 10 - 10 - 1 4.78 4.55 37.11 25.42 Setting 4 4.39 26.42
2C −100−100 −1 4.91 4.49 37.04 26.98 Setting 5 4.17 26.03

Fig. 7 Sensitivity analysis of the slope parameter � in the surrogate function (a,b) and the step number k of
Green Meta-T (c, d)

5439Machine Learning (2024) 113:5423–5445

1 3

forward and backward propagation. To show the efficiency of Green Meta-T, we plot train
loss, train accuracy, test loss, test accuracy with identical numbers of FLOPs for two learning
algorithms in Figure 8. Since the number of epoch for two algorithms is identical, the learn-
ing process of Green Meta-T ends after approximately 240k FLOPs. We highlight that Green
Meta-T achieves faster convergence than Meta-T when accumulative FLOPs are identical and
reduces the computation cost from the second-order derivative at the meta-learning phase.

6 Conclusion

In this paper, we consider sample-level thresholds for pseudo-labeling methods in semi-
supervised learning while a simple yet effective framework Meta-T is proposed. Compared
with previous methods, Meta-T only contains one hyperparameter and does not rely on pre-
set adjustment functions. By constructing a lightweight meta-net, the sample-aware thresholds
can be automatically generated by this network. The update of the classifier network and meta-
network can be achieved via bi-level strategy. We also design a surrogate function to replace
the indicator function in typical pseudo-labeling methods. Further, we theoretically analyze
the convergence of Meta-T and provide a solution to reduce training complexity, called Green
Meta-T. Extensive experiments on typical and imbalanced SSL demonstrate its effectiveness.

Appendix A: Theoretical proof of our method

A.1 Proofs of smoothness

Given a small amount of meta dataset with n samples {(xl
1
, yl

1
), ..., (xl

n
, yl

n
)} and another

unlabeled data {x1, ..., x(�×n)} with size of � × n . By replacing the indicator function with
the approximate function, the meta loss is Lmeta(w

∗(Θ)) =
1

n

∑n

i=1
H(yl

i
, f (xl

i
;w∗(Θ))) and

the training loss is

where Si(w,Θ) = S(max(f (Aw(xi;w))) − Vi(w,Θ)).
Firstly, we recall the update equation of the parameters of TGN as follows:

To be concise, we formulate H(yl
i
, f (xl

i
;ŵ(t)(Θ))) as Hmeta

i
(ŵ(t)(Θ)) . Then, the computation

of backpropagation for the above equation can be written as

(A1)Ltrain(w,Θ) =
1

n𝜇

∑n𝜇

i=1
1(max(f (Aw(xi);w)) > Vi(w,Θ)) ⋅ H(ŷi, f (A

s(xi);w)),

(A2)Θ(t+1) = Θ(t) − 𝜓
1

n

∑n

i=1
∇ΘH(yl

i
, f (xl

i
;ŵ(t)(Θ))).

Fig. 8 Results w.r.t. accumulative FLOPs on CIFAR-100 with 1000 labels

5440 Machine Learning (2024) 113:5423–5445

1 3

Let Gij =
𝜕Hmeta

i
(ŵ)

𝜕ŵ
|

|

T

ŵ
(t)

𝜕�
xj
(Sj(w))

𝜕Sj(w)

𝜕Sj(w)

𝜕w
|

|w(t) and substitute Gij into Eq. (A3), then

Proof The gradient of Θ w.r.t. meta loss can be formulated as:

Let Vj(Θ) = Vj(w
(t);Θ) and introduce Gij which is defined in Eq. (A4). Taking the gradient

of Θ on both side of Eq. (A5), we attain

The first term in Eq. (A6) right hand side can be summarized as

 since ‖‖
‖

𝜕H(ŵ)

𝜕ŵ
|

|

T

ŵ
(t)

‖

‖

‖

≤ 𝜌,
‖

‖

‖

‖

𝜕�
xj
(Sj(w))

𝜕Sj(w)

‖

‖

‖

‖

≤ 𝜙,
‖

‖

‖

𝜕Sj(w)

𝜕w
|

|w(t)

‖

‖

‖

≤ 𝜁 ,
‖

‖

‖

‖

𝜕2Vj(Θ)

𝜕2Θ

|

|

|Θ(t)

‖

‖

‖

‖

≤ B.

The second term in Eq. (A6) right hand side can be summarized as

Combining the results in Eq. (A7) and Eq. (A8), we have
‖

‖

‖

∇2

Θ2
Hmeta

i
(ŵ(t)(Θ))

|

|

|Θ(t)

‖

‖

‖

≤ 𝜙𝜁 (𝛼L𝛿2𝜙𝜁 + 𝜌B). Define L̂ = 𝜙𝜁(𝛼L𝛿2𝜙𝜁 + 𝜌B) , based on the
Lagrange mean value theorem, we have:

where ∇Lmeta(ŵ
(t)(Θ1)) = ∇ΘLmeta(ŵ

(t)(Θ))
|

|

|Θ1

 . ◻

(A3)

1

n

∑n

i=1
∇ΘH

meta

i
(ŵ(t)(Θ))

|

|

|Θ(t)
=

1

n

∑n

i=1

𝜕Hmeta

i
(ŵ)

𝜕ŵ

|

|

|ŵ
(t)

∑n𝜇

j=1

𝜕ŵ(t)(Θ)

𝜕Sj(w
(t);Θ)

𝜕Sj(w
(t);Θ)

𝜕Vj(w
(t);Θ)

𝜕Vj(w
(t);Θ)

𝜕Θ

|

|

|Θ(t)

=
−𝛼

n2𝜇

∑n

i=1

𝜕Hmeta

i
(ŵ)

𝜕ŵ

|

|

|ŵ
(t)

∑n𝜇

j=1

𝜕�
xj
(Sj(w))

𝜕Sj(w)

𝜕Sj(w)

𝜕w

|

|

|w(t)

𝜕Vj(w
(t);Θ)

𝜕Θ

|

|

|Θ(t)

=
−𝛼

n𝜇

∑n𝜇

j=1

(

1

n

∑n

i=1

𝜕Hmeta

i
(ŵ)

𝜕ŵ

|

|

|

T

ŵ
(t)

𝜕�
xj
(Sj(w))

𝜕Sj(w)

𝜕Sj(w)

𝜕w

|

|

|w(t)

)

𝜕Vj(w
(t);Θ)

𝜕Θ

|

|

|Θ(t)
.

(A4)Θ(t+1) = Θ(t) +
��

n�

∑n�

j=1

(

1

n

∑n

i=1
Gij

)

�Vj(w
(t);Θ)

�Θ

|

|

|Θ(t)
.

(A5)∇ΘHmeta(ŵ(t)(Θ))||
|Θ(t)

= − �
n�

∑n�

j=1

(

�Hmeta(ŵ)
�ŵ

|

|

|

T

ŵ(t)

��xj (j(w))

�j(w)
�j(w)
�w

|

|

|w(t)

) �j(w(t);Θ)
�Θ

|

|

|Θ(t)
.

(A6)

∇2

Θ2H
meta(ŵ(t)(Θ))

|

|

|Θ(t)
= −

𝛼

n𝜇

∑n𝜇

j=1

[

𝜕

𝜕Θ
(Gij)

|

|

|Θ(t)

𝜕Vj(Θ)

𝜕Θ

|

|

|Θ(t)
+ (Gij)

𝜕2Vj(Θ)

𝜕2Θ

|

|

|Θ(t)

]

.

(A7)

‖

‖

‖

‖

‖

𝜕

𝜕Θ
(Gij)

|

|

|Θ(t)

𝜕Vj(Θ)

𝜕Θ

|

|

|Θ(t)

‖

‖

‖

‖

‖

≤ 𝛿
‖

‖

‖

‖

‖

𝜕

𝜕ŵ

(

𝜕Hmeta(ŵ)

𝜕Θ

|

|

|Θ(t)

)

|

|

|

T

ŵ
(t)

𝜕�
xj
(Sj(w))

𝜕Sj(w)

𝜕Sj(w)

𝜕w

|

|

|w(t)

‖

‖

‖

‖

‖

= 𝛿
‖

‖

‖

‖

‖

𝜕

𝜕ŵ

(

𝜕Hmeta(ŵ)

𝜕ŵ

|

|

|ŵ
(t)

−𝛼

n𝜇

∑n𝜇

k=1

𝜕�
xk
(Sj(w))

𝜕Sj(w)

𝜕Sj(w)

𝜕w

|

|

|w(t)

𝜕Vk(Θ)

𝜕Θ

|

|

|Θ(t)

)

|

|

|

T

ŵ
(t)

𝜕�
xj
(Sj(w))

𝜕Sj(w)

𝜕Sj(w)

𝜕w

|

|

|w(t)

‖

‖

‖

‖

‖

= 𝛿
‖

‖

‖

‖

‖

(

𝜕2Hmeta(ŵ)

𝜕ŵ2

|

|

|ŵ
(t)

−𝛼

n𝜇

∑n𝜇

k=1

𝜕�
xk
(Sj(w))

𝜕Sj(w)

𝜕Sj(w)

𝜕w

|

|

|w(t)

𝜕Vk(Θ)

𝜕Θ

|

|

|Θ(t)

)

|

|

|

T

ŵ
(t)

𝜕�
xj
(Sj(w))

𝜕Sj(w)

𝜕Sj(w)

𝜕w

|

|

|w(t)

‖

‖

‖

‖

‖

≤ 𝛼L𝛿2𝜙2𝜁2,

(A8)

‖

‖

‖

‖

‖

(Gij)
𝜕2Vj(Θ)

𝜕2Θ

|

|

|Θ(t)

‖

‖

‖

‖

‖

=
‖

‖

‖

‖

‖

𝜕Hmeta(ŵ)

𝜕ŵ
|

|

T

ŵ
(t)

𝜕�
xj
(Sj(w))

𝜕Sj(w)

𝜕Sj(w)

𝜕w
|

|w(t)

𝜕2Vj(Θ)

𝜕2Θ

|

|

|Θ(t)

‖

‖

‖

‖

‖

≤ 𝜌𝜙𝜁B.

(A9)
‖

‖

‖

∇Lmeta(ŵ
(t)(Θ1)) − ∇Lmeta(ŵ

(t)(Θ2))
‖

‖

‖

≤ L̂‖
‖

Θ1 − Θ2
‖

‖

, for allΘ1,Θ2,

5441Machine Learning (2024) 113:5423–5445

1 3

A.2 Proofs of convergence

Proof The update of parameters Θ in t-th iteration can be written as
Θ(t+1) = Θ(t) − 𝜓

1

n

∑n

i=1
∇ΘH

meta
i

(ŵ(t)(Θ))
�

�

�Θ(t)
. Training with a mini-batch of meat-data Bt

that is uniformly drawn from the data set, we rewrite the equation above as:

where 𝜀(t) = ∇ΘH
meta(ŵ(t)(Θ))

|

|

|Bt

− ∇ΘH
meta(ŵ(t)(Θ)) . Note that the expectation of �(t)

obeys E[�(t)] = 0 and its variance is finite. Consider that

For term 1 , by Lipschitz smoothness of the meta loss function for Θ , we have

According to Eq. (6) (8) (A1), then we have

since ‖‖
‖

𝜕Hj(w)

𝜕w
|

|ŵ
(t)
‖

‖

‖

≤ 𝜌,
‖

‖

‖

‖

𝜕Hmeta
i

(w)

𝜕ŵ
|

|

T

ŵ
(t)

‖

‖

‖

‖

≤ 𝜌.

For term2 , considering Lipschitz continuity of ∇Hmeta(ŵ
(t)(Θ)) demonstrated in Lemma

1, we can obtain the following:

Summing up the Eq. (A12) (A13), the Eq. (A11) can be summarized as

Rearranging the terms, we can obtain

(A10)Θ(t+1) = Θ(t) − 𝜓t

[

∑n

i=1
∇ΘH

meta
i

(ŵ(t)(Θ)) + 𝜀(t)
]

,

(A11)

Hmeta(ŵ(t+1)(Θ(t+1))) − Hmeta(ŵ(t)(Θ(t)))

= Hmeta(ŵ(t+1)(Θ(t+1))) − Hmeta(ŵ(t)(Θ(t+1)))
���

term 1

+Hmeta(ŵ(t)(Θ(t+1))) − Hmeta(ŵ(t)(Θ(t)))
���

term 2

.

Hmeta(ŵ(t+1)(Θ(t+1))) − Hmeta(ŵ(t)(Θ(t+1)))

≤

⟨

∇Hmeta(ŵ(t)(Θ(t+1))), ŵ(t+1)(Θ(t+1)) − ŵ
(t)(Θ(t+1))

⟩

+
L

2

‖

‖

‖

ŵ
(t+1)(Θ(t+1)) − ŵ

(t)(Θ(t+1))
‖

‖

‖

2

2
.

(A12)

‖

‖

‖

Hmeta(ŵ(t+1)(Θ(t+1))) − Hmeta(ŵ(t)(Θ(t+1)))‖‖
‖

≤ �t�
2 + 1

2
L�t�2 = ��2

(

1 +
�tL
2

)

(A13)

Hmeta(ŵ(t)(Θ(t+1))) − Hmeta(ŵ(t)(Θ(t)))

≤
⟨

Hmeta(ŵ(t)(Θ(t+1))) − Hmeta(ŵ(t)(Θ(t))),Θ(t+1) − Θ(t)
⟩

+ L
2
‖

‖

‖

Θ(t+1) − Θ(t)‖
‖

‖

2

2

= − (�t −
L�2

t

2
)‖‖
‖

∇Hmeta(ŵ(t)(Θ(t)))‖‖
‖

2

2
+

L�2
t

2
‖

‖

‖

�(t)‖‖
‖

2

2
− (�t − L�2

t)
⟨

Hmeta(ŵ(t)(Θ(t))), �(t)
⟩

.

H
meta(ŵ(t+1)(Θ(t+1))) − H

meta(ŵ(t)(Θ(t)))

≤ 𝛼𝜌2(1 +
𝛼
t
L

2
) − (𝜓

t
−

L𝜓2
t

2
)
‖

‖

‖

∇Hmeta(ŵ(t)(Θ(t)))
‖

‖

‖

2

2
+

L𝜓2
t

2

‖

‖

‖

𝜀(t)
‖

‖

‖

2

2
− (𝜓

t
− L𝜓2

t
)
⟨

H
meta(ŵ(t)(Θ(t))), 𝜀(t)

⟩

.

5442 Machine Learning (2024) 113:5423–5445

1 3

Summing up the above inequalities and rearranging the terms, we can obtain

We take the expectations w.r.t. �(N) on both size of Eq. (A14), then we have:

since E𝜀(N)

⟨

Hmeta(ŵ(t)(Θ(t))), 𝜀(t)
⟩

= 0 and ‖
‖

(t)
‖

‖

2

2
≤ �2 , where �2 represents the variance of

�(t) . Eventually, we deduce that

 Therefore, we can conclude that under some mild conditions, our algorithm can always
achieve min0≤t≤T E

�

�

�

∇Hmeta(Θ(t))�
�

2

2

�

≤ O(
1

√

T
) in T steps. ◻

(𝜓t −
L𝜓2

t

2
)
‖

‖

‖

∇Hmeta(ŵ(t)(Θ(t)))
‖

‖

‖

2

2

≤ 𝛼𝜌2(1 +
𝛼tL

2
) − (𝜓t −

L𝜓2
t

2
)
‖

‖

‖

∇Hmeta
(

ŵ
(t)(Θ(t))

)

‖

‖

‖

2

2
+

L𝜓2
t

2

‖

‖

‖

𝜀(t)
‖

‖

‖

2

2

− (𝜓t − L𝜓2
t
)
⟨

Hmeta(ŵ(t)(Θ(t))), 𝜀(t)
⟩

.

(A14)

∑T

t=1
(𝜓t −

L𝜓2
t

2
)
‖

‖

‖

∇Hmeta(ŵ(t)(Θ(t)))
‖

‖

‖

2

2

≤Hmeta(ŵ(1)(Θ(1))) − Hmeta(ŵ(t)(Θ(t)))+

∑T

t=1
𝛼𝜌2(1 +

𝛼tL

2
) −

∑T

t=1
(𝜓t − L𝜓2

t
)
⟨

Hmeta(ŵ(t)(Θ(t))), 𝜀(t)
⟩

+
L

2

∑T

t=1

‖

‖

‖

𝜀(t)
‖

‖

‖

2

2

≤Hmeta(ŵ(1)(Θ(1))) +
∑T

t=1
𝛼𝜌2(1 +

𝛼tL

2
)

−
∑T

t=1
(𝜓t − L𝜓2

t
)
⟨

Hmeta(ŵ(t)(Θ(t))), 𝜀(t)
⟩

+
L

2

∑T

t=1

‖

‖

‖

𝜀(t)
‖

‖

‖

2

2
.

∑T

t=1
(𝜓t −

L𝜓2
t

2
)E𝜀(N)

‖

‖

‖

∇Hmeta(ŵ(t)(Θ(t)))
‖

‖

‖

2

2
≤ Hmeta(ŵ(1)(Θ(1)))

+
∑T

t=1
𝛼𝜌2(1 +

𝛼tL

2
) +

L𝜎2

2

∑T

t=1
𝜓2
t
,

mint �
[

‖

‖

‖

∇Hmeta(ŵ(t)(Θ(t)))‖‖
‖

2

2

]

≤

∑T
t=1(�t −

L�2
t

2
)
��(N)

‖

‖

‖

∇Hmeta(ŵ(t)(Θ(t)))‖‖
‖

2

2
∑T

t=1(�t −
L�2

t

2
)

≤ 1
∑T

t=1(2�t − L�2
t)

[

2Hmeta(ŵ(1)(Θ(1))) +
∑T

t=1
��2(2 + �tL) + L�2

∑T

t=1
�2
t

]

≤ 1
∑T

t=1 �t

[

2Hmeta(ŵ(1)(Θ(1))) +
∑T

t=1
��2(2 + �tL) + L�2

∑T

t=1
�2
t

]

≤ 1
T�t

[

2Hmeta(ŵ(1)(Θ(1))) + �1�
2T(2 + L) + L�2

∑T

t=1
�2
t

]

≤ 2Hmeta(ŵ(1)(Θ(1)))
T

1
�t

+
2�1�2(2 + L)

�t
+ L�2�t

=
Hmeta(ŵ(1)(Θ(1)))

T
max{L,

�
√

T
c

} +min{1, k
T
}max{L,

�
√

T
c

}�2(2 + L) + L�2 min{ 1
L
, c
�
√

T
}

≤ �Hmeta(ŵ(1)(Θ(1)))

c
√

T
+

k��2(2 + L)

c
√

T
+ L�c

√

T
= (1

√

T
).

5443Machine Learning (2024) 113:5423–5445

1 3

Author Contributions Conceptualization: W-Q; Methodology: W-Q; Theoretical analysis: F-L; Writing-
original draft preparation: W-Q, S-HL; Writing-review and editing: W-R, H-RD; Funding acquisition:
S-HL, F-L, Y-YL.

Funding This research was supported by Natural Science Foundation of China(No. 62106129, 62176139,
62106028), Natural Science Foundation of Shandong Province (No. ZR2021QF053, ZR2021ZD15) and
Chongqing Overseas Chinese Entrepreneurship and Innovation Support Program, and CAAI-Huawei Mind-
Spore Open Fund.

Availability of data and materials Not applicable.

Declarations

Conflict of interest The author declares that he has no confict of interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Code availability Not applicable.

References

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T., Shillingford, B., & De Frei-
tas, N. (2016). Learning to learn by gradient descent by gradient descent. in NIPS 29

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009) Curriculum learning. In: ICML, pp. 41–48
Berthelot, D., Carlini, N., Cubuk, E.D., Kurakin, A., Sohn, K., Zhang, H., & Raffel, C. (2019) Remixmatch:

Semi-supervised learning with distribution alignment and augmentation anchoring. arXiv preprint
arXiv: 1911. 09785

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., & Raffel, C.A. (2019) Mixmatch: A
holistic approach to semi-supervised learning. in NIPS 32

Coates, A., Ng, A., & Lee, H. (2011). An analysis of single-layer networks in unsupervised feature learning.
In: AISTATS, pp. 215–223

Cubuk, E.D., Zoph, B., Shlens, J., & Le, Q.V. (2020) Randaugment: Practical automated data augmentation
with a reduced search space. In: CVPRW, pp. 702–703.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In: CVPR, pp. 248–255 IEEE

Finn, C., Abbeel, P., & Levine, S. (2017) Model-agnostic meta-learning for fast adaptation of deep net-
works. In: ICLR (PMLR), pp. 1126–1135.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., & Pontil, M. (2018) Bilevel programming for hyperpa-
rameter optimization and meta-learning. In: ICML

Grefenstette, E., Amos, B., Yarats, D., Htut, P.M., Molchanov, A., Meier, F., Kiela, D., Cho, K., & Chintala,
S. (2019) Generalized inner loop meta-learning. arXiv preprint arXiv: 1910. 01727

Guo, L.-Z., & Li, Y.-F. (2022) Class-imbalanced semi-supervised learning with adaptive thresholding. In:
ICLR, pp. 8082–8094

Guo, L.-Z., Zhang, Z.-Y., Jiang, Y., Li, Y.-F., & Zhou, Z.-H. (2020) Safe deep semi-supervised learning for
unseen-class unlabeled data, in: ICLR

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approxi-
mators. Neural Networks, 2(5), 359–366.

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., & Kalantidis, Y. (2019) Decoupling represen-
tation and classifier for long-tailed recognition. arXiv preprint arXiv: 1910. 09217

Kim, J., Hur, Y., Park, S., Yang, E., Hwang, S. J., & Shin, J. (2020). Distribution aligning refinery of
pseudo-label for imbalanced semi-supervised learning. NIPS, 33, 14567–14579.

http://arxiv.org/abs/1911.09785
http://arxiv.org/abs/1910.01727
http://arxiv.org/abs/1910.09217

5444 Machine Learning (2024) 113:5423–5445

1 3

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images
Laine, S., & Aila, T. (2016) Temporal ensembling for semi-supervised learning. arXiv preprint arXiv: 1610. 02242
Lee, D.-H. (2013) Pseudo-label: The simple and efficient semi-supervised learning method for deep neural

networks. In: ICML Workshop. vol 3, p. 896
Li, J., Xiong, C., & Hoi, S.C. (2021) Comatch: Semi-supervised learning with contrastive graph regulariza-

tion. In: ICCV, pp. 9475–9484
Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., & Potts, C. (2011) Learning word vectors for senti-

ment analysis. In: Proceedings of the 49th annual meeting of the association for computational linguis-
tics: Human language technologies, pp. 142–150

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A.Y. (2011) Reading digits in natural images
with unsupervised feature learning

Ren, M., Zeng, W., Yang, B., & Urtasun, R. (2018) Learning to reweight examples for robust deep learning.
In: ICML, pp 4334–4343

Saito, K., Kim, D., & Saenko, K. (2021) Openmatch: Open-set consistency regularization for semi-super-
vised learning with outliers. in NIPS

Sajjadi, M., Javanmardi, M., & Tasdizen, T. (2016) Regularization with stochastic transformations and per-
turbations for deep semi-supervised learning. in NIPS 29

Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., & Meng, D. (2019). Meta-weight-net: Learning an
explicit mapping for sample weighting. In NIPS, 32, 19.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C. A., Cubuk, E. D., Kurakin, A., & Li,
C.-L. (2020). Fixmatch: Simplifying semi-supervised learning with consistency and confidence. NIPS, 33,
596–608.

Sun, H., Guo, C., Wei, Q., Han, Z., & Yin, Y. (2022). Learning to rectify for robust learning with noisy
labels. Pattern Recognition, 124, 108467.

Tarvainen, A., & Valpola, H. (2017). Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. In NIPS, 30, 17.

Wang, Y., Guo, J., Song, S., & Huang, G. (2020). Meta-semi: A meta-learning approach for semi-supervised
learning. arXiv preprint arXiv: 2007. 02394

Wei, C., Sohn, K., Mellina, C., Yuille, A., & Yang, F. (2021) Crest: A class-rebalancing self-training frame-
work for imbalanced semi-supervised learning. In: CVPR, pp. 10857–10866

Xiao, T., Zhang, X.-Y., Jia, H., Cheng, M.-M., & Yang, M.-H. (2021). Semi-supervised learning with meta-
gradient. In: International Conference on Artificial Intelligence and Statistics, pp. 73–81

Xie, Q., Dai, Z., Hovy, E., Luong, T., & Le, Q. (2020). Unsupervised data augmentation for consistency
training. NIPS, 33, 6256–6268.

Xu, Y., Shang, L., Ye, J., Qian, Q., Li, Y.-F., Sun, B., Li, H., & Jin, R. (2021). Dash: Semi-supervised learn-
ing with dynamic thresholding. In: ICLR, pp. 11525–11536

Xu, Y., Zhu, L., Jiang, L., & Yang, Y. (2021) Faster meta update strategy for noise-robust deep learning. In:
CVPR, pp. 144–153

Zhang, X., Zhao, J., & LeCun, Y. (2015) Character-level convolutional networks for text classification. in
NIPS 28

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Okumura, M., & Shinozaki, T. (2021). Flexmatch: Boost-
ing semi-supervised learning with curriculum pseudo labeling. NIPS, 34, 18408–18419.

Zheng, M., You, S., Huang, L., Wang, F., Qian, C., & Xu, C. (2022) Simmatch: Semi-supervised learning
with similarity matching. In: CVPR, pp. 14471–14481

Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, 3(1), 1–130.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://arxiv.org/abs/1610.02242
http://arxiv.org/abs/2007.02394

5445Machine Learning (2024) 113:5423–5445

1 3

Authors and Affiliations

Qi Wei1,2 · Lei Feng2 · Haoliang Sun1 · Ren Wang1 · Rundong He1 · Yilong Yin1

 * Haoliang Sun
 haolsun@sdu.edu.cn

 * Yilong Yin
 ylyin@sdu.edu.cn

 Qi Wei
 1998v7@gmail.com

 Lei Feng
 lfengqaq@gmail.com

 Ren Wang
 xxlifelover@gmail.com

 Rundong He
 rundong_he@mail.sdu.edu.cn

1 School of Software, Shandong University, Jinan, China
2 School of Computer Science and Engineering, Nanyang Technological University, Singapore,

Singapore

http://orcid.org/0000-0002-4073-7598

	Learning sample-aware threshold for semi-supervised learning
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Confidence thresholds in semi-supervised learning

	4 Proposed method
	4.1 Learning with sample-level thresholds
	4.2 Threshold generation network TGN
	4.3 Meta-optimization problem
	4.4 Convergence analysis
	4.5 Green meta-T: training with lower complexity

	5 Experiments
	5.1 Experimental settings
	5.2 Results on typical SSL task
	5.3 Results on imbalanced SSL task
	5.4 Effectiveness analysis
	5.5 Sensitivity analysis
	5.6 Efficiency analysis

	6 Conclusion
	Appendix A: Theoretical proof of our method
	A.1 Proofs of smoothness
	A.2 Proofs of convergence

	References

