
Vol.:(0123456789)

Machine Learning (2024) 113:4671–4721
https://doi.org/10.1007/s10994-023-06420-y

1 3

Smoclust: synthetic minority oversampling based on stream 
clustering for evolving data streams

Chun Wai Chiu1  · Leandro L. Minku2 

Received: 7 June 2022 / Revised: 15 June 2023 / Accepted: 3 October 2023 /  
Published online: 18 December 2023 
© The Author(s) 2023

Abstract
Many real-world data stream applications not only suffer from concept drift but also class 
imbalance. Yet, very few existing studies investigated this joint challenge. Data difficulty 
factors, which have been shown to be key challenges in class imbalanced data streams, 
are not taken into account by existing approaches when learning class imbalanced data 
streams. In this work, we propose a drift adaptable oversampling strategy to synthesise 
minority class examples based on stream clustering. The motivation is that stream clus-
tering methods continuously update themselves to reflect the characteristics of the cur-
rent underlying concept, including data difficulty factors. This nature can potentially be 
used to compress past information without caching data in the memory explicitly. Based 
on the compressed information, synthetic examples can be created within the region that 
recently generated new minority class examples. Experiments with artificial and real-world 
data streams show that the proposed approach can handle concept drift involving differ-
ent minority class decomposition better than existing approaches, especially when the data 
stream is severely class imbalanced and presenting high proportions of safe and borderline 
minority class examples.
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1 Introduction

In the past years, the volume and incoming speed of data have increased tremendously. 
Data frequently arrive continuously in the form of data stream rather than forming a single 
static data set. Therefore, data stream learning, which is able to learn incoming data upon 
arrival, becomes an increasingly important approach to extract knowledge from data. It has 
been widely used in real-world applications, such as credit card fraud detection (Dal Poz-
zolo et  al., 2017), software defect prediction (Tabassum et  al., 2020) and spam filtering 
(Delany et al., 2005). There are many types of problems/tasks in data stream learning, for 
examples, classification, regression, clustering, anomaly detection etc. This work focuses 
on binary classification.

Concept drift is a common challenge in data streams. It is a change in the underlying 
distribution of the problem. Such a change can deteriorate the predictive performance 
of the data stream learning algorithm because the predictive model built previously may 
not be valid anymore. To deal with concept drift, data stream learning algorithms can be 
categorised to as explicit and implicit approaches (Ditzler et  al., 2015; Zliobaite, 2010). 
Explicit approaches employ a concept drift detection method to detect if there is a concept 
drift, and then adopt strategies to update predictive model to cope with such drift (Ditzler 
et al., 2015; Zliobaite, 2010). Implicit approaches do not employ any concept drift detec-
tion method but continuously evolve themselves to reflect the current underlying concept, 
thus adapting to concept drifts (Ditzler et al., 2015; Zliobaite, 2010).

Data stream learning algorithms can also be categorised by their mode of operation: 
batch-based (chunk-based) learning and online learning (Gama et al., 2014; Ditzler et al., 
2015). Batch-based learning refers to as learning the data stream by batches of new training 
data. It has the advantage of having more data to learn at a given time step, thus the learn-
ing approach can better capture the current underlying concept (Gama et al., 2014; Ditzler 
et al., 2015). In contrast, online learning has a stricter requirement which only allows the 
data stream learning approach to process each training example separately and then dis-
card it (Gama et  al., 2014; Ditzler et  al., 2015),rendering it applicable to problems with 
stricter time and memory requirements. To deal with concept drifts in a timely fashion, 
online learning usually is more preferable than batch-based learning which needs to wait 
for whole batches of training examples to arrive. Moreover, batch-based learning assumes 
that all training data within the same batch are drawn from the same underlying concept, 
which may not always be the case in most real-world applications. Thus, this work focuses 
on online learning.

Another challenge frequently present in real world data stream applications is that their 
class distribution is often skewed, an issue that is commonly referred to as class imbalance 
(Wang et al., 2018). For example, in credit card fraud detection, there are always more gen-
uine transactions than fraudulent transactions. In software defect prediction, there are typi-
cally more clean than defective components. When class imbalance exists, the data stream 
learning algorithms are likely to get biased towards the majority class, being likely to mis-
classify minority class examples. Yet, the minority class is usually the class of interest in 
the classification task, meaning that misclassifying minority class examples could lead to 
a high cost. This work focuses on binary classification, thus, there is a majority class and a 
minority class when the data stream is class imbalanced.

To deal with class imbalance, a category of oversampling strategies has shown to be suc-
cessful in data set learning (offline learning). They create synthetic examples to enrich the 
minority class, which causes less overfitting than reusing existing minority class examples 
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(Chawla et al., 2002; Han et al., 2005; Lee et al., 2017). Some recent work attempted to 
bring such a successful idea into the field of data stream learning (Wang & Pineau, 2016; 
Bernardo et al., 2020). However, they usually cache all the minority class examples seen 
so far into the memory which is impractical for data stream learning. Moreover, reusing 
all past minority class examples may prevent these approaches from dealing with concept 
drifts (changes in the underlying probability distribution, a.k.a., concept (Krawczyk et al., 
2017)) affecting the minority class.

Dealing with the joint issue of concept drift and class imbalance is a challenging task. 
In particular, the relatively small number of minority class examples mean that it may be 
more difficult to detect or adapt to concept drifts affecting the minority class. Many studies 
have been proposed to deal with either class imbalance or concept drift. However, exist-
ing work to deal with their joint challenge remains little. Although a recent survey work 
(Wang et al., 2018) showed that class imbalance is a more dominant factor than concept 
drift in affecting the predictive performance, the effectiveness of the existing class imbal-
ance techniques for data stream learning could potentially be compromised by concept 
drift as most of them are not prepared to deal with drifts. Recent work addresses this chal-
lenge by finding relevant past minority class examples for oversampling (Hoens & Chawla, 
2012) or performing synthetic minority class oversampling based on the statistics of the 
minority class after drift detection (Bernardo et al., 2021). These methods are not always 
ideal because relevant past minority class examples might not exist while relying on drift 
detection to reset minority class statistics could be detrimental, especially when the drift is 
gradual.

In addition, the method of storing past examples as proposed in Hoens & Chawla (2012) 
may be impractical for data stream learning when there are strict space constraints. Simi-
larly, synthesising new examples based on simple statistics of past examples as proposed 
in Bernardo et al. (2021) overlooks important data difficulty factors within the class. Spe-
cifically, this method does not consider the location of past examples in the feature space. 
These data difficulty factors include concept drifts involving different movements of the 
minority class sub-clusters, changing class imbalance ratio, and changing the ratios of dif-
ferent types of minority class examples. Existing work has shown that these factors are 
critical in learning from drifting class imbalanced data streams (Brzezinski et al., 2021).

Therefore, new approaches are needed to better address concept drifts with multiple 
data difficulty factors in class imbalanced data streams. To fill this research gap, this paper 
aims to answer the following research questions:

• RQ1) How to produce minority class synthetic examples for oversampling so that we 
could explore the decision areas of the minority class to better consider data difficulty 
factors while adapting to concept drift?

• RQ2) How does the proposed approach perform compared to existing approaches in 
different types of concept drift affecting the minority class? For which types does it 
perform the best and worst? Why?

• RQ3) How does the proposed approach perform compared to existing approaches when 
applied to real-world data streams?

To answer RQ1, we propose a novel method to create synthetic minority class examples for 
oversampling based on stream clustering. The motivation is that stream clustering methods 
use a set of micro-clusters as the abstraction/compression of the examples they have seen so 
far. They usually retain micro-clusters by temporal order, which means old micro-clusters 
are forgotten. Therefore, the information they hold reflects the characteristics of the current 



4674 Machine Learning (2024) 113:4671–4721

1 3

underlying concept. Our novel method exploits this nature of stream clustering methods to 
track the current decision areas of the minority class. It then generates synthetic minority 
class samples for oversampling within the region where real minority class examples have 
been recently observed. With this strategy, the proposed method is less likely to produce 
noisy synthetic examples while being able to explore the decision areas of the minority 
class, better considering data difficulty factors when adapting to concept drift (RQ1).

The proposed approach is compared against five existing approaches through experi-
ments on artificial data streams considering different data difficulty factors and class imbal-
ance ratios, and real-world data streams (RQ2, RQ3). The results show that SMOClust han-
dled concept drifts of different minority class sub-clusters movements better than existing 
approaches (RQ2, RQ3). It also performed better than existing approaches when the data 
stream is severely class imbalanced and presents high proportions of safe and borderline 
(Napierala & Stefanowski, 2015) minority class examples (RQ2, RQ3). Its major weakness 
is to handle data streams presenting large proportions of rare and outlier (Napierala & Ste-
fanowski, 2015) minority class examples (RQ2, RQ3).

The rest of this paper is organised as follows. Section 2 discusses related work on syn-
thetic minority class oversampling techniques and state-of-the-art approaches in dealing 
with class imbalance and concept drift in data stream learning. Section 3 presents the pro-
posed approach. Section 4 presents the experimental study and discusses the results. Sec-
tion 5 concludes this study and discusses the future work.

2  Related work

This section first introduces class imbalance and existing resampling methods for class 
imbalanced learning in Sect. 2.1. Section 2.2 then discusses the state-of-the-art approaches 
to deal with class imbalance and concept drift in data stream learning. Table 1 summarises 
the main characteristics of the approaches discussed in this section. At the end of this table, 
we contrast these with SMOClust, the approach that we propose in Sect. 3 of this paper.

2.1  Resampling methods for class imbalance

Class imbalance refers to the data set or data stream having at least one under-represented 
class (minority class). In this situation, the machine learning model tends to misclassify 
minority class examples more frequently than the majority class because there exists very 
little information about the minority class.

Approaches to address class imbalance are mainly divided into three categories: algo-
rithm-level approach, ensemble approach, and data-level approach (Wang et  al., 2018). 
Algorithm-level approaches are often called cost-sensitive approaches, as they place a 
higher cost when misclassifying minority class examples than majority class examples. 
Ensemble approaches create different class balanced training subsets to train each ensem-
ble member. Data-level approaches modify the class distribution using a resampling 
method, such that standard machine learning models can learn from both classes with the 
same amount of information. They can be applied during the data pre-processing phase. 
Due to this generic nature, this work focuses on data-level approaches.

Undersampling and Oversampling are two main types of data-level approaches 
(Wang et al., 2018). Undersampling methods reduce the number of majority class exam-
ples for training, usually removing noisy examples or examples that are deemed to have 
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a low impact on the decision boundary. Yet, it has the chance to cause important infor-
mation loss. On the other hand, oversampling methods increase the number of minority 
class examples, by replication or synthesis. They will not cause any information loss but 
they cause longer training time and are likely to cause overfitting when training on the 
same examples multiple times.

Synthetic Minority Oversampling Technique (SMOTE) (Chawla et  al., 2002) is a 
very renowned oversampling technique in offline learning, which synthesises minority 
class examples for oversampling, thus balancing the data set. In practice, SMOTE first 
randomly chooses an existing minority class example from the data set, denoted as xi . 
It then randomly chooses one of the k-nearest neighbours of xi in the minority class, 
denoted as x′

i
 . After that, a difference vector between xi and x′

i
 is calculated. To create a 

point along the line between xi and x′
i
 , each dimension of the difference vector is mul-

tiplied by a random number � ( 0 < 𝜃 < 1 ), then the resulting difference vector is added 
to xi dimensionwisely. SMOTE performs this procedure until the target oversampling 
rate M is reached. This oversampling rate M and the k for k-nearest neighbours are the 
hyper-parameters of the algorithm.

Many variants of SMOTE have been proposed in the last two decades. For exam-
ple, Borderline-SMOTE (Han et  al., 2005) considers that examples close to the deci-
sion boundary are more difficult to learn, thus it synthesises minority class examples 
around this area. Gaussian-based SMOTE (G-SMOTE) (Lee et  al., 2017) is a more 
recent approach which tend to synthesise examples very close to the existing minority 
class examples. Other well-known methods of synthetic minority oversampling include 
ADASYN (He et al., 2008), DBSMOTE (Bunkhumpornpat et al., 2011), SWIM (Bell-
inger et al., 2020) etc.

On top of the class imbalance ratio, it has been pointed out that data difficultly factors 
also greatly impact the classification performance (Napierala & Stefanowski, 2015). These 
factors describe the characteristic of a given example (usually the minority class example) 
in the feature space:

• Safe: Surrounded by examples from the same class.
• Borderline: Located near the decision boundary.
• Rare: Located deep inside the decision region of the opposite class, together with hand-

ful examples from the same class.
• Outlier: Isolated and located deep inside the decision region of the opposite class.

The aforementioned methods can also be considered as taking the data difficulty factors 
into the account. For example, Borderline-SMOTE synthesises minority class examples 
around the borderline region, while G-SMOTE can be considered as synthesising minority 
class examples in the safe region.

However, these synthetic minority oversampling methods could not be applied to class 
imbalanced data stream learning directly as they cache the entire data set into memory, 
which is impractical in data stream learning. For example, OnlineSMOTEBagging (Wang 
& Pineau, 2016) is one of this kind. It replaces simple oversampling with SMOTE in 
OnlineUnderOverbagging. In our preliminary experiments with the data streams used in 
this work, we attempted to run OnlineSMOTEBagging. However, OnlineSMOTEBagging 
consumed all the memory we had access to (8GB), resulting in failure to complete the run. 
Furthermore, the underlying concept of the data stream may change over time (concept 
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drift). The cached examples may be from different concepts. Thus, synthesising minority 
class examples based on them may not always follow the current underlying concept.

Additionally, one recent work in the field of software effort estimation is also quite 
inspiring (Song et al., 2018). They enlarge the software project data set by adding Gauss-
ian noise to the existing examples. This method could be particularly related to synthetic 
minority oversampling for class imbalanced data stream learning as it is memory efficient 
and fast to perform. The potential risk is that, if we apply it to the most recent minority 
class examples, it might cause overfitting to such a recent area.

2.2  Approaches for class imbalanced data stream learning in the presence 
of concept drift

This section discusses approaches that are closely related to the proposed approach. For 
a comprehensive survey on class imbalanced data stream learning, please refer to Aguiar 
et al. (2022).

Broadly speaking, existing approaches to deal with class imbalance and concept drift 
have two main categories: explicit approach and implicit approach.

2.2.1  Explicit approaches

Explicit approaches estimate whether a concept drift has happened, usually by employing 
a drift detector to monitor the predictive performance of the base learner/main ensemble. 
This drift detector can be any from the literature, ideally using a class imbalance insensitive 
metric, such as DDM-OCI (Wang et al., 2013), LFR (Wang & Abraham, 2015), PAUC-PH 
(Brzezinski & Stefanowski, 2014) etc.

Continuous-SMOTE (C-SMOTE) (Bernardo et  al., 2020) is one of the pioneers who 
bring SMOTE to drifting class imbalanced data stream learning. It uses an Adaptive Win-
dow (ADWIN) (Bifet & Gavalda, 2007) to store the most recent examples and applies 
SMOTE to the minority class examples inside the ADWIN for oversampling. Upon drift 
detection, the old window of ADWIN is dropped as it is deemed to belong to the old con-
cept. However, when there is no concept drift detection, C-SMOTE keeps storing minor-
ity class examples which can cause memory issues. Besides, SMOTE does not take deci-
sion boundaries and data difficulty factors into consideration, thus noisy examples may be 
generated.

Very Fast Continuous-SMOTE (VFC-SMOTE) (Bernardo et  al., 2021) was proposed 
to solve the issues faced by C-SMOTE. It uses a dynamic summary data structure, called 
“sketch”, to summarise the statistics of past examples. It generates synthetic examples by 
Beta distribution sampling from a set of summaries in the sketch, where each summary has 
the information of one input feature of past examples. When generating synthetic minority 
class examples, VFC-SMOTE tends to choose summaries that represent more past exam-
ples, which means it tends to generate synthetic minority class examples in the dense area 
of minority class. Nevertheless, this method may generate considerably noisy synthetic 
examples because it samples each input feature individually and does not adopt mecha-
nisms to try to respect decision boundaries.

SMOTE with Online Bagging (SMOTE-OB) (Bernardo & Valle, 2021) is another 
approach that is similar to VFC-SMOTE. It incorporates the strategy of generating syn-
thetic minority class examples from VFC-SMOTE into OnlineUnderOverBagging (Wang 
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& Pineau, 2016). With this design, SMOTE-OB combines three data-level re-balancing 
methods to combat class imbalance while training the base learners diversely (Bernardo 
& Valle, 2021). However, as SMOTE-OB uses the same synthetic minority class examples 
generating strategy as VFC-SMOTE, it faces the same disadvantages in terms of poten-
tially generating considerably noisy synthetic examples.

Ensemble of Subset Online Sequential Extreme Learning Machine (ESOS-ELM) 
(Mirza et al., 2015) is another notable explicit approach for drifting class imbalanced data 
stream learning. It uses a sub-ensemble method to train each base learner with an approx-
imately equal number of majority and minority class examples, thus dealing with class 
imbalance. To deal with concept drift, it uses a threshold-based strategy with hypothesis 
testing to detect any significant change in the predictive performance of the main ensem-
ble, thus reporting concept drift. Meanwhile, it also uses a weighted majority vote system, 
based on G-Mean, to adapt to any potential concept drift that could not be detected by the 
aforementioned method. ESOS-ELM’s sub-ensemble method is time efficient in dealing 
with class imbalance as it does not replicate or synthesise any examples. However, it does 
not provide additional information to explore the decision areas of minority class. Besides, 
ESOS-ELM is restrictive in terms of base learner type. It only allows to use ELMs.

Cost-sensitive Adaptive Random Forest (CSARF) (Loezer et  al., 2020) is an online, 
cost-sensitive sub-ensemble method designed to address the challenges of drifting class 
imbalanced data streams. It is a variant of the Adaptive Random Forest (ARF) (Gomes 
et  al., 2017) algorithm. It incorporates a drift detector and a weighted majority ensem-
ble to handle concept drift. To deal with class imbalance, CSARF utilises the Matthews 
Correlation Coefficient (MCC), a class imbalance insensitive metric, to assign weights to 
internal decision trees and ensure that all trees are trained with examples from the minority 
class (Loezer et al., 2020). While CSARF offers speed and memory efficiency due to its 
cost-sensitive approach, it fails to consider factors related to data difficulty. Additionally, 
CSARF is limited to using only the Hoeffding Tree (Domingos & Hulten, 2000) as base 
learners.

Robust Online Self-Adjusting Ensemble (ROSE) (Cano & Krawczyk, 2022) is a cost-
sensitive ensemble method designed specifically for learning from drifting class imbal-
anced data streams. It employs ADWIN as a drift detector and uses a weighted majority 
ensemble to handle concept drift. To address class imbalance, ROSE employs self-adjust-
ing � bagging (where � is determined based on estimated class sizes), and enforces the 
Hoeffding bound to improve predictive performance in the minority class. Furthermore, 
ROSE maintains sliding windows per class to store the most recent examples and to create 
a class balanced data set through undersampling. This class balanced data set is used to 
build new background base learners. However, similar to CSARF, ROSE does not con-
sider data difficulty factors in its class imbalance adaptation strategy. Additionally, ROSE’s 
strategy for building new background base learners may be prone to more extreme levels 
of class imbalance in non-stationary data streams because such a scenario would require 
using very old minority class examples to build new base learners, besides the sliding win-
dow initially taking time to get filled with minority class examples.

In short summary, most existing explicit approaches to deal with class imbalance and 
concept drift do not explore the decision areas of the minority class. Whilst a few recent 
work (Bernardo et al., 2020, 2021; Bernardo & Valle, 2021) attempted to fill this research 
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gap, they did not strictly take decision boundaries and data difficulty factors, which are cru-
cial in data stream learning, into consideration.

2.2.2  Implicit approaches

Implicit approaches are usually ensemble learners. They do not actively detect concept drift 
but continuously update the voting weights of the base learners, thus adapting to any poten-
tial changes in the underlying concept. However, in class imbalanced data stream learning, 
the weighting strategy also needs to consider that the base learner may bias toward the 
majority class. To address this issue, one can place a higher penalty on the weight of the 
base learners performing poorly in the minority class (cost-sensitive approach). Another 
method is to employ a resampling method to reduce the learning bias (data-level approach).

Oversampling-based and Undersampling-based Online Bagging (OOB and UOB) 
(Wang et  al., 2015) are two pioneers of data-level approach for class imbalanced data 
streams. Their idea is to incorporate random oversampling or random undersampling with 
Online Bagging (OB) (Oza, 2005). They estimate the current class size based on an expo-
nential smoothing function with a fading factor � . Whenever a new example st with a class 
label yt arrives, it is first used to calculate the class imbalance ratio of class yt to the major-
ity class (OOB) or the minority class (UOB). This ratio is used as the parameter � of Pois-
son distribution in OB, thus deciding the number of times to train each ensemble member 
on st . While OOB and UOB are effective in addressing class imbalance with simple resam-
pling methods, they can only deal with concept drifts that affect the posterior probability of 
the classes (P(Y)).

Learn++ for Concept Drift with SMOTE (Learn++.CDS) and Learn++ for Non-sta-
tionary and Imbalanced Environments (Learn++.NIE) (Ditzler & Polikar, 2013) are two 
pioneer batch-based approaches in this category. They were both based on the well-known 
approach, Learn++ for Non-Stationary Environment (Lean++.NSE) (Elwell & Polikar, 
2011). Learn++.CDS uses SMOTE to balance the most recent batch of training data, while 
Learn++.NIE is a sub-ensemble method which bootstraps the majority class in the most 
recent batch of training examples to create different class balanced training sets. They both 
use weighted majority vote as a strategy to deal with concept drift where ensemble mem-
bers performing well in the minority class have a higher weight. While they are both great 
methods to deal with class imbalance, they could struggle when the data stream is severely 
class imbalanced because there could exist some training batches which has no minority 
class examples.

Dynamic Weighted Majority for Imbalance Learning (DWMIL) (Lu et  al., 2017) 
brought the renowned Dynamic Weighted Majority (DWM) into class imbalanced data 
stream learning. In general, it changes the weighting metric from accuracy to a class 
imbalance insensitive metric, such as G-Mean, while adopting UnderBagging (Wang & 
Yao, 2009), which is an offline learning approach, as the base learner to deal with class 
imbalance.

Heuristic Updatable Weighted Random Subspaces with Instance Propagation (HUWRS.
IP) (Hoens & Chawla, 2012) is a batch-based learning approach to deal with drifting class 
imbalanced data streams. It is based on the approach of HUWRS (Hoens et  al., 2011) 
which was proposed to learn class balanced data streams. The main novelty of HUWRS.
IP is the example selection mechanism, called Instance Propagation (IP), which selects rel-
evant past minority class examples for oversampling the most recent train batch. However, 
these examples may not exist in the memory.
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Shortly summarising, existing implicit approaches to deal with class imbalance and 
data stream learning either rely on sub-ensemble methods or reusing relevant past exam-
ples. These methods do not explore the decision areas of the minority class. They do not 
take data difficulty factors into account either. Besides, these approaches are batch-based 
approaches, thus they are unlikely to react to concept drift swiftly due to the need to wait 
for whole batches to arrive.

3  Proposed approach

To answer the RQ1 posed in Sect.  1, we proposed a novel approach called Synthetic 
Minority Oversampling based on stream Clustering (SMOClust). The main novelty of 
this approach is to produce synthetic minority class examples for oversampling based 
on the information compressed by the stream clustering method. Most stream clustering 
methods represent this information in the form of micro-clusters, which summarise the 
statistics of past examples that are close together in the feature space. These statistics 
usually include the vectors of the dimensional-wise cumulative sum and squared sum. 
Thus, they do not need to cache all the past examples in the memory. Most importantly, 
this strategy could potentially deal with gradual drift involving different data difficulty 
factors because stream clustering methods continuously update themselves to reflect the 
characteristics of the current underlying concept.

SMOClust also employs a concept drift detector to monitor the predictive perfor-
mance of the base learner, as a strategy to deal with abrupt drift. Thus, it is an explicit 
concept drift adaptation approach. Upon drift detection, the base learner will be reset. 
Although this strategy may not always be ideal (Chiu & Minku, 2018, 2022), this work 
focuses on investigating the effectiveness of the novel stream clustering based synthetic 
minority oversampling strategy in learning class imbalanced data streams with concept 
drift. So, it is intended to keep other components of SMOClust simple to analyse the 
characteristics of the proposed strategy.

Algorithm  1 presents the pseudo-code over-viewing SMOClust. The details of its 
working mechanism are described and explained as follows.

Algorithm 1  Synthetic minority oversampling based on stream clustering- SMOClust
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(Song et al., 2018)

SMOClust is a data stream learning algorithm that uses a base learner B to learn 
from and make predictions to new examples. This base learner B could be any single 
learner, such as Hoeffding Tree (Domingos & Hulten, 2000), or an ensemble learner, 
such as Online Bagging (Oza, 2005). SMOClust does not store past models. It uses 
stream clustering methods SC[] to manage sets of micro-clusters that compress the 
information of past examples. There is one stream clustering method for each class of 
the problem (line 1, Algorithm 1). The stream clustering method can be arbitrary from 
the literature, such as Clustream (Aggarwal et  al., 2003), StreamKM++ (Ackermann 
et al., 2012), DenStream (Cao et al., 2006), Clustree (Kranen et al., 2011) etc. In this 
work, Clustream was chosen because it is largely invariant for different types of concept 
drifts, meaning that it can effectively adapt to concept drift without compromising the 
quality of its clustering results (Moulton et  al., 2018). The strategy of synthesising 
minority class examples for oversampling based on micro-clusters is explained in 
Sect. 3.1.

The most recent example st will be first used for concept drift detection (line 4, Algo-
rithm 1). This concept drift detection method can be arbitrary from the literature, such 
as DDM (Gama et al., 2004), DDM-OCI (Wang et al., 2013), PAUC-PH (Brzezinski & 
Stefanowski, 2014), ADWIN (Bifet & Gavalda, 2007) etc. Upon drift detection, the base 
learner B and time decay class sizes are reset but not the stream clustering methods SC[] 



4682 Machine Learning (2024) 113:4671–4721

1 3

because they are prepared to adapt to concept drifts (line 5, Algorithm  1). That said, 
after concept drift detection, the stream clustering methods will still retain some knowl-
edge belonging to the previous concept. This has two advantages: (1) In the case of false 
positive drift detection, SMOClust can exploit the knowledge stored in the micro-clus-
ters to train the base learner. (2) Knowledge of the pre-drift concept could help to learn 
the post-drift concept, especially when the drift has low severity (Minku & Yao, 2012).

After that, SMOClust uses st to train B and to update the time decay class sizes (line 
7, Algorithm 1). The time decay class sizes estimate the current minority class and thus 
determine the oversampling rate. Equation 1 presents the calculation of the normalised 
class size of class cm at time step t (Wang et al., 2015):

where m ∈ M and M = {0, 1} , considering binary classification tasks and � (0 < 𝜃 < 1) is a 
predefined time decay factor. cst is the true class of st . Thus, [cst = cm] = 1 if the true class 
of st is cm , otherwise 0. f is the first time step used in the calculation. Note that, unlike OOB 
and UOB (Wang et  al., 2015) which estimate the current class sizes of the data stream, 
SMOClust estimates the class imbalance degree of the information seen by the base learner 
rather than the class imbalance degree of the data stream. Thus, synthetic examples are 
also used to update the class sizes. The reason behind this design is discussed together with 
the strategy of training the base learner with synthetic examples.

SMOClust first records the most recent examples from each class (line 8, Algorithm 1) , 
then checks if the base learner has learnt from both classes equally (line 10, Algorithm 1). 
If not, SMOClust will generate synthetic minority class examples for oversampling based 
on the micro-clusters of the minority class (line 13-17, Algorithm 1), which is detailed in 
Sect. 3.1.

In the case that not all stream clustering methods can provide micro-clustering results 
and SMOClust has observed and recorded the most recent “real” example of the minority 
class (denoted as slast_minority ), SMOClust will generate a synthetic minority class by adding 
Gaussian noise to slast_minority for oversampling (line 21, Algorithm 1). This strategy follows 
the strategy proposed by Song et al. (2018), except SMOClust treats ordinal attributes as 
categorical attributes due to the limitation in MOA (Bifet et al., 2010).

No matter the synthetic minority class example is generated based on micro-clusters 
or Gaussian noise, SMOClust will use it to train the base learner and the corresponding 
stream clustering method, and to update the class size immediately (line 18-19, 22-23, 
Algorithm 1). This strategy can prevent the base learner from biasing towards the majority 
class when there are no “real” minority class examples arrive for a long period, which is 
likely to happen when the data stream is extremely class imbalanced. Also, updating the 
class sizes with both “real” and synthetic examples allows us to estimate if the base learner 
has learnt from both classes equally. If not, SMOClust will then create synthetic minority 
class examples to train the base learner immediately.

In the case of none of the above conditions being satisfied , i.e., none of the conditions 
of the while-loop are satisfied (line 10, Algorithm 1), SMOClust will not perform any over-
sampling because this means either oversampling is not needed or there is no information 
about the minority class for SMOClust to generate synthetic examples. Lastly, a copy of 

(1)classSize(cm)
(t) =

⎧
⎪⎨⎪⎩

1

�M� , if t = f

[cst=cm]+�×classSize(cm)
(t−1)×(t−f )

t−f+1
, otherwise
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the most recent example st is converted to a suitable format to train the stream clustering 
method, corresponding to the class value of st (line 26, Algorithm 1).

3.1  Generating a synthetic minority class example for oversampling using 
micro‑clusters

This section presents the overview of generating a synthetic minority class example for 
oversampling based on micro-clusters. The general idea is to create synthetic minority 
class examples in one of the dense areas of the minority class. In this way, we can con-
solidate the knowledge learnt in the existing minority class areas without being greatly 
affected by noise. In the case where a dense area does not exist, SMOClust will pick one of 
the past minority class areas to explore the decision boundary around it.

Algorithm 2 presents the pseudo-code of this method. The details of generating a syn-
thetic minority class example using micro-clusters can be described as follows.

Algorithm 2  Generate synthetic instance with k-NN micro-clusters

First of all, SMOClust randomly takes one of the micro-clusters from the minor-
ity class as an anchor (denoted as mcminority

anchor
 ) (line 12, Algorithm  1). Micro-clusters that 

are created recently or are updated frequently and recently have higher chance to be cho-
sen as this anchor. After that, SMOClust checks if mcminority

anchor
 is surrounded by the micro-

clusters from the same class (line 13, Algorithm 1). If this condition is satisfied, SMO-
Clust can consider such area is dense enough to create synthetic minority examples for 
oversampling. It will then make a copy of mcminority

anchor
 and then combine it with its k-Near-

est micro-clusters (based on hull distance) in class classmin to form a temporary micro-
cluster mctemp (line 2, Algorithm  2). We denote such set of k-Nearest micro-clusters as 
MCkNN,minority , thus, |MCkNN,minority| = k and each k-Nearest micro-clusters is denoted as 
mc

kNN,minority

i
∈ MCkNN,minority . The details of how to combine a set of micro-clusters into 

one are presented in Algorithm 3.
Algorithm 3  Combining a set of micro-clusters into one

To combine a set of micro-clusters into one, we first need to calculate the new centre 
cnew of the resulting micro-cluster mctemp . This can be achieved by getting the weighted 
average of the centres of the original set of micro-clusters, dimensionwisely (line 2, 
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Algorithm 3). After that, we set the radius rnew of the resulting micro-cluster mctemp to as 
the distance between the new centre to the farthest hull (boundary) among all the origi-
nal micro-clusters (line 3-7, Algorithm 3). Figure 1 illustrates an example of combining 
mc

minority

anchor
 with its 3-nearest neighbours into one micro-cluster.

A synthetic minority class example will then be generated by sampling from this result-
ing micro-cluster with the highest chance near the centre of mcminority

anchor
 (line 3, Algorithm 2). 

Figure 2 illustrates an example of sampling from a synthetic minority class example from 
mctemp.

In Fig. 2, the green circles are the micro-clusters belonging to the minority class while 
the blue circles are the micro-clusters belonging to the majority class.1 The black circle line 
represents mctemp and the red dashed lines are the contour of the probability density func-
tion to sampling a point. The closer to the centre of mcminority

anchor
 , the higher the probability.

The reason for sampling a new synthetic minority class example close to mcminority
anchor

 is 
that this mctemp could overlap with the micro-cluster from the other class. If we just sample 
from mctemp randomly or by a multivariate Gaussian distribution with a mean at cnew , we 
will have a high chance to sample a point that is close to the region or the majority class. 
Therefore, sampling points as synthetic minority class examples from mctemp but close to 
the centre of mcminority

anchor
 can reduce the risk of generating noisy examples while maintaining 

the ability to explore this dense region of the minority class.
Although Fig.  2 only illustrates an example in two-dimensional feature space, this 

idea can be applied to any multi-dimensional space. This sampling strategy is further 
detailed in Sect. 3.2.

In the case that mcminority
anchor

 is not surrounded by the micro-clusters belonging to the 
same class, SMOClust will generate a synthetic minority class example by performing 
multivariate Gaussian sampling inside mcminority

anchor
 (line 16, Algorithm  1). For example, 

this will be the case when when mc(i+2) (top right green circle in Fig. 2) is chosen to be 
the mcminority

anchor
 . The the mean of the multivariate Gaussian distribution is the centre of 

mc
minority

anchor
 and the standard deviation is set as a third of the radius of mcminority

anchor
 (radius/3). 

In other words, the boundary of mcminority
anchor

 is set at three units standard deviations (or 
standard score = 3) from the centre. Therefore, we have 99.9% of chance to sample a 
point within mcminority

anchor
 . Gaussian distribution was chosen rather than uniform distribu-

tion in sampling mcminority
anchor

 because mcminority
anchor

 could partly overlap with the majority class 
region. Therefore, sampling a new point as synthetic minority class example close to the 
centre of mcminority

anchor
 is a safe strategy.

3.2  Sampling from a micro‑cluster with the highest probability at a designated 
location

This section present the strategy to sampling points from the temporary micro-cluster 
mctemp which is formed by combining mcminorityanchor

 and mckNN,minority
i

∈ MCkNN,minority with the 

1 Note that, the size and the number of micro-clusters in Fig. 2 do not necessarily reflect the number of 
examples in each class. This figure just focuses on a particular region in the feature for explanation pur-
poses.
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Fig. 1  Illustration of Combining mcminority
anchor

 with 3-nearest neighbours into one micro-cluster

Fig. 2  Illustration of Sampling a Synthetic Minority Class Example from mctemp (Color figure online)
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highest probability at the centre of mcminorityanchor
 . The general idea is to sample random points 

that are inside mctemp and these points are likely to be close to the centre of mcminority
anchor

 . 
The pseudocode of this sampling strategy is presented in Algorithm 4. Figure 3 illus-
trates the steps of this sampling strategy and it can be explained as follows.
Algorithm 4  Sampling from a hyper-sphere by skewed Gaussian with the maximum of the 
probability density function at a designated location

(Muller, 1959)

Let us first denote the micro-cluster mctemp as HS� which is a hyper-sphere with radius r 
and centred at � = (�

1
, �

2
, �

3
,… , �n) , where n is the number of dimensions of the input space 

of the problem, the equation of this hyper-sphere is:

Let us also denote the centre of mcminority
anchor

 to as �(1) = (�
(1)

1
, �

(1)

2
, �

(1)

3
,… , �(1)

n
) (the black 

dot in Fig. 3a), which should always be inside HS� . First of all, we need to pick a random 
direction from �(1) (Fig. 3a). This can be achieved by randomly and uniformly picking a 
point from a unit hyper-sphere centred at �(1) , using the Muller’s method (Muller, 1959). 
We then denote this point to as �(2) = (�

(2)

1
, �

(2)

2
, �

(2)

3
,… , �(2)

n
) (the red dot in Fig. 3a) (line 

7, Algorithm 4). Points �(1) and �(2) form an n-dimensional infinite long straight line (the 
line d in Fig. 3b), whose parameterised equation is:

where t is a scalar and (�(2)

i
− �

(1)

i
) is the direction vector. To find the intercepts of this infi-

nite long line to the hull of HS� (the blue and green dots in Fig. 3b), we can substitute Eq. 3 
into Eq. 22:

(2)
n∑
i=0

(xi − �i)
2 = r2

(3)xi = �
(1)

i
+ t(�

(2)

i
− �

(1)

i
)

2 The idea is inspired by the discussion on https://math.stackexchange.com/questions/151064/calculating-
line-intersection-with-hypersphere-surface-in-mathbbrn?rq=1.



4687Machine Learning (2024) 113:4671–4721 

1 3

Let us denote �i = �
(2)

i
− �

(1)

i
 and �i = �i − �

(1)

i
 (line 10 and 11, Algorithm 4), then Eq. 4 

becomes:

Let us denote A =
∑n

i=0
�2
i
 (line 12, Algorithm 4), B = −2(

∑n

i=0
�i�i) (line 13 and 16, Algo-

rithm  4) and C = (
∑n

i=0
�2
i
) − r2 (line 14 and 17, Algorithm  4) to solve Eq.  5 based on 

Bhaskara’s equation:

(4)
n∑
i=0

((�
(2)

i
− �

(1)

i
)t + (�

(1)

i
− �i))

2 = r2

n∑
i=0

(�it − �i)
2 = r2

(5)

(
n∑
i=0

�2
i

)
t
2 − 2

(
n∑
i=0

�
i
�
i

)
t +

(
n∑
i=0

�2
i

)
− r

2 = 0

Fig. 3  Illustration of Sampling from mctemp (Color figure online)
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Here, we just take the positive root of t because it “follows” the direction vector, while 
the negative root “oppositely follows” the direction vector (the direction is denoted by the 
arrows on line d in Fig. 3b), i.e.

Substituting tintercept into Eq. 3 will obtain the intercept of the line and the hyper-sphere, fol-
lowing the direction vector (the blue dot in Fig. 3b). Thus, to sample points within the HS� , 
we can simply sample a scalar tsample between 0 and tintercept (Fig. 3c) and substitute it into 
Eq. 3 to obtain the sampled point. As we want to sample this point with the highest chance 
at the target point �(1) , we can sample tsample using Gaussian distribution with the mean = 0 
and standard deviation = tintercept

3
 , i.e.

At last, we substitute tsample into Eq. 3 to obtain the sample point.
The reason for setting the standard deviation to be tintercept

3
 is that we want the sampled 

point to be within the micro-cluster. Yet, the probability density function of the Gaussian 
distribution has no bounds. Thus, we set the tintercept at 3 standard score (z-score = 3), such 
that 99.9% area under the probability density function curve of the Gaussian distribution is 
between −tintercept and +tintercept . Also, we want tsample to “follow” the direction vector (i.e. 
we only interested in line segment between the black and the blue dots on d in Fig. 3b), 
thus, we only accept the positive value of tsample.

Figure 3d presents a two-dimensional example of using the aforementioned strategy to 
sample points in a hyper-sphere centred at (0,0) with a radius of 10. The points have the 
highest probability to be sampled at (− 7,0).

4  Experiments to evaluate the predictive performance of SMOClust

This section presents the design of the experiments to evaluate SMOClust. The predic-
tive performance of SMOClust was first compared against five existing approaches from 
the literature on artificial data streams of different types of drifts. This is to investigate 
for which types of drift SMOClust will be advantageous and disadvantageous, answer-
ing RQ2. SMOClust was then compared against the same set of existing approaches on 
real-world data streams to obtain a general idea of its performance in practical situations, 
answering RQ3. Massive Online Analysis (MOA) (Bifet et al., 2010) was chosen to be the 
experimentation platform. Section 4.1 presents the details of artificial and real-world data 
streams used in the experiments. Section 4.2 presents the detailed setup of the experiments, 
including the procedure of hyper-parameter tuning and the evaluation method used in the 
experiments.

t =
−B ±

√
B2 − 4AC

2A

(6)tintercept =
−B +

√
B2 − 4AC

2A

g ∼ N

(
0,

(
tintercept

3

)2
)

tsample = |g|
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4.1  Data streams

As discussed in Sects. 1 and 2, data difficulty factors play a crucial role in class imbal-
anced data stream learning with concept drift. Therefore, it is important to evaluate class 
imbalance data stream learning approaches based on data streams with different data dif-
ficulty factors. In line with that, the artificial data stream generator proposed by (Brzezinski 
et al., 2021) was adopted because it allows us to simulate concept drifts that affect different 
data difficulty factors, including the class imbalance ratio, movement of the clusters in the 
minority class, and the proportion of safe, borderline and rare minority class examples. We 
have generated a large variety of artificial data streams to avoid any bias in the evaluation 
and enable us to understand the conditions under which SMOClust performs well and the 
conditions under which it fails, as well as the reason for such behaviour.

Table  2 presents a summary of artificial data streams used in the experiments. Each 
of them has five numerical input attributes {xi ∈ (−1, 1)}5

i=1
 and a class label yi ∈ {0, 1} . 

They all consist of 200 k examples where concept drift happens gradually from 70 k to 
100 k time steps. The continuous movement of minority class sub-clusters in gradual drift 
scenarios creates a complex and dynamic environment for evaluation. We created thirty 
artificial data streams of each type with different random seeds. Each of the thirty streams 
is used to evaluate the data stream learning approaches in a single run. The evaluation 
method is detailed in Sect. 4.2

Table 2  Summary of artificial data streams

All artificial data streams have 200k examples, where a single concept drift occurs from 70 k-th time step to 
100 k-th time step
“+” refers to the factors occurring simultaneously during the concept drift
StaticIm{N} refers to a static minority class ratio of N% throughout the entire stream
Im{N} refers to the minority class ratio of N% after the concept drift
Split{N}, Move{N}, Merge{N} refer to drifts which split, move and merge N clusters in the minority class 
respectively
Borderline{N}, Rare{N} refer to drifts changing N% of the minority class examples from appearing in a 
safe region of the clusters to being borderline region and rare cases respectively

Imbalance ratio drift Single factor drift with static imbalance ratio

StaticIm10_Im1 StaticIm{30/10/1}_Split{3/7}
StaticIm1_Im10 StaticIm{30/10/1}_Move{3/7}
Im1 StaticIm{30/10/1}_Merge{3/7}
StaticIm1_Im50 StaticIm{30/10/1}_Borderline{20/100}

StaticIm{30/10/1}_Rare{20/100}

Double factor drift Complex Factor Drift

Im1+Rare100 StaticIm10_Split5+Im1+Rare100
Im10+Rare60 StaticIm10_Split5+Im1+Borderline100
Split5+Im10 Split5+Im10+Borderline40+Rare40
Im1+Borderline100 Split5+Im10+Borderline80
Im10+Borderline20 Im10+Borderline20+Rare20
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Following the default setting by Brzezinski et al. (2021), when the artificial data stream 
has no drift or no modifier specified, it is: (1) class balanced, (2) composed of a single clus-
ter representing class 1, uniformly surrounded by the examples of class 0, and (3) examples 
only appear in safe regions. When the data stream is class imbalanced, class 1 is the minor-
ity class while class 0 is the majority class.

As shown in Table 2, we considered four groups of drift from (Brzezinski et al., 2021)’s 
work in this study. The first group (Imbalance ratio drift) considers concept drift affecting 
the class imbalance ratio only. The second group (Single factor drift with static imbalance 
ratio) considers data streams with a static class imbalance ratio while the concept drift hap-
pens in the form of five factors, which were discussed by Brzezinski et al. (2021): splitting, 
moving, merging clusters and decreasing the ratio of safe examples while increasing the 
ratio of borderline or rare examples. In the third (Double factor drift) and the fourth (Com-
plex factor drift) groups, we have chosen ten artificial data streams (five for each group) 
with concept drift affecting two factors and a group of factors, respectively. These artifi-
cial data streams were chosen evenly across the lists of data streams from Brzezinski et al. 
(2021)’s work with double factor drift and complex factor drift in Brzezinski et al. (2021)’s 
work respectively. These lists were sorted by the average performance of the compared 
data stream learning approaches in their work. Thus, picking data streams evenly from 
these lists means that we are taking scenarios with different difficulty levels.

As the analysis which is presented in Sect. 4.3 shows that SMOClust performed well 
in severely imbalanced data streams, we performed additional experiments with the afore-
mentioned single factor drift streams with more severe static class imbalance ratio to fur-
ther evaluate SMOClust in extreme cases. These additional severely class imbalanced arti-
ficial data streams are summarised in Table  3. Note that, although we reused the static 
imbalance ratio of 1% minority class examples, we used another set of random seeds when 
performing these additional experiments.

Apart from experiments with artificial data streams, we also performed experiments 
with different real-world data streams to evaluate SMOClust in practical applications. 
These real-world data streams are summarised in Table 4 and their details are as follows.

Table 3  Summary of single factor drift artificial data streams with severe imbalance ratio

All artificial data streams have 200k examples, where a single concept drift from 70k-th time step to 100k-
th time step
StaticIm{N} refers to a static minority class ratio to be N% throughout the entire stream. StaticIm{0N} 
refers to a static minority class ratio to be 0.N% throughout the entire stream
Split{N}, Move{N}, Merge{N} refer to drifts which split, move and merge N clusters in the minority class 
respectively
Borderline{N}, Rare{N} refer to drifts changing N% of the minority class examples from appearing in a 
safe region of the clusters to being borderline region and rare cases respectively

Single factor drift with severe static imbalance ratio

StaticIm{5/3/1/07/05/03}_Split{3/7},
StaticIm{5/3/1/07/05/03}_Move{3/7},
StaticIm{5/3/1/07/05/03}_Merge{3/7},
StaticIm{5/3/1/07/05/03}_Borderline{20/100},
StaticIm{5/3/1/07/05/03}_Rare{20/100}
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The Luxembourg stream (Zliobaite, 2011) was constructed from the European Social 
Survey from 2002 to 2007. The classification task is to predict whether internet usage is 
high or low. The NOAA stream (Elwell & Polikar, 2011) contains weather records col-
lected over five decades (1949–1999). These records include temperature, pressure, wind 
speed, precipitation and other weather-related events. The classification task is to predict 
whether the next day will rain. The Ozone stream (Zhang et al., 2006) consists of air meas-
urements collected from 1998 to 2004. The task is to predict the ozone level eight hours 
ahead of time. The PAKDD2009 stream (Theeramunkong et al., 2009) consists of private 
label credit card application records and the task is to decide whether a given application 
should be approved. Forest Covertype (Covtype) stream (Blackard & Dean, 1999) con-
tains the cartographic information about the forest of 30 × 30-meter cells and the task is 
to predict the cover type for a given cell. Covtype stream originally is a multi-class clas-
sification problem with seven forest cover types. To make it suitable for this study, it has 
been converted into seven binary classification streams. Each of them takes one of the for-
est cover types as one class while combining other forest cover types to be the other class. 
INSECTS streams (Souza et  al., 2020) were constructed using a smart trap with optical 
sensors to collect the flying data of three different species of insects in a non-stationary 
environment for around three months. The temperature of the data collection environment 
was controlled to simulate concept drifts. INSECTS streams originally have six classes: 
three species of mosquitoes with two genders. We converted them into binary classification 

Table 4  Summary of real-world data streams

Total number of attributes = #Nominal attributes + #Numeric attributes + Class attribute
“Pre” refers to hyper-parameter tuning sets (i.e. the first 10% of the original data set). “Actual” refers to 
actual experiment sets ( i.e. the remaining 90% of the original data set
Covtype(c

1
=x) : “ c

1
= x ” refers to the class 1 is the class x in the original data set while the rest of the classes 

are combined to be the class 0 in the “Actual” experiment stream. “ c
1
= {x

0
− x

n
} ” refers to the class 1 is 

the class x
0
x
n
 in the original data set combined while the rest of the classes are combined to be the class 0 

in the “Actual” experiment stream
For all INSECTS data streams, “ae-albopictus” is the class 1. “inc.” refers to incremental, “abr.” refers to 
abrupt, “grad” refers to gradual, and “re.” refers to recurring
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tasks by combining classes belonging to the species of ae-albopictus as the minority class 
while combining the rest of the classes as the majority class. Also, it has to note that Souza 
et al. (2020) originally proposed seven INSECTS streams but we only adopted six of them 
which contain concept drifts and left the INSECT-out-of-control stream unused as it does 
not contain any concept drift. The Amazon stream (Blitzer et al., 2007) comprises reviews 
of books, DVDs, electronics, and kitchen appliances. Reviews with a rating greater than 3 
were labelled as positive. The objective is to discern whether a review has a rating above 
3. The Twitter stream (Nakov et al., 2016) consists of labelled tweets about popular topics. 
The goal is to predict whether the sentiment of a given tweet is positive or negative.

To facilitate analysing the predictive performance of SMOClust, we also analysed the 
characteristics of the minority class of the real-world data streams, including the poten-
tial number of clusters, and the ratios of safe, borderline, rare and outlier examples. Note 
that we only analysed the portion of the real-world data streams used in the actual experi-
ments, which excludes the first 10% of each original real-world data stream that was used 
for hyper-parameter tuning (see Section  4.2 for details the hyper-parameter tuning pro-
cedure). The procedure of this analysis follows the methodology proposed by Brzezinski 
et al. (2021) and is described as follows.

The characteristics of each real-world data stream are estimated in successive batched of 
examples. We followed (Brzezinski et al., 2021) to use a batch size of 2000 examples for 
all data streams except for Luxembourg, NOAA, Amazon, and Twitter, where a batch size 
of 200 was used as these data streams have less than 10,000 examples. The class imbalance 
ratio and the ratios of each minority class type are estimated for each batch. It is worth 
noting that we only focused on analysing the class 1 because it is the global minority class 
of all the real-world data streams (see Table 4), even though this class could potentially 
become a majority during certain periods of the data stream, e.g., when there is potential 
concept drift affecting P(Y), changing the roles of majority and minority classes temporar-
ily. As for types of minority class examples, they were estimated using the method pro-
posed by Napierala and Stefanowski (2015). This method first finds the k-Nearest neigh-
bours of each minority class example. Based on the class ratios among these k-Nearest 
neighbours, it then categorises each minority class example as safe, borderline, rare, or 
outlier. Here, we followed (Napierala & Stefanowski, 2015) to adopt k = 5.

Following (Brzezinski et al., 2021)’s procedure, we also estimated the number of minor-
ity class clusters in each batch, using the affinity propagation algorithm (Frey & Dueck, 
2007) and removing clusters with less than six minority class examples (Brzezinski et al., 
2021). The affinity propagation algorithm was run thirty times with different random seeds 
for each batch. The average estimated number of minority class clusters is then recorded.

Lastly, we reported the ranges of the aforementioned characteristics across the different 
batched and their medians in Table 5. Note that we only performed analysis about types 
of minority class examples and the potential number of clusters on batched that contain at 
least six ( k + 1 ) minority class (class 1) examples. This is to prevent always categorising 
the minority class examples as rare cases or outliers when the total number of minority 
class examples in the batch is extremely low. The number of batches with less than size 
minority class examples is reported in brackets in the third column of Table 5.

As shown in Table 5, PAKDD2009 and NOAA streams usually present the most num-
ber of clusters of minority class examples, with medians of twenty-eight clusters, meaning 
that the minority class is split into several clusters in this data stream. INSECTS streams 
usually present fewer clusters of the minority class than PAKDD2009 and NOAA streams, 
which have medians ranging from thirteen to sixteen clusters. Luxembourg, Ozone , 
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Covtype, Amazon and Twitter streams usually present the least number of clusters of the 
minority class, having medians ranging from zero to six.

As for the types of minority class examples, Table 5 shows that the Ozone, PAKDD2009 
, INSECTS, Amazon, and Twitter streams mainly consist of borderline, rare, and outlier 
minority class examples. Luxembourg and NOAA streams mainly consist of safe and bor-
derline minority class examples. Most Covtype streams mainly consist of safe minority 
class examples. Regarding the minority ratios, most of them have a small range, indicat-
ing that the potential concept drifts only affect P(Y) with mild severity. In contrast, Cov-
type(c

1
={1−6}) , Covtype(c

1
=1) and Covtype(c

1
=2) streams have a very large range, indicating 

that that they potentially present severe concept drifts affecting P(Y). In particular, Cov-
type(c

1
=2) presents a large range of minority class ratio with a very small median (1%). This 

may indicate that the severe concept drifts affecting P(Y) could potentially be abrupt.

4.2  Experiment setup

This section presents the procedure of hyper-parameter tuning and experiments. The fol-
lowing are the approaches from the literature that were considered in this study and the 
reason behind the choice. All of these approaches are strict online approaches, which do 
not require storage of any past data, so that the comparisons are fair.

• OOB(d) and  UOB(d) (Wang et al., 2015): Baseline approaches that use simple oversam-
pling or undersampling to deal with class imbalance in data stream learning.

• OnlineUnderOverBagging(d)  (oUnderOverB(d)) (Wang & Pineau, 2016): A simple exist-
ing approach which combines simple undersampling and oversampling for class imbal-
ance data stream learning. We slightly modified it to use time decay class sizes with 
the “oversampling” equation from OOB to controlling the resampling rate. We chose 
to adopt the “oversampling" equation from OOB because the research paper (Wang & 
Pineau, 2016) explicitly states that the resampling rate for OnlineUnderOverBagging 
should be greater than 1. On the other hand, the “undersampling" equation from UOB 
produces a fractional number, which is not suitable in this context.

• VFC-SMOTE (Bernardo et  al., 2021): An existing approach which addresses class 
imbalance by generating synthetic minority class examples using histogram-based 
summaries of past examples.

• SMOTE-OB (Bernardo & Valle, 2021): An existing approach which incorporates the 
class imbalance adaptation strategy of VFC-SMOTE into OnlineUnderOverBagging 
(Wang & Pineau, 2016).

• OnlineOversampling(d)  (oOS(d)): A variant of the proposed approach which always uses 
the most recently seen minority class example for oversampling. This approach is used 
as a baseline to support the investigation of when the proposed strategy of creating syn-
thetic minority class examples for oversampling is advantageous/disadvantageous.

• SMOGauNoise: A variant of the proposed approach inspired by Song et  al. (2018), 
which proposed a data augmentation method for software effort estimation. SMOGau-
Noise has the same learning and making prediction strategies as the proposed approach 
but it always creates synthetic minority class examples for oversampling by adding 
Gaussian noise to the most recent minority class example. Note that this is the first time 
to investigate (Song et al., 2018)’s data augmentation method in the context of classifi-
cation problems.
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Approaches followed by “(d)” refers to these approaches that were not designed to handle 
concept drift originally.3 We used a wrapper to enable them to use a concept drift detector. 
Their system reset upon concept drift detection.

For the evaluation method, we modified the periodic holdout test for the experiments with 
artificial data streams. This modified periodic holdout test takes the data difficulty factors into 
the consideration, which includes the position of the minority class clusters, class imbalance 
ratio, and the proportions of borderline and rare examples. During a single run, the data stream 
learning approach was tested on a holdout test set Btest

t
 of m examples after training on every 

n example. Its predictive performance in G-Mean was then recorded. The holdout test sets are 
class balanced and they follows the same underlying joint probability distribution (concept) at 
the evaluation time step t, where t mod n = 0 , i.e., Btest

t
∼ Pt(X, Y) . At the end of the run, we 

summarised their performance across the stream by taking an average of their G-Mean perfor-
mance on the test sets.

For hyper-parameter tuning purposes, an additional artificial data stream was created. It 
also consists of 200k examples where the concept drift happens from 70k to 100k time steps 
but the class imbalance ratio and the drift behaviour were randomly selected from the set of all 
combinations of drift factors used in (Brzezinski et al., 2021). We denote this data stream as 
the “hyper-parameter tuning stream”. The set of hyper-parameter values of each approach that 
leads to the best ten runs average of G-Mean across this stream was then used in the experi-
ments. In the experiments, we adopted thirty runs rather than ten runs to reduce the effect of 
randomness on the results.

Experiments with real-world data streams have a similar procedure. The first 10% or each 
real-world data stream was used for the hyper-parameter tuning purposes. The prequential 
evaluation was used because the underlying concepts are unknown in advance. The set of 
hyper-parameter values of each approach that leads to the best ten runs average of G-Mean 
across the first 10% of each real-world data stream was then chosen to be used in the experi-
ment of the corresponding data stream which consists of the remaining 90% of examples. The 
time decayed G-Mean performance was sampled at every 500 time steps, except they were 
sampled at every fifty time steps for NOAA, Ozone, Amazon, Twitter streams and every ten 
time steps for Luxembourg stream due to the fact that these streams are a lot shorter than 
other streams (i.e., they have a lot fewer examples than other data streams). Thus, sampling at 
shorter intervals allows us to see how the performance of the approaches changes throughout 
these relatively short data streams. We adopted a time decay factor of 0.999 to make their past 
predictive performance less important to the current time step. We recorded their thirty runs 
average G-Mean performance across each stream for evaluation and comparative analysis.

At the end of the experiments, the predictive performance of the approaches was com-
pared by different concept drift data difficulty factors. The corresponding rankings in the 
groups were then presented. Friedman test with a level of significance of 0.05 was applied 
to each group, confirming if there is any statistical significance between the predictive per-
formance of different approaches. If there is, Nememyi post-hoc test was used to determine 
which approaches performed significantly different from the top-ranked approach. In the sta-
tistical tests, each group corresponds to a data stream learning approach while each observa-
tion within a group corresponds to the average predictive performance across a given data 
stream in a single run. The thirty runs average predictive performance of the approaches are 
also reported to facilitate us in analysing the margin of the performance difference.

3 Except OOB and UOB can handle concept drift affecting P(Y).
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4.3  Results with artificial data streams

This section presents the analysis done to compare the predictive performance of SMO-
Clust against existing approaches on artificial data streams which consider different drift 
difficulties in the minority class. General comparisons are first given based on the Fried-
man rankings of average G-Mean of the approaches grouped by different drift difficulty 
factors, presented in Table 6. It is then followed by a detailed analysis of the behaviour 
of SMOClust in representative cases where it performed better and worse than existing 
approaches in Sects. 4.3.1 and 4.3.2 respectively.

Table  6 shows that SMOClust was one of the top-ranked approaches when the data 
stream is extremely class imbalanced (minority class ratio: 1%), indicating that SMOClust 
handled extremely class imbalanced data stream better than most existing approaches, 
while it performed similarly to UOB and OnlineUnderOverBagging. However, SMOClust 
was one of the low-ranked approaches in the group of rare cases, indicating that it could 
not handle rare cases very well. For other groups, although SMOClust was not one of the 
top-ranked approaches, it usually performed similarly to mid-ranked approaches.

As Friedman rankings only show the relative position of approaches’ predictive perfor-
mance but they do not provide any information about the margin of difference. To investi-
gate how much did SMOClust performed better in severely class imbalanced streams and 
worse in other groups of factors, we further compared their thirty runs average G-Mean on 
each artificial data stream. The results of their difference in average G-Mean are presented 
in the form of a heat-map in Fig. 4. Green cells indicate results favourable to SMOClust, 
whereas red cells indicate results favourable to the compared approach. For a comprehen-
sive table of the predictive performance of the approaches, please refer to the supplemen-
tary document.

Table 6 shows that SMOClust usually obtained lower rankings than other approaches in 
less severe class imbalanced data streams. However, Fig. 4 reveals that the margin of the 
under-performance was usually small as we can rarely see saturated red cells in the table. 
In contrast, the high ranking achieved by SMOClust in the group of StaticIm1_{*} was 
supported by a lot of saturated green cells in the sector StaticIm1 of Fig. 4, meaning that 
SMOClust performed a lot better than existing approaches in cases with severe class imbal-
anced ratio. Besides, Fig. 4 further confirms that SMOClust could not handle rare minority 
class examples very well as we can see that cases involving Rare100 drift have lots of satu-
rated red cells. In particular, OOB and OnlineUnderOverBagging handled rare minority 
class examples better than SMOClust.

One potential reason why SMOClust did not perform well in handling data streams 
with a large proportion of rare minority class examples is the conservative nature of the 
proposed synthetic example generation method, where most synthetic examples are gener-
ated in the dense area of the minority class. To address this, it might be helpful to gener-
ate synthetic examples in a more diverse manner. However, generating synthetic examples 
diversely can also introduce a significant amount of noise or even create artificial concept 
drifts. Moreover, it can be challenging to ensure that a certain area belongs to the minority 
class if there are no real minority class examples in that area. The proposed method is less 
prone to these risks and uncertainties, while overcoming the problems of existing work, 
which ignore data difficulty factors and rely on caching all (minority class) examples for 
synthetic minority class oversampling.

Comparing the predictive performance of SMOClust against UOB and OnlineUn-
derOverBagging in the group of StaticIm1_{*}, Table  6 shows that they performed 
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similarly. Yet, the sector of StaticIm1 in Fig.  4 reveals that SMOClust performed better 
than UOB by small margins (around 1–2% G-Mean , light green cell) in cases presenting 
concept drift of increasing rare minority class ratio, yet, it performed worse than UOB 
by medium-small margins (around 3% G-Mean , light red cells) in cases presenting con-
cept drift of moving and merging minority class clusters. SMOClust performed better than 
OnlineUnderOverBagging by medium-small margins (around 2–3% G-Mean , light green 
cells) in cases presenting a concept drift of splitting minority class clusters. However, it 
performed slightly worse than OnlineUnderOverBagging (around 1% G-Mean , light red 
cell) in cases presenting concept drift of merging minority class clusters. It also performed 
worse than OnlineUnderOverBagging by a large margin (around 7% G-Mean , saturated 
red cell) in StaticIm1_Rare100 case. In short, SMOClust performed similarly to both UOB 
and OnlineUnderOverBagging in most StaticIm1 cases, except OnlineUnderOverBagging 
performed a lot better in StaticIm1_Rare100 case.

When comparing the predictive performance of SMOClust against two approaches that 
also summarise past knowledge to support the generation of synthetic examples (VFC-
SMOTE and SMOTE-OB), Table 6 and Fig. 4 show that SMOClust performed better in 
most cases, especially in StaticIm1 cases. This indicates that the proposed synthetic minor-
ity oversampling strategy in SMOClust is superior.

Table 6  Statistical (Friedman) Ranking of G-Mean on Artificial Streams Grouped by Factors

a “StaticIm{*}” refers to StaticIm{30/10/1}, which means the group includes all artificial data streams of 
that type in static minority class ratio of 30%, 10%, and 1% respectively
b “{*}” refers to Split/Move/Merge/Borderline/Rare, which means the group includes all artificial data 
streams of the above five types of drifts with the same static minority class ratio
Smaller values for the rankings are better values
The p values of Friedman tests are all ≤2.2E−16
Highlighted ranks denote significant superior performance
Underlined ranks denote the corresponding approach’s performance have no statistical significance with 
SMOClust
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Based on the aforementioned results, additional experiments were performed with the 
same set of single factor drift artificial data streams but enforced with extremely severe 
class imbalance ratios (minority class ratio 0.3% to 5% , summarised in Table 3) to further 
evaluate if SMOClust can usually perform better than existing approaches in extremely 
class imbalanced data streams.

Fig. 4  Difference in Average G-Mean Against SMOClust on Class Imbalanced Artificial Data Streams 
Based on 30 Runs (Green cells indicate SMOClust performed better; Red cells indicate SMOClust per-
formed worse; Grey horizontal lines separate different groups of data streams, i.e., StaticIm{30/10/1}, 
Imbalance Ratio Drift, Double Factor, and Complex Factor) (Color figure online)
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Table  7 presents the Friedman rankings of average G-Mean by groups of different 
drift difficulty factors on the severely class imbalanced artificial data streams. It shows 
that SMOClust can indeed achieve higher rankings when the class imbalance ratio is very 
severe (minority class ratio ≤ 1% ). Figure  5 presents the difference in average G-Mean 
(based on thirty runs) between the compared approaches and SMOClust on severely class 
imbalanced artificial data streams in the form of a heat-map with the same colour scheme 
as Fig. 4. Similarly, please refer to the supplementary document for a comprehensive table 
of the predictive performance of the approaches. It supports the aforementioned deduction 
with a lot of saturated green cells in the cases of minority class ratio ≤ 1% , indicating the 
superior performance of SMOClust. The exception here is the comparison against UOB, 
with the margin of under-performance increasing as the severity of the class imbalance 
ratio increases by case. When compared against OnlineUnderOverBagging, SMOClust 
generally performed better in cases other than Rare100 drift, with the margin of superior 
performance increasing as the severity of the class imbalance ratio increases by case.

Figure 5 also confirms that SMOClust usually does not handle rare minority class exam-
ples very well, especially when compared against OOB, OnlineUnderOverBagging and 
SMOGauNoise. However, an extremely severe class imbalance ratio may give advantage to 
SMOClust in dealing with Rare100 drift as cases involving Rare100 present less saturated 
red cells when the class imbalance ratio is ≤ 1% . In particular, the case of StaticIm03_
Rare100 presents a row of saturated green cells. Anyhow, these results are consistent with 
previous results of experiments with less severe class imbalanced artificial data streams.

Besides, Table  7 also shows that SMOClust could not achieve high rankings in the 
groups concerning minority class ratio of 5% and 3%. This may due to the fact that the 
artificial data streams are long enough to have quite a lot of minority class examples, 
despite the minority class ratios were low. Therefore, the advantage of SMOClust was not 
manifested. The sectors of StaticIm5 and StaticIm3 on Fig. 5 show that SMOClust usu-
ally performed slightly worse than most existing approaches but it performed better than 
 OnlineOversamplingd , VFC-SMOTE and SMOTE-OB.

Considering all cases in Fig.  5, we can see that, when the minority class ratio 
decreases, SMOClust usually had a smaller margin of performance reduction than other 
approaches, except UOB. This shows that the aggressive nature of undersampling may 
be generally more advantageous than oversampling when the number of minority class 
examples in the data stream is extremely low. Yet, we can still see from Fig.  5 that 
SMOClust performed better than UOB in most cases of Rare100 drift. This means that, 
when the minority class has extreme low number of examples and is difficult to learn, 
SMOClust still has more advantage than undersampling. One reason could be the fact 
that the compared approaches focus on learning the most recent decision areas of both 
classes, whereas SMOClust was designed to reinforce its knowledge in past minority 
class decision areas. This means that SMOClust is likely to have a better generalisation 
on the sub-areas of the minority class than existing approaches.

In the following sections, representative cases were chosen to discuss why SMOClust 
performed better and worse than existing approaches respectively, providing a more 
detailed understanding of the results.

4.3.1  Cases where SMOClust performed better

This section discusses why SMOClust performed better than most other approaches in 
artificial data streams with severe class imbalance ratio when the class imbalance ratio 
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is extremely severe (minority class ratio ≤ 1% throughout the stream). StaticIm1-Move7 
stream was chosen from Fig. 4 as the representative case to discuss the behaviour of SMO-
Clust in details.

As mentioned in Sect.  4.1, the artificial data streams have five input attributes and a 
class label. Therefore, it is difficult to visualise the learnt decision areas of the approaches 
and understand their behaviour in details. Because of this, we created a version of the rep-
resentative streams with two input attributes and a class label while preserving the char-
acteristics which include the class imbalance ratio and the drift difficulty factors etc. Note 
that we only created a single copy of each two-dimensional representative stream, such that 
we can compare the data stream learning approaches with their median predictive perfor-
mance in thirty runs on the same data stream. Also, the hyper-parameters of the approaches 
were tuned based on a separated random two-dimensional artificial data stream, following 
the procedure explained in Sect. 4.2.

Table 8 presents the their thirty runs average G-Mean on the two-dimensional version 
of StaticIm1_Move7 stream. It shows that SMOClust performed the best. These results 
are slightly inconsistent with the results of the corresponding five dimensional stream in 
Fig. 4, where SMOClust performed slightly worse than UOB but similarly to OnlineUn-
derOverBagging. Yet, in general, SMOClust still performed better than other approaches in 

Table 7  Statistical (Friedman) ranking of G-Mean on severely class imbalanced artificial streams grouped 
by factors

a “StaticIm{*}” refers to StaticIm{5/3/1/07/05/03}, which means the group includes all artificial data 
streams of that type in static minority class ratio of 5%, 3%, 1%, 0.7%, 0.5%, and 0.3% respectively
b “{*}” refers to Split/Move/Merge/Borderline/Rare, which means the group includes all artificial data 
streams of the above five types of drifts with the same static minority class ratio
Smaller values for the rankings are better values
The p values of Friedman tests are all ≤2.2E−16
Highlighted ranks denote significant superior performance
Underlined ranks denote the corresponding approach’s performance have no statistical significance with 
SMOClust
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Fig. 5  Difference in Average G-Mean Against SMOClust on Severely Class Imbalanced Artificial 
Data Streams Based on 30 Runs (Green cells indicate SMOClust performed better; Red cells indi-
cate SMOClust performed worse; Grey horizontal lines separate different groups of data streams, i.e., 
StaticIm{5/3/1/07/05/03}) (Color figure online)
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both two-dimensional and five dimensional versions of StaticIm1_Move7 stream. This may 
indicate that SMOClust tends to perform better in low-dimensional data stream. Anyhow, 
the detailed analysis presented in the following paragraphs can still explain the character-
istics of SMOClust and why it performed better than most other approaches in this repre-
sentative case.

Figure  6 presents the approaches’ predictive performance over time steps of their 
median run.4 To maintain readability, we omitted the predictive performance of  OOBd, 
 UOBd,  oOSd,  oUnderOverBd , VFC-SMOTE, and SMOTE-OB from Fig. 6, as their per-
formance fluctuates significantly throughout the stream. For the comparison of SMOClust 
against these approaches, please refer to the supplementary document. It shows that SMO-
Clust performed the best in most time steps. In particular, SMOClust maintained the pre-
dictive performance to have at least 50% G-Mean on the class balanced holdout test sets 
during the concept drift (from 70k to 100k time steps) and recovered from the drift better 
than other approaches (the solid red line has a rapid recovery since 100k time steps). In 
contrast, other approaches usually dropped to around 0–20% G-Mean during the drift. This 

Table 8  30 Runs average G-Mean on two-dimensional version of representative artificial data streams 
where SMOClust performed better

Based on the average G-Mean, cells are highlighted in lime/light grey when SMOClust performed better 
than the corresponding approach and cells are highlighted in orange/dark grey cells when SMOClust per-
formed worse than the corresponding approach. The colour intensity scales with the absolute difference of 
average G-Mean between the SMOClust and the approach of the column and the intensity reaches the maxi-
mum when such difference is ≥ 10%

Fig. 6  Periodic Class Balanced 
Holdout Test G-Mean Against 
Time Steps in Two-Dimensional 
StaticIm1_Move7 (Color figure 
online)

4 Median run refers to the run that leads to the median of predictive performances averaged across time 
steps.
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case showed the superior performance achieved by SMOClust in handling severely class 
imbalanced drifting data streams.

Figures 7, 8 and 9 visualise the learnt decision areas of approaches at the time steps 
right before and after concept drift (70k and 100k time steps) and at the end (200k time 
steps) of the two-dimensional StaticIm1_Move7 stream respectively. The yellow and green 
regions represent their learnt decision areas of class 0 (majority class) and class 1 (minor-
ity class) respectively, while the red and blue dots are the class 0 (majority class) and class 
1 (minority class) examples in the class balanced test set, corresponding to the time steps.

Fig. 7  Decision Areas Against Class Balanced Test Set at 70k Time Steps (Before Drift) of Two-Dimen-
sional StaticIm1_Move7 (Color figure online)
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First of all, we compare the learnt decision areas of the approaches at the time steps 
right before concept drift (at 70k time steps). Figure 7 shows that OOB, OnlineOversam-
pling, OnlineUnderOverBagging, SMOGauNoise and SMOClust had learnt decision areas 
which match the corresponding class balanced test set. This explains why they performed 
the best before the drift (0–70k time steps, Fig.  6). Figure 7i and l show that the learnt 

Fig. 8  Decision areas against class balanced test set at 100 k time steps (After Drift) of two-dimensional 
StaticIm1_Move7 (Color figure online)
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decision areas of SMOClust were similar to SMOGauNoise because they both have strat-
egies to explore the minority class decision boundaries. The expansion by SMOClust 
was slightly more aggressive than SMOGauNoise, with some sub-areas linked together. 
Although the proposed synthetic minority oversampling strategy prioritises “safe” areas 
to generate synthetic minority class examples, the strategy of using synthetic examples to 

Fig. 9  Decision areas against class balanced test set at 200k time steps (End of Stream) of two-dimensional 
staticIm1_Move7 (Color figure online)
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train the stream clustering methods may contribute to such aggressiveness in exploring the 
minority class decision boundaries.

Figure  7a and c show that OOB and OnlineOversampling learnt the most compact 
minority class decision areas because they reuse the existing minority class examples for 
oversampling. Figure 7d shows that the minority class decision areas of OnlineUnderOver-
Bagging were slightly larger than that of OOB and OnlineOversampling. Particularly, there 
were two green areas linked together. This may be the result of using oversampling and 
undersampling together, which managed to cover the true minority class clusters while 
preserving some aggressiveness from undersampling. In contrast, Fig. 7b and f show that 
UOB and  UOBd learnt a single cluster to aggressively cover most minority class areas, 
considering the small majority class areas in between as part of the minority class. This 
is likely to cost some predictive performance in the majority class. Thus, we can see that 
UOB and  UOBd performed slightly worse than the other approaches before the concept 
drift (0–70k time steps, Fig. 6). However, Fig. 5 shows that UOB performed slightly bet-
ter than SMOClust in the five-dimensional StaticIm1_Move7 stream, indicating that the 
aggressive nature of undersampling may be an advantage in learning the minority class 
when the feature space is sparse and presents very few minority class examples. When the 
feature space is more compact, the proposed strategy in SMOClust is more advantageous.

Considering  OOBd,  OnlineUnderOverBaggingd, VFC-SMOTE, and SMOTE-OB, 
Fig. 7e, h, j, and k show that their learnt minority decision areas were very small which 
only covered a small proportion of the true minority class areas. In the case of VFC-
SMOTE, it predicted every example as majority class at 70k time steps. As previously 
mentioned, their predictive performance fluctuated a lot throughout the stream. So, it 
can be deduced that they were greatly affected by false-positive drift detections.

Over the next paragraphs, we compare the predictive performance and the decision 
boundaries of SMOClust against other approaches at the time steps right after concept 
drift (at 100 k time steps) and at the end of the data stream (at 200k time steps), to 
understand how SMOClust handles concept drift of moving minority class sub-clusters 
when the data stream is severely class imbalanced.

Figure 6 shows that the predictive performance of SMOClust fluctuated during the drift 
(70k–100k time steps, Fig. 6). Thus, it is likely that its base learner had been reset several 
times due to drift detection. Yet, it was the fastest approach to recovering predictive perfor-
mance from the drift. Figure 8 presents the learnt decision boundaries right after the drift. 
It shows that SMOClust and SMOGauNoise made the best attempt in adapting the drift. 
They were able to cover most minority class sub-clusters at the new position, especially 
SMOClust. The potential reason is that, although the base learner of SMOClust is reset 
upon drift detection, the stream clustering methods are not reset as they are expected to be 
drift adaptable. Therefore, SMOClust is more robust to incremental and gradual drifts than 
SMOGauNoise, explaining its rapid predictive performance recovery from the drift.

On the other hand, Fig. 8a, b, c, and d show that the learnt minority class decision areas 
of OOB, UOB, OnlineOversampling and OnlineUnderOverBagging mainly retained at the 
pre-drift position because they are not concept drift adaptable. Their concept drift adapt-
able counterparts , VFC-SMOTE and SMOTe-OB did not handle the drift very well either. 
Figure 8e, f, g, h, j and k show that their learnt minority class decision areas only covered a 
few minority class sub-clusters at the post-drift position, which is likely because their base 
learners had been reset for several times caused by drift detection and they do not have any 
strategy to deal with incremental and gradual drifts. As the result, they struggled to recover 
their predictive performance from the drift, as shown in Fig. 6.
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Lastly, we compare the learnt decision areas of the approaches at the end of the two-
dimensional StaticIm1_Move7 stream. Figure  9 shows that  OOBd, SMOGauNoise and 
SMOClust are the best approaches in converging to the post-drift position of minority 
class sub-clusters. In particular, a few green areas of SMOClust and SMOGauNoise were 
slightly less compact than  OOBd, showing that SMOClust and SMOGauNoise had slightly 
better generalisation than  OOBd.

Figure  9a, c, and d show that OOB, OnlineOversampling and OnlineUnderOverBag-
ging managed to converge to the new concept after the drift. However, they also retained 
a small portion of green areas which corresponds to the pre-drift position of the minority 
class. This shows that OOB, OnlineOversampling and OnlineUnderOverBagging can adapt 
to concept drift involving minority class sub-cluster movement. However, they required a 
longer period to adapt as they were hindered by the knowledge acquired pre-drift. Mean-
while, Fig. 9e, g, and h show that their concept drift adaptable counterparts adapted better, 
except  OnlineUnderOverBaggingd. While resetting base learners helps to adapt to concept 
drift,  OnlineUnderOverBaggingd partly uses undersampling in its strategy to deal with 
class imbalance led to some over-generalisation between the learnt minority class areas. 
UOB and  UOBd use undersampling to deal with class imbalance, thus Fig. 9a and f show 
that they had the greatest over generalisation due to the aggressive nature of undersam-
pling. VFC-SMOTE and SMOTE-OB continued to struggle, as shown in Fig.  9j and k, 
because of frequent false-positive drift detections.

Short Summary: Through the pre-drift analysis, the ability of SMOClust in handling 
stationary severely class imbalanced data streams presenting several minority class 
sub-clusters is validated. In particular, it shows that SMOClust was able to learn 
and explore the true decision boundaries despite the data stream presents very few 
minority class examples. The post-drift analysis shows that SMOClust was more 
robust in adapting incremental and gradual drift involving minority class sub-clus-
ters movement than existing approaches. Although most of the approaches converged 
to the new concept at the end of the data stream, SMOClust was the best and the fast-
est approach in recovering predictive performance from the drift. The inconsistent 
results between two and five-dimensional versions of this representative case indicate 
that SMOClust may be more advantageous in lower-dimensional data streams.

4.3.2  Cases where SMOClust performed worse

This section discusses the situations where SMOClust performed worse than other 
approaches, particularly in cases with concept drift leading to 100% rare minority exam-
ples. StaticIm10_Rare100 stream was chosen from Table 4 as the representative case to dis-
cuss the behaviour of SMOClust in detail. Following the method of analysis in Sect. 4.3.1, 
we also created a two-dimensional version of StaticIm10_Rare100 stream such that we can 
visualise and compare the learnt decision boundaries of the approaches to understand their 
behaviour.

Table 9 presents the approaches’ thirty runs average G-Mean on the two-dimensional 
StaticIm10_Rare100 stream. It shows that SMOClust performed better than most other 
approaches. Figure  10, showing the G-Mean of the approaches in their median run5 

5 Median run refers to the run that leads to the median of predictive performances averaged across time 
steps.
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throughout the two-dimensional StaticIm10_Rare100 stream, also supports the results on 
Table 9. Note that, to improve readability, we have omitted the predictive performance of 
 OOBd,  UOBd,  oOSd,  oUnderOverBd , VFC-SMOTE and SMOTE-OB from Fig. 10, similar 
to Fig. 6, due to their values fluctuating significantly throughout the stream. For a compari-
son of SMOClust against these approaches, please refer to the supplementary document.

As these results are not consistent with the results of the five-dimensional StaticIm10_
Rare100 stream, shown in Tables 6 and 7, we preliminary checked if using a different set 
of random seeds or picking another case that involves drift leading to 100% rare minor-
ity class examples would yield results that are consistent with Tables 6 and 7. Yet, it still 
shows that SMOClust performed similar to or better than other approaches in two-dimen-
sional StaticIm10_Rare100 stream. Thus, in this analysis, we focus on why SMOClust can 
handle concept drift leading to 100% rare minority class examples than other approaches 
when the data stream has only two dimensions while attempting to deduce why it could not 
when the data stream has five dimensions.

Figures 11, 12 and 13 visualise the learnt decision areas of the approaches at the time 
steps right before and after concept drift (70k and 100k time steps) and at the end (200k 
time steps) of the two-dimensional StaticIm10_Rare100 stream respectively. The yellow 
and green regions represent their learnt decision areas of class 0 (majority class) and class 
1 (minority class) respectively, while the red and blue dots are the class 0 (majority class) 
and class 1 (minority class) examples in the class balanced test set which corresponds to 
the time steps.

Table 9  30 Runs average G-Mean on two-dimensional version of representative artificial data streams 
where SMOClust performed worse

Based on the average G-Mean, cells are highlighted in lime/light grey when SMOClust performed better 
than the corresponding approach and cells are highlighted in orange/dark grey cells when SMOClust per-
formed worse than the corresponding approach. The colour intensity scales with the absolute difference of 
average G-Mean between the SMOClust and the approach of the column and the intensity reaches the maxi-
mum when such difference is ≥ 10%

Fig. 10  Periodic class balanced 
holdout test G-Mean against 
time steps in two-dimensional 
staticIm10_Rare100 (Color 
figure online)
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Figure  10 shows that all approaches performed very well during the pre-drift period 
(0-70 k time steps). Figure 11 reveals that it is because they learnt the decision boundary 
of the pre-drift concept very well, as the minority class was just a single cluster. While 
most approaches learnt an oval shape decision boundary, UOB,  UOBd and SMOTE-OB 
learnt a rectangular shape, which could be due to the use of undersampling. VFC-SMOTE 
learnt a peculiar shape decision boundary which would cause more frequent false-positive 

Fig. 11  Decision areas against class balanced test set at 70 k time steps (Before Drift) of two-dimensional 
staticIm10_Rare100 (Color figure online)
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drift detections. These may have been due to minority class examples generated by VFC-
SMOTE with considerable amount of noise. Meanwhile, SMOTE-OB adopts the same 
strategy as VFC-SMOTE for generating synthetic minority class examples but simul-
taneously incorporating undersampling to address class imbalance. This integration of 
undersampling might explain why SMOTE-OB more successfully circumvented the issue 
encountered by VFC-SMOTE.

Fig. 12  Decision areas against class balanced test set at 100 k time steps (After Drift) of two-dimensional 
StaticIm10_Rare100 (Color figure online)
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Figure 10 shows that the predictive performance of the approaches dropped to below 
60% G-Mean and started to differ since the concept drift began (70k time steps). While 
most approaches’ predictive performance fluctuated with large magnitude, SMOClust’s 
predictive performance was relatively steady, bouncing between 50%-60% G-Mean. UOB 
performed poorly since the drift began at 70k time steps until the drift was close to finish-
ing at 100k time steps, indicating that undersampling struggled in dealing with this drift 
without the help of a concept drift detector.

Figure 12 presents the learnt decision boundaries of the approaches right after the drift 
(100k time steps). It shows that OOB, OnlineOversampling, OnlineUnderOverBagging, 
 OnlineOversamplingd, SMOGauNoise , SMOTE-OB and SMOClust learnt very complex 
decision areas, indicating that they made great efforts to learn all the areas that spawn rare 
minority class examples belonging to the post-drift concept. However, only approaches 
with a concept drift detector were able to forget the old area of the minority class at the 
top left corner. This shows that, although this drift was gradual, concept drift detection was 
important in helping the system to forget irrelevant past knowledge. In contrast, approaches 
without a drift detector retained the oval minority class cluster at the top left corner which 
belongs to the pre-drift concept. Most of them struggled to perform well since the drift 
started at 70k time steps, as shown in Fig. 10. OOB was an exception in terms of predictive 
performance. However, the fact that it retained the knowledge about the pre-drift minority 
class areas makes it disadvantageous in dealing with other types of drift, as discussed in 
Sect. 4.3.1.

Comparing the learnt decision areas of SMOClust against other approaches with drift 
detector  (OOBd,  UOBd,  OnlineOversamplingd,  OnlineUnderOverBaggingd , VFC-SMOTE, 
SMOTE-OB and SMOGauNoise), it can be observed that the learnt minority class areas of 
SMOClust were complex and covered the feature space spawning minority class exam-
ples the most. While  OnlineOversamplingd’s, SMOGauNoise’s and SMOTE-OB’s were 
also complex (see Fig. 12g, i and k), they either did not cover the feature space spawning 
minority class examples as much as SMOClust’s did or exhibited over-generalisation. The 
fact that  OnlineOversamplingd only reuses the recently seen minority class example for 
oversampling likely leads to overfitting to such most recent area. SMOGauNoise also has 
a strategy to explore the decision boundaries of the minority class, but such strategy only 
explores the area around the recently seen minority class example. This could be disad-
vantageous when false-positive drift detections were triggered, resetting the base learner. 
SMOTE-OB’s over-generalisation could be explained by the use of undersampling and 
noisy minority class examples generated. SMOClust, on the other hand, does not have this 
disadvantage because the stream clustering methods are not reset upon drift detection. This 
makes it more robust to false-positive drift detections than other approaches. As the drift 
was gradual,  OOBd,  UOBd and  OnlineUnderOverBaggingd likely also suffered from mul-
tiple drift detection, as Fig. 12e, f and h show that the learnt a simple decision boundary 
right after the drift.

Figure  13 presents the learnt decision boundaries of the approaches at the end of 
the two-dimensional StaticIm10_Rare100 stream (at 200k time steps). While most 
approaches continued to further improve their learnt decision boundaries since the 
drift had finished, Fig. 13h and l show that  OnlineUnderOverBaggingd and SMOGau-
Noise did not improve as much as other approaches, meaning that they suffered from 
false-positive drift detections during the post-drift period. Besides, UOB,  UOBd, and 
SMOTE-OB exhibited an extensive and predominantly continuous decision area for the 
minority class, demonstrating the aggressiveness of undersampling. However, in the 
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case of SMOTE-OB, the approach’s synthetic minority class generation strategy exacer-
bates this aggressiveness.

From this analysis, it has been shown that SMOClust managed to forget the pre-drift 
concept and adapt to drift leading to 100% rare minority class examples and more robust 

Fig. 13  Decision areas against class balanced test set at 200 k time steps (End of Stream) of two-dimen-
sional StaticIm10_Rare100 (Color figure online)
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to false-positive drift detections than other approaches in the two-dimensional StaticIm10_
Rare100 stream. However, the experiment with the five-dimensional StaticIm10_Rare100 
stream presents different results (Fig.  4). It shows that SMOClust only performed better 
than  OnlineOversamplingd but worse or similar to most other approaches. One poten-
tial reason is the fact that two-dimensional space is more compact than five-dimensional 
space, the rare minority class examples have a lot less space to randomly spawn, which 
means they are likely to spawn at the locations that had already been learnt and covered 
by SMOClust using micro-clusters. Therefore, SMOClust can predict their class label cor-
rectly. However, five-dimensional space is sparser than two-dimensional space, meaning 
that new rare minority class examples are less likely to spawn at previous locations. There-
fore, SMOClust struggled to make correct predictions to new rare minority class examples. 
Another potential reason is that the stream clustering method may be less effective in data 
streams with more dimensions. For example, it may create some minority class micro-clus-
ters that overlap with the majority class region because of the sparsity of the feature space. 
Therefore, the aforementioned advantage of SMOClust in dealing with drift could not be 
manifested. Anyhow, future work is needed to further confirm whether SMOClust tends to 
perform better in data streams with fewer dimensions.

Short Summary: This analysis shows that SMOClust managed to adapt to concept 
drift leading to 100% rare minority class examples and was robust to multiple drift 
detection during gradual drift as well as false-positive drift detections when the data 
stream has only two dimensions. However, the experiments with the corresponding 
five-dimensional stream present a different set of results, as the stream clustering 
methods used by SMOClust might not perform well when the data stream has more 
dimensions.

4.3.3  Results with two‑dimensional artificial data streams

To investigate whether SMOClust performs better in lower-dimensional data streams, we 
performed additional experiments on the same artificial data streams presented in Sect. 4.1, 
but with only two input features. We also created a randomised two-dimensional data 
stream for the purpose of hyper-parameter tuning, following the procedure described in 
Sect. 4.3.

Figure  14 presents the difference in average G-Mean (based on thirty runs) between 
compared approaches and SMOClust on two-dimensional artificial data streams in the 
form of a heat-map. Green cells indicate results favourable to SMOClust, whereas red cells 
indicate results favourable to the compared approach. For a comprehensive table of the 
predictive performance of the approaches, please refer to the supplementary document. 
Compared to Fig. 4, there are fewer red cells in this figure, indicating that SMOClust gen-
erally performed better in the lower-dimensional version of the same set of data streams. In 
particular, the sections of the heat-map corresponding to StaticIm30 and StaticIm10 data 
streams, which were mostly reddish in Fig. 4, are mostly greenish in Fig. 14.

Figure  14 also confirms the trend shown in Fig.  4, showing that SMOClust tends to 
outperform other approaches in severely class-imbalanced data streams. To further vali-
date this trend in lower-dimensional data streams, we performed further experiments on 
the same set of single factor drift artificial data streams, but with enforced extremely severe 
class imbalance ratios (minority class ratio 0.3% to 5% , as summarised in Table 3). The 
results are presented in Fig. 15 in the form of a heat-map, using the same colour scheme as 



4714 Machine Learning (2024) 113:4671–4721

1 3

Fig. 14. Similarly, please refer to the supplementary document for a comprehensive table 
of the predictive performance of the approaches.

Figure 15 presents more solid green cells than Fig. 14, indicating that SMOClust per-
formed better than other approaches in extremely severe class-imbalanced data streams, 

Fig. 14  Difference in Average G-Mean Against SMOClust on Two-Dimensional Class Imbalanced Arti-
ficial Data Streams Based on 30 Runs (Green cells indicate SMOClust performed better; Red cells indi-
cate SMOClust performed worse; Grey horizontal lines separate different groups of data streams, i.e., 
StaticIm{30/10/1}, Imbalance Ratio Drift, Double Factor, and Complex Factor) (Color figure online)
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even in the lower-dimensional case. Additionally, the fact that Fig. 15 has more green cells 
than Fig. 5 supports the conclusion that SMOClust tends to perform better in lower-dimen-
sional data streams.

Fig. 15  Difference in Average G-Mean Against SMOClust on Two-Dimensional Severely Class Imbalanced 
Artificial Data Streams Based on 30 Runs (Green cells indicate SMOClust performed better; Red cells 
indicate SMOClust performed worse; Grey horizontal lines separate different groups of data streams, i.e., 
StaticIm{5/3/1/07/05/03} (Color figure online)
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4.4  Results with real‑world data streams

This section presents the analysis done to compare the predictive performance of SMO-
Clust against nine existing approaches in real-world data streams. Experiments with real-
world data streams allow us to obtain a general idea of SMOClust’s predictive performance 
in practical applications, where the class imbalance ratio, the position and the type of 
the concept drifts are unknown. Table 10 presents the Friedman rankings of approaches’ 
G-Mean on real-world data streams group by factors.

Table  10 shows that the overall top-ranked approaches on real-world data streams 
are OOB,  OOBd and SMOTE-OB whereas SMOClust usually achieved low rankings. 

Table 10  Statistical (Friedman) Ranking of prequential G-Mean on Real-World Streams Grouped by Fac-
tors

The p values of Friedman tests are all ≤2.2E-16
Highlighted ranks denote significant superior performance
Underlined ranks denote the corresponding approach’s performance have no statistical significance with 
SMOClust

Fig. 16  Difference in Average G-Mean Against SMOClust on Real-World Data Streams Based on 30 Runs 
(Green cells indicate SMOClust performed better; Red cells indicate SMOClust performed worse) (Color 
figure online)
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SMOClust only achieved a relatively better ranking in Covtype streams than in other 
streams. Considering all real-world data streams, SMOClust performed similarly to 
 OnlineOversamplingd and SMOGauNoise. Following the analysis method in Sect. 4.3, 
we also compared the thirty runs average prequential G-Mean of the approaches on 
each real-world data stream in Fig. 16 to further evaluate the predictive performance of 
SMOClust in real-world data streams.

Figure  16 shows that SMOClust usually performed similar or better than other 
approaches in NOAA and Covtype streams while it performed worse than other 
approaches in Ozone, PAKDD2009 , INSECTS, Amazon, and Twitter streams. Recall-
ing the discussion in Sect. 4.1 on estimated characteristics of real-world streams, NOAA 
and Covtype streams mainly consist of safe and borderline minority class examples with 
different movements of minority class clusters and the minority class ratios through-
out Covtype streams are usually very low (except Covtype(c

1
={1−6}) and Covtype(c

1
=1)) . 

As discussed in Sect. 4.3, these are the characteristics of a data stream that SMOClust 
is likely to perform similar or better than other approaches, especially when the class 
imbalance ratio is severe, such as Covtype(c

1
=3) stream. Thus, we can see from Fig. 16 

that the rows of NOAA and Covtype streams mainly consist of saturated green cells and 
pale red cells.

On the other hand, Table  5 shows that Ozone, PAKDD2009 , INSECTS, Amazon, 
and Twitter streams consist of large proportions of rare and outlier minority class exam-
ples. Based on the discussion in Sect. 4.3.2, SMOClust could not handle rare and outlier 
minority class examples very well, except when the dimensionality of the data stream 
was low or compact. Thus, it is not surprising to see a lot of red cells on these data 
streams.

To summarise the result of experiments with real-world data streams, the advan-
tage of the proposed synthetic minority class oversampling strategy in SMOClust 
is manifested in severely class imbalanced data streams with high proportions of 
safe and borderline minority class examples with concept drifts of different move-
ments of minority class sub-clusters. On the downside, SMOClust could not han-
dle rare and outlier minority class examples very well. These findings are consist-
ent with the result of experiments with artificial data streams.

5  Conclusion

The main contribution of this work is the proposed stream clustering based synthetic 
minority oversampling approach, called SMOClust (RQ1). This method helps the learn-
ing system to strategically explore different decision areas of the minority class and to be 
robust to false-positive drift detections (RQ1). To evaluate the predictive performance and 
the characteristics of SMOClust, experiments with artificial data streams concerning differ-
ent types of concept drift difficulties were performed. The results show that SMOClust per-
formed particularly well in severely class imbalanced data streams with high proportions 
of safe and borderline minority class examples (RQ2). It also handles concept drifts of 
different movements of minority class clusters better than other existing approaches (RQ2). 
However, when the data stream presents high proportions of rare and outlier minority class 
examples, SMOClust becomes disadvantageous (RQ3).
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To further understand the reason behind the experiment results on artificial data 
streams, additional experiments with representative two-dimensional artificial data streams 
were performed. However, it shows that SMOClust managed to handle rare minority class 
examples better than other approaches in these two-dimensional cases. This indicates that 
the reason why SMOClust could not handle rare cases very well on the corresponding five-
dimensional stream was likely because of the stream clustering methods did not perform 
well in higher-dimensional space. In other words, SMOClust may be more advantageous 
when the dimensionality of the data stream is not high.

Lastly, we validated the performance of SMOClust on different real-world data streams. 
To facilitate the analysis of the experiment results of this part of the study, we estimated 
the characteristics of the real-world data streams, following the procedure adopted by 
Brzezinski et al. (2021). Based on the estimated characteristics and the experiment results, 
we concluded that the SMOClust behaved similarly to the experiments with artificial data 
streams (RQ3).

As for future work, an investigation of new strategies to better handle large proportions 
of rare and outlier minority class examples is one potential direction. For example, strategies 
to generate synthetic minority examples for oversampling in a more diverse manner without 
introducing a significant amount of noise or creating artificial concept drifts could be pro-
posed. Additionally, extending the idea of SMOClust to deal with multi-class classification 
tasks could also be an area to investigate in the future. Furthermore, the proposed synthetic 
minority oversampling strategy in this work could be adapted for use with other complex data 
stream learning systems easily as it is a drift adaptable data-level method to address class 
imbalance in data stream learning. For example, it could be incorporated into an explicit drift 
handling approach which exploits relevant past knowledge to handle concept drifts (Chiu & 
Minku, 2018, 2022) or an ensemble approach which evolves themselves to adapt to concept 
drifts (Kolter & Maloof, 2003; Brzezinski & Stefanowski, 2014). Apart from these, a com-
prehensive study to compare SMOClust against more approaches for learning drifting class 
imbalanced data streams (e.g., CSARF (Loezer et  al., 2020), ROSE (Cano & Krawczyk, 
2022) etc.) and with more data sets could also be a potential future work.
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