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Abstract
Resource limitations make it challenging to provide all students with one of the most effec-
tive educational interventions: personalized instruction. Reinforcement learning could be a 
pivotal tool to decrease the development costs and enhance the effectiveness of intelligent 
tutoring software, that aims to provide the right support, at the right time, to a student. 
Here we illustrate that deep reinforcement learning can be used to provide adaptive peda-
gogical support to students learning about the concept of volume in a narrative storyline 
software. Using explainable artificial intelligence tools, we extracted interpretable insights 
about the pedagogical policy learned and demonstrated that the resulting policy had simi-
lar performance in a different student population. Most importantly, in both studies, the 
reinforcement-learning narrative system had the largest benefit for those students with the 
lowest initial pretest scores, suggesting the opportunity for AI to adapt and provide support 
for those most in need.

Keywords  Reinforcement learning · Education · Children · Artificial intelligence

1  Introduction

Many children fail basic reading and math standards,1 and the number of such students has 
greatly increased during the covid-19 pandemic. One-on-one human tutoring can be highly 
effective (Nickow et  al., 2020), in part because it enables students to receive personalized, 
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differentiated instruction, but it is often prohibitively expensive. Educational software aims to 
provide some of this personalized instruction at scale, but can still be costly and slow to build.

Reinforcement learning (RL) could reduce the cost of developing effective learning 
technology by automating the process of specifying how best to support a student through 
their learning journey. RL algorithms learn from data to choose an intervention (such as a 
hint), given the current context (such as an estimate of a student’s knowledge) to maximize 
the expected value of some desirable outcome, such as test scores. Preliminary work on 
using RL for improving educational software has enabled encouraging gains on learning 
outcomes (Mandel et al., 2014; Chi et al., 2011; Park et al., 2019; Bassen et al., 2020) or 
student persistence (Mandel et al., 2014; Bassen et al., 2020). Such systems have been lim-
ited to selecting among practice items, and not all experiments with using RL for enhanc-
ing educational technology have yielded positive outcomes (see review (Doroudi et  al., 
2019)). It is unknown if reinforcement learning could be used to automatically tune and 
optimize broader types of learning systems, such as the pedagogical feedback provided in a 
narrative environment. We also seek to do so in a way that is interpretable and robust– two 
important aspects of AI for societally impactful applications, that are receiving increasing 
attention broadly, but have not yet been considered as much in the AI for education space.

To address this, we created a narrative-based adaptive pedagogical-supported educa-
tional software to support math concept learning for students roughly ages 9-12 and used 
reinforcement learning to adaptively (machine) learn the responses to provide support 
for student learning. Recent advances in explainability methods for deep neural networks 
(e.g. Lundberg and Lee (2017); Sundararajan et al. (2017)) have made it possible to use 
advanced tools for modeling without sacrificing interpretability. We used these methods 
to help understand if and how the system is learning to differentiate in order to optimize 
desired outcomes. An additional key consideration is whether the learned pedagogical sup-
port would generalize to a different student community, as all schools may not be able to 
support online adaptive RL systems. We tested if a distilled version of the decision poli-
cies learned in the first study could be used in a different population of students that was 
a more geographically diverse population with a lower household income distribution. In 
both studies, students with the lowest pretest scores improved using our RL-powered nar-
rative AI system, and more than compared to students using a baseline system. This high-
lights the potential for reinforcement learning to tune educational software parameters to 
enhance effectiveness, in a way that is interpretable, transfers to other populations, and can 
help those most in need of support.

2 � Related work: reinforcement learning for student learning

Reinforcement learning has seen impressive successes in areas like robotics (Levine et al., 
2016) and game playing (Silver et al., 2018). The goal of a reinforcement learning algo-
rithm is to compute a strategy (referred to as a “policy”) that specifies the intervention 
(such as a pedagogical activity) to choose in a particular context (e.g., a learner’s knowl-
edge state and frustration level), in a way that is expected to maximize desired outcomes 
(e.g., test scores, engagement, retention). A key challenge is that the algorithm does not 
have prior knowledge of the statistical parameters governing the process by which contexts 
evolve, and outcomes occur. Instead, an algorithm must learn from experience by analyz-
ing actual decisions made and their outcomes, a strategy with high expected outcomes.
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In the context of education, there have been some promising results that reinforcement 
learning can improve word acquisition of preschoolers interacting with a social robot (Park 
et al., 2019), the persistence of learners during a fractions game (Mandel et al., 2014), the 
performance of college students learning introductory physics (Chi et  al., 2011), under-
graduates learning discrete mathematics (Zhou et  al., 2019), and the outcomes and effi-
ciency of working adults learning linear algebra (Bassen et al., 2020). However, in other 
settings, there has been little benefit over a reasonable control condition (Rowe & Lester, 
2015; Doroudi et al., 2019). More broadly, work on intelligent tutoring systems and com-
puter-assisted learning suggests that personalized feedback and support in educational soft-
ware can be an effective way to support student learning (Corbett, 2001; Beal et al., 2010; 
VanLehn, 2011), but most prior work has focused on software designed to be used in the 
classroom where there are additional mechanisms to keep students’ attention.

We hypothesize that reinforcement learning may be particularly beneficial when learn-
ing is happening out of the classroom, or motivation and engagement are particularly criti-
cal, or in less traditional curricula that move towards different forms of instruction rather 
than lecture and practice. Learning sciences offer less guidance about how to best sup-
port students in these settings. Yet, such educational settings are likely to be increasingly 
important in the future, both due to immediate challenges due to the covid-19 pandemic 
and aftermath, as well as due to the types of skills needed for success in the 21st century. 
Reinforcement learning may inform data-driven instruction for such settings, and we focus 
our attention on learners outside the classroom in this work.

As another contrast between our focus and prior related work, in the context of educa-
tion, it is both important and of interest to understand what the algorithm learns to do: 
what personalized decisions are made for different contexts and individuals, and who is 
most helped by the algorithm. Such issues have been historically largely unstudied in the 
reinforcement learning research community, with some notable exceptions (e.g. Shen et al. 
(2016); Zhou et al. (2022)), but are an important part of our current work.

3 � Interface design

Learning science principles can often be too broad to inform the specific design decisions 
needed to create engaging, effective educational software. For example, a narrative-based, 
basic chatbot-supported2 educational interface can lead to significant learning and engage-
ment gains over a no-narrative, no-chatbot variant (Ruan et al., 2020), but doing so well is 
subtle. Here the effective chat tutoring system actually used humans to act as chatbots, in a 
wizard-of-oz style study. In contrast, a different narrative-based system with standard step-
by-step hints (which are common in intelligent tutoring systems) provided no benefit over 
the no-narrative, no-hint control condition (Ruan et al., 2020).

RL has the potential to be particularly helpful in such situations where personaliza-
tion may be key. In this work, we used an informal online learning environment to teach 
students about the concept of volume that was previously developed (Ruan et al., 2020).3 
Learning tasks in this system are embedded in a narrative storyline. In response to student 
input, a companion AI tutor selects among four common pedagogical strategies: providing 

2  Note that our work was conducted before the public launch of ChatGPT in November 2022.
3  Code for the interface is available here: https://​github.​com/​Stanf​ordAI​4HI/​smart-​primer-​websi​te-​public

https://github.com/StanfordAI4HI/smart-primer-website-public
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direct hints, generic encouragement, and guided prompts that scaffold the student (e.g., 
"Have you heard of a unit cube?"), or passive positive acknowledgment (emoticon smiley 
face). Figure 1 shows a screenshot of the software used.

4 � Approach

4.1 � Feature space

Due to .past success in RL systems for adult learning (Chi et al., 2011; Bassen et al., 
2020), we use a small set of features, specifically an eight-dimensional state space, 
described in detail below:

•	 Grade: The elementary school grade a child is in, ranging from 3–5.
•	 Pre-score: The score a child receives for the pre-test, ranging from 0–8.
•	 Step: The step of the task a child is in, ranging from 1–6. (This is automatically 

defined by the task interface).
•	 Failed attempts: The number of failed attempts made by the child in the current step. 

It is a non-negative integer. There is a single correct answer to each step.
•	 NLP positive score: A score that reflects the positive sentiment in the last phrase 

typed in by the child. It is a float ranging from 0–1. An automatic sentiment analysis 
tool from NLTK (Bird et al., 2009) is used to calculate this.

•	 NLP negative score: A score that reflects the negative sentiment in the last sentence 
mentioned by the child. It is a float ranging from 0–1. An automatic sentiment analy-
sis tool from NLTK (Bird et al., 2009) is used to calculate this.

•	 NLP help score: A score that reflects the extent to which the child asks for help in 
the message sent. It is a float ranging from 0–1 and calculated as the semantic simi-
larity between the child’s message and “help”.

•	 Anxiety score: The score of the math anxiety test (Carey et al., 2017) that the child 
takes prior to beginning the activity.

Fig. 1   Tutoring AI Guide Interface: A child solves a math problem while interacting with the AI-driven 
tutoring guide. The child can click on the “helpful?” button if they consider the AI tutor’s response to be 
helpful. The child can also click on “I want to stop playing” to quit the activity at any time
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The observation vectors were normalized element-wise before being used for training 
and prediction. Grade, pre-score, and anxiety score are static variables. Other variables 
are affected by the actions the policy takes and change as the child is solving each step 
of the task.

4.2 � RL policy learning

4.2.1 � The simulation phase

RL algorithms were run on a simulator before any real-world experiments were done to 
get an initial estimate of the performance and test the algorithm’s potential. The simula-
tor models children with various characteristics and their interactions with the math prob-
lem and interactive teaching support (the actions selected by the RL policy). Note that this 
simulator used simple, hand designed models of student learning and was not intended as 
a high fidelity replica of student learning: rather we used it to help explore how quickly a 
reinforcement learning agent might be able to learn an effective policy in such an environ-
ment (aka we expected our later experiment to be performed with hundreds, not millions, 
of students), and to tune the hyperparameters of our setup.

These early simulations informed our choice of a small function model for use in our later 
experiments. For example, we explored various multiple policy architectures and converged 
on 2 hidden layers, since in our simulations the parameters for a small instructional model 
could be learned within a couple of hundred simulated students. in this way, these experi-
ments can serve as a very rough sanity check prior to the first experiment. The code for these 
simulations is available here: https://​github.​com/​Stanf​ordAI​4HI/​Smart​Primer_​Gym.

4.2.2 � Online learning Phase

Throughout the math-learning activity, children have access to an AI guide on a side panel 
that provides encouragement, hints, and companionship. The goal is for the AI guide to 
provide additional engagement with the math activity and provide adaptive support that 
facilitates learning gains. The AI guide takes on the persona of the monster that children 
select in the fantasy-based narrative. Before entering the math learning activity, children 
are brought through a short tutorial in which they communicate with the AI guide, which 
introduces itself and asks about the children. This tutorial serves to familiarize the children 
with the AI guide interface and build social rapport between the AI guide and the children. 
We provide a workflow in Fig. 2.

The RL decision policy takes in a vector describing features of the learner state and out-
puts a particular support type (of the 4 options) to provide. The RL algorithm aims to learn 
an automated decision policy to maximize the expected reward function, which should cap-
ture the key desired outcomes. We specify the reward when a student j finishes as:

(� = 0.013, � = 0.1),where the first term is the sum over items of the j-th student’s clipped 
learning gain from pretest to post-test on item i of the assessment, the second term is a tiny 
penalty on the number of hints nhj given by the system to the student (since too many hints 
may reduce learning), the third term provides a small bonus for the number of times nuj 

Rj =

8∑

i=1

[max(0, postij − preij)] − � ∗ nhj + �nuj + 1(quitj),

https://github.com/StanfordAI4HI/SmartPrimer_Gym
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child j marked an AI guide reply as helpful4, and the last term 1(quitj) = −8 is a penalty if 
the learner quits before completing the task. Note that we choose to use a clipped learning 
gain (pair-wise increases between pretest to post test per problem). Problems were matched 
on the two tests to be similar with different specific numerical quantities (aka problem 3 
on the test 1 was similar to problem 3 on test 2). We expected it is highly unlikely for the 
policy and practice with the math software to cause negative learning gains, and clipping 
the signal at 0 means that if a student did a problem correctly initially but not on the post 
test (which could occur for many reasons, including a student not focusing on the post test), 
did not impact the resulting reward signal. Bassen et al. (2020) previously stated that using 
such a clipped signal improved the stability and efficiency of reinforcement learning in 
their learning task. We set the hyperparameters (� = 0.013 and � = 0.1),5

The proximal policy optimization (PPO) algorithm (Schulman et al., 2017) was used to 
learn the decision policy to optimize the expected reward.6 The policy architecture is sto-
chastic. The hyper-parameter used in the online study was � = 0.2 . Both the policy neural 
network and value function neural network had two hidden layers with 16 nodes and a tanh 
activation function. We used an Adam optimizer with a learning rate of 0.0025 for both. 
The RL policy is implemented with the RLGraph package (Schaarschmidt et  al., 2019). 
This optimization method was chosen as it has shown potential in similar situations, for 
example, in Bassen et al. (2020).

Fig. 2   The interaction between user and RL AI guide. The RL AI guide selects one of four actions and 
replies to the user once a message is received. The reward function is updated both during the interaction 
and after the child completes the post-quiz. Rewards 1–4 correspond to the reward functions described in 
Sect. 4.2 (Reward Function). The RL AI guide performs an update after every five children

5  As has been done in prior work (e.g. Bassen et al. (2020)) we created a simple simulator of student learn-
ing that we have made available https://​github.​com/​Stanf​ordAI​4HI/​Smart​Primer_​Gym and explored a small 
set of hyperparameter values for � and � in that simulator,, centered around those proposed in Bassen et al. 
(2020). As the simulator was extremely coarse, it is possible that other hyperparameters would do better in 
the real experiment.
6  Our code is available at https://​github.​com/​Stanf​ordAI​4HI/​smart_​primer_​bot_​public.

4  Post study we analyzed if the number of times a student marked an AI guide as helpful was correlated 
with post test - pretest score gains. We used both a Pearson correlation coefficient to estimate a linear rela-
tionship, and also performed a Kendall correlation test. The estimated relationship was small in both cases, 
suggesting that in the future, omitting this term may yield a more stable reward function.

https://github.com/StanfordAI4HI/SmartPrimer_Gym
https://github.com/StanfordAI4HI/smart_primer_bot_public
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4.2.3 � Offline reinforcement learning

We also performed offline reinforcement learning to extract another policy for use in a 
subsequent experiment. We did this for multiple reasons. First, as described later, during 
online reinforcement learning, the policy had not yet converged by the end of study 1, and 
we wanted to compare a static learned policy to a control, where the differences might be 
clearer. Second, we were curious whether we might extract a higher-performing decision 
policy using offline learning. Third, in most experimental sciences, research is hoped to 
provide findings that generalize beyond the specific research setting. Such generalizability 
is also of key interest in machine learning. Therefore an important open issue is whether 
automated pedagogical strategies obtained using reinforcement learning in one setting will 
transfer to similar settings.

We used offline reinforcement learning policy evaluation to select among potential new 
automated instructional policies using the data gathered from online reinforcement learn-
ing (in our study 1, as we will shortly describe). We considered two sets of algorithms 
for training potential instructional policies. The first is behavior cloning (Pomerleau, 1990; 
Sammut et al., 1992), a popular method for leveraging offline data to train an automated 
policy. Behavior cloning trains the model to imitate the probability distribution of actions 
that are outputted by the online policy.

Recall that during our online RL experiment, PPO was used to update the RL policy 
deployed at regular intervals. This meant that only a few students got the same identical 
policy in the RL condition. Therefore behavior cloning can be used to output a single RL 
policy that essentially distills an aggregate policy over the entire online RL experiment: in 
a sense, Intuitively, though PPO does not have cumulative regret guarantees in our setting, 
our procedure at a high level is similar to theoretical proofs that show how an algorithm 
that achieves a particular cumulative regret can be used to output a single decision policy 
with a small simple regret by constructing a new decision policy that is an average over all 
the policies deployed by the algorithm up to a certain point. More precisely, behavior clon-
ing minimizes the following loss:

which in our setting, will create a single stochastic policy. Note that this policy may be dif-
ferent than any of the decision policies deployed during online RL.

The second style of algorithms we explored was offline policy gradient on the estimated 
performance of the trained instructional policy. This method has been used in several other 
offline RL optimization papers (see e.g. Metelli et al. (2018); Liu et al. (2020)). Here we 
used a weighted importance sampling (WIS) estimator to estimate the value of the policy,

where Ri is the total reward for student i. This is called policy gradient via importance 
sampling (POIS). We also explored whether adding an effective sample size (ESS) penalty 
with hyperparameter � would help – ESS regularizes the difference between the learned 
policy �� and the behavior policy p.

LBC(�,D) = �(s,a,s�)∼D[DKL(��(s)||p(a|s))]

(1)

LWIS(�,D) =
1

∑�D�
i=1

�∏L
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�
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We considered multiple hyperparameters for each of the two algorithm procedures (see 
Table 1). There are 108 hyperparameter combinations to learn our policy. We use an algo-
rithm evaluation procedure where we partition the collected dataset into a train and valida-
tion set by randomly allocating 50% of students into one group and the rest into another. 
We repeat this strategy 10 times. We use this split dataset to choose the best model archi-
tecture, hyperparameters, and learning objectives, similar to what has been proposed in Nie 
et al. (2022). We trained our model on the training split and use weighted importance sam-
pling (WIS) to evaluate the performance of this policy on the validation set. We apply the 
same learning procedure across all 10 splits and compute the average of the performances. 
We choose the best algorithm from the highest average performance on the validation set. 
We then apply this algorithm to train a policy that learns from the entire dataset.

In our evaluation, the behavior cloned policy was estimated to outperform the online 
policy in the majority of splits. Also, a small 1-layer fully connected neural network with 
4-dimensional hidden state and Gaussian error linear unit (Hendrycks & Gimpel, 2016) 
activation function outperformed other model architectures.

Therefore we used the distilled, behavior cloned policy in our second experiment.

5 � Experimental setups

As a control condition, the interface included the mathematics task but had no narration 
and no adaptive support; similar to a mastery-style approach, students had to successfully 
complete one subpart before advancing.

While this may initially seem like a weak control condition, a past study (Ruan et al., 
2020) on teaching an elementary school mathematics task had found that a similar control 
condition had performed similarly to a control condition with a narrative storyline, and 
slightly better than a control condition with a narrative storyline and step-wise hints (which 
are common in tutoring software).

In study 1, we examined the speed and effectiveness of using reinforcement learning to 
adapt the type of AI guide feedback given to learners. Due to covid-19 pandemic restric-
tions, all experiments were completed online. Subjects were randomly assigned to each 
condition, but with an unequal allocation– more students were assigned to the RL con-
dition than the control condition. In total 269 elementary school students used the rein-
forcement learning-narrative educational software (RL). 70 students were in the control 
condition.

Subjects completed an 8 item assessment and a math anxiety survey (Carey et  al., 
2017), then used the volume education software, and then completed another assess-
ment (identical up to numerical values, and cross-randomized across students), and Gig-
gle Gauge, an engagement measure designed for studies with children (Dietz et al., 2020). 

Table 1   Hyperparameters 
considered during offline batch 
reinforcement learning. The 
policy network dimension 
describes the network structure: 
e.g. [4] is one layer of 4 hidden 
nodes, [16,16] is two hidden 
layers, each with 16 nodes

Hyperparameter range

Training algorithm BC, POIS
Policy network dimension [4], [8], [16], [4,4],

[8,8], [16,16]
Training epochs [1, 5, 10]
ESS penalty � [0, 0.01, 0.05]
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More specifically, Giggle gauge is a seven item self-report measure of engagement that was 
designed to be appropriate given children’s development.

In study 2 we were interested to see if the distilled behavior cloned policy learned 
from the online RL process (Sect. 4.2), would transfer to a new population of subjects. 
We then conducted study 2 with a new set of subjects (37 participants used for analy-
sis): subjects were randomized into the same control condition as study 1, or using the 
single distilled RL policy.

In study 2, we recruited a broader population more similar to that of the U.S.A. 
For the original study, 113 participants out of 203 provided home zip codes. For the 
follow-up study, 16 participants out of 30 provided home zip codes. For those that 
did not provide their home zip code, we use their school zip code. Using these zip 
codes, we obtained the median housing price and mean annual household income from 
the fifth American Community Survey (in 2020), accessible through an API provided 
by the United States Census Bureau. Figure  3 shows the difference between the stu-
dent groups in study 1 and study 2. We conduct the Kolmogorov-Smirnov 2-sided 
test between student populations of two studies on these variables. For both mean 
annual household income ( Pr(F(x) = G(x)) = 0.02 < 0.05 ) and median housing price 

Table 2   Mean (std. dev) results 
of children in both studies

Online RL study 1 Distilled policy study 2

Control Narrative AI Control Narrative AI

Number 68 258 18 17
Pretest 5.46 (2.73) 4.87 (2.38) 4.06 (2.58) 3.41 (2.31)
Posttest 5.89 (2.57) 5.72 (2.31) 3.83 (2.53) 4.12 (1.87)
Improvement 0.44 (1.26) 0.84 (1.89) −0.22 (1.7) 0.7 (2.33)
Engagement 3.16 (0.62) 3.4 (0.52) 3.17 (0.52) 3.28 (0.57)
Completion 92.6% 94.5% 100% 100%

Fig. 3   Distribution of household income (left) or median housing price (right) in the zip codes provided by 
subjects in study 1 and study 2. There were significant difference in the subject pools between the two stud-
ies
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( Pr(F(x) = G(x)) = 0.0005 < 0.01 ), we found a significant difference between two 
populations. In addition, subjects were more geographically and racially diverse (see 
Appendix). In addition, study 1 was done when many more U.S.A. children attended 
school remotely. Thus, study 2 offers a chance to examine the generalizability of 
learned RL policies. 

6 � Results

Aggregate summaries are shown in Table 2. Some subjects completed the pretest or post-
test twice due to a limitation in the system. We excluded these subjects from the results 
presented. There was no significant difference in the amount of improvement (post-test - 
pretest score) between the RL narrative condition and control condition (study 1: Wilcoxon 
rank test W = 9632.5 , p = 0.2 , study 2: Wilcoxon rank test W = 185.5 , p = 0.281).

However, encouragingly, in both studies, there was a trend for subjects with a low initial 
pretest score (0-2) to have a much larger improvement between the pretest and post-test in 
the RL narrative condition (Fig. 4, top row). The average improvement for these students 
was 2.02 in study 1 (N=41), and 2.29 in study 2 (N=7), out of a total score range was 
(0-8). There was a significant difference in the change in scores between the RL condition 
and control condition in study 2 for those with low pretest scores (0-2) (Wilcoxon rank 

Fig. 4   Top row, Post-test - Pretest (y-axis), Bottom row, Normalized learning gain (NLG) Posttest−Pretest

MaxScore−Pretest
 (y-axis). 

Scores are clustered by subjects with low (0-2), medium (3-5), and high (6-8) initial pretest scores. Error bars 
show standard errors. Note the NLG (bottom row) calculations exclude students who scored 100% on the Pretest 
since the NLG is not well defined
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test W = 2, p = 0.013 ), though this difference does not persist after correcting for multiple-
hypothesis testing, and all other differences for studies and pretest groups were not statisti-
cally significant under the same test.

Engagement scores range from 1 to 4 and subjects with low initial pretest scores (0-2) 
also trended to having much higher engagement in the RL AI guide condition (study 1 
mean engagement score 3.29 (N=40), study 2, mean engagement score 3.28 (N=7)) than in 
the control condition (study 1 mean engagement score 2.7 (N=14), study 2, mean engage-
ment score 2.7 (N=5)). Prior work suggests interpreting scores below 3.0 as low engage-
ment and 3.0−3.6 as moderate engagement (Dietz et al., 2020).

The assessment used may be subject to ceiling effects, as a number of students did 
receive the maximum score (8) on either the pretest or the post-test. Though the pretest 
scores did not significantly differ between the two conditions, in either study, since the 
control pretest scores were slightly higher, ceiling effects may have impacted the control 
condition more.

To address this, we also repeated our analysis using normalized learning gains (NLG), 
Posttest−Pretest

Maximumscore−Pretest
 , which represent the fraction of improvement made by subjects, relative 

to the possible improvement. Note this excludes any subjects who scored the maximum 
score on the pretest since the NLG is not well-defined for such students. There was no 
significant difference between the RL narrative condition and control condition for NLG 
in either case (study 1, W = 4394.5, p-value = 0.6978; study 2, W = 104.5, p-value = 
0.3819).

Like for posttest - pretest, we observe larger normalized learning gains for the RL nar-
rative condition than the control condition for initially lower performing students, in both 
studies (Fig.  4, bottom row). The NLG performance for students with medium pretest 
scores is similar in both conditions, as was also seen for such subjects’ posttest minus pre-
test scores. The pattern for the highest performing students is slightly different than for the 
post-test - pretest scores but should be taken lightly: as stated, the NLG analysis ignores 
all students with maximum pretest scores. Note that an NLG of 75% for the initially high-
performing student group would be at most a 2 ∗ 0.75 = 1.5 post-test - pretest improve-
ment (since 2 is the largest possible gain, if the student scored 6 on the pretest, and it 
is lower if the student scored 7), whereas a 30% improvement for the initially low per-
forming student group is at least a gain of 6 ∗ 0.3 = 1.8 on the post-test - pretest (since 
MaxScore − Pretest ≥ 6 for such subjects).

Together these analyses encouragingly suggest that the RL narrative condition trends to 
provide a bigger benefit to initially lower-performing students than the control condition. 
We now provide some additional analyses into the RL process and the potential mecha-
nisms underlying this difference.

6.1 � RL online learning

In study 1, the RL agent updated the AI guide pedagogical policy over subjects, but during 
the 28 policy updates (after 10 subjects each), we observed significant variability, and the 
performance had not converged.

We hypothesize this may be due to several factors. Likely most importantly, we saw a 
significant variation in the pretest scores of subjects over time. This may be in part because 
we performed rolling recruitment, adding additional recruitment sources during the study, 
which likely caused some shift in the distribution of the underlying students. In addition, 
the natural variation across third to fifth-graders and student background skills means that 
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across small sets (such as the 10 trajectories used each round for PPO), it is quite possible 
to have a substantial difference in the pretest scores of those subjects. If any of the students 
are already at or near the ceiling of the pretest scores, there will be almost no potential 
room for improvement for the RL policy. Indeed there may be some natural regression to 
the mean, which means that an RL policy that looked promising in prior rounds for related 
states, may now look worse (depending on the particular generalization). Even without this 
potentially shifting population, ten trajectories (subjects) is a small size to average over 
when performing policy updates, so the gradient may be quite noisy. This suggests that 
performing stratification and trying to ensure a stable distribution of initial start states over 
participants might lead to faster convergence and better results.

However, despite this, through training, subjects in the AI guide condition consistently 
match or exceed the average performance of those in the control condition.

6.2 � Investigating other explanations for the benefit to low pretest subjects

A natural question is what is the mechanism behind the improved performance of subjects 
in the RL narrative condition over those in the control condition, for subjects with initially 
low pretest scores, and whether this could be due to factors beyond the RL-narration itself.

One potential hypothesis is that there were additional differences between the two con-
ditions. Indeed, on average, subjects spend longer on the RL narrative condition task than 
in the control condition. As Fig. 5 shows,7 this was consistent for students across all three 
groups of pretest performance, and the difference in time spent between the two conditions 
was largely similar for all three groups. However, only the students in the low pretest group 
seemed to have a significant benefit from the RL condition. It seems unlikely that time on 
task is the primary reason for improved performance in the RL narrative condition.

The study was conducted remotely, and a prescreening call was done with a guardian of 
each child participating to discuss the study, emphasize the child should do the task with-
out assistance, and verify the child would be participating. However, it is still possible that 
guardians helped the children in some cases. It seems unlikely that for children with low 

Fig. 5   Time on task (sec) (y-axis) by low (0-2), medium (3-5), and high (6-8) initial pretest scores. Error 
bars show standard errors. Students whose time on task exceeded 90 min (8 students) were excluded from 
the analysis since it was likely such students might have taken significant breaks

7  We excluded individuals who took longer than 90 min on the task in this figure, since such subjects are 
likely to have taken breaks. All individuals who took at least 90 min took over 2 h, and there were 8 such 
individuals excluded using this restriction.
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pretest scores, guardians helped them more if the child was in the RL condition than if they 
were in the control condition. Indeed the control condition offered less support and hints 
than the RL narrative condition, so the opposite seems more likely to be true. One poten-
tial exception is that the RL narrative condition involved a storyline, and while unlikely, 
depending on the subject’s reading skills, it is possible that the guardian would have helped 
the subject to understand the text.

An interesting piece of evidence that it was the combination of the narrative and the RL 
text interaction that lead to student gains, is that we find students with low and medium 
pretest scores interacted more (sent more messages to the AI tutor) than students with high 
pretest scores in study 1. In particular, in study 1, the maximum number of messages sent 
by students was 20, with a long tail. The median number of messages sent in both the low 
and medium pretest score groups in study 1 was 4, and the high pretest score group in study 
1 had a median of 2 messages sent. We conduct three two-sided two-sample Wilcoxon rank 
test on the number of messages sent by students in the RL condition (between the low and 
medium pretest group, low and high pretest group, and medium and high pretest group). 
There was no significant difference between the low and medium groups (W=1441.5, 
p=0.92), and there was a significant difference between the low and high (W=1348.5, 
p=0.0015 < 0.0167=0.05/3, correcting for the 3 tests done here) and the medium and high 
groups (W=3167.5, p=8.16 ∗ 10−6 , < 0.0167=0.05/3, correcting for the 3 tests done here). 
This helps to explain why the high pretest score students may not have benefited as much 
from the system – they did not (likely) need as much support, and did not interact much 
with the RL text based agent. However, this analysis only provides part of the insight for a 
potential mechanism, since the patterns of messages sent for the low and medium pretest 
groups was similar, and yet the performance gains (over the control condition) were larger 
for the low pretest students.

6.3 � Integrated gradient analysis of policy on feature space

A natural question is whether benefits to subjects with low pretest scores may derive from 
the personalization capacity of the RL instructional policy. Indeed a key benefit of using 
RL to select activities is its potential to differentiate instruction if doing so is estimated 
to improve outcomes. Therefore it is of interest to evaluate what differentiation, if any, is 
done by the RL AI guide policy. However, most popular RL algorithms, including PPO, 
which we use here, use complex function approximators that are hard to interpret. There-
fore we use a method in explainable machine learning, integrated gradient (Sundararajan 
et al., 2017), to decompose the multi-decision output of the RL policy used in study 2 into 
a linear additive sum of attribution for each input context feature.

Table 3 shows that the feature importances computed for the policy selected from offline 
RL and deployed in the RL condition. Recall there are three primary categories of features 
used to select pedagogical strategies: static features of the learner, features about the stage 
of the learning activity, and features about the learner’s interaction and performance during 
learning.

This analysis selected student’s pretest score and their math anxiety score as the most 
influential contextual features on the AI guide’s chosen response. Other student features 
had little to no effect. Figure 6 shows the probability of assigning actions for students from 
our distilled policy.

Students with higher pretest scores were more likely to receive direct hints: such stu-
dents may require less of the productive struggle needed to learn new mathematics. 
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Students with lower pretest scores may need more engaged practice, but those with high 
math anxiety may also perceive math as more effortful (Choe et  al., 2019). Increasing 
the use of guided prompts may help support such students, as we observe in the policy 
instructional selections for low-performing, higher math anxiety students. These observed 
interactions between the multiple features describing student and context, and pedagogy 
choices, could inform expert analysis and support future hypothesis generation for learning 
sciences.

7 � Discussion

Our work offers cautionary optimism on the potential role of reinforcement learning in 
optimizing pedagogical instructional policies. The personalized narrative AI guide may 
benefit students with the lowest pretest performance, without harming the performance of 
other learners. Indeed the average gain in scores for subjects with low (0-2) pretest scores 
was over 2 in both studies in the RL condition, which means the mean scores for such 
students at least doubled, in an assessment with 8 total points. Our results do not provide a 
definitive mechanism for this result, though the engagement scores suggest that the control 
condition was not engaging for subjects with low pretest scores. For such students, the RL 

Table 3   Feature importance calculated by the integrated gradient method. Numbers represent how on 
average, the feature (with its original value) will positively or negatively contribute to how our RL policy 
decides to increase or decrease the probability of choosing an action for the current student

RL policy action Pre-test score (%) Math anxiety (%) Other 
features 
(%)

Pr (Direct hint) +7.5 +8.8 −0.4
Pr (Acknowledgment) −7.5 −7.4 +0.6
Pr (Encouragement) +4.1 −8.2 +0.4
Pr (Guided prompt) −4.2 +6.8 −0.7

Fig. 6   The y-axis shows the probability of choosing the first action for each group of subjects, based on 
their pretest scores (Bottom (0-2), Top (6-8)), and math anxiety level (Low (9-13, corresponding to the bot-
tom 25% percentile), and High (22-45, corresponding to the top 25% percentile)). Error bar shows 95% CI



3037Machine Learning (2024) 113:3023–3048	

1 3

narrative AI guide condition yielded higher engagement, similar to those with higher pre-
test scores. This is likely due to the RL AI guide, not the narrative, since prior work found 
narrative alone, with hints, yielded no benefit over no narrative and no AI guide in a vol-
ume learning task (Ruan et al., 2020).

Our encouraging result is consistent with limited prior work that personalized computer-
assisted learning software may sometimes be similarly or only slightly more effective on 
average but may particularly benefit students who start with lower scores or take longer to 
complete problems (e.g. Shen et al. (2016); de Barros and Ganimian (2021)). Since the RL 
algorithm we used aims to maximize expected (test) outcomes, if differentiation within the 
available pedagogical supports can increase the outcome of any subgroups (without harm-
ing the outcomes of other subgroups), the algorithm should learn from data to provide such 
personalization. Our analysis did not find a significant benefit of RL over the control condition 
at the population level, though it is possible an effect would be observed with a larger sample 
size, or with different state feature representations, network architectures, or RL algorithms.

Across study 1 and 2 the comparison between the narrative RL condition and control con-
ditions appear largely stable (Fig. 4), with a trend for the RL condition benefiting those with 
low pretest scores. This suggests an RL decision policy learned on one population can some-
times benefit other populations.

8 � Conclusion

Our work was conducted on around 400 students, which is typically less than the number of 
third to fifth-graders in a school district, suggesting the feasibility of using this approach to 
quickly optimize digital learning environments. By combining reinforcement learning with 
explainable AI, this approach can provide new insights into the interaction of context and stu-
dent learning that may prompt new research in learning sciences and has a high potential to 
help quickly identify and scale effective learning practices.

Appendix A

A real conversation example

To provide an indication of how well the RL AI guide performs after about 200 rounds 
of iterations, we present below a real conversation snippet between a user and the RL AI 
guide.

Child: Let’s keep thinking.
AI guide: [Direct Hint] You can fit 3 chocolates along the height, 5 chocolates along 
the width, and 6 chocolates along the length of the box.
Child: Ok.
AI guide: [Guided Prompt] Hm... I suggest thinking about the concept of a unit cube 
and the volume of a unit cube. It may remind you of what you need in order to calcu-
late the volume of the box!
Child inputs 90 (correct answer) for the volume question.
Child: We got another one right!
AI guide: [Acknowledgement]:)
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Child: Do you think we multiply or divide.
AI guide: [Encouragement] I think I have some ideas! But I won’t spoil it. Just let me 
know if you need a hint.
Child inputs 180 (correct answer) for the weight question.
Child: Also we got another one right!
AI guide: [Acknowledgement]:)

As can be seen from this example, the AI guide adopted all four types of teaching strat-
egies: direct hint, guided prompt, encouragement, and acknowledgment. In particular, 
when the child asked “Do you think we multiply or divide.”, instead of providing any 
meaningful help, the AI guide simply encouraged the child. This turns out to be an 
effective teaching strategy since the child successfully solved the problem without need-
ing specific math-related help from the AI guide.

The math learning activity and narrative

The central task of the learning platform is the completion of an online math learning 
activity focused on teaching 2 concepts related to volume and its knowledge components 
(measurement and multiplication). Similar to the task in Ruan et al. (2020), our math learn-
ing activity presented children with 6 tasks in order of increasing difficulty. All of these 
tasks were subparts of one overall problem (calculating if a box of chocolates weighed > 
320 oz.) and results from prior tasks were used in later ones.

The first three tasks ask children to measure the length, width, and height of an on-
screen box by dragging a bar of single-unit square chocolate along its edges. For the fourth 
task, children are asked to use these measurements to calculate the total number of choco-
lates that can fit in the box. In the fifth task, children are told that each chocolate weighs 
0.5oz., the information they are required to use to help them calculate the total weight of 
the box. Finally, the sixth task asks children to determine if the box can be safely trans-
ported by a boat with a weight limit of 320oz.

Our AI guide support component replaces the remote human feedback support com-
ponent used by Ruan et  al. (2020). In addition, due to the constraints of the covid-19 
pandemic situation at the time, children completed our math learning activity remotely 
through an online web app as opposed to in a physical lab setting. This means children 
complete the online activity asynchronously without the observation or interference of a 
researcher. We conducted a 10-minute video call with each guardian-child to confirm there 
was a child learner who intended to complete the task. During this video call, we empha-
sized to the subjects that they should complete the activity without the help of any outside 
resources, and guardians were asked to ensure their children completed the task without 
outside resources.

AI guide support

During the math learning activity, each time the AI guide is sent a message, it can take 
one of several actions. 1) Provide an instructional hint. Hints are specific to the task the 
child is currently working on and are provided in a fixed order. Each time this action is 
taken, the next hint is provided, and when no hints are left for the current task, the AI guide 
sends an appropriate message. 2) Send acknowledgment. In this case, the agent decides 
that no action is appropriate; the AI guide acknowledges the child’s message but otherwise 
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provides no assistance or encouragement (“:)”). 3) Send encouragement. A random encour-
aging message from a predetermined list is sent to the user (for example, “You’re doing a 
great job. If we keep working like this, we’ll be done in no time!”). These messages were 
written to promote a growth mindset and excitement about the challenge of the problem 
without giving help to the problem itself. 4) Guided Prompt. As with normal hints, guided 
prompts are specific to the current task and are provided in a fixed order. In contrast to 
normal hints, the goal of guided prompts is to provide some assistance to children who do 
not need as much help as a standard hint provides (for example, “Try thinking about the 
concept of volume to solve this problem.”).

The AI guide only responds when spoken to with the exception of periodic “reminder” 
messages which remind the children that the AI guide is there (for example, “I think you’ve 
got this. But if you need help, just let me know!”). These messages are chosen randomly 
from a predetermined list. The goal is to provide children with social support as well as 
remind children to use the AI guide as a helpful resource if they become stuck. These 
reminders are sent every 120  s after user inactivity (including both speaking to the AI 
guide and interacting with the software). Additionally, the AI guide has a list of predicted 
responses that it ignores (such as “Okay”) or acknowledges with “You’re welcome!” (such 
as “Thanks”) to reduce noise from natural language responses that do not require one of 
the above actions.

In contrast to the experimental condition, there was no AI guide and no hint system pre-
sent in the control condition.

The AI guide responds to input from the learner. There was an automated reminder 
for the child to engage if no prior interactions had happened during the 120 s. The auto-
mated instructional policy was trained using reinforcement learning. For the first phase, 
the reward model uses � = 0.01, � = 0.1, � = 0.3 , based on the hyperparameter choices of 
prior work (Bassen et al., 2020) and our earlier simulations simulation.

All the hints and message templates were written and uploaded through an easy-to-use 
teacher-facing dashboard (see Fig. 7) by educators and designers without prior background 
in machine learning.

Distribution of grade and pre‑test scores in treatment and control

In study 1, 339 participants in grades 3-5 were recruited through Twitter, NextDoor, use-
rinterview.com, school mailing lists, and word of mouth. Children came from 263 differ-
ent schools. Of 339 participating children, 172 were boys and 167 were girls. 114 were in 
grade 3, 114 were in grade 4, and 111 were in grade 5. Children were randomly assigned to 
one of the two systems based on a predetermined ratio: 70 children used the control system 
and 269 children used the system with RL AI guide-mediated guidance. Gender and grade 
were balanced across the two conditions.

There is no significant difference between the treatment and control group in study 1 
on pre-test score (Cohen’s d −0.235 , two-sample Wilcoxon rank test W = 10782 , p-value 
= 0.058 ) as well as grade (Cohen’s d 0.008, two-sample Wilcoxon rank test W = 9371.5 , 
p-value = 0.9502).

In study 2, 35 participants were recruited using userinterview.com and childrenhelp-
ingscience.com. There is no significant difference between the treatment and control group 
in study 2 on pre-test score (Cohen’s d −0.262 , two-sample Wilcoxon rank test W = 175.5 , 
p-value = 0.4634 ), as well as grade (Cohen’s d 0.282, two-sample Wilcoxon rank test 
W = 136.5 , p-value = 0.5665).
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Details on repeated post‑test taking in logged data

The software did not explicitly check for students repeating the pretest or post-test, and in 
our post-analysis, we found a few students took either the pretest or post-test test multiple 
times. The logging software only recorded the score of the final time the student took the 
test. For this reason, we only analyzed students who took the pretest and post-test once. In 
study 1, this resulted in 68 (out of 70) students in the control condition being kept in the 
analysis (only 2 students took either the pretest or posttest twice) and 258 (out of 269) stu-
dents in the RL condition. In study 2, 18 (out of 19) students in the control condition, and 
17 (out of 18) students in the RL condition were included in the analysis. We computed our 
results after removing these duplicate entries.

Report on time spent between control and RL condition

On average students do often spend longer on the RL narrative condition task than in the 
control condition: Fig. 5. This was consistent for students across all three groups of pretest 
performance, and the difference in time spent between the two conditions was largely simi-
lar for all three groups. As it was only students in the low pretest group that seem to have a 

Fig. 7   Interface for teachers to write hints and prompts
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significant benefit from the RL condition, it seems unlikely that time on task is the primary 
reason for improved performance in the RL narrative condition.

We report the time spent on the pretest, task, and post-test (assessment), in each control 
and experiment, in both study 1 and study 2 (see Table 4). We conduct a two-sample Wil-
coxon rank test on all pairs (between study 1 and study 2). We find no significance between 
the two studies.

Engagement

In study 1, students with low pretest scores (scores 0-2) had an average engagement score 
of 2.67 (N=14, standard error = 0.23) in the control condition and an average engagement 
score of 3.29 (N=40, standard error = 0.11) in the RL narrative AI guide condition. In 
study 1, students with medium pretest scores (scores 3-5) had an average engagement score 
of 3.43 (N=15, standard error = 0.12) in the control condition, and an average engagement 
score of 3.36 (N=105, standard error = 0.05) in the RL narrative AI guide condition. In 
study 1, students with high pretest scores (scores 6-8) had an average engagement score of 
3.24 (N=38, standard error = 0.07) in the control condition, and an average engagement 
score of 3.48 (N=108, standard error = 0.04) in the RL narrative AI guide condition. Three 
subjects in study 1 did not complete the engagement survey.

In study 2, students with low pretest scores (scores 0-2) had an average engagement 
score of 2.71 (N=5, standard error = 0.12) in the control condition and an average engage-
ment score of 3.28 (N=7, standard error = 0.23) in the RL narrative AI guide condition. In 
study 2, students with medium pretest scores (scores 3-5) had an average engagement score 
of 3.21 (N=6, standard error = 0.23) in the control condition, and an average engagement 
score of 3.28 (N=6, standard error = 0.28) in the RL narrative AI guide condition. In study 
2, students with high pretest scores (scores 6-8) had an average engagement score of 3.45 
(N=7, standard error = 0.17) in the control condition, and an average engagement score of 
3.29 (N=4, standard error = 0.23) in the RL narrative AI guide condition.

Table 4   Average time (secs) 
spent on different parts of the 
tutoring session

Online RL study 1 Distilled policy study 2

Control Narrative AI Control Narrative AI

Pre-test 410.5 424.3 478.2 560.5
Task 592.3 2334.8 542.1 1978.9
Post-test 511.1 290.7 246.5 300.9
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Implementation details

The platform consists of three major parts: a user-facing interactive website (Fig. 8 for con-
trol and Fig. 1 for AI guide), an admin dashboard (Fig. 7), and an AI guide server. Both the 
website and the dashboard were created using Web technologies, including ReactJS (Face-
book, 2019) and TypeScript (Microsoft, 2019). The Python-based AI guide was hosted on 
an AWS server and used Flask (Projects, 2010) as its API gateway to expose essential func-
tions. The interactive website communicated with a GraphQL (Hasura, 2019) API endpoint 
backed by Hasura Engine (Hasura, 2019) and PostgreSQL (Postgres, 2019). The stored 
user conversation data was reflected in real-time on the admin console, where researchers 
could view the chat history and modify message templates. All user data was uploaded to 
the backend by Google App Script upon the completion of the user’s session.

Questionnaires and quizzes were created using Google Forms, and we used HTML 
iframe to embed Google Forms into the website to automatically process the form 
responses so as to enable real-time RL. When users interact with the AI guide, the observa-
tion space is calculated in real-time, and the AI guide performs action selection to reply to 
users. When users completed the post-quiz, their answers were converted to vector inputs 
and fed into the RL AI guide in real-time, which triggered a webhook to request the AI 
guide server to update its model accordingly. A complete diagram showing the interaction 
between the user and the RL agent is displayed in Fig. 2.

Fig. 8   The control interface where the child attempts to solve the math problem without any narrative or 
help from a chatbot. The child can click on “I want to stop playing” to quit the activity at any time
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Fig. 9   Consent page 1
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Fig. 10   Consent page 2
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Fig. 11   Consent page 3
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