Machine Learning (2024) 113:4671-4721
https://doi.org/10.1007/510994-023-06420-y

®

Check for
updates

Smoclust: synthetic minority oversampling based on stream
clustering for evolving data streams

Chun Wai Chiu'® . Leandro L. Minku?

Received: 7 June 2022 / Revised: 15 June 2023 / Accepted: 3 October 2023 /
Published online: 18 December 2023
© The Author(s) 2023

Abstract

Many real-world data stream applications not only suffer from concept drift but also class
imbalance. Yet, very few existing studies investigated this joint challenge. Data difficulty
factors, which have been shown to be key challenges in class imbalanced data streams,
are not taken into account by existing approaches when learning class imbalanced data
streams. In this work, we propose a drift adaptable oversampling strategy to synthesise
minority class examples based on stream clustering. The motivation is that stream clus-
tering methods continuously update themselves to reflect the characteristics of the cur-
rent underlying concept, including data difficulty factors. This nature can potentially be
used to compress past information without caching data in the memory explicitly. Based
on the compressed information, synthetic examples can be created within the region that
recently generated new minority class examples. Experiments with artificial and real-world
data streams show that the proposed approach can handle concept drift involving differ-
ent minority class decomposition better than existing approaches, especially when the data
stream is severely class imbalanced and presenting high proportions of safe and borderline
minority class examples.
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1 Introduction

In the past years, the volume and incoming speed of data have increased tremendously.
Data frequently arrive continuously in the form of data stream rather than forming a single
static data set. Therefore, data stream learning, which is able to learn incoming data upon
arrival, becomes an increasingly important approach to extract knowledge from data. It has
been widely used in real-world applications, such as credit card fraud detection (Dal Poz-
zolo et al., 2017), software defect prediction (Tabassum et al., 2020) and spam filtering
(Delany et al., 2005). There are many types of problems/tasks in data stream learning, for
examples, classification, regression, clustering, anomaly detection etc. This work focuses
on binary classification.

Concept drift is a common challenge in data streams. It is a change in the underlying
distribution of the problem. Such a change can deteriorate the predictive performance
of the data stream learning algorithm because the predictive model built previously may
not be valid anymore. To deal with concept drift, data stream learning algorithms can be
categorised to as explicit and implicit approaches (Ditzler et al., 2015; Zliobaite, 2010).
Explicit approaches employ a concept drift detection method to detect if there is a concept
drift, and then adopt strategies to update predictive model to cope with such drift (Ditzler
et al., 2015; Zliobaite, 2010). Implicit approaches do not employ any concept drift detec-
tion method but continuously evolve themselves to reflect the current underlying concept,
thus adapting to concept drifts (Ditzler et al., 2015; Zliobaite, 2010).

Data stream learning algorithms can also be categorised by their mode of operation:
batch-based (chunk-based) learning and online learning (Gama et al., 2014; Ditzler et al.,
2015). Batch-based learning refers to as learning the data stream by batches of new training
data. It has the advantage of having more data to learn at a given time step, thus the learn-
ing approach can better capture the current underlying concept (Gama et al., 2014; Ditzler
et al., 2015). In contrast, online learning has a stricter requirement which only allows the
data stream learning approach to process each training example separately and then dis-
card it (Gama et al., 2014; Ditzler et al., 2015),rendering it applicable to problems with
stricter time and memory requirements. To deal with concept drifts in a timely fashion,
online learning usually is more preferable than batch-based learning which needs to wait
for whole batches of training examples to arrive. Moreover, batch-based learning assumes
that all training data within the same batch are drawn from the same underlying concept,
which may not always be the case in most real-world applications. Thus, this work focuses
on online learning.

Another challenge frequently present in real world data stream applications is that their
class distribution is often skewed, an issue that is commonly referred to as class imbalance
(Wang et al., 2018). For example, in credit card fraud detection, there are always more gen-
uine transactions than fraudulent transactions. In software defect prediction, there are typi-
cally more clean than defective components. When class imbalance exists, the data stream
learning algorithms are likely to get biased towards the majority class, being likely to mis-
classify minority class examples. Yet, the minority class is usually the class of interest in
the classification task, meaning that misclassifying minority class examples could lead to
a high cost. This work focuses on binary classification, thus, there is a majority class and a
minority class when the data stream is class imbalanced.

To deal with class imbalance, a category of oversampling strategies has shown to be suc-
cessful in data set learning (offline learning). They create synthetic examples to enrich the
minority class, which causes less overfitting than reusing existing minority class examples
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(Chawla et al., 2002; Han et al., 2005; Lee et al., 2017). Some recent work attempted to
bring such a successful idea into the field of data stream learning (Wang & Pineau, 2016;
Bernardo et al., 2020). However, they usually cache all the minority class examples seen
so far into the memory which is impractical for data stream learning. Moreover, reusing
all past minority class examples may prevent these approaches from dealing with concept
drifts (changes in the underlying probability distribution, a.k.a., concept (Krawczyk et al.,
2017)) affecting the minority class.

Dealing with the joint issue of concept drift and class imbalance is a challenging task.
In particular, the relatively small number of minority class examples mean that it may be
more difficult to detect or adapt to concept drifts affecting the minority class. Many studies
have been proposed to deal with either class imbalance or concept drift. However, exist-
ing work to deal with their joint challenge remains little. Although a recent survey work
(Wang et al., 2018) showed that class imbalance is a more dominant factor than concept
drift in affecting the predictive performance, the effectiveness of the existing class imbal-
ance techniques for data stream learning could potentially be compromised by concept
drift as most of them are not prepared to deal with drifts. Recent work addresses this chal-
lenge by finding relevant past minority class examples for oversampling (Hoens & Chawla,
2012) or performing synthetic minority class oversampling based on the statistics of the
minority class after drift detection (Bernardo et al., 2021). These methods are not always
ideal because relevant past minority class examples might not exist while relying on drift
detection to reset minority class statistics could be detrimental, especially when the drift is
gradual.

In addition, the method of storing past examples as proposed in Hoens & Chawla (2012)
may be impractical for data stream learning when there are strict space constraints. Simi-
larly, synthesising new examples based on simple statistics of past examples as proposed
in Bernardo et al. (2021) overlooks important data difficulty factors within the class. Spe-
cifically, this method does not consider the location of past examples in the feature space.
These data difficulty factors include concept drifts involving different movements of the
minority class sub-clusters, changing class imbalance ratio, and changing the ratios of dif-
ferent types of minority class examples. Existing work has shown that these factors are
critical in learning from drifting class imbalanced data streams (Brzezinski et al., 2021).

Therefore, new approaches are needed to better address concept drifts with multiple
data difficulty factors in class imbalanced data streams. To fill this research gap, this paper
aims to answer the following research questions:

e RQI) How to produce minority class synthetic examples for oversampling so that we
could explore the decision areas of the minority class to better consider data difficulty
factors while adapting to concept drift?

e RQ2) How does the proposed approach perform compared to existing approaches in
different types of concept drift affecting the minority class? For which types does it
perform the best and worst? Why?

e RQ3)How does the proposed approach perform compared to existing approaches when
applied to real-world data streams?

To answer RQ1, we propose a novel method to create synthetic minority class examples for
oversampling based on stream clustering. The motivation is that stream clustering methods
use a set of micro-clusters as the abstraction/compression of the examples they have seen so
far. They usually retain micro-clusters by temporal order, which means old micro-clusters
are forgotten. Therefore, the information they hold reflects the characteristics of the current
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underlying concept. Our novel method exploits this nature of stream clustering methods to
track the current decision areas of the minority class. It then generates synthetic minority
class samples for oversampling within the region where real minority class examples have
been recently observed. With this strategy, the proposed method is less likely to produce
noisy synthetic examples while being able to explore the decision areas of the minority
class, better considering data difficulty factors when adapting to concept drift (RQ1).

The proposed approach is compared against five existing approaches through experi-
ments on artificial data streams considering different data difficulty factors and class imbal-
ance ratios, and real-world data streams (RQ2, RQ3). The results show that SMOClust han-
dled concept drifts of different minority class sub-clusters movements better than existing
approaches (RQ2, RQ3). It also performed better than existing approaches when the data
stream is severely class imbalanced and presents high proportions of safe and borderline
(Napierala & Stefanowski, 2015) minority class examples (RQ2, RQ3). Its major weakness
is to handle data streams presenting large proportions of rare and outlier (Napierala & Ste-
fanowski, 2015) minority class examples (RQ2, RQ3).

The rest of this paper is organised as follows. Section 2 discusses related work on syn-
thetic minority class oversampling techniques and state-of-the-art approaches in dealing
with class imbalance and concept drift in data stream learning. Section 3 presents the pro-
posed approach. Section 4 presents the experimental study and discusses the results. Sec-
tion 5 concludes this study and discusses the future work.

2 Related work

This section first introduces class imbalance and existing resampling methods for class
imbalanced learning in Sect. 2.1. Section 2.2 then discusses the state-of-the-art approaches
to deal with class imbalance and concept drift in data stream learning. Table 1 summarises
the main characteristics of the approaches discussed in this section. At the end of this table,
we contrast these with SMOClust, the approach that we propose in Sect. 3 of this paper.

2.1 Resampling methods for class imbalance

Class imbalance refers to the data set or data stream having at least one under-represented
class (minority class). In this situation, the machine learning model tends to misclassify
minority class examples more frequently than the majority class because there exists very
little information about the minority class.

Approaches to address class imbalance are mainly divided into three categories: algo-
rithm-level approach, ensemble approach, and data-level approach (Wang et al., 2018).
Algorithm-level approaches are often called cost-sensitive approaches, as they place a
higher cost when misclassifying minority class examples than majority class examples.
Ensemble approaches create different class balanced training subsets to train each ensem-
ble member. Data-level approaches modify the class distribution using a resampling
method, such that standard machine learning models can learn from both classes with the
same amount of information. They can be applied during the data pre-processing phase.
Due to this generic nature, this work focuses on data-level approaches.

Undersampling and Oversampling are two main types of data-level approaches
(Wang et al., 2018). Undersampling methods reduce the number of majority class exam-
ples for training, usually removing noisy examples or examples that are deemed to have
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a low impact on the decision boundary. Yet, it has the chance to cause important infor-
mation loss. On the other hand, oversampling methods increase the number of minority
class examples, by replication or synthesis. They will not cause any information loss but
they cause longer training time and are likely to cause overfitting when training on the
same examples multiple times.

Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002) is a
very renowned oversampling technique in offline learning, which synthesises minority
class examples for oversampling, thus balancing the data set. In practice, SMOTE first
randomly chooses an existing minority class example from the data set, denoted as x;.
It then randomly chooses one of the k-nearest neighbours of x; in the minority class,
denoted as xl’.. After that, a difference vector between x; and x; is calculated. To create a
point along the line between x; and x/, each dimension of the difference vector is mul-
tiplied by a random number 6 (0 < 6 < 1), then the resulting difference vector is added
to x; dimensionwisely. SMOTE performs this procedure until the target oversampling
rate M is reached. This oversampling rate M and the k for k-nearest neighbours are the
hyper-parameters of the algorithm.

Many variants of SMOTE have been proposed in the last two decades. For exam-
ple, Borderline-SMOTE (Han et al., 2005) considers that examples close to the deci-
sion boundary are more difficult to learn, thus it synthesises minority class examples
around this area. Gaussian-based SMOTE (G-SMOTE) (Lee et al., 2017) is a more
recent approach which tend to synthesise examples very close to the existing minority
class examples. Other well-known methods of synthetic minority oversampling include
ADASYN (He et al., 2008), DBSMOTE (Bunkhumpornpat et al., 2011), SWIM (Bell-
inger et al., 2020) etc.

On top of the class imbalance ratio, it has been pointed out that data difficultly factors
also greatly impact the classification performance (Napierala & Stefanowski, 2015). These
factors describe the characteristic of a given example (usually the minority class example)
in the feature space:

Safe: Surrounded by examples from the same class.
Borderline: Located near the decision boundary.
Rare: Located deep inside the decision region of the opposite class, together with hand-
ful examples from the same class.
e Qutlier: Isolated and located deep inside the decision region of the opposite class.

The aforementioned methods can also be considered as taking the data difficulty factors
into the account. For example, Borderline-SMOTE synthesises minority class examples
around the borderline region, while G-SMOTE can be considered as synthesising minority
class examples in the safe region.

However, these synthetic minority oversampling methods could not be applied to class
imbalanced data stream learning directly as they cache the entire data set into memory,
which is impractical in data stream learning. For example, OnlineSMOTEBagging (Wang
& Pineau, 2016) is one of this kind. It replaces simple oversampling with SMOTE in
OnlineUnderOverbagging. In our preliminary experiments with the data streams used in
this work, we attempted to run OnlineSMOTEBagging. However, OnlineSMOTEBagging
consumed all the memory we had access to (§GB), resulting in failure to complete the run.
Furthermore, the underlying concept of the data stream may change over time (concept
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drift). The cached examples may be from different concepts. Thus, synthesising minority
class examples based on them may not always follow the current underlying concept.

Additionally, one recent work in the field of software effort estimation is also quite
inspiring (Song et al., 2018). They enlarge the software project data set by adding Gauss-
ian noise to the existing examples. This method could be particularly related to synthetic
minority oversampling for class imbalanced data stream learning as it is memory efficient
and fast to perform. The potential risk is that, if we apply it to the most recent minority
class examples, it might cause overfitting to such a recent area.

2.2 Approaches for class imbalanced data stream learning in the presence
of concept drift

This section discusses approaches that are closely related to the proposed approach. For
a comprehensive survey on class imbalanced data stream learning, please refer to Aguiar
et al. (2022).

Broadly speaking, existing approaches to deal with class imbalance and concept drift
have two main categories: explicit approach and implicit approach.

2.2.1 Explicit approaches

Explicit approaches estimate whether a concept drift has happened, usually by employing
a drift detector to monitor the predictive performance of the base learner/main ensemble.
This drift detector can be any from the literature, ideally using a class imbalance insensitive
metric, such as DDM-OCI (Wang et al., 2013), LFR (Wang & Abraham, 2015), PAUC-PH
(Brzezinski & Stefanowski, 2014) etc.

Continuous-SMOTE (C-SMOTE) (Bernardo et al., 2020) is one of the pioneers who
bring SMOTE to drifting class imbalanced data stream learning. It uses an Adaptive Win-
dow (ADWIN) (Bifet & Gavalda, 2007) to store the most recent examples and applies
SMOTE to the minority class examples inside the ADWIN for oversampling. Upon drift
detection, the old window of ADWIN is dropped as it is deemed to belong to the old con-
cept. However, when there is no concept drift detection, C-SMOTE keeps storing minor-
ity class examples which can cause memory issues. Besides, SMOTE does not take deci-
sion boundaries and data difficulty factors into consideration, thus noisy examples may be
generated.

Very Fast Continuous-SMOTE (VFC-SMOTE) (Bernardo et al., 2021) was proposed
to solve the issues faced by C-SMOTE. It uses a dynamic summary data structure, called
“sketch”, to summarise the statistics of past examples. It generates synthetic examples by
Beta distribution sampling from a set of summaries in the sketch, where each summary has
the information of one input feature of past examples. When generating synthetic minority
class examples, VFC-SMOTE tends to choose summaries that represent more past exam-
ples, which means it tends to generate synthetic minority class examples in the dense area
of minority class. Nevertheless, this method may generate considerably noisy synthetic
examples because it samples each input feature individually and does not adopt mecha-
nisms to try to respect decision boundaries.

SMOTE with Online Bagging (SMOTE-OB) (Bernardo & Valle, 2021) is another
approach that is similar to VFC-SMOTE. It incorporates the strategy of generating syn-
thetic minority class examples from VFC-SMOTE into OnlineUnderOverBagging (Wang
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& Pineau, 2016). With this design, SMOTE-OB combines three data-level re-balancing
methods to combat class imbalance while training the base learners diversely (Bernardo
& Valle, 2021). However, as SMOTE-OB uses the same synthetic minority class examples
generating strategy as VFC-SMOTE, it faces the same disadvantages in terms of poten-
tially generating considerably noisy synthetic examples.

Ensemble of Subset Online Sequential Extreme Learning Machine (ESOS-ELM)
(Mirza et al., 2015) is another notable explicit approach for drifting class imbalanced data
stream learning. It uses a sub-ensemble method to train each base learner with an approx-
imately equal number of majority and minority class examples, thus dealing with class
imbalance. To deal with concept drift, it uses a threshold-based strategy with hypothesis
testing to detect any significant change in the predictive performance of the main ensem-
ble, thus reporting concept drift. Meanwhile, it also uses a weighted majority vote system,
based on G-Mean, to adapt to any potential concept drift that could not be detected by the
aforementioned method. ESOS-ELM’s sub-ensemble method is time efficient in dealing
with class imbalance as it does not replicate or synthesise any examples. However, it does
not provide additional information to explore the decision areas of minority class. Besides,
ESOS-ELM is restrictive in terms of base learner type. It only allows to use ELMs.

Cost-sensitive Adaptive Random Forest (CSARF) (Loezer et al., 2020) is an online,
cost-sensitive sub-ensemble method designed to address the challenges of drifting class
imbalanced data streams. It is a variant of the Adaptive Random Forest (ARF) (Gomes
et al., 2017) algorithm. It incorporates a drift detector and a weighted majority ensem-
ble to handle concept drift. To deal with class imbalance, CSARF utilises the Matthews
Correlation Coefficient (MCC), a class imbalance insensitive metric, to assign weights to
internal decision trees and ensure that all trees are trained with examples from the minority
class (Loezer et al., 2020). While CSARF offers speed and memory efficiency due to its
cost-sensitive approach, it fails to consider factors related to data difficulty. Additionally,
CSAREF is limited to using only the Hoeffding Tree (Domingos & Hulten, 2000) as base
learners.

Robust Online Self-Adjusting Ensemble (ROSE) (Cano & Krawczyk, 2022) is a cost-
sensitive ensemble method designed specifically for learning from drifting class imbal-
anced data streams. It employs ADWIN as a drift detector and uses a weighted majority
ensemble to handle concept drift. To address class imbalance, ROSE employs self-adjust-
ing A bagging (where A is determined based on estimated class sizes), and enforces the
Hoeffding bound to improve predictive performance in the minority class. Furthermore,
ROSE maintains sliding windows per class to store the most recent examples and to create
a class balanced data set through undersampling. This class balanced data set is used to
build new background base learners. However, similar to CSARF, ROSE does not con-
sider data difficulty factors in its class imbalance adaptation strategy. Additionally, ROSE’s
strategy for building new background base learners may be prone to more extreme levels
of class imbalance in non-stationary data streams because such a scenario would require
using very old minority class examples to build new base learners, besides the sliding win-
dow initially taking time to get filled with minority class examples.

In short summary, most existing explicit approaches to deal with class imbalance and
concept drift do not explore the decision areas of the minority class. Whilst a few recent
work (Bernardo et al., 2020, 2021; Bernardo & Valle, 2021) attempted to fill this research
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gap, they did not strictly take decision boundaries and data difficulty factors, which are cru-
cial in data stream learning, into consideration.

2.2.2 Implicit approaches

Implicit approaches are usually ensemble learners. They do not actively detect concept drift
but continuously update the voting weights of the base learners, thus adapting to any poten-
tial changes in the underlying concept. However, in class imbalanced data stream learning,
the weighting strategy also needs to consider that the base learner may bias toward the
majority class. To address this issue, one can place a higher penalty on the weight of the
base learners performing poorly in the minority class (cost-sensitive approach). Another
method is to employ a resampling method to reduce the learning bias (data-level approach).

Oversampling-based and Undersampling-based Online Bagging (OOB and UOB)
(Wang et al., 2015) are two pioneers of data-level approach for class imbalanced data
streams. Their idea is to incorporate random oversampling or random undersampling with
Online Bagging (OB) (Oza, 2005). They estimate the current class size based on an expo-
nential smoothing function with a fading factor . Whenever a new example s, with a class
label y, arrives, it is first used to calculate the class imbalance ratio of class y, to the major-
ity class (OOB) or the minority class (UOB). This ratio is used as the parameter A of Pois-
son distribution in OB, thus deciding the number of times to train each ensemble member
on s,. While OOB and UOB are effective in addressing class imbalance with simple resam-
pling methods, they can only deal with concept drifts that affect the posterior probability of
the classes (P(Y)).

Learn++ for Concept Drift with SMOTE (Learn++.CDS) and Learn++ for Non-sta-
tionary and Imbalanced Environments (Learn++.NIE) (Ditzler & Polikar, 2013) are two
pioneer batch-based approaches in this category. They were both based on the well-known
approach, Learn++ for Non-Stationary Environment (Lean++.NSE) (Elwell & Polikar,
2011). Learn++.CDS uses SMOTE to balance the most recent batch of training data, while
Learn++.NIE is a sub-ensemble method which bootstraps the majority class in the most
recent batch of training examples to create different class balanced training sets. They both
use weighted majority vote as a strategy to deal with concept drift where ensemble mem-
bers performing well in the minority class have a higher weight. While they are both great
methods to deal with class imbalance, they could struggle when the data stream is severely
class imbalanced because there could exist some training batches which has no minority
class examples.

Dynamic Weighted Majority for Imbalance Learning (DWMIL) (Lu et al., 2017)
brought the renowned Dynamic Weighted Majority (DWM) into class imbalanced data
stream learning. In general, it changes the weighting metric from accuracy to a class
imbalance insensitive metric, such as G-Mean, while adopting UnderBagging (Wang &
Yao, 2009), which is an offline learning approach, as the base learner to deal with class
imbalance.

Heuristic Updatable Weighted Random Subspaces with Instance Propagation (HUWRS.
IP) (Hoens & Chawla, 2012) is a batch-based learning approach to deal with drifting class
imbalanced data streams. It is based on the approach of HUWRS (Hoens et al., 2011)
which was proposed to learn class balanced data streams. The main novelty of HUWRS.
IP is the example selection mechanism, called Instance Propagation (IP), which selects rel-
evant past minority class examples for oversampling the most recent train batch. However,
these examples may not exist in the memory.
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Shortly summarising, existing implicit approaches to deal with class imbalance and
data stream learning either rely on sub-ensemble methods or reusing relevant past exam-
ples. These methods do not explore the decision areas of the minority class. They do not
take data difficulty factors into account either. Besides, these approaches are batch-based
approaches, thus they are unlikely to react to concept drift swiftly due to the need to wait
for whole batches to arrive.

3 Proposed approach

To answer the RQ1 posed in Sect. 1, we proposed a novel approach called Synthetic
Minority Oversampling based on stream Clustering (SMOClust). The main novelty of
this approach is to produce synthetic minority class examples for oversampling based
on the information compressed by the stream clustering method. Most stream clustering
methods represent this information in the form of micro-clusters, which summarise the
statistics of past examples that are close together in the feature space. These statistics
usually include the vectors of the dimensional-wise cumulative sum and squared sum.
Thus, they do not need to cache all the past examples in the memory. Most importantly,
this strategy could potentially deal with gradual drift involving different data difficulty
factors because stream clustering methods continuously update themselves to reflect the
characteristics of the current underlying concept.

SMOClust also employs a concept drift detector to monitor the predictive perfor-
mance of the base learner, as a strategy to deal with abrupt drift. Thus, it is an explicit
concept drift adaptation approach. Upon drift detection, the base learner will be reset.
Although this strategy may not always be ideal (Chiu & Minku, 2018, 2022), this work
focuses on investigating the effectiveness of the novel stream clustering based synthetic
minority oversampling strategy in learning class imbalanced data streams with concept
drift. So, it is intended to keep other components of SMOClust simple to analyse the
characteristics of the proposed strategy.

Algorithm 1 presents the pseudo-code over-viewing SMOClust. The details of its
working mechanism are described and explained as follows.

Algorithm 1 Synthetic minority oversampling based on stream clustering- SMOClust

@ Springer



Machine Learning (2024) 113:4671-4721 4681

Hyper-parameters: Base Learner(b), Stream Clustering Method(sc), Class Size Fad-
ing Factor(f), Gaussian Noise Variance(v), Categorical Change Probability(P.), k-Nearest
neighbour(k), Drift Detector(d), Data Stream(S)
Variables: Base Learner(B), Stream Clustering Methods array(SC[])
1: Create a array of stream clustering methods (SCJ]). Each of them corresponds to a class of
the classification task.
2: for each new example s; from the data stream S do
3 Update the drift detector by the prediction made by base learner B to s
4 if drift detection alarm is issued then
5: Reinitialise the base learner B
6: end if
7 Train the base learner B and update its estimated class size using s
8 Store the latest example of each class
9 classmaj, classmin < Determine the current majority and minority class based on the
estimated class size by B
10: while (the minority class estimated by B is smaller than that of majority class AND
all stream clustering methods can provide micro-clustering results) OR
SMOCIlust has observed any minority class example do

11: if all stream clustering methods are ready to provide micro-clustering results then

12: mClusteranchor < Randomly pick a frequently updated micro-cluster of classmin

13: if mClusterqpchor is surrounded by micro-clusters of class,,in then

14: synthInst®'™ « create a synthetic example using Alg. 2

15: else )

16: synthInsth < create a synthetic example by Gaussian
sampling mClusteranchor

17: end if )

18: Train SC[classmin] using synthInsth (without class attribute)

19: Train the base learner B and update its estimated class size using synthInsth

20: else

21: synthInst < create a synthetic example by adding Gaussian noise to latest
minority class example (Song et al., 2018)

22: Train SC[classmin]| using synthInst (without class attribute)

23: Train the base learner B and update its estimated class size using synthInst

24: end if

25: end while

26: Use s; (without class attribute) to train the stream clustering method that corresponds
to the class value of s;

27: end for

SMOClust is a data stream learning algorithm that uses a base learner B to learn
from and make predictions to new examples. This base learner B could be any single
learner, such as Hoeffding Tree (Domingos & Hulten, 2000), or an ensemble learner,
such as Online Bagging (Oza, 2005). SMOClust does not store past models. It uses
stream clustering methods SC[] to manage sets of micro-clusters that compress the
information of past examples. There is one stream clustering method for each class of
the problem (line 1, Algorithm 1). The stream clustering method can be arbitrary from
the literature, such as Clustream (Aggarwal et al., 2003), StreamKM++ (Ackermann
et al., 2012), DenStream (Cao et al., 2006), Clustree (Kranen et al., 2011) etc. In this
work, Clustream was chosen because it is largely invariant for different types of concept
drifts, meaning that it can effectively adapt to concept drift without compromising the
quality of its clustering results (Moulton et al., 2018). The strategy of synthesising
minority class examples for oversampling based on micro-clusters is explained in
Sect. 3.1.

The most recent example s, will be first used for concept drift detection (line 4, Algo-
rithm 1). This concept drift detection method can be arbitrary from the literature, such
as DDM (Gama et al., 2004), DDM-OCI (Wang et al., 2013), PAUC-PH (Brzezinski &
Stefanowski, 2014), ADWIN (Bifet & Gavalda, 2007) etc. Upon drift detection, the base
learner B and time decay class sizes are reset but not the stream clustering methods SC[]
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because they are prepared to adapt to concept drifts (line 5, Algorithm 1). That said,
after concept drift detection, the stream clustering methods will still retain some knowl-
edge belonging to the previous concept. This has two advantages: (1) In the case of false
positive drift detection, SMOClust can exploit the knowledge stored in the micro-clus-
ters to train the base learner. (2) Knowledge of the pre-drift concept could help to learn
the post-drift concept, especially when the drift has low severity (Minku & Yao, 2012).

After that, SMOClust uses s, to train B and to update the time decay class sizes (line
7, Algorithm 1). The time decay class sizes estimate the current minority class and thus
determine the oversampling rate. Equation 1 presents the calculation of the normalised
class size of class c,, at time step  (Wang et al., 2015):

ﬁ, ifr=f
ClaSSSiZe(Cm)(t) =1 e, =c, +0xclassSize(c,,) "V x(t—f) . (1)
. parm) , otherwise

where m € M and M = {0, 1}, considering binary classification tasks and 8 (0 < 6 < 1)is a
predefined time decay factor. ¢, is the true class of s,. Thus, [c = c,,] = 1if the true class
of s, is c,,, otherwise 0. fis the ﬁrst time step used in the calculation. Note that, unlike OOB
and UOB (Wang et al., 2015) which estimate the current class sizes of the data stream,
SMOClust estimates the class imbalance degree of the information seen by the base learner
rather than the class imbalance degree of the data stream. Thus, synthetic examples are
also used to update the class sizes. The reason behind this design is discussed together with
the strategy of training the base learner with synthetic examples.

SMOClust first records the most recent examples from each class (line 8, Algorithm 1),
then checks if the base learner has learnt from both classes equally (line 10, Algorithm 1).
If not, SMOClust will generate synthetic minority class examples for oversampling based
on the micro-clusters of the minority class (line 13-17, Algorithm 1), which is detailed in
Sect. 3.1.

In the case that not all stream clustering methods can provide micro-clustering results
and SMOClust has observed and recorded the most recent “real” example of the minority
class (denoted as Sy, inoriry)» SMOClust will generate a synthetic minority class by adding
Gaussian noise to Sy, inorisy f0r oversampling (line 21, Algorithm 1). This strategy follows
the strategy proposed by Song et al. (2018), except SMOClust treats ordinal attributes as
categorical attributes due to the limitation in MOA (Bifet et al., 2010).

No matter the synthetic minority class example is generated based on micro-clusters
or Gaussian noise, SMOClust will use it to train the base learner and the corresponding
stream clustering method, and to update the class size immediately (line 18-19, 22-23,
Algorithm 1). This strategy can prevent the base learner from biasing towards the majority
class when there are no “real” minority class examples arrive for a long period, which is
likely to happen when the data stream is extremely class imbalanced. Also, updating the
class sizes with both “real” and synthetic examples allows us to estimate if the base learner
has learnt from both classes equally. If not, SMOClust will then create synthetic minority
class examples to train the base learner immediately.

In the case of none of the above conditions being satisfied , i.e., none of the conditions
of the while-loop are satisfied (line 10, Algorithm 1), SMOClust will not perform any over-
sampling because this means either oversampling is not needed or there is no information
about the minority class for SMOClust to generate synthetic examples. Lastly, a copy of
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the most recent example s, is converted to a suitable format to train the stream clustering
method, corresponding to the class value of s, (line 26, Algorithm 1).

3.1 Generating a synthetic minority class example for oversampling using
micro-clusters

This section presents the overview of generating a synthetic minority class example for
oversampling based on micro-clusters. The general idea is to create synthetic minority
class examples in one of the dense areas of the minority class. In this way, we can con-
solidate the knowledge learnt in the existing minority class areas without being greatly
affected by noise. In the case where a dense area does not exist, SMOClust will pick one of
the past minority class areas to explore the decision boundary around it.

Algorithm 2 presents the pseudo-code of this method. The details of generating a syn-
thetic minority class example using micro-clusters can be described as follows.

Algorithm 2 Generate synthetic instance with k-NN micro-clusters

function GENSYNTHINSTBYKNN(SC[classmin], mClusteranchor, classmin, k)
sphere_cluster <— combine mClusterypchor With its k nearest micro-clusters, using Alg. 3
synthInst < create a synthetic example by sampling sphere_cluster, using Alg. 4
return synthlInst

end function

A

First of all, SMOClust randomly takes one of the micro-clusters from the minor-
ity class as an anchor (denoted as chZZZ{:’;’) (line 12, Algorithm 1). Micro-clusters that
are created recently or are updated frequently and recently have higher chance to be cho-
sen as this anchor. After that, SMOClust checks if mcxzzzlr’y is surrounded by the micro-
clusters from the same class (line 13, Algorithm 1). If this condition is satisfied, SMO-
Clust can consider such area is dense enough to create synthetic minority examples for
oversampling. It will then make a copy of mc;",:Z(:’r’V and then combine it with its k-Near-
est micro-clusters (based on hull distance) in class class,,;, to form a temporary micro-
cluster mc,,,, (line 2, Algorithm 2). We denote such set of k-Nearest micro-clusters as

MCKNNminority - thyg, | M CKNN-minority| = k and each k-Nearest micro-clusters is denoted as

mchN’mi""my € MCN-minority The details of how to combine a set of micro-clusters into
one are presented in Algorithm 3.
Algorithm 3 Combining a set of micro-clusters into one

1: function COMBINE(mClusters][])

2 Cnew < compute the weighted average of the centres of micro-clusters in mClusters|]
3 for each micro-cluster mClust € mClusters[] do

4: d < compute the distance between cneqw and the centre of mClust

5: Ty < TpU (the radius of mClust + d)

6 end for

7 Tnew < find the largest value in r,,

8 return a new micro-cluster with centre cpne. and radius rpew

9: end function

To combine a set of micro-clusters into one, we first need to calculate the new centre
Chey Of the resulting micro-cluster mc,,,,,,. This can be achieved by getting the weighted
average of the centres of the original set of micro-clusters, dimensionwisely (line 2,
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Algorithm 3). After that, we set the radius r,,,, of the resulting micro-cluster mc,,,,, to as
the distance between the new centre to the farthest hull (boundary) among all the origi-
nal micro-clusters (line 3-7, Algorithm 3). Figure 1 illustrates an example of combining
chZZ'Z:rD with its 3-nearest neighbours into one micro-cluster.

A synthetic minority class example will then be generated by sampling from this result-

ing micro-cluster with the highest chance near the centre of mc;"ri;';;:’r’y (line 3, Algorithm 2).
Figure 2 illustrates an example of sampling from a synthetic minority class example from
mctemp'
In Fig. 2, the green circles are the micro-clusters belonging to the minority class while
the blue circles are the micro-clusters belonging to the majority class.! The black circle line
represents mc,,,,, and the red dashed lines are the contour of the probability density func-
tion to sampling a point. The closer to the centre of mcm'?om} the higher the probability.

The reason for sampling a new synthetic minority class example close to mc;",iZZ:r” is
that this mc,,,,, could overlap with the micro-cluster from the other class. If we just sample
from mc,,,,, randomly or by a multivariate Gaussian distribution with a mean at c,,,,, we
will have a high chance to sample a point that is close to the region or the majority class.

Therefore, sampling points as synthetic minority class examples from mc,,,, but close to

the centre of mc""ZZ:’rV can reduce the risk of generating noisy examples while maintaining

the ability to explore this dense region of the minority class.

Although Fig. 2 only illustrates an example in two-dimensional feature space, this
idea can be applied to any multi-dimensional space. This sampling strategy is further
detailed in Sect. 3.2.

In the case that chlZZ:r’) is not surrounded by the micro-clusters belonging to the
same class, SMOClust will generate a synthetic minority class example by performing
multivariate Gaussian sampling inside mc’a"rif;;’r’y (line 16, Algorithm 1). For example,
this will be the case when when mc;,,, (top right green circle in Fig. 2) is chosen to be

the mc™™" ™ The the mean of the multivariate Gaussian distribution is the centre of

anchor

;”;f;:;’r” and the standard deviation is set as a third of the radius of chZfZ::v (radius/3).

In other words, the boundary of chZi'ZZD is set at three units standard deviations (or
standard score = 3) from the centre. Therefore, we have 99.9% of chance to sample a

point within mc”"""”. Gaussian distribution was chosen rather than uniform distribu-

nchor
1 I
tion in sampling mcmm‘m ” because mcmm‘m ? could partly overlap with the majority class
nch nchor

region. Therefore, samplmg a new pomt as synthetic minority class example close to the

I
minority o o safe strategy.

centre of mc,
nchor

3.2 Sampling from a micro-cluster with the highest probability at a designated
location

This section present the strategy to sampling points from the temporary micro-cluster
MC4,,, Which is formed by combining mc""® and mckNN minoriy. @ \JCKNN-minority with the

! Note that, the size and the number of micro-clusters in Fig. 2 do not necessarily reflect the number of
examples in each class. This figure just focuses on a particular region in the feature for explanation pur-
poses.
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minority
anchor

Fig. 1 Illustration of Combining mc with 3-nearest neighbours into one micro-cluster

Fig.2 Illustration of Sampling a Synthetic Minority Class Example from mc,,,, (Color figure online)
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highest probability at the centre of mc”". The general idea is to sample random points
that are inside mc,,,, and these points are likely to be close to the centre of chZfZ;':’
The pseudocode of this sampling strategy is presented in Algorithm 4. Figure 3 illus-
trates the steps of this sampling strategy and it can be explained as follows.

Algorithm 4 Sampling from a hyper-sphere by skewed Gaussian with the maximum of the

probability density function at a designated location

1: function SAMPLE_AROUND_TARGET (o), sphere_cluster)

2: B < sphere_cluster.getCentre()

3: r < sphere_cluster.get Radius()

4: dimensions < S.numO f Dimensions()

5: & <+ createArrayWithSize(dimensions)

6: v < create ArrayWithSize(dimensions)

7: a® — sample,random,f'rom,hypersphere(a(1), 1) > By Muller’s Method (Muller, 1959)
8: A+ 0; B+ 0; C+0

9: for i € range(0..dimensions) do
10: 8[i] «— aD[i] — D[4
11: A[i] « Bli] — ™M 4]
12: A+ A+ (8[4] = 8[i]) >A=2" 67
13: B «+ B+ (8[i] = v[4]) > Z?:O 0ivi
14; C + C + (yli] * ylil) > Yo
15: end for
16: B <+ Bx—2 > B = _Q(Z?:o 8ivi)
172 C+« C— (r+7) >C= (Xt o) —r?
18: return (—B + sqrt(B+* B —4*x A% C))/(2* A) p —BEV B _4AC W

19: end function

Let us first denote the micro-cluster mc,,,,, as HS,; which is a hyper-sphere with radius r
and centred at § = (f,, f,, Bs, --- , B,,), Where n is the number of dimensions of the input space
of the problem, the equation of this hyper-sphere is:

n
2_ 2
D= py=r @)
i=0
Let us also denote the centre of mc™™™ to as a¥ = (&', &', a'", ..., aD) (the black
anchor 1 2 3 n

dot in Fig. 3a), which should always be inside HS;. First of all, we need to pick a random
direction from aV (Fig. 3a). This can be achieved by randomly and uniformly picking a
point from a unit hyper-sphere centred at a", using the Muller’s method (Muller, 1959).

We then denote this point to as a® = (aiz) a?,d?, ..., @) (the red dot in Fig. 3a) (line

0y, 057,
7, Algorithm 4). Points aV) and «® form an n-dimensional infinite long straight line (the
line d in Fig. 3b), whose parameterised equation is:

X; = afl) + t(al@ - ai(l)) 3)
where ¢ is a scalar and (al@ - ai(l)) is the direction vector. To find the intercepts of this infi-
nite long line to the hull of HS (the blue and green dots in Fig. 3b), we can substitute Eq. 3
into Eq. 2%

2 The idea is inspired by the discussion on https://math.stackexchange.com/questions/151064/calculating-
line-intersection-with-hypersphere-surface-in-mathbbrn?rq=1.
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Ao, a®: e
............ a® -

+ve intercept: o
-ve intercept:

(b) Step 2
15 x1-x2
10
5
: N 0
Half Gaussian Distribution o
p.d.f curve
-5
£=0 36 = tiercep —-10
T 0 10
x1
(c) Step 3 (d) Two-Dimensional Example of the Sam-
pling Result
Fig.3 Illustration of Sampling from mc,,,,, (Color figure online)
n
2 1 1 2 2
Q@ =+ @ - g =r @)
i=0

Let us denote §; = al@ - afl) and y;, = f§, — afl) (line 10 and 11, Algorithm 4), then Eq. 4
becomes:

n
Y@t —y)=r
i=0

<i53>t2—2(i éiyl->t+ (i yl2> -r*=0 5)
i=0 i=0 i=0

Let us denote A = Y7 57 (line 12, Algorithm 4), B = —2(}.'_ 6,7;) (line 13 and 16, Algo-
rithm 4) and C = (ZLO yl.z) — 72 (line 14 and 17, Algorithm 4) to solve Eq. 5 based on
Bhaskara’s equation:
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_ —B+ VB> —4AC

t=
2A

Here, we just take the positive root of ¢ because it “follows” the direction vector, while
the negative root “oppositely follows” the direction vector (the direction is denoted by the
arrows on line d in Fig. 3b), i.e.

_ —B+V/B>—4AC ©

tinten?ept - 24

Substituting #,.,..,r into Eq. 3 will obtain the intercept of the line and the hyper-sphere, fol-

lowing the direction vector (the blue dot in Fig. 3b). Thus, to sample points within the HS,
we can simply sample a scalar 7, between 0 and ;.. (Fig. 3¢) and substitute it into
Eq. 3 to obtain the sampled point. As we want to sample this point with the highest chance
at the target point a1, we can sample ¢ using Gaussian distribution with the mean = 0

sample
tmleruepr

,l.e.

Nl o tintercept :
oo (55%)

tsample = | 8 |

and standard deviation =

At last, we substitute £, into Eq. 3 to obtain the samp[le point.

The reason for setting the standard deviation to be % is that we want the sampled
point to be within the micro-cluster. Yet, the probability density function of the Gaussian
distribution has no bounds. Thus, we set the 7., at 3 standard score (z-score = 3), such
that 99.9% area under the probability density function curve of the Gaussian distribution is
between —7epcepr A0 Hiporcep AlsO, We want 7., to “follow” the direction vector (i.e.
we only interested in line segment between the black and the blue dots on d in Fig. 3b),
thus, we only accept the positive value of 7., ..

Figure 3d presents a two-dimensional example of using the aforementioned strategy to
sample points in a hyper-sphere centred at (0,0) with a radius of 10. The points have the

highest probability to be sampled at (— 7,0).

4 Experiments to evaluate the predictive performance of SMOClust

This section presents the design of the experiments to evaluate SMOClust. The predic-
tive performance of SMOClust was first compared against five existing approaches from
the literature on artificial data streams of different types of drifts. This is to investigate
for which types of drift SMOClust will be advantageous and disadvantageous, answer-
ing RQ2. SMOClust was then compared against the same set of existing approaches on
real-world data streams to obtain a general idea of its performance in practical situations,
answering RQ3. Massive Online Analysis (MOA) (Bifet et al., 2010) was chosen to be the
experimentation platform. Section 4.1 presents the details of artificial and real-world data
streams used in the experiments. Section 4.2 presents the detailed setup of the experiments,
including the procedure of hyper-parameter tuning and the evaluation method used in the
experiments.
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Table 2 Summary of artificial data streams

Imbalance ratio drift Single factor drift with static imbalance ratio

StaticIm10_Im1 StaticIm{30/10/1}_Split{3/7}

StaticIm1_Im10 StaticIm{30/10/1}_Move{3/7}

Iml StaticIm{30/10/1}_Merge{3/7}

StaticIm1_Im50 StaticIm{30/10/1}_Borderline{20/100}
StaticIm{30/10/1}_Rare{20/100}

Double factor drift Complex Factor Drift

Im1+Rare100 StaticIm10_Split5+Im1+Rare100

Im10+Rare60 StaticIm10_Split5+Im1+Borderline100

Split5+Im10 Split5+Im10+Borderline40+Rare40

Im1+4Borderline100 Split5+Im10+Borderline80

Im10+Borderline20 Im10+Borderline20+Rare20

All artificial data streams have 200k examples, where a single concept drift occurs from 70 k-th time step to
100 k-th time step

“+” refers to the factors occurring simultaneously during the concept drift
StaticIm{N} refers to a static minority class ratio of N% throughout the entire stream
Im{N} refers to the minority class ratio of N% after the concept drift

Split{ N}, Move{N}, Merge{N} refer to drifts which split, move and merge N clusters in the minority class
respectively

Borderline{N}, Rare{N} refer to drifts changing N% of the minority class examples from appearing in a
safe region of the clusters to being borderline region and rare cases respectively

4.1 Data streams

As discussed in Sects. 1 and 2, data difficulty factors play a crucial role in class imbal-
anced data stream learning with concept drift. Therefore, it is important to evaluate class
imbalance data stream learning approaches based on data streams with different data dif-
ficulty factors. In line with that, the artificial data stream generator proposed by (Brzezinski
et al., 2021) was adopted because it allows us to simulate concept drifts that affect different
data difficulty factors, including the class imbalance ratio, movement of the clusters in the
minority class, and the proportion of safe, borderline and rare minority class examples. We
have generated a large variety of artificial data streams to avoid any bias in the evaluation
and enable us to understand the conditions under which SMOClust performs well and the
conditions under which it fails, as well as the reason for such behaviour.

Table 2 presents a summary of artificial data streams used in the experiments. Each
of them has five numerical input attributes {x; € (-1, 1)};?‘_=1 and a class label y; € {0, 1}.
They all consist of 200 k examples where concept drift happens gradually from 70 k to
100 k time steps. The continuous movement of minority class sub-clusters in gradual drift
scenarios creates a complex and dynamic environment for evaluation. We created thirty
artificial data streams of each type with different random seeds. Each of the thirty streams
is used to evaluate the data stream learning approaches in a single run. The evaluation
method is detailed in Sect. 4.2
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Table 3 Summary of single factor drift artificial data streams with severe imbalance ratio

Single factor drift with severe static imbalance ratio

StaticIm{5/3/1/07/05/03}_Split{3/7},
StaticIm{5/3/1/07/05/03}_Move{3/7},
StaticIm{5/3/1/07/05/03}_Merge{3/7},
StaticIm{5/3/1/07/05/03}_Borderline{20/100},
StaticIm{5/3/1/07/05/03}_Rare{20/100}

All artificial data streams have 200k examples, where a single concept drift from 70k-th time step to 100k-
th time step

StaticIm{N} refers to a static minority class ratio to be N% throughout the entire stream. StaticIm{ON}
refers to a static minority class ratio to be 0.N % throughout the entire stream

Split{ N}, Move{N}, Merge{N} refer to drifts which split, move and merge N clusters in the minority class
respectively

Borderline{N}, Rare{N} refer to drifts changing N% of the minority class examples from appearing in a
safe region of the clusters to being borderline region and rare cases respectively

Following the default setting by Brzezinski et al. (2021), when the artificial data stream
has no drift or no modifier specified, it is: (1) class balanced, (2) composed of a single clus-
ter representing class 1, uniformly surrounded by the examples of class 0, and (3) examples
only appear in safe regions. When the data stream is class imbalanced, class 1 is the minor-
ity class while class 0 is the majority class.

As shown in Table 2, we considered four groups of drift from (Brzezinski et al., 2021)’s
work in this study. The first group (Imbalance ratio drift) considers concept drift affecting
the class imbalance ratio only. The second group (Single factor drift with static imbalance
ratio) considers data streams with a static class imbalance ratio while the concept drift hap-
pens in the form of five factors, which were discussed by Brzezinski et al. (2021): splitting,
moving, merging clusters and decreasing the ratio of safe examples while increasing the
ratio of borderline or rare examples. In the third (Double factor drift) and the fourth (Com-
plex factor drift) groups, we have chosen ten artificial data streams (five for each group)
with concept drift affecting two factors and a group of factors, respectively. These artifi-
cial data streams were chosen evenly across the lists of data streams from Brzezinski et al.
(2021)’s work with double factor drift and complex factor drift in Brzezinski et al. (2021)’s
work respectively. These lists were sorted by the average performance of the compared
data stream learning approaches in their work. Thus, picking data streams evenly from
these lists means that we are taking scenarios with different difficulty levels.

As the analysis which is presented in Sect. 4.3 shows that SMOClust performed well
in severely imbalanced data streams, we performed additional experiments with the afore-
mentioned single factor drift streams with more severe static class imbalance ratio to fur-
ther evaluate SMOClust in extreme cases. These additional severely class imbalanced arti-
ficial data streams are summarised in Table 3. Note that, although we reused the static
imbalance ratio of 1% minority class examples, we used another set of random seeds when
performing these additional experiments.

Apart from experiments with artificial data streams, we also performed experiments
with different real-world data streams to evaluate SMOClust in practical applications.
These real-world data streams are summarised in Table 4 and their details are as follows.
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Table 4 Summary of real-world data streams

Stream #Examples|#Examples|#Nom.|#Num.| Imbalance Imbalance
(Pre) (Actual) | Attr. | Attr. | Ratio (Pre) |Ratio (Actual)
Luxembourg 190 1711 15 16 [0.532:0.468 IN0.512:0.488 I
NOAA 1,815 16,344 0 8 10.698:0.303 IllN|0.685:0.315 Il
Ozone 253 2,281 0 72 0.893:0.107 HM|0.942:0.058
PAKDD2009 4999 44998 13 14 {0.798:0.202 Hl|0.803:0.197 Il
Covtype(e,—{1-6})| 58,101 522,911 2 10 [0.785:0.215 HlI|0.619:0.381 M
Covtype(c,=1) 58,101 522,911 2 10 {0.595:0.405 HlN|0.524:0.476 M
Covtype (o, —2) 58,101 522,911 2 10  [0.963:0.037 M|0.936:0.064 M
Covtype (., —3) 58,101 522,911 2 10 {0.963:0.037 HM|0.999:0.001
Covtype(c,—4) 58,101 522,911 2 10 [0.958:0.042 HM|0.987:0.014
Covtype ., —5) 58,101 522,911 2 10 {0.963:0.037 IHM|0.971:0.029 M
Covtype(c,—6) 58,101 522,911 2 10 {0.963:0.037 HM|0.965:0.035 I
INSECTS!ne: 45,204 406,840 0 33 0.899:0.101 HM|0.905:0.095
INSECTS,pr., 35,527 319,748 0 33 10.912:0.088 HM|0.907:0.093 M
INSECTSRS . 14,342 128,981 0 33 10.921:0.079 HM|0.899:0.101 M
INSECTSINS: o | 45,204 406,840 0 33 10.895:0.105 HM|0.905:0.095
INSECTSine 45,204 406,840 0 33 10.895:0.105 HM|0.905:0.095
Amazon 800 7,200 0 30 0.728:0.272 HlN|0.875:0.125 M
Twitter 909 8,181 0 30 ]0.814:0.186 HlN|0.846:0.154

Total number of attributes = #Nominal attributes + #Numeric attributes + Class attribute

“Pre” refers to hyper-parameter tuning sets (i.e. the first 10% of the original data set). “Actual” refers to
actual experiment sets ( i.e. the remaining 90% of the original data set

Covtype,—y): “c; = x” refers to the class 1 is the class x in the original data set while the rest of the classes
are combined to be the class 0 in the “Actual” experiment stream. “c; = {x, — X} refers to the class 1 is
the class xx, in the original data set combined while the rest of the classes are combined to be the class 0
in the “Actual” experiment stream

For all INSECTS data streams, “ae-albopictus” is the class 1. “inc.” refers to incremental, “abr.” refers to
abrupt, “grad” refers to gradual, and “re.” refers to recurring

The Luxembourg stream (Zliobaite, 2011) was constructed from the European Social
Survey from 2002 to 2007. The classification task is to predict whether internet usage is
high or low. The NOAA stream (Elwell & Polikar, 2011) contains weather records col-
lected over five decades (1949-1999). These records include temperature, pressure, wind
speed, precipitation and other weather-related events. The classification task is to predict
whether the next day will rain. The Ozone stream (Zhang et al., 2006) consists of air meas-
urements collected from 1998 to 2004. The task is to predict the ozone level eight hours
ahead of time. The PAKDD2009 stream (Theeramunkong et al., 2009) consists of private
label credit card application records and the task is to decide whether a given application
should be approved. Forest Covertype (Covtype) stream (Blackard & Dean, 1999) con-
tains the cartographic information about the forest of 30 X 30-meter cells and the task is
to predict the cover type for a given cell. Covtype stream originally is a multi-class clas-
sification problem with seven forest cover types. To make it suitable for this study, it has
been converted into seven binary classification streams. Each of them takes one of the for-
est cover types as one class while combining other forest cover types to be the other class.
INSECTS streams (Souza et al., 2020) were constructed using a smart trap with optical
sensors to collect the flying data of three different species of insects in a non-stationary
environment for around three months. The temperature of the data collection environment
was controlled to simulate concept drifts. INSECTS streams originally have six classes:
three species of mosquitoes with two genders. We converted them into binary classification
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tasks by combining classes belonging to the species of ae-albopictus as the minority class
while combining the rest of the classes as the majority class. Also, it has to note that Souza
et al. (2020) originally proposed seven INSECTS streams but we only adopted six of them
which contain concept drifts and left the INSECT-out-of-control stream unused as it does
not contain any concept drift. The Amazon stream (Blitzer et al., 2007) comprises reviews
of books, DVDs, electronics, and kitchen appliances. Reviews with a rating greater than 3
were labelled as positive. The objective is to discern whether a review has a rating above
3. The Twitter stream (Nakov et al., 2016) consists of labelled tweets about popular topics.
The goal is to predict whether the sentiment of a given tweet is positive or negative.

To facilitate analysing the predictive performance of SMOClust, we also analysed the
characteristics of the minority class of the real-world data streams, including the poten-
tial number of clusters, and the ratios of safe, borderline, rare and outlier examples. Note
that we only analysed the portion of the real-world data streams used in the actual experi-
ments, which excludes the first 10% of each original real-world data stream that was used
for hyper-parameter tuning (see Section 4.2 for details the hyper-parameter tuning pro-
cedure). The procedure of this analysis follows the methodology proposed by Brzezinski
et al. (2021) and is described as follows.

The characteristics of each real-world data stream are estimated in successive batched of
examples. We followed (Brzezinski et al., 2021) to use a batch size of 2000 examples for
all data streams except for Luxembourg, NOAA, Amazon, and Twitter, where a batch size
of 200 was used as these data streams have less than 10,000 examples. The class imbalance
ratio and the ratios of each minority class type are estimated for each batch. It is worth
noting that we only focused on analysing the class 1 because it is the global minority class
of all the real-world data streams (see Table 4), even though this class could potentially
become a majority during certain periods of the data stream, e.g., when there is potential
concept drift affecting P(Y), changing the roles of majority and minority classes temporar-
ily. As for types of minority class examples, they were estimated using the method pro-
posed by Napierala and Stefanowski (2015). This method first finds the k-Nearest neigh-
bours of each minority class example. Based on the class ratios among these k-Nearest
neighbours, it then categorises each minority class example as safe, borderline, rare, or
outlier. Here, we followed (Napierala & Stefanowski, 2015) to adopt k = 5.

Following (Brzezinski et al., 2021)’s procedure, we also estimated the number of minor-
ity class clusters in each batch, using the affinity propagation algorithm (Frey & Dueck,
2007) and removing clusters with less than six minority class examples (Brzezinski et al.,
2021). The affinity propagation algorithm was run thirty times with different random seeds
for each batch. The average estimated number of minority class clusters is then recorded.

Lastly, we reported the ranges of the aforementioned characteristics across the different
batched and their medians in Table 5. Note that we only performed analysis about types
of minority class examples and the potential number of clusters on batched that contain at
least six (k + 1) minority class (class 1) examples. This is to prevent always categorising
the minority class examples as rare cases or outliers when the total number of minority
class examples in the batch is extremely low. The number of batches with less than size
minority class examples is reported in brackets in the third column of Table 5.

As shown in Table 5, PAKDD2009 and NOAA streams usually present the most num-
ber of clusters of minority class examples, with medians of twenty-eight clusters, meaning
that the minority class is split into several clusters in this data stream. INSECTS streams
usually present fewer clusters of the minority class than PAKDD2009 and NOAA streams,
which have medians ranging from thirteen to sixteen clusters. Luxembourg, Ozone ,
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Covtype, Amazon and Twitter streams usually present the least number of clusters of the
minority class, having medians ranging from zero to six.

As for the types of minority class examples, Table 5 shows that the Ozone, PAKDD2009
, INSECTS, Amazon, and Twitter streams mainly consist of borderline, rare, and outlier
minority class examples. Luxembourg and NOAA streams mainly consist of safe and bor-
derline minority class examples. Most Covtype streams mainly consist of safe minority
class examples. Regarding the minority ratios, most of them have a small range, indicat-
ing that the potential concept drifts only affect P(Y) with mild severity. In contrast, Cov-
type, =16} Covtype —;, and Covtype, _ streams have a very large range, indicating
that that they potentially present severe concept drifts affecting P(Y). In particular, Cov-
type, =) presents a large range of minority class ratio with a very small median (1%). This
may indicate that the severe concept drifts affecting P(Y) could potentially be abrupt.

4.2 Experiment setup

This section presents the procedure of hyper-parameter tuning and experiments. The fol-
lowing are the approaches from the literature that were considered in this study and the
reason behind the choice. All of these approaches are strict online approaches, which do
not require storage of any past data, so that the comparisons are fair.

¢ OOB, and UOB, 4 (Wang et al., 2015): Baseline approaches that use simple oversam-
pling or undersampling to deal with class imbalance in data stream learning.

¢ OnlineUnderOverBagging 4, (o0UnderOverB ;) (Wang & Pineau, 2016): A simple exist-
ing approach which combines simple undersampling and oversampling for class imbal-
ance data stream learning. We slightly modified it to use time decay class sizes with
the “oversampling” equation from OOB to controlling the resampling rate. We chose
to adopt the “oversampling" equation from OOB because the research paper (Wang &
Pineau, 2016) explicitly states that the resampling rate for OnlineUnderOverBagging
should be greater than 1. On the other hand, the “undersampling” equation from UOB
produces a fractional number, which is not suitable in this context.

e VFC-SMOTE (Bernardo et al., 2021): An existing approach which addresses class
imbalance by generating synthetic minority class examples using histogram-based
summaries of past examples.

e SMOTE-OB (Bernardo & Valle, 2021): An existing approach which incorporates the
class imbalance adaptation strategy of VFC-SMOTE into OnlineUnderOverBagging
(Wang & Pineau, 2016).

® OnlineOversampling 4, (00S4)): A variant of the proposed approach which always uses
the most recently seen minority class example for oversampling. This approach is used
as a baseline to support the investigation of when the proposed strategy of creating syn-
thetic minority class examples for oversampling is advantageous/disadvantageous.

e SMOGauNoise: A variant of the proposed approach inspired by Song et al. (2018),
which proposed a data augmentation method for software effort estimation. SMOGau-
Noise has the same learning and making prediction strategies as the proposed approach
but it always creates synthetic minority class examples for oversampling by adding
Gaussian noise to the most recent minority class example. Note that this is the first time
to investigate (Song et al., 2018)’s data augmentation method in the context of classifi-
cation problems.
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Approaches followed by “(d)” refers to these approaches that were not designed to handle
concept drift originally.’ We used a wrapper to enable them to use a concept drift detector.
Their system reset upon concept drift detection.

For the evaluation method, we modified the periodic holdout test for the experiments with
artificial data streams. This modified periodic holdout test takes the data difficulty factors into
the consideration, which includes the position of the minority class clusters, class imbalance
ratio, and the proportions of borderline and rare examples. During a single run, the data stream
learning approach was tested on a holdout test set B/” of m examples after training on every
n example. Its predictive performance in G-Mean was then recorded. The holdout test sets are
class balanced and they follows the same underlying joint probability distribution (concept) at
the evaluation time step ¢, where t mod n =0, i.e., B;‘“’ ~ P,(X,Y). At the end of the run, we
summarised their performance across the stream by taking an average of their G-Mean perfor-
mance on the test sets.

For hyper-parameter tuning purposes, an additional artificial data stream was created. It
also consists of 200k examples where the concept drift happens from 70k to 100k time steps
but the class imbalance ratio and the drift behaviour were randomly selected from the set of all
combinations of drift factors used in (Brzezinski et al., 2021). We denote this data stream as
the “hyper-parameter tuning stream”. The set of hyper-parameter values of each approach that
leads to the best ten runs average of G-Mean across this stream was then used in the experi-
ments. In the experiments, we adopted thirty runs rather than ten runs to reduce the effect of
randomness on the results.

Experiments with real-world data streams have a similar procedure. The first 10% or each
real-world data stream was used for the hyper-parameter tuning purposes. The prequential
evaluation was used because the underlying concepts are unknown in advance. The set of
hyper-parameter values of each approach that leads to the best ten runs average of G-Mean
across the first 10% of each real-world data stream was then chosen to be used in the experi-
ment of the corresponding data stream which consists of the remaining 90% of examples. The
time decayed G-Mean performance was sampled at every 500 time steps, except they were
sampled at every fifty time steps for NOAA, Ozone, Amazon, Twitter streams and every ten
time steps for Luxembourg stream due to the fact that these streams are a lot shorter than
other streams (i.e., they have a lot fewer examples than other data streams). Thus, sampling at
shorter intervals allows us to see how the performance of the approaches changes throughout
these relatively short data streams. We adopted a time decay factor of 0.999 to make their past
predictive performance less important to the current time step. We recorded their thirty runs
average G-Mean performance across each stream for evaluation and comparative analysis.

At the end of the experiments, the predictive performance of the approaches was com-
pared by different concept drift data difficulty factors. The corresponding rankings in the
groups were then presented. Friedman test with a level of significance of 0.05 was applied
to each group, confirming if there is any statistical significance between the predictive per-
formance of different approaches. If there is, Nememyi post-hoc test was used to determine
which approaches performed significantly different from the top-ranked approach. In the sta-
tistical tests, each group corresponds to a data stream learning approach while each observa-
tion within a group corresponds to the average predictive performance across a given data
stream in a single run. The thirty runs average predictive performance of the approaches are
also reported to facilitate us in analysing the margin of the performance difference.

3 Except OOB and UOB can handle concept drift affecting P(Y).
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4.3 Results with artificial data streams

This section presents the analysis done to compare the predictive performance of SMO-
Clust against existing approaches on artificial data streams which consider different drift
difficulties in the minority class. General comparisons are first given based on the Fried-
man rankings of average G-Mean of the approaches grouped by different drift difficulty
factors, presented in Table 6. It is then followed by a detailed analysis of the behaviour
of SMOClust in representative cases where it performed better and worse than existing
approaches in Sects. 4.3.1 and 4.3.2 respectively.

Table 6 shows that SMOClust was one of the top-ranked approaches when the data
stream is extremely class imbalanced (minority class ratio: 1%), indicating that SMOClust
handled extremely class imbalanced data stream better than most existing approaches,
while it performed similarly to UOB and OnlineUnderOverBagging. However, SMOClust
was one of the low-ranked approaches in the group of rare cases, indicating that it could
not handle rare cases very well. For other groups, although SMOClust was not one of the
top-ranked approaches, it usually performed similarly to mid-ranked approaches.

As Friedman rankings only show the relative position of approaches’ predictive perfor-
mance but they do not provide any information about the margin of difference. To investi-
gate how much did SMOClust performed better in severely class imbalanced streams and
worse in other groups of factors, we further compared their thirty runs average G-Mean on
each artificial data stream. The results of their difference in average G-Mean are presented
in the form of a heat-map in Fig. 4. Green cells indicate results favourable to SMOClust,
whereas red cells indicate results favourable to the compared approach. For a comprehen-
sive table of the predictive performance of the approaches, please refer to the supplemen-
tary document.

Table 6 shows that SMOClust usually obtained lower rankings than other approaches in
less severe class imbalanced data streams. However, Fig. 4 reveals that the margin of the
under-performance was usually small as we can rarely see saturated red cells in the table.
In contrast, the high ranking achieved by SMOClIust in the group of StaticIm1_{*} was
supported by a lot of saturated green cells in the sector Staticim1 of Fig. 4, meaning that
SMOClust performed a lot better than existing approaches in cases with severe class imbal-
anced ratio. Besides, Fig. 4 further confirms that SMOClust could not handle rare minority
class examples very well as we can see that cases involving Rare100 drift have lots of satu-
rated red cells. In particular, OOB and OnlineUnderOverBagging handled rare minority
class examples better than SMOClust.

One potential reason why SMOClust did not perform well in handling data streams
with a large proportion of rare minority class examples is the conservative nature of the
proposed synthetic example generation method, where most synthetic examples are gener-
ated in the dense area of the minority class. To address this, it might be helpful to gener-
ate synthetic examples in a more diverse manner. However, generating synthetic examples
diversely can also introduce a significant amount of noise or even create artificial concept
drifts. Moreover, it can be challenging to ensure that a certain area belongs to the minority
class if there are no real minority class examples in that area. The proposed method is less
prone to these risks and uncertainties, while overcoming the problems of existing work,
which ignore data difficulty factors and rely on caching all (minority class) examples for
synthetic minority class oversampling.

Comparing the predictive performance of SMOClust against UOB and OnlineUn-
derOverBagging in the group of StaticIml_{*}, Table 6 shows that they performed
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Table 6 Statistical (Friedman) Ranking of G-Mean on Artificial Streams Grouped by Factors

SMO- VFC- SMO-
Groups  |0OB UOB 008 °U24" 508, UOB, 0084 2V Gau- sMO- TE- [PMO-
OverB OverBgy . Clust
Noise TE OB
Imbalance
Ratio 3.77 4.44 472 327 7.35 7.59 837 5.05 6.93 11.65 9.1 | 5.7
Drift
lgouble 6.03 7.24 571 6.85 4.2 7.39 6.05 547 2.67 11.38 9.21 | 5.80
actor
Complex | 516 g9 597 64 427 600 6.88 4.99 2.94 11.71 10.4 | 5.68
Factor
Single Factor Drift with Static Imbalance Ratio
P x1a
St"‘“scgﬁlt{} 7.04 6.93 7.69 5.63 4.96 6.93 6.09 3.72 2.97 11.6 9.48 | 4.97
- a
Staﬁg&{} 5.13 6.97 4.75 4.65 5.93 8.04 6.66 5.34 3.19 11.84 9.96 | 5.53
Staiﬂgi} 5.40 6.84 4.70 3.84 6.38 8.01 6.60 4.74 = 3.30 11.77 10.01| 6.41
s x1a
Staticlm{*}* | /00 617 501 426 546 7.65 7.901 4.08 3.47 11.61 9.09 | 6.51
_Borderline
‘ e
Stati;;f;{} 252 6.98 3.04 4.34 6.6 7.56 8.58 5.72 4.06 11.3 9.26 | 8.04
StaticIm30-{*}P5.84 9.02 3.40 6.94 3.81 7.93 3.75 5.54 | 219 11.27 11.12| 7.20
StaticIm10_{*}P4.89 8.98 5.03 3.87 4.14 9.17 7.49 3.56  2.23 11.91 7.77 | 8.96
StaticIm1_{*}5 4.86 ' 2.34 7.23 2.83 9.64 581 10.27 506 578 11.69 9.78 | 2.72
All [5.16 6.78 5.23 4.90 5.63 7.43 7.12 4.87 | 3.8 11.61 0.57 | 6.12

* “StaticIm{*}” refers to StaticIm{30/10/1}, which means the group includes all artificial data streams of
that type in static minority class ratio of 30%, 10%, and 1% respectively

b «f#1” refers to Split/Move/Merge/Borderline/Rare, which means the group includes all artificial data
streams of the above five types of drifts with the same static minority class ratio

Smaller values for the rankings are better values
The p values of Friedman tests are all <2.2E—16
Highlighted ranks denote significant superior performance

Underlined ranks denote the corresponding approach’s performance have no statistical significance with
SMOClust

similarly. Yet, the sector of StaticIml in Fig. 4 reveals that SMOClust performed better
than UOB by small margins (around 1-2% G-Mean , light green cell) in cases presenting
concept drift of increasing rare minority class ratio, yet, it performed worse than UOB
by medium-small margins (around 3% G-Mean , light red cells) in cases presenting con-
cept drift of moving and merging minority class clusters. SMOClust performed better than
OnlineUnderOverBagging by medium-small margins (around 2-3% G-Mean , light green
cells) in cases presenting a concept drift of splitting minority class clusters. However, it
performed slightly worse than OnlineUnderOverBagging (around 1% G-Mean , light red
cell) in cases presenting concept drift of merging minority class clusters. It also performed
worse than OnlineUnderOverBagging by a large margin (around 7% G-Mean , saturated
red cell) in StaticIm1_Rare100 case. In short, SMOClust performed similarly to both UOB
and OnlineUnderOverBagging in most StaticIm1 cases, except OnlineUnderOverBagging
performed a lot better in StaticIm1_Rare100 case.

When comparing the predictive performance of SMOClust against two approaches that
also summarise past knowledge to support the generation of synthetic examples (VFC-
SMOTE and SMOTE-OB), Table 6 and Fig. 4 show that SMOClust performed better in
most cases, especially in StaticIm1 cases. This indicates that the proposed synthetic minor-
ity oversampling strategy in SMOClust is superior.
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Fig.4 Difference in Average G-Mean Against SMOClust on Class Imbalanced Artificial Data Streams
Based on 30 Runs (Green cells indicate SMOClust performed better; Red cells indicate SMOClust per-
formed worse; Grey horizontal lines separate different groups of data streams, i.e., StaticIm{30/10/1},
Imbalance Ratio Drift, Double Factor, and Complex Factor) (Color figure online)

Based on the aforementioned results, additional experiments were performed with the
same set of single factor drift artificial data streams but enforced with extremely severe
class imbalance ratios (minority class ratio 0.3% to 5%, summarised in Table 3) to further
evaluate if SMOClust can usually perform better than existing approaches in extremely
class imbalanced data streams.
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Table 7 presents the Friedman rankings of average G-Mean by groups of different
drift difficulty factors on the severely class imbalanced artificial data streams. It shows
that SMOClust can indeed achieve higher rankings when the class imbalance ratio is very
severe (minority class ratio < 1%). Figure 5 presents the difference in average G-Mean
(based on thirty runs) between the compared approaches and SMOClust on severely class
imbalanced artificial data streams in the form of a heat-map with the same colour scheme
as Fig. 4. Similarly, please refer to the supplementary document for a comprehensive table
of the predictive performance of the approaches. It supports the aforementioned deduction
with a lot of saturated green cells in the cases of minority class ratio < 1%, indicating the
superior performance of SMOClust. The exception here is the comparison against UOB,
with the margin of under-performance increasing as the severity of the class imbalance
ratio increases by case. When compared against OnlineUnderOverBagging, SMOClust
generally performed better in cases other than Rare100 drift, with the margin of superior
performance increasing as the severity of the class imbalance ratio increases by case.

Figure 5 also confirms that SMOClust usually does not handle rare minority class exam-
ples very well, especially when compared against OOB, OnlineUnderOverBagging and
SMOGauNoise. However, an extremely severe class imbalance ratio may give advantage to
SMOClust in dealing with Rare100 drift as cases involving Rare100 present less saturated
red cells when the class imbalance ratio is < 1%. In particular, the case of StaticIm03_
Rare100 presents a row of saturated green cells. Anyhow, these results are consistent with
previous results of experiments with less severe class imbalanced artificial data streams.

Besides, Table 7 also shows that SMOClust could not achieve high rankings in the
groups concerning minority class ratio of 5% and 3%. This may due to the fact that the
artificial data streams are long enough to have quite a lot of minority class examples,
despite the minority class ratios were low. Therefore, the advantage of SMOClust was not
manifested. The sectors of StaticIm5 and StaticIm3 on Fig. 5 show that SMOClust usu-
ally performed slightly worse than most existing approaches but it performed better than
OnlineOversampling; , VFC-SMOTE and SMOTE-OB.

Considering all cases in Fig. 5, we can see that, when the minority class ratio
decreases, SMOClust usually had a smaller margin of performance reduction than other
approaches, except UOB. This shows that the aggressive nature of undersampling may
be generally more advantageous than oversampling when the number of minority class
examples in the data stream is extremely low. Yet, we can still see from Fig. 5 that
SMOClust performed better than UOB in most cases of Rare100 drift. This means that,
when the minority class has extreme low number of examples and is difficult to learn,
SMOClust still has more advantage than undersampling. One reason could be the fact
that the compared approaches focus on learning the most recent decision areas of both
classes, whereas SMOClust was designed to reinforce its knowledge in past minority
class decision areas. This means that SMOClust is likely to have a better generalisation
on the sub-areas of the minority class than existing approaches.

In the following sections, representative cases were chosen to discuss why SMOClust
performed better and worse than existing approaches respectively, providing a more
detailed understanding of the results.

4.3.1 Cases where SMOClust performed better

This section discusses why SMOClust performed better than most other approaches in
artificial data streams with severe class imbalance ratio when the class imbalance ratio
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Table 7 Statistical (Friedman) ranking of G-Mean on severely class imbalanced artificial streams grouped
by factors

oUnder- oUnder- SMO- VEC- SMO- SMO-

Groups OOB UOB 00S OOB4q UOB4 00Sq4 OverBy Gau- SMO- TE-

OverB Noise TE OB Clust
Stafiscgglt{*}a 5.78 2.61 8.18 3.62 8.58 5.30 9.90 4.17 4.84 11.92 9.81 | 3.30
Stafli\z}:,;{*}a 4.80 3.20 7.53 2.82 7.62 6.25 10.25 4.76 5.13 11.96 10.12| 3.57
S“ﬁfrlgi*}a 4.78 3.097.19 2.64 815 6.06 10.26 4.66 5.14 11.80 10.03| 4.20
sigﬁzl;llfzj 4.68 2.73 6.72 2.63 9.52 6.39 10.52 4.92 6.12 11.32 9.20 | 3.25
Stat;i‘;{*}a 3.16 5.33 5.64 2.81 881 7.78 9.84 529 3.84 11.38 9.68 | 4.44
StaticIm5 {*}1 4.29 7.56 6.44 253 5.39 8.23 10.05/ 3.7 2,57 11.94 8.25 | 7.60

StaticIm3_{*}" 4.48
StaticIm1_{*}1 4.99
StaticIm07_{*}4.80
StaticIm05_{*}P4.62
StaticIm03_{*}4.65

ATl [4.64
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7.34 226 T7.54 6.89 10.41 2.87 3.30 11.95 9.48 .88
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7.21 3.25 9.76 5.38 10.44 549 6.15 11.48 9.81 .29
6.97 3.27 10.10 5.88 10.05 5.76 6.11 11.36 10.17| 2.11
7.03 3.18 9.37 6.17 9.56 597 6.16 11.61 11.00| 1.99
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? “StaticIm{*}” refers to StaticIm{5/3/1/07/05/03}, which means the group includes all artificial data
streams of that type in static minority class ratio of 5%, 3%, 1%, 0.7%, 0.5%, and 0.3% respectively

b «f#1” refers to Split/Move/Merge/Borderline/Rare, which means the group includes all artificial data
streams of the above five types of drifts with the same static minority class ratio

Smaller values for the rankings are better values
The p values of Friedman tests are all <2.2E—16
Highlighted ranks denote significant superior performance

Underlined ranks denote the corresponding approach’s performance have no statistical significance with
SMOClust

is extremely severe (minority class ratio < 1% throughout the stream). Staticlm1-Move7
stream was chosen from Fig. 4 as the representative case to discuss the behaviour of SMO-
Clust in details.

As mentioned in Sect. 4.1, the artificial data streams have five input attributes and a
class label. Therefore, it is difficult to visualise the learnt decision areas of the approaches
and understand their behaviour in details. Because of this, we created a version of the rep-
resentative streams with two input attributes and a class label while preserving the char-
acteristics which include the class imbalance ratio and the drift difficulty factors etc. Note
that we only created a single copy of each two-dimensional representative stream, such that
we can compare the data stream learning approaches with their median predictive perfor-
mance in thirty runs on the same data stream. Also, the hyper-parameters of the approaches
were tuned based on a separated random two-dimensional artificial data stream, following
the procedure explained in Sect. 4.2.

Table 8 presents the their thirty runs average G-Mean on the two-dimensional version
of StaticIm1_Move7 stream. It shows that SMOClust performed the best. These results
are slightly inconsistent with the results of the corresponding five dimensional stream in
Fig. 4, where SMOClust performed slightly worse than UOB but similarly to OnlineUn-
derOverBagging. Yet, in general, SMOClust still performed better than other approaches in
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Fig.5 Difference in Average G-Mean Against SMOClust on Severely Class Imbalanced Artificial
Data Streams Based on 30 Runs (Green cells indicate SMOClust performed better; Red cells indi-
cate SMOClust performed worse; Grey horizontal lines separate different groups of data streams, i.e.,
StaticIm{5/3/1/07/05/03}) (Color figure online)
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Table8 30 Runs average G-Mean on two-dimensional version of representative artificial data streams
where SMOClust performed better

oUnder-
Stream OOB UOB 00S OverB OOBg4 UOBy4

StaticImLMoveﬂ 82.11% 76.3% 79.46%  85.26%  53.45% 56.94%

oUnder- SMO- VFC- SMOTE-
Stream 008q OverBy GauNoise SMOTE OB SMOClust

StaticImLMovoﬂ 76.88% 45.12%  82.94% 1.04%  33.09% 91.23%

Based on the average G-Mean, cells are highlighted in lime/light grey when SMOClust performed better
than the corresponding approach and cells are highlighted in orange/dark grey cells when SMOClust per-
formed worse than the corresponding approach. The colour intensity scales with the absolute difference of
average G-Mean between the SMOClust and the approach of the column and the intensity reaches the maxi-
mum when such difference is > 10%

Fig. 6 Periodic Class Balanced — oo — smoclust
_ B Onlineoversampling —— SMOGauNoise
Holdout Test G-Mean Against — oniincunderoversagging s

Time Steps in Two-Dimensional
StaticIm1_Move7 (Color figure
online)

G-Mean (%)

%.O 0.5 1.0 1.5 2.0
Time Steps le5

both two-dimensional and five dimensional versions of StaticIm1_Move7 stream. This may
indicate that SMOClust tends to perform better in low-dimensional data stream. Anyhow,
the detailed analysis presented in the following paragraphs can still explain the character-
istics of SMOClust and why it performed better than most other approaches in this repre-
sentative case.

Figure 6 presents the approaches’ predictive performance over time steps of their
median run.* To maintain readability, we omitted the predictive performance of OOB,,
UOB,, 00S,, oUnderOverB,; , VFC-SMOTE, and SMOTE-OB from Fig. 6, as their per-
formance fluctuates significantly throughout the stream. For the comparison of SMOClust
against these approaches, please refer to the supplementary document. It shows that SMO-
Clust performed the best in most time steps. In particular, SMOClust maintained the pre-
dictive performance to have at least 50% G-Mean on the class balanced holdout test sets
during the concept drift (from 70k to 100k time steps) and recovered from the drift better
than other approaches (the solid red line has a rapid recovery since 100k time steps). In
contrast, other approaches usually dropped to around 0-20% G-Mean during the drift. This

4 Median run refers to the run that leads to the median of predictive performances averaged across time
steps.
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Fig.7 Decision Areas Against Class Balanced Test Set at 70k Time Steps (Before Drift) of Two-Dimen-
sional StaticIm1_Move7 (Color figure online)

case showed the superior performance achieved by SMOClust in handling severely class
imbalanced drifting data streams.

Figures 7, 8 and 9 visualise the learnt decision areas of approaches at the time steps
right before and after concept drift (70k and 100k time steps) and at the end (200k time
steps) of the two-dimensional StaticIm1_Move7 stream respectively. The yellow and green
regions represent their learnt decision areas of class O (majority class) and class 1 (minor-
ity class) respectively, while the red and blue dots are the class O (majority class) and class
1 (minority class) examples in the class balanced test set, corresponding to the time steps.
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Fig.8 Decision areas against class balanced test set at 100 k time steps (After Drift) of two-dimensional
StaticIm1_Move7 (Color figure online)

First of all, we compare the learnt decision areas of the approaches at the time steps
right before concept drift (at 70k time steps). Figure 7 shows that OOB, OnlineOversam-
pling, OnlineUnderOverBagging, SMOGauNoise and SMOClust had learnt decision areas
which match the corresponding class balanced test set. This explains why they performed
the best before the drift (0-70k time steps, Fig. 6). Figure 7i and 1 show that the learnt

@ Springer



Machine Learning (2024) 113:4671-4721 4705

00B-Staticim1-Move7_200k UOB-Staticim1-Move7_200k OnlineOversampling-Staticim1-Move7_200k
100 . 100
ors o
os os
oz oz
s s
-1.00 -1.00 -
T T R T TR oo i am oh oE % o R 1 R
(a) OOB (b) UOB (c) o0OS
OnlineUnderOverBagging-Staticim1-Move7_200k ©00Bd-Staticim1-Move7_200k UOBd-Staticim1-Move7_200k
o o
oso oso
o o
o o
s 0z
s s
" "
o e s ok 0s i o i o i i ok ok 0% e o e m ok 0B W o
(d) oUnderOverB (e) OOBy4 (f) UOBg4
Onlineo )_d-Staticim1-Move7_200k OnlineUnderOverBagging_d-Staticim1-Move7_200k SMOGauNoise-Staticim1-Move7_200k
10 1 ~ - 10 .
075 MR
oso{ L, . .
025 .
0.00 . e _': o
os{ . G -
—osof
oy
-1.00 :
R T T R R R o o e ol ok ko o i oo o i m ok 0B ke o i
(g) 00Sq (h) oUnderOverBg4 (i) SMOGauNoise
VFCSMOTE:Staticim1-Move7_200k SMOTEOB-Staticim1-Move7_200k SMOClust-Staticim1-Move7_200k
100 . o 100 :
o ors o
os0 os oso
o oz o
o oo om
o8 s s
o o] o
-1.00 -1.00 : -1.00
oo o o i ok os i o i oo i ok eh o oo o e m oh 0B o ok

(j) VFC-SMOTE (k) SMOTE-OB (1) SMOClust

Fig.9 Decision areas against class balanced test set at 200k time steps (End of Stream) of two-dimensional
staticIm1_Move7 (Color figure online)

decision areas of SMOClust were similar to SMOGauNoise because they both have strat-
egies to explore the minority class decision boundaries. The expansion by SMOClust
was slightly more aggressive than SMOGauNoise, with some sub-areas linked together.
Although the proposed synthetic minority oversampling strategy prioritises “safe” areas
to generate synthetic minority class examples, the strategy of using synthetic examples to
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train the stream clustering methods may contribute to such aggressiveness in exploring the
minority class decision boundaries.

Figure 7a and ¢ show that OOB and OnlineOversampling learnt the most compact
minority class decision areas because they reuse the existing minority class examples for
oversampling. Figure 7d shows that the minority class decision areas of OnlineUnderOver-
Bagging were slightly larger than that of OOB and OnlineOversampling. Particularly, there
were two green areas linked together. This may be the result of using oversampling and
undersampling together, which managed to cover the true minority class clusters while
preserving some aggressiveness from undersampling. In contrast, Fig. 7b and f show that
UOB and UOB, learnt a single cluster to aggressively cover most minority class areas,
considering the small majority class areas in between as part of the minority class. This
is likely to cost some predictive performance in the majority class. Thus, we can see that
UOB and UOB, performed slightly worse than the other approaches before the concept
drift (0-70k time steps, Fig. 6). However, Fig. 5 shows that UOB performed slightly bet-
ter than SMOClust in the five-dimensional Staticlm1_Move7 stream, indicating that the
aggressive nature of undersampling may be an advantage in learning the minority class
when the feature space is sparse and presents very few minority class examples. When the
feature space is more compact, the proposed strategy in SMOClust is more advantageous.

Considering OOB,, OnlineUnderOverBagging;, VFC-SMOTE, and SMOTE-OB,
Fig. 7e, h, j, and k show that their learnt minority decision areas were very small which
only covered a small proportion of the true minority class areas. In the case of VFC-
SMOTE, it predicted every example as majority class at 70k time steps. As previously
mentioned, their predictive performance fluctuated a lot throughout the stream. So, it
can be deduced that they were greatly affected by false-positive drift detections.

Over the next paragraphs, we compare the predictive performance and the decision
boundaries of SMOClust against other approaches at the time steps right after concept
drift (at 100 k time steps) and at the end of the data stream (at 200k time steps), to
understand how SMOClust handles concept drift of moving minority class sub-clusters
when the data stream is severely class imbalanced.

Figure 6 shows that the predictive performance of SMOC]lust fluctuated during the drift
(70k—100k time steps, Fig. 6). Thus, it is likely that its base learner had been reset several
times due to drift detection. Yet, it was the fastest approach to recovering predictive perfor-
mance from the drift. Figure 8 presents the learnt decision boundaries right after the drift.
It shows that SMOClust and SMOGauNoise made the best attempt in adapting the drift.
They were able to cover most minority class sub-clusters at the new position, especially
SMOClust. The potential reason is that, although the base learner of SMOClust is reset
upon drift detection, the stream clustering methods are not reset as they are expected to be
drift adaptable. Therefore, SMOClust is more robust to incremental and gradual drifts than
SMOGauNoise, explaining its rapid predictive performance recovery from the drift.

On the other hand, Fig. 8a, b, ¢, and d show that the learnt minority class decision areas
of OOB, UOB, OnlineOversampling and OnlineUnderOverBagging mainly retained at the
pre-drift position because they are not concept drift adaptable. Their concept drift adapt-
able counterparts , VFC-SMOTE and SMOTe-OB did not handle the drift very well either.
Figure 8e, f, g, h, j and k show that their learnt minority class decision areas only covered a
few minority class sub-clusters at the post-drift position, which is likely because their base
learners had been reset for several times caused by drift detection and they do not have any
strategy to deal with incremental and gradual drifts. As the result, they struggled to recover
their predictive performance from the drift, as shown in Fig. 6.
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Lastly, we compare the learnt decision areas of the approaches at the end of the two-
dimensional StaticIm1_Move7 stream. Figure 9 shows that OOB,;, SMOGauNoise and
SMOClust are the best approaches in converging to the post-drift position of minority
class sub-clusters. In particular, a few green areas of SMOClust and SMOGauNoise were
slightly less compact than OOB, showing that SMOClust and SMOGauNoise had slightly
better generalisation than OOB.

Figure 9a, c, and d show that OOB, OnlineOversampling and OnlineUnderOverBag-
ging managed to converge to the new concept after the drift. However, they also retained
a small portion of green areas which corresponds to the pre-drift position of the minority
class. This shows that OOB, OnlineOversampling and OnlineUnderOverBagging can adapt
to concept drift involving minority class sub-cluster movement. However, they required a
longer period to adapt as they were hindered by the knowledge acquired pre-drift. Mean-
while, Fig. 9e, g, and h show that their concept drift adaptable counterparts adapted better,
except OnlineUnderOverBagging;. While resetting base learners helps to adapt to concept
drift, OnlineUnderOverBagging, partly uses undersampling in its strategy to deal with
class imbalance led to some over-generalisation between the learnt minority class areas.
UOB and UOB, use undersampling to deal with class imbalance, thus Fig. 9a and f show
that they had the greatest over generalisation due to the aggressive nature of undersam-
pling. VFC-SMOTE and SMOTE-OB continued to struggle, as shown in Fig. 9j and k,
because of frequent false-positive drift detections.

Short Summary: Through the pre-drift analysis, the ability of SMOClust in handling
stationary severely class imbalanced data streams presenting several minority class
sub-clusters is validated. In particular, it shows that SMOClust was able to learn
and explore the true decision boundaries despite the data stream presents very few
minority class examples. The post-drift analysis shows that SMOClust was more
robust in adapting incremental and gradual drift involving minority class sub-clus-
ters movement than existing approaches. Although most of the approaches converged
to the new concept at the end of the data stream, SMOClust was the best and the fast-
est approach in recovering predictive performance from the drift. The inconsistent
results between two and five-dimensional versions of this representative case indicate
that SMOClust may be more advantageous in lower-dimensional data streams.

4.3.2 Cases where SMOClust performed worse

This section discusses the situations where SMOClust performed worse than other
approaches, particularly in cases with concept drift leading to 100% rare minority exam-
ples. StaticIm10_Rare100 stream was chosen from Table 4 as the representative case to dis-
cuss the behaviour of SMOClust in detail. Following the method of analysis in Sect. 4.3.1,
we also created a two-dimensional version of StaticIm10_Rare100 stream such that we can
visualise and compare the learnt decision boundaries of the approaches to understand their
behaviour.

Table 9 presents the approaches’ thirty runs average G-Mean on the two-dimensional
StaticIm10_Rare100 stream. It shows that SMOClust performed better than most other
approaches. Figure 10, showing the G-Mean of the approaches in their median run’

5 Median run refers to the run that leads to the median of predictive performances averaged across time
steps.
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Table9 30 Runs average G-Mean on two-dimensional version of representative artificial data streams
where SMOClust performed worse

Stream ‘OOB UOB 008 Og“de" OOBs  UOB4
verB
StaticIm10_Rarel00 | 70.61% 63.65% 69.14% _ 68.19% 65.49% _ 68.17%
oUnder- SMO. _ VFC- SMOTE.

Stream ‘ 00S4 SMOClust

OverBy GauNoise SMOTE OB
StaticIm10_Rare100 | 65.04% 64.98%  64.56%  54.64%  58.98% 70.32%

Based on the average G-Mean, cells are highlighted in lime/light grey when SMOClust performed better
than the corresponding approach and cells are highlighted in orange/dark grey cells when SMOClust per-
formed worse than the corresponding approach. The colour intensity scales with the absolute difference of
average G-Mean between the SMOClust and the approach of the column and the intensity reaches the maxi-
mum when such difference is > 10%
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. . . . — OnlineUnderoverBagging
time steps in two-dimensional 100
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Time 'Steps 1e5.

throughout the two-dimensional StaticIm10_Rare100 stream, also supports the results on
Table 9. Note that, to improve readability, we have omitted the predictive performance of
OOB,, UOBy, 00S,, oUnderOverB,; , VFC-SMOTE and SMOTE-OB from Fig. 10, similar
to Fig. 6, due to their values fluctuating significantly throughout the stream. For a compari-
son of SMOClust against these approaches, please refer to the supplementary document.

As these results are not consistent with the results of the five-dimensional StaticIm10_
Rare100 stream, shown in Tables 6 and 7, we preliminary checked if using a different set
of random seeds or picking another case that involves drift leading to 100% rare minor-
ity class examples would yield results that are consistent with Tables 6 and 7. Yet, it still
shows that SMOClust performed similar to or better than other approaches in two-dimen-
sional StaticIm10_Rare100 stream. Thus, in this analysis, we focus on why SMOClust can
handle concept drift leading to 100% rare minority class examples than other approaches
when the data stream has only two dimensions while attempting to deduce why it could not
when the data stream has five dimensions.

Figures 11, 12 and 13 visualise the learnt decision areas of the approaches at the time
steps right before and after concept drift (70k and 100k time steps) and at the end (200k
time steps) of the two-dimensional StaticIm10_Rarel00 stream respectively. The yellow
and green regions represent their learnt decision areas of class 0 (majority class) and class
1 (minority class) respectively, while the red and blue dots are the class 0 (majority class)
and class 1 (minority class) examples in the class balanced test set which corresponds to
the time steps.
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Fig. 11 Decision areas against class balanced test set at 70 k time steps (Before Drift) of two-dimensional

staticim10_Rare100 (Color figure online)

Figure 10 shows that all approaches performed very well during the pre-drift period
(0-70 k time steps). Figure 11 reveals that it is because they learnt the decision boundary

of the pre-drift concept very well, as the minority class was ju

most approaches learnt an oval shape decision boundary, UOB,

st a single cluster. While
UOB, and SMOTE-OB

learnt a rectangular shape, which could be due to the use of undersampling. VFC-SMOTE
learnt a peculiar shape decision boundary which would cause more frequent false-positive
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Fig. 12 Decision areas against class balanced test set at 100 k time steps (After Drift) of two-dimensional
StaticIm10_Rare100 (Color figure online)

drift detections. These may have been due to minority class examples generated by VFC-
SMOTE with considerable amount of noise. Meanwhile, SMOTE-OB adopts the same
strategy as VFC-SMOTE for generating synthetic minority class examples but simul-
taneously incorporating undersampling to address class imbalance. This integration of
undersampling might explain why SMOTE-OB more successfully circumvented the issue
encountered by VFC-SMOTE.
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Figure 10 shows that the predictive performance of the approaches dropped to below
60% G-Mean and started to differ since the concept drift began (70k time steps). While
most approaches’ predictive performance fluctuated with large magnitude, SMOClust’s
predictive performance was relatively steady, bouncing between 50%-60% G-Mean. UOB
performed poorly since the drift began at 70k time steps until the drift was close to finish-
ing at 100k time steps, indicating that undersampling struggled in dealing with this drift
without the help of a concept drift detector.

Figure 12 presents the learnt decision boundaries of the approaches right after the drift
(100k time steps). It shows that OOB, OnlineOversampling, OnlineUnderOverBagging,
OnlineOversampling;, SMOGauNoise , SMOTE-OB and SMOClust learnt very complex
decision areas, indicating that they made great efforts to learn all the areas that spawn rare
minority class examples belonging to the post-drift concept. However, only approaches
with a concept drift detector were able to forget the old area of the minority class at the
top left corner. This shows that, although this drift was gradual, concept drift detection was
important in helping the system to forget irrelevant past knowledge. In contrast, approaches
without a drift detector retained the oval minority class cluster at the top left corner which
belongs to the pre-drift concept. Most of them struggled to perform well since the drift
started at 70k time steps, as shown in Fig. 10. OOB was an exception in terms of predictive
performance. However, the fact that it retained the knowledge about the pre-drift minority
class areas makes it disadvantageous in dealing with other types of drift, as discussed in
Sect. 4.3.1.

Comparing the learnt decision areas of SMOClust against other approaches with drift
detector (OOB,, UOBy;, OnlineOversampling,;, OnlineUnderOverBagging; , VFC-SMOTE,
SMOTE-OB and SMOGauNoise), it can be observed that the learnt minority class areas of
SMOClust were complex and covered the feature space spawning minority class exam-
ples the most. While OnlineOversampling,’s, SMOGauNoise’s and SMOTE-OB’s were
also complex (see Fig. 12g, i and k), they either did not cover the feature space spawning
minority class examples as much as SMOClust’s did or exhibited over-generalisation. The
fact that OnlineOversampling,; only reuses the recently seen minority class example for
oversampling likely leads to overfitting to such most recent area. SMOGauNoise also has
a strategy to explore the decision boundaries of the minority class, but such strategy only
explores the area around the recently seen minority class example. This could be disad-
vantageous when false-positive drift detections were triggered, resetting the base learner.
SMOTE-OB’s over-generalisation could be explained by the use of undersampling and
noisy minority class examples generated. SMOClust, on the other hand, does not have this
disadvantage because the stream clustering methods are not reset upon drift detection. This
makes it more robust to false-positive drift detections than other approaches. As the drift
was gradual, OOB,, UOB, and OnlineUnderOverBagging, likely also suffered from mul-
tiple drift detection, as Fig. 12e, f and h show that the learnt a simple decision boundary
right after the drift.

Figure 13 presents the learnt decision boundaries of the approaches at the end of
the two-dimensional StaticIm10_Rarel00 stream (at 200k time steps). While most
approaches continued to further improve their learnt decision boundaries since the
drift had finished, Fig. 13h and I show that OnlineUnderOverBagging, and SMOGau-
Noise did not improve as much as other approaches, meaning that they suffered from
false-positive drift detections during the post-drift period. Besides, UOB, UOB,, and
SMOTE-OB exhibited an extensive and predominantly continuous decision area for the
minority class, demonstrating the aggressiveness of undersampling. However, in the
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Fig. 13 Decision areas against class balanced test set at 200 k time steps (End of Stream) of two-dimen-
sional StaticIm10_Rare100 (Color figure online)

case of SMOTE-OB, the approach’s synthetic minority class generation strategy exacer-
bates this aggressiveness.

From this analysis, it has been shown that SMOCIlust managed to forget the pre-drift
concept and adapt to drift leading to 100% rare minority class examples and more robust
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to false-positive drift detections than other approaches in the two-dimensional StaticIm10_
Rare100 stream. However, the experiment with the five-dimensional StaticIm10_Rare100
stream presents different results (Fig. 4). It shows that SMOClust only performed better
than OnlineOversampling; but worse or similar to most other approaches. One poten-
tial reason is the fact that two-dimensional space is more compact than five-dimensional
space, the rare minority class examples have a lot less space to randomly spawn, which
means they are likely to spawn at the locations that had already been learnt and covered
by SMOClust using micro-clusters. Therefore, SMOClust can predict their class label cor-
rectly. However, five-dimensional space is sparser than two-dimensional space, meaning
that new rare minority class examples are less likely to spawn at previous locations. There-
fore, SMOClust struggled to make correct predictions to new rare minority class examples.
Another potential reason is that the stream clustering method may be less effective in data
streams with more dimensions. For example, it may create some minority class micro-clus-
ters that overlap with the majority class region because of the sparsity of the feature space.
Therefore, the aforementioned advantage of SMOClust in dealing with drift could not be
manifested. Anyhow, future work is needed to further confirm whether SMOClust tends to
perform better in data streams with fewer dimensions.

Short Summary: This analysis shows that SMOClust managed to adapt to concept
drift leading to 100% rare minority class examples and was robust to multiple drift
detection during gradual drift as well as false-positive drift detections when the data
stream has only two dimensions. However, the experiments with the corresponding
five-dimensional stream present a different set of results, as the stream clustering
methods used by SMOClust might not perform well when the data stream has more
dimensions.

4.3.3 Results with two-dimensional artificial data streams

To investigate whether SMOClust performs better in lower-dimensional data streams, we
performed additional experiments on the same artificial data streams presented in Sect. 4.1,
but with only two input features. We also created a randomised two-dimensional data
stream for the purpose of hyper-parameter tuning, following the procedure described in
Sect. 4.3.

Figure 14 presents the difference in average G-Mean (based on thirty runs) between
compared approaches and SMOClust on two-dimensional artificial data streams in the
form of a heat-map. Green cells indicate results favourable to SMOClust, whereas red cells
indicate results favourable to the compared approach. For a comprehensive table of the
predictive performance of the approaches, please refer to the supplementary document.
Compared to Fig. 4, there are fewer red cells in this figure, indicating that SMOClust gen-
erally performed better in the lower-dimensional version of the same set of data streams. In
particular, the sections of the heat-map corresponding to StaticIm30 and StaticIm10 data
streams, which were mostly reddish in Fig. 4, are mostly greenish in Fig. 14.

Figure 14 also confirms the trend shown in Fig. 4, showing that SMOClust tends to
outperform other approaches in severely class-imbalanced data streams. To further vali-
date this trend in lower-dimensional data streams, we performed further experiments on
the same set of single factor drift artificial data streams, but with enforced extremely severe
class imbalance ratios (minority class ratio 0.3% to 5%, as summarised in Table 3). The
results are presented in Fig. 15 in the form of a heat-map, using the same colour scheme as
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Fig. 14 Difference in Average G-Mean Against SMOClust on Two-Dimensional Class Imbalanced Arti-
ficial Data Streams Based on 30 Runs (Green cells indicate SMOClust performed better; Red cells indi-
cate SMOClust performed worse; Grey horizontal lines separate different groups of data streams, i.e.,
StaticIm{30/10/1}, Imbalance Ratio Drift, Double Factor, and Complex Factor) (Color figure online)

Fig. 14. Similarly, please refer to the supplementary document for a comprehensive table
of the predictive performance of the approaches.

Figure 15 presents more solid green cells than Fig. 14, indicating that SMOClust per-
formed better than other approaches in extremely severe class-imbalanced data streams,
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even in the lower-dimensional case. Additionally, the fact that Fig. 15 has more green cells
than Fig. 5 supports the conclusion that SMOClust tends to perform better in lower-dimen-
sional data streams.
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Table 10 Statistical (Friedman) Ranking of prequential G-Mean on Real-World Streams Grouped by Fac-
tors

SMO- VFC- SMO-
Groups | 00B UOB 008 °UM°" 00, UOB4 0084 UM™ Gau. sMO-  TE- [9MO-
OverB OverBqg . Clust

Noise TE OB
Lg;:‘;; 543 883 203 7.33 543 1027 203 7.33 297 11.87 6.23 | 8.23
NOAA | 1.80 580 500 1.93 610 827 10.73 6.97 12.00 9.67 = 3.13 | 6.60
Ozone | 3.27 268 925 3.93 6.0 282 902 753 1070 12.00 2.30 | 8.40
P};Ig(%D‘ 5.90 243 1.20 6.43 800 6.97 237 7.67 1070 10.30 = 4.03 | 12.00
Covtype | 2,79 6.60 9.34 333 544 523 11.56 6.40 9.95 9.89  2.81 | 4.66
INSECTS| 559 9.39 7.26 6.28 | 123 858 3.75 254 591 11.29 477 |11.41
Amazon | 1.93 843 423 1193 457 | 343 650 6.93 7.93 1047 | 1.07 | 10.57
Twitter | 1.90 5.37 843 3.87 257 407 850 497 1053 1047 5.33 |12.00

All [ 3.7593 7.0417 7.325 5.0074 4.2778 6.4083 7.712 5.4963 8.5574 10.5778 3.6444[8.1926

The p values of Friedman tests are all <2.2E-16
Highlighted ranks denote significant superior performance

Underlined ranks denote the corresponding approach’s performance have no statistical significance with
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Fig. 16 Difference in Average G-Mean Against SMOClust on Real-World Data Streams Based on 30 Runs
(Green cells indicate SMOClust performed better; Red cells indicate SMOClust performed worse) (Color
figure online)

4.4 Results with real-world data streams

This section presents the analysis done to compare the predictive performance of SMO-
Clust against nine existing approaches in real-world data streams. Experiments with real-
world data streams allow us to obtain a general idea of SMOClust’s predictive performance
in practical applications, where the class imbalance ratio, the position and the type of
the concept drifts are unknown. Table 10 presents the Friedman rankings of approaches’
G-Mean on real-world data streams group by factors.

Table 10 shows that the overall top-ranked approaches on real-world data streams
are OOB, OOB,; and SMOTE-OB whereas SMOClust usually achieved low rankings.
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SMOClust only achieved a relatively better ranking in Covtype streams than in other
streams. Considering all real-world data streams, SMOClust performed similarly to
OnlineOversampling,; and SMOGauNoise. Following the analysis method in Sect. 4.3,
we also compared the thirty runs average prequential G-Mean of the approaches on
each real-world data stream in Fig. 16 to further evaluate the predictive performance of
SMOClust in real-world data streams.

Figure 16 shows that SMOClust usually performed similar or better than other
approaches in NOAA and Covtype streams while it performed worse than other
approaches in Ozone, PAKDD2009 , INSECTS, Amazon, and Twitter streams. Recall-
ing the discussion in Sect. 4.1 on estimated characteristics of real-world streams, NOAA
and Covtype streams mainly consist of safe and borderline minority class examples with
different movements of minority class clusters and the minority class ratios through-
out Covtype streams are usually very low (except Covtype, —(1_s)) and Covtypeg ).
As discussed in Sect. 4.3, these are the characteristics of a data stream that SMOClust
is likely to perform similar or better than other approaches, especially when the class
imbalance ratio is severe, such as Covtype, 3 stream. Thus, we can see from Fig. 16
that the rows of NOAA and Covtype streams mainly consist of saturated green cells and
pale red cells.

On the other hand, Table 5 shows that Ozone, PAKDD2009 , INSECTS, Amazon,
and Twitter streams consist of large proportions of rare and outlier minority class exam-
ples. Based on the discussion in Sect. 4.3.2, SMOClust could not handle rare and outlier
minority class examples very well, except when the dimensionality of the data stream
was low or compact. Thus, it is not surprising to see a lot of red cells on these data
streams.

To summarise the result of experiments with real-world data streams, the advan-
tage of the proposed synthetic minority class oversampling strategy in SMOClust
is manifested in severely class imbalanced data streams with high proportions of
safe and borderline minority class examples with concept drifts of different move-
ments of minority class sub-clusters. On the downside, SMOClust could not han-
dle rare and outlier minority class examples very well. These findings are consist-
ent with the result of experiments with artificial data streams.

5 Conclusion

The main contribution of this work is the proposed stream clustering based synthetic
minority oversampling approach, called SMOClust (RQ1). This method helps the learn-
ing system to strategically explore different decision areas of the minority class and to be
robust to false-positive drift detections (RQ1). To evaluate the predictive performance and
the characteristics of SMOClust, experiments with artificial data streams concerning differ-
ent types of concept drift difficulties were performed. The results show that SMOClust per-
formed particularly well in severely class imbalanced data streams with high proportions
of safe and borderline minority class examples (RQ2). It also handles concept drifts of
different movements of minority class clusters better than other existing approaches (RQ2).
However, when the data stream presents high proportions of rare and outlier minority class
examples, SMOClust becomes disadvantageous (RQ3).
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To further understand the reason behind the experiment results on artificial data
streams, additional experiments with representative two-dimensional artificial data streams
were performed. However, it shows that SMOClust managed to handle rare minority class
examples better than other approaches in these two-dimensional cases. This indicates that
the reason why SMOClust could not handle rare cases very well on the corresponding five-
dimensional stream was likely because of the stream clustering methods did not perform
well in higher-dimensional space. In other words, SMOClust may be more advantageous
when the dimensionality of the data stream is not high.

Lastly, we validated the performance of SMOClust on different real-world data streams.
To facilitate the analysis of the experiment results of this part of the study, we estimated
the characteristics of the real-world data streams, following the procedure adopted by
Brzezinski et al. (2021). Based on the estimated characteristics and the experiment results,
we concluded that the SMOClust behaved similarly to the experiments with artificial data
streams (RQ3).

As for future work, an investigation of new strategies to better handle large proportions
of rare and outlier minority class examples is one potential direction. For example, strategies
to generate synthetic minority examples for oversampling in a more diverse manner without
introducing a significant amount of noise or creating artificial concept drifts could be pro-
posed. Additionally, extending the idea of SMOClust to deal with multi-class classification
tasks could also be an area to investigate in the future. Furthermore, the proposed synthetic
minority oversampling strategy in this work could be adapted for use with other complex data
stream learning systems easily as it is a drift adaptable data-level method to address class
imbalance in data stream learning. For example, it could be incorporated into an explicit drift
handling approach which exploits relevant past knowledge to handle concept drifts (Chiu &
Minku, 2018, 2022) or an ensemble approach which evolves themselves to adapt to concept
drifts (Kolter & Maloof, 2003; Brzezinski & Stefanowski, 2014). Apart from these, a com-
prehensive study to compare SMOClust against more approaches for learning drifting class
imbalanced data streams (e.g., CSARF (Loezer et al., 2020), ROSE (Cano & Krawczyk,
2022) etc.) and with more data sets could also be a potential future work.
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