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Abstract
There is a gap between current methods that explain deep learning models that work 
on imbalanced image data and the needs of the imbalanced learning community. Exist-
ing methods that explain imbalanced data are geared toward binary classification, single 
layer machine learning models and low dimensional data. Current eXplainable Artificial 
Intelligence (XAI) techniques for vision data mainly focus on mapping predictions of spe-
cific instances to inputs, instead of examining global data properties and complexities of 
entire classes. Therefore, there is a need for a framework that is tailored to modern deep 
networks, that incorporates large, high dimensional, multi-class datasets, and uncovers 
data complexities commonly found in imbalanced data. We propose a set of techniques 
that can be used by both deep learning model users to identify, visualize and understand 
class prototypes, sub-concepts and outlier instances; and by imbalanced learning algorithm 
developers to detect features and class exemplars that are key to model performance. The 
components of our framework can be applied sequentially in their entirety or individually, 
making it fully flexible to the user’s specific needs (https://​github.​com/​dd1gi​thub/​XAI_​for_​
Imbal​anced_​Learn​ing).

Keywords  Explainable AI · Interpretable ML · Imbalanced learning · Deep learning

1  Introduction

Convolutional neural networks (CNNs) are increasingly being used in high-stakes fields such 
as medical diagnosis (Tjoa & Guan, 2020) and autonomous driving (Levinson et al., 2011). 
Yet, their decisions can be opaque, which makes it challenging for machine learning (ML) 
algorithm developers to diagnose and improve model performance. The black-box nature of 
neural networks has spawned the field of explainable Artificial Intelligence (XAI), which 
seeks to develop techniques to interpret and explain models to increase trust, verifiability, and 
accountability (Gunning & Aha, 2019). The term Interpretable Machine Learning (IML) is 
sometimes used to distinguish it from methods that offer an “explanation”, which has a rich 
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history in the social sciences as involving human interaction and human subject studies to 
evaluate the quality of an explanation (Miller, 2019; Hoffman et al., 2018). We use both terms 
(XAI and IML) in this paper, since no clear, commonly agreed upon definition of explanation 
and interpretation exists (Linardatos et al., 2020).

The perceived need to enhance the interpretability of deep learning models has resulted in 
a number of techniques that are specifically targeted to fields that use ML, such as medicine 
(Bruckert et al., 2020), air traffic control (Xie et al., 2021), finance (Chen et al., 2018), and 
autonomous driving (Levinson et al., 2011). However, there is a paucity of IML techniques 
that have been explicitly adapted for imbalanced data.

Interpretation is critical to both imbalanced learning and IML; although both fields have 
approached it from different perspectives. IML has generally focused on model interpretabil-
ity; whereas imbalanced learning has sought to better understand data complexity. In contrast, 
imbalanced learning has typically sought to understand the interplay of class imbalance with 
overlap, sub-concepts and data outliers because imbalanced data can exacerbate model latent 
feature entanglement, class overlap, and the impact of noisy instances on classifiers (Denil & 
Trappenberg, 2010; Prati et al., 2004; Jo & Japkowicz, 2004). In addition, many IML tech-
niques usually seek to explain model decisions with respect to specific instances; whereas 
imbalanced learning is generally concerned with the global properties of entire classes.

In this work, we combine facets of both fields into a single framework to better understand 
a CNN’s predictions with respect to imbalanced data. We do not develop a single method to 
improve the interpretability of complex, imbalanced datasets. Rather, we propose a framework 
and suite of tools that can be used by both model developers and users to better understand 
imbalanced data and how a deep network acts on it.

In this paper, we make the following research contributions to the field of imbalanced 
learning:

•	 Framework for understanding the high-dimensional imbalanced data. Many existing 
imbalanced learning techniques that assess data complexity are designed for binary classi-
fication on low-dimensional data and shallow ML models. Because we use the low-dimen-
sional latent representations (Sect. 3.1) learned by a CNN, we are able to provide a suite 
of tools (Sect. 3) that efficiently visualize specific concepts that are central to imbalanced 
learning: class prototypes and sub-concepts (Sect. 3.2) and class overlap (Sect. 3.4).

•	 Predict relative false positives by class during inference with training data. We show that 
the likely classes that will produce the most false positives during inference for a given 
reference class can be predicted from training data (Sect. 3.3).

•	 Class saliency color visualizations. Existing IML methods display black and white heat-
maps of pixel saliency for single dataset instances. We, instead, visualize the most salient 
colors used by CNN models to identify entire classes. Similar to IML saliency methods, 
we use the gradient of individual instances to map decisions to input pixels; however, we 
aggregate this information efficiently across all instances in large datasets by using color 
prototypes and latent feature embeddings (Sect. 3.5).

2 � Background and related work

In this section, we introduce the guiding principles in IML and imbalanced learning that 
animate our framework:
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•	 Data is an important element of model understanding. Advances in deep learning have 
been built, in part, on access to large amounts of data. Therefore, it is critical to under-
stand how the model organizes data into low dimensional representations used for clas-
sification.

•	 Need for global data complexity insights to explain deep networks. Many current IML 
methods are instance-specific; whereas imbalanced learning explanation requires intui-
tion about global (class) characteristics.

•	 CNN texture bias as interpretation. The perceived texture bias of CNNs can be used to 
extract informative global, class-wise insights.

We also discuss the prior work that inspires our research and how our approach differs 
from previous methods.

2.1 � Centrality of data to deep learning and class imbalance understanding

Deep learning has shown significant progress in the past decade due, in part, to the ubiq-
uity of low cost and freely available data (Marcus, 2018). Deep networks are typically 
trained on thousands and even millions of examples to minimize the average error on train-
ing data (empirical risk minimization) (Zhang et al., 2018). As the size and complexity of 
modern datasets grow, it is increasingly important to provide model users and develop-
ers vital information and visualizations of representative examples that carry interpretative 
value (Bien & Tibshirani, 2011). In addition, when deep networks fail on imbalanced data, 
it is not always intuitive to diagnose the role of data complexity on classifier performance 
(Kabra et al., 2015).

In imbalanced learning, several studies have assessed the complexity of the data used to 
train machine learning models; however, many of these studies were developed for small 
scale datasets used in single layer models. Barella et al. (2021) provide measures to assess 
the complexity of imbalanced data. Their package is written for binary classification and 
is based on datasets with 3000 or fewer instances and less than 100 features. Batista et al. 
(2004) determined that complexity factors such as class overlap are compounded by data 
imbalance. Their study was performed with respect to binary classification on datasets with 
20,000 or fewer examples and 60 or fewer features. Their conclusion that class overlap is a 
central problem when studying class imbalance was confirmed by Denil and Trappenberg 
(2010), Prati et al. (2004) and García et al. (2007). Rare instances, class sub-concepts and 
small disjuncts can also exacerbate data imbalance, add to data complexity and contrib-
ute to classifier inaccuracy (Jo & Japkowicz, 2004; Weiss, 2004; Aha, 1992). Ghosh et al. 
(2022) explore the use of geodesic and prototype-based ensemble to preserve interpret-
ability on a synthetic dataset, a non-public dataset with 496 features and a public dataset 
with 13 features and less than 1000 instances, although their visualizations focus solely on 
decision boundaries.

Therefore, understanding data complexity, including class overlap, rare, border and out-
lier instances, is critical to improving imbalanced learning classifiers. This is especially 
important in deep learning, where opaque models trained with batch processing may 
obscure underlying data complexity (Ras et  al., 2022; Burkart & Huber, 2021). Unlike 
prior work, which explained data complexity by examining model inputs, we explain data 
complexity via the latent features learned by a model. These low-dimensional represen-
tations are the raw material used by the final classification layer of CNNs to make their 
predictions.
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2.2 � Global (class) vs. instance level interpretation

Several studies have shown that interpretation is critical to machine learning model user sat-
isfaction and acceptance (Teach & Shortliffe, 1981; Ye & Johnson, 1995). It is also important 
for model developers for diagnostic and algorithm improvement purposes. Explanation is cen-
tral to both IML and imbalanced learning; however, these fields approach it in different ways.

In IML, great strides have been made to increase model interpretability by describing 
the inner workings of models and justifying how or why a model developed its predic-
tion (post-hoc explanation) (Kenny et al., 2021). In general, IML techniques can roughly 
be divided into four groups.

First, there are methods that explain a model’s predictions by attributing decisions to inputs, 
including pixel attribution through back-propagation (Simonyan et al., 2013; Selvaraju et al., 
2017; Sundararajan et al., 2017; Zhou et al., 2016). These methods generally work on single 
data instances and do not provide an overall view of class homogeneity, sub-concepts, or outli-
ers (Huber et al., 2021). For example, CAM (Zhou et al., 2016), GRAD-CAM (Selvaraju et al., 
2017) and pixel propagation (Simonyan et al., 2013) all highlight the most important pixels 
that a model uses to predict a single instance of a class. In contrast, our methods show the most 
relevant feature embeddings and colors for entire classes (i.e., all instances in a class).

Second, explanations by example provide evidence of the model’s prediction by citing or 
displaying similarly situated instances that produce a similar result or through counter-fac-
tuals—instances that are similar, yet produce an opposite or adversary result (Lipton, 2018; 
Keane & Kenny, 2019; Artelt & Hammer, 2019, 2020; Mothilal et al., 2020). Like pixel attri-
bution methods, this approach only provides explanations for single instances or predictions.

Third, there are methods that explain a complex neural network by replacing, or modify-
ing, it with a simpler model. These approaches include local interpretable model explana-
tions (LIME) (Ribeiro et al., 2016), Shapley values (occlusion-based attribution) (Shapley, 
1953), the incorporation of the K-nearest neighbor (KNN) (Fix & Hodges, 1989; Cover & 
Hart, 1967) algorithm into deep network layers (Papernot & McDaniel, 2018), and decision 
boundary visualizations. Both LIME and Shapley values can be computationally expen-
sive because they involve repeated forward passes through a model (Achtibat et al., 2022). 
Methods that visualize decision boundaries, such as DeepView (Schulz et al., 2019), often 
rely on another model [e.g., UMAP (McInnes et al., 2018)] for dimensionality reduction 
and select a subset of a dataset to produce scatter plots. In contrast, our methods globally 
utilize a CNN’s internal representations for all instances in a training or test set to visualize 
classes that overlap (including the percentage of overlap), display class sub-concepts, and 
the most relevant colors that a CNN uses to distinguish an entire class.

Finally, there are IML methods that extract rules learned by a model (Zilke et al., 2016) 
and the features or concepts represented by individual filters or neurons (Gilpin et al., 2018).

In summary, many existing IML methods offer interpretations for single instances 
and do not describe the broad class characteristics learned, or used, by a neural network 
to arrive at its decision. By contrast, in imbalanced learning, the focus of most explana-
tory methods has been on the global properties of data and classes within a dataset, 
including the inter-play of class imbalance and data complexity factors, such as class 
overlap, sub-concepts and noisy examples.

In imbalanced learning, Napierala and Stefanowski partitioned minority classes into 
instances that were homogeneous (safe), residing on the decision boundary (border), rare, 
and outliers (Napierala & Stefanowski, 2016). We extend their method to both majority 
and minority classes and use a model’s latent representations to identify instance similarity 
based on the local neighborhood, instead of using the input space.
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2.3 � CNN texture bias as explanation

Recent work has demonstrated that CNNs emphasize texture over shape for object recogni-
tion tasks (Geirhos et al., 2018; Baker et al., 2018; Hermann et al., 2020). A precise defini-
tion of texture remains elusive (Haralick, 1979). Due to the difficulty of precisely defin-
ing texture, we focus on one of its properties—color or chromaticity of a region. We use a 
CNN’s color bias as explanation. As discussed in more detail in Sect. 3.5, we combine both 
saliency maps and pixel aggregation to reveal the most prevalent colors that a CNN relies on 
to distinguish a class.

3 � IML framework for imbalanced learning

In this section, we outline our framework for applying IML to complex, imbalanced data. 
Our framework is built on feature embeddings (FE). It starts broadly by visualizing sub-
concepts within classes, which we refer to as archetypes. Then, we use nearest adversary 
classes to gauge error during inference. Next, we visualize class overlap. Finally, our frame-
work allows for zooming in on specific classes to view the most salient colors that define a 
class. The basic components of the framework are graphically shown in Fig. 1. The com-
ponents of our framework can be flexibly applied sequentially and in their entirety; or indi-
vidually, making it fully flexible to the user’s needs. Each component is discussed below.

3.1 � Feature embeddings

To make our analysis of imbalanced data complexity more tractable, we work with the 
low dimensional feature embeddings learned by a CNN. We select the latent representa-
tions in the final convolutional layer of a CNN, after pooling. We refer to these features 
as feature embeddings (FE). FE can be extracted from a trained CNN and used to analyze 
dataset complexity and to better understand how the model acts on data. FE drawn from 
the final layer of CNNs capture the central variance in data (Bengio et al., 2013). In com-
puter vision, it has similarly been hypothesized that high dimensional image data can be 
expressed in a more compact form, based on latent features (Brahma et al., 2015). We use 
these features, instead of prediction confidence because neural networks can lack calibra-
tion and display high confidence in false predictions (Guo et al., 2017).

3.2 � Class archetypes

We divide each class into four sub-categories or archetypes: safe, border, rare, and outliers. 
The archetypes are inspired by Napierala and Stefanowski (2016). The four categories are 
determined based on their local neighborhood. We use K-nearest neighbors (KNN) to cal-
culate instance similarity with FE instead of input features.

More broadly, the four archetypes facilitate model, dataset and class complexity under-
standing. We use K = 5 to determine the local neighborhood. Our selection of 5 neighbors 

Fig. 1   Outline of the main components of our IML framework for imbalanced learning
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is consist with imbalanced resampling methods such as SMOTE (Chawla et  al., 2002) 
and its many variants, as well as Napierala and Stefanowski (2016). Using fewer than 5 
neighbors would be challenging with 4 archetypes. More neighbors can be used; however, 
it may prove difficult with minority classes that have few instances (e.g., in our experi-
ments, the minority class in CIFAR-10 only has 50 instances). The “safe” category repre-
sents class instances whose nearest neighbors are from the same class ( N

c
= 4 or N

c
= 5 ), 

where N
c
 is the number of same class neighbors. Therefore, they are likely homogene-

ous. The border category are instances that have both same and adversary class nearest 
neighbors (same class neighbors where N

c
= 2 or N

c
= 3 ) and likely reside at the class 

decision boundary. The rare category represents class sub-concepts (same class neighbors 
where N

c
= 1 ). Finally, the outlier category are instances that do not have any same class 

neighbors ( N
c
= 0 ). In the case of the majority class, outliers may indeed represent noisy 

instances, whereas for the minority class, the model may classify more instances as outliers 
due to a reduced number of training examples and the model’s inability to disentangle their 
latent representations from adversary classes. The four archetypes can be used to select 
prototypes that can be visualized and further inspected (see Sect. 4.2).

3.3 � Nearest adversaries to visualize false positives by class

We believe that the local neighborhood of training instances determined in latent space 
contains important information about class similarity and overlap. During training, if a 
CNN embeds two classes in close proximity in latent space, then the model will likely have 
difficulty disentangling its representations of the two classes during inference (Dablain 
et al., 2023, 2023). This failure to properly separate the classes during training will likely 
lead to false positives at validation and test time. Based on this insight, we extract feature 
embeddings (FE) and their labels from a trained model and use the KNN algorithm to find 
the K-nearest neighbors of each training instance. If an instance produces a false positive 
during training, we collect and aggregate the number of nearest adversary class neighbors 
for each reference class. See Algorithm 1.

In Sect. 4.3, we show visualizations of this technique and how it correlates with valida-
tion set false positives using the Kullback Leibler Divergence. In addition, we compare 
our method to another method that has been used in imbalanced learning to measure class 
overlap - Fisher’s Discriminant Ratio (FDR):

Algorithm 1: Nearest Adversaries
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In Eq.  (1), i and k represent pair-wise classes in a dataset and FE is a vector of feature 
embeddings, where the mean squared difference of latent features (FE) is divided by their 
variance. As used in Barella et  al. (2021), FDR is a measure of how close two classes 
are, with lower values indicating greater similarity (feature overlap). Thus, like our nearest 
adversary technique, it can be used to determine class overlap.

3.4 � Identify specific class feature map overlap

In the previous section, we examined class overlap at the instance-level. Here, we focus on 
overlapping class latent features. Each feature embedding (FE) represents the scalar value 
of a convolutional feature map (FM), after pooling. These FE/FM are naturally indexed and 
can be extracted in vector form. This natural indexing allows us to identify the FE’s with 
the highest magnitudes across an entire class.

For each class, the FE magnitudes can be aggregated and averaged. Then, the FE with 
the largest magnitudes can be selected (the top-K FE). If two classes place a high magni-
tude on a FE/FM with the same index position, then this FE is important for both classes 
and hence, may indicate feature overlap. See Algorithm 2. In Sect. 4.4, we provide visuali-
zations of this method, along with suggestions for how it can be used by model users and 
developers.

3.5 � Colors that define classes

Existing IML methods that trace CNN decisions to pixel space via gradient techniques 
track salient pixel locations for single image instances. They display a virtual black and 
white source image (black to indicate high pixel saliency to a CNN’s prediction and white 
to indicate low saliency). We make use of a gradient saliency technique commonly used 
in IML, which was developed by Simonyan et al. (2013). However, we modify it to trace 
a prediction to a pixel location only so that we can extract the RGB pixel values at that 
location.

Algorithm 2: Identify Specific Class Feature Map Overlap

(1)FDR =
(�

FE
i
− �

FE
k
)2

�
2

FE
i

+ �
2

FE
k
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Algorithm 3: Colors that Define Classes

We collect the top-K RGB pixel values for each instance in a training set and also the 
instance labels. For purposes of our illustrations in Sect. 4.5, we select the top 10% most 
salient pixels. We partition the collected pixels into bins based on the color spectrum (e.g., 
black, orange, red, green, blue, light blue, white, etc.). See Algorithm 3.

4 � Experiments and results

4.1 � Experimental set‑up

To illustrate the application of our framework, we select five image datasets: CIFAR-10, 
CIFAR-100 (Krizhevsky, 2009), Places-10, Places-100 (Zhou et  al., 2017) and INatural-
ist (Van Horn et al., 2018). For each dataset, we use different types and levels of imbal-
ance to highlight varied applications of our framework (see Table 1 for dataset details). 
For purposes of our experiments, we consider three types of imbalance: exponential (exp.), 
step and natural. Exponential imbalance is introduced on a gradual basis in a multi-class 
setting, step imbalance has a cliff effect on the number of instances between classes and 
natural imbalance depends on data collection (which is unique to the INaturalist dataset).

To make training tractable, we limit Places to 10 and 100 classes and INaturalist to its 
13 super-categories. CIFAR-10 and CIFAR-100 are trained with a Resnet-32 (He et  al., 
2016) backbone and Places and INaturalist with a Resnet-56. Although a Resnet architec-
ture is used for our experiments, any CNN architecture that imposes dimensionality reduc-
tion should work (e.g., a (Huang et al., 2017) likely would not facilitate the use of lower 

Table 1   Datasets and training

Dataset Classes Train Test Input dim 
(pixels)

FE dim Imbal. type Max imbal. 
level

Epochs Arch.

CIFAR-10 10 12,046 10,000 3072 64 Exp 100:1 200 Res-32
CIFAR-100 100 19,573 5000 3072 64 Exp 10:1 200 Res-32
INaturalist 13 72,358 14,020 1,440,000 64 Natural 50:1 50 Res-56
Places-10 10 15,000 5000 196,608 64 Step 5:1 90 Res-56
Places-100 100 98,072 15,000 196,608 64 Exp 10:1 50 Res-56
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dimensional feature embeddings). We adopt a training regime employed by Cao et  al. 
(2019). Except where noted, all models are trained on cross-entropy loss with a single 
NVIDIA 3070 GPU. As discussed in the following sections, in several cases, we train mod-
els with a cost-sensitive method (LDAM) (Cao et al., 2019) to show how visualizations of 
both baseline and cost-sensitive algorithms can be used for comparative purposes to assess 
specific areas of improvement.

4.2 � Class archetypes

Figure 2 shows the percentage of true positives (TP) for each class in 5 training datasets. 
The TPs are grouped based on class archetypes: safe, border, rare and outliers. For all of 
the datasets, the safe and border groups contain the greatest percentage of TPs relative to 
the total number of instances in the group.

In Fig. 3, we select a prototypical instance from the safe, border, rare and outlier catego-
ries for the majority class (airplanes) and the minority class (trucks) from CIFAR-10 for 
visualization purposes. In large image datasets, it may not be obvious which examples are 
representative of the overall class (safe examples), which examples reside on the decision 
boundary (border), and which instances may be sub-concepts or outliers. For each of these 

Fig. 2   This figure shows the percentage of True Positives (TPs) of the safe, border, rare and outlier arche-
types in each training set. For Places-100, the classes with the 5 largest number of examples and the 5 few-
est are shown to make the visualization interpretable. In the sub-figure legends, the class with the greatest 
number of instances is at the top (majority) and the class with the fewest instances is at the bottom (minor-
ity)
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categories and classes, we select the most central prototype, using the K-medoid algorithm, 
and visualize them.

These visualizations can help identify potential issues that require further investigation 
of specific classes. For example, in the case of airplanes, it may not be immediately appar-
ent to a human, who preferences shape over texture, why the outlier example is different 
from the safe prototype in Fig. 3. This seeming incongruence can serve as a flag for model 
users and algorithm developers. As discussed in more detail in Sect. 4.5, we conjecture that 
this seeming incongruity is due to a CNN’s preference of texture over shape when distin-
guishing classes (i.e., there is no blue sky in the outlier airplane prototype).

Use cases For model users, the four categories facilitate the visualization of representa-
tive sub-groups within specific classes. When dealing with large datasets, these visuali-
zations can help reduce the need for culling through copious amounts of examples and 
instead allow model users to focus on a few representative examples: those that are rela-
tively homogeneous in model latent space (safe), those that reside on the decision bound-
ary (border), rare and outlier instances. See Fig. 3.

For imbalanced model developers, the class archetypes can help improve the training 
process. First, majority class outliers could possibly be mislabeled instances that should be 
removed. In this case, it may be necessary to examine all of the outlier examples, instead 
of only the prototype. Second, it can inform potential resampling strategies. For example, 
safe examples, due to their homogeneity, may be ripe for under-sampling; border and rare 
instances may be good candidates for over-sampling.

4.3 � Nearest adversaries to visualize false positives by class

Figure 4 visualizes the relationship between validation error and training nearest adversar-
ies by class for a CNN trained with the INaturalist dataset. In the figure, each class is repre-
sented with a single bar. The class names are matched with specific colors in the legend. In 
the figure on the left (a), each color in each bar stands for an adversary class that the model 
falsely predicts as the reference class. The length of the color bars represent the percentage 
of total false positives produced by the adversary class. In Fig. 4a, we show the validation 
set false positives.

In contrast, Fig. 4b shows the percentage of adversary class nearest neighbors for each 
reference class. By placing these diagrams side by side, we can easily compare how nearest 
adversaries (on the training set) neatly reproduces the classes that will trigger false posi-
tives (in the validation set).

This tool can provide a powerful indication of the classes that a model will struggle with 
during inference when only using training data. Model users and developers can employ 
the figure on the right as a proxy for the diagram on the left. For example, the training 

Fig. 3   This figure displays the safe, border, rare and outlier prototypes for 2 classes in the CIFAR-10 data-
set. a–d are from the class with the largest number of examples (airplanes) and e–h are from the class with 
the fewest number of examples (trucks)
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nearest adversary neighbors diagram (b) quickly shows, and the validation set diagram (a) 
confirms, that the model has the most difficulty (FPs) with: Fungi for the Protozoa class, 
Mammals for the Aves (birds) class, Amphibia (fish) for the reptile class, and reptiles for 
the Amphibia class.

In order to confirm the ability of training set nearest adversaries to predict the classes 
that a model will produce more false positives during validation, we measure the differ-
ence in the nearest adversary and validation FP distributions. We use Kullback Liebler 
Divergence (KLD) (Kullback & Leibler, 1951) to measure the difference in these distribu-
tions for five datasets. We also compare our nearest adversary prediction with two other 
methods: a random distribution and Fisher’s Discriminant Ratio. Table 2 shows that our 
method (NNB) predicts much better than random (by a factor between 1.8 and 34 times 
better) and compares favorably with another method that measures class overlap, Fisher’s 
Discriminant Ratio (see Sect. 3.3 for a description of FDR). Although FDR may be more 
accurate in some cases, it only shows pairwise similarity of classes. In contrast, our NNB 
method visualizes the proportionate similarity of all adversary classes compared to a refer-
ence class so that a tiered spectrum of overlap for classes in a dataset can be readily seen, 
offering a more realistic outlook on the difficulty of the considered dataset.

This simple tool is useful because it is an indicator of latent feature entanglement. If a 
model produces a large amount of adversary instances that are in close proximity in the 
training set to the reference class, then the model will likely have difficulty distinguishing 
the two close neighbors at validation time.

Fig. 4   This figure visualizes the relationship between validation error by class and training nearest adver-
saries by class. This tool can provide a powerful indication of the classes that a model will struggle with 
during inference

Table 2   KLD of Validation Set 
False Positives

The bolded values indicate the top-performing method

Dataset NNB KLD FDR KLD Rand. KLD NNB: 
Rand. 
Factor

CIFAR-10 0.5561 0.5157 4.535 8.155
CIFAR-100 4.039 1.577 7.437 1.841
Places-10 0.4340 0.2942 2.821 6.500
Places-100 0.5919 1.327 4.191 7.081
INaturalist 0.0577 .3537 1.988 34.47
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Use cases This technique can be a powerful tool for imbalanced data. Our method 
allows model users and imbalanced algorithm developers to gauge the classes that the 
model will have difficulty with. Therefore, our visualization allows users to reasonably pre-
dict the distribution of validation error based solely on the training set.

4.4 � Feature map overlap

In the previous section, we visualized class overlap at the instance level. Here, we examine 
class overlap at the feature embedding (FE) level. FE are scalar values of the output of 
a CNN’s final convolutional layer, after pooling. Higher valued FE indicate CNN feature 
maps, in the last convolutional layer, that the model views as more important for object 
classification purposes.

In Fig.  5, we visualize the ten most significant FE for each class in CIFAR-10 (i.e., 
the ones with the largest mean magnitudes for each class). Each bar represents a class, as 
shown on the x-axis. Each of the 10 segments of each bar is color coded, such that gray is 
the FE with the largest mean magnitude (on the bottom of the bar) and pink is the smallest 
(top of the bar). Each color coded segment of a bar contains a number, which is the index 
of a FE/FM. For this model, there are 64 FE/FM. The relative size of each segment (y-axis) 
shows the percentage that each FE magnitude makes up of the top-10 FE magnitudes.

Therefore, the chart shows the most important latent features (feature maps) that a CNN 
uses for each class to make its class decision. Because the FE indices are shown for each 
class, they can be compared between classes to identify latent feature overlap.

For example, in Fig. 5a, we can see that trucks and cars contain five common FE in their 
top-10 most important FE (i.e., FE indices 57, 53, 43, 0 and 44). In contrast, trucks and 
planes share only 2 top-10 FE (FE indices 43 and 53). Trucks are the class with the fewest 
number of training examples, with planes the most, and cars the next largest. For trucks, 
the two classes that produce the most false positives at validation time are cars and planes, 
respectively (see Fig.  6a). This chart implies that the large number of FPs produced for 
planes and cars may be due to two different factors. In the case of planes, it seems to be due 

Fig. 5   This diagram provides a clear indication of class overlap at the feature map level. It shows the top-K 
( K = 10 ) latent features (FE) used by the model to predict CIFAR-10 classes. Each of the 10 segments of 
each bar is color coded, such that gray is the FE with the largest mean magnitude (on the bottom of the bar) 
and pink is the smallest (top of the bar). In this case, there are a total of 64 feature maps, which correspond 
to the FE index numbers listed in the bar charts. Each number in the bar chart represents a FE or feature 
map index
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to numerical differences in the number of training examples because of the low FE overlap; 
whereas, in the case of cars, it appears to be due to FE overlap.

We can further explore this hypothesis by examining how a cost-sensitive algorithm, 
LDAM, which focuses on the numerical difference of training instances (and not features) 
behaves in the face of class overlap. In Fig.  5, the figure on the left (a) is trained with 
cross-entropy loss and the figure on the right (b) is trained with a popular cost-sensitive 
method used in imbalanced learning, LDAM. Interestingly, in the figure on the right (b), 
where a CNN is trained with a cost-sensitive method, there is still five FE that are shared 
in common between the truck and car classes. In fact, if we view figures (a) and (b) of 
Fig. 6, we can see that LDAM reduces false positives for the plane class but does not have 
a large impact on the automobile class, which is likely because it is geared toward address-
ing instance numerical differences and not latent feature overlap. Thus, although the cost-
sensitive method may have addressed the class imbalance, in part, it does not appear to 
have completely addressed feature overlap.

Use cases This visualization can provide vital clues about where a CNN classifier may 
break-down. The cause of FPs may not always be solely due to class imbalance. Other fac-
tors, such as a model’s entanglement of latent features, may be at stake. In these situations, 
imbalanced learning algorithm developers may want to consider techniques that address 
feature entanglement, instead of solely class numerical imbalance. For example, it may 
be possible to design cost-sensitive loss functions that assign a greater cost to FE overlap 
based on FE index commonality between classes.

This visualization may also be used to assess cost-sensitive algorithms. The visuali-
zation can help imbalanced learning algorithm developers decide if, for example, cost-
sensitive techniques are addressing only class imbalance or, additionally, if their methods 
improve feature entanglement in latent space [see also (Ghosh et al., 2022; Pazzani et al., 
1994)].

4.5 � Colors that define classes

This visualization can be used to identify the color bands that are most prevalent in 
a data class. As an illustration, Fig.  7 shows the top 10% of color group textures for 
the truck, auto and plane classes in CIFAR-10. In the case of autos and trucks, black 

Fig. 6   This diagram shows the false positives for trucks for CNNs trained with cross-entropy loss (CE) and 
LDAM
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(30%) and gray (15%) are the 2 most common colors. Since all cars and trucks have 
(black) tires, the presence of this color is not surprising. Even though the number of 
samples is vastly different between cars and trucks (60:1 imbalance), the overall propor-
tion of color bands is very similar, which tracks the FE space overlap that we previously 
observed for these 2 classes (model feature entanglement). In the case of planes, black 
and gray are still important (17% each); however, there is a much larger percentage of 
blue, light blue, and white (12.5% each), due to the greater presence of blue sky and 
white clouds (background). In contrast, white is salient only 5% of the time for cars and 
trucks.

Additionally, Fig. 8 shows safe and border prototypes for a baseball field (majority 
class) and rafts (minority class) from a CNN trained on the Places-100 dataset with 

Fig. 7   This diagram shows the top 10% of color groups for specific classes based on gradient saliency trac-
ing. The classes are drawn from CIFAR-10

Fig. 8   This diagram shows the most salient colors for a majority (baseball field) and minority class (raft), 
along with archetypical images drawn from the safe and border categories and a CNN trained on the 
Places-100 dataset. In the case of a baseball field, the model preferences green, brown and gray; whereas 
for rafts, white is more prevalent (likely due to white rapids) and brown and green are less emphasized. This 
type of information may be relevant for purposes of oversampling techniques in pixel space. By determin-
ing the colors that the model preferences, it may be possible to modify the colors via augmentation to train 
the model to preference other colors (Color figure online)
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cross-entropy loss. For the baseball field, the most salient colors used by the model to 
detect class instances are black, green and brown. In the safe prototype, we can see 
black leggings on the player’s uniform, green grass and a brown infield. In the bor-
der prototype, we can see a black background (over the fence), player black shoes, and 
green grass. In the case of rafts, green and brown are not as prevalent in the model’s top 
10% most salient pixels. Instead, white (white water rapids) and the black background 
are more important.

Use cases Users of CNNs trained on imbalanced data may use this visualization to bet-
ter understand the major color bands that are prevalent across a class. When combined with 
class prototype visualization, it can also provide intuition into whether a classifier is using 
background colors (e.g., blue sky or clouds) to discern a class. For imbalanced learning 
algorithm developers, it can suggest specific pixel color groups that may be over- or under-
sampled at the front-end of image processing to improve classifier accuracy.

5 � Limitations and future directions

There are several potential limitations to our research that should be seen as future direc-
tions in developing XAI and IML systems for imbalanced data. First, our techniques were 
applied to datasets comprising object recognition in natural scenes. A future research direc-
tion could be to extend these techniques to object detection and in-door settings. Second, 
we focused on datasets where the number of class instances were imbalanced. A potential 
future research direction could be to extend our research to adversarial example analysis. 
For example, when an adversarial instance is misclassified, (1) which feature embeddings 
caused the misclassification, (2) what is the distribution of classes that are falsely predicted 
by adversarial examples, and (3) which input image colors or features does the model 
struggle when small perturbations are made to an image class?

6 � Conclusion

We present a framework that can be used by both model users and algorithm developers to 
better understand and improve CNNs that are trained with imbalanced data. Because mod-
ern neural networks depend on large quantities of data to achieve high accuracy, under-
standing how these models use complex data and are affected by class imbalance is critical. 
Our Class Archetypes allow model users to quickly identify a few prototypical instances 
in large datasets for visual inspection to determine safe, border, rare and outlier instances 
of a class in datasets with multiple classes and a large number of examples. Our Nearest 
Adversaries visualization enables model users and developers to identify specific classes 
that overlap in a multi-class setting and provides a “heatmap” of the classes causing the 
greatest overlap. Our feature overlap visualization allows model users to identify specific 
latent features that are overlap and cause model confusion. Finally, our colors that define 
classes technique permits model users to understand specific colors that a model relies in 
making decisions for an entire class which provides insight into potentially spurious feature 
selection and the role of background scene context on model decisions.
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