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Abstract
Community detection finds homogeneous groups of nodes in a graph. Existing approaches 
either partition the graph into disjoint, non-overlapping, communities, or determine only 
overlapping communities. To date, no method supports both detections of overlapping and 
non-overlapping communities. We propose UCoDe, a unified method for community detec-
tion in attributed graphs that detects both overlapping and non-overlapping communities by 
means of a novel contrastive loss that captures node similarity on a macro-scale. Our thor-
ough experimental assessment on real data shows that, regardless of the data distribution, 
our method is either the top performer or among the top performers in both overlapping 
and non-overlapping detection without burdensome hyper-parameter tuning.

Keywords  Community detection · Graph neural networks · Overlapping · Non-
overlapping · Modularity

1  Introduction

Community detection (Fortunato, 2010) is the problem of identifying sets of nodes in 
a graph that share common characteristics. In social networks, community detection 
identifies groups of individuals who participate in joint activities (e.g. sports clubs) 
or having similar preferences (Perozzi et al., 2014); in biological networks, communi-
ties represent proteins that contribute to a specific disease (Mall et  al., 2017). Such 
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networks include information in node attributes that may be helpful when identify-
ing similarities (e.g., the age of a person). However, these attributes are typically not 
considered by traditional community detection methods, such as spectral clustering 
(Shi & Malik, 2000), modularity maximization (Newman, 2006), or more recent graph 
embeddings (Cai et al., 2018), making them ill-suited for detecting node communities 
in attributed graphs.

In recent years, graph neural networks (GNNs) (Kipf & Welling, 2017; Veličković 
et al., 2018; Hamilton et al., 2017; Bronstein et al., 2017; Battaglia et al., 2018) have 
shown superior performance in a number of supervised tasks on graphs, especially 
link prediction, node classification, and graph classification. GNNs popularity stems 
from their aptitude to capture complex relationships in networks, typically by means 
of propagating node attributes and features to neighboring nodes by a message-pass-
ing process (Battaglia et al., 2018). These are typically accompanied by graph pooling 
(Bruna et al., 2014; Bianchi et al., 2020; Lee et al., 2019), which aggregates multiple 
nodes into higher-level representations to reduce the number of parameters of the neu-
ral network.

GNNs have propelled advancements in supervised tasks; yet on unsupervised tasks 
such as community detection, GNNs have not yet received the same attention. Most 
existing GNN methods do not directly optimize for community detection but achieve 
the objective indirectly. Unsupervised GNNs, such as the popular Deep Graph Infomax 
(DGI) (Veličković et al., 2018), find node representations that, in a second step, need 
to be subjected to a clustering algorithm, such as the widely used k-means, to actually 
obtain communities.

Recently, a few methods propose GNNs that explicitly optimize for community 
detection. GNNs for non-overlapping community detection either optimize for a sin-
gle score or combine several scores. Single score methods revisit traditional measures 
such as min-cut (Bianchi et al., 2020) and modularity (Tsitsulin et al., 2020) objectives 
to return node-community probabilities. Combined score methods (Zhang et al., 2019, 
2020) integrate multiple different objectives. These methods outperform single score 
methods in non-overlapping community detection, but require substantial tuning to the 
dataset at hand and are typically less robust and less interpretable than their single 
objective counterparts.

Non-overlapping community detection aims at returning a single community assign-
ment for each node. As such, they are ill-suited for overlapping community detection. 
NOCD (Shchur & Günnemann, 2019) is, at the time of writing this paper, the only 
GNN that optimizes for overlapping community detection. In particular, NOCD finds 
communities that maximize the probability of recovering the graph structure. Yet, this 
approach constrains the community structure to be overlapping and thus does not cap-
ture non-overlapping communities. In conclusion, to date, no GNN detects both over-
lapping and non-overlapping communities.

Contributions. (1) We introduce a new GNN method, UCoDe, for community 
detection on graphs. We devise a simple effective single score model which leverages 
state-of-the-art representations; (2) UCoDe  features a novel contrastive loss function 
that promotes both overlapping and non-overlapping communities, thus being the first 
approach to achieve competitive results across these tasks with a single model. (3) We 
perform extensive experiments on real data, showing that our method outperforms sin-
gle-objective methods without the need for extensive parameter tuning, achieving qual-
ity on par with more complex combined scores.
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2 � Related work

Before delving into our solution, we provide an overview of the literature on community 
detection, graph neural networks, graph pooling, and graph embeddings. Table 1 provides 
a summary of the characteristics of the most important work in the area, highlighting core 
properties of the methods, such as their ability to capture overlapping and non-overlapping 
communities and whether they achieve their results in an unsupervised manner with a sin-
gle score approach.

2.1 � Traditional community detection

Community detection has a long history in graph analysis (Fortunato, 2010) with applica-
tions across the natural sciences. There are two main categories of community detection: 
non-overlapping community detection, also called partitioning, which seeks an assign-
ment of each node to exactly one community; overlapping community detection, seeking 
a soft-assignment of nodes into potentially multiple communities. A community detection 
algorithm optimizes a score that describes the cohesiveness of nodes in the community 
with respect to the rest of the nodes. A number of scores and methods have been proposed 
based on the graph structure, such as spectral clustering for min-cut (Shi & Malik, 2000), 
Louvain’s method for modularity (Newman, 2006), and the Girvan-Newman algorithm for 
betweenness (Girvan & Newman, 2002). Other works extend such methods by incorporat-
ing node features into the graph analysis (Yang et al., 2013).

Overlapping community detection is often approached using algorithms similar to the 
Expectation-Maximization algorithm for soft-clustering (Dempster et  al., 1977) where 
each point is a distribution over the clusters. Similarly, AGM (Yang & Leskovec, 2012) 
and BigCLAM (Yang and Leskovec, 2013) formulate the community detection problem as 
finding soft assignments to communities that maximize the model likelihood. Other tradi-
tional methods find overlapping communities by removing high-betweenness edges (Greg-
ory, 2007) or by propagating label information (Gregory, 2010). Lastly, EPM (Zhou, 2015) 
fits a Bernoulli-Poisson model, SNMF (Wang et al., 2010) and CDE (Li et al., 2018) use 
non-negative matrix factorization.

2.2 � Graph neural networks for community detection

GNNs (Wu et al., 2020) are a family of parametric models that learn node representations 
by aggregating features over the graph’s structure. GNNs exhibit state-of-the-art perfor-
mance in supervised tasks, such as link prediction, node and graph classification.

Popular GNN models include spectral GNNs (Defferrard et al., 2016; Bronstein et al., 
2017), GCNs (Hamilton et al., 2017; Kipf & Welling, 2017), graph autoencoders (GAEs) 
(Kipf and Welling, 2016), graph isomorphism networks (Xu et al., 2018), and Deep Graph 
Infomax (DGI) (Veličković et al., 2018). These models compute node features in an unsu-
pervised manner if equipped with a reconstruction loss. A clustering algorithm, such as k
-means, can cluster the node features to return communities. Since there is no coupling 
between such GNN model objectives and the clustering algorithm, the resulting communi-
ties may not accurately represent all groups in the graph.
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GNNs for community detection
Some GNNs directly optimize for non-overlapping community detection with com-

munity-wise loss functions. Single objective approaches propose variations of traditional 
cohesiveness scores, such as min-cut (Bianchi et al., 2020) and modularity (Tsitsulin et al., 
2020). Yet, single-objective methods inherit the limitations of the score they aim to opti-
mize, providing community memberships that are subject to the loss objective’s definition 
of community.

CommDGI (Zhang et al., 2020) proposes a combined objective as a linear combination 
of three objectives, the DGI objective (Veličković et  al., 2018), modularity, and mutual 
information. CommDGI’s combined objective overcomes the limitations of the single score 
methods but requires extensive parameter tuning for proper results. Similarly, recent multi-
objective methods operate on the pairwise correlation matrix (Liu et al., 2022), unsuper-
vised contrastive relations (Park et al., 2022), KL-divergence between clusters (Zhao et al., 
2021) (Bo et al., 2020), and structured encodings (He et al., 2021). These methods, besides 
employing complex combined objectives, often require initialization with elaborate pre-
trained models (Bo et al., 2020; Zhao et al., 2021; Liu et al., 2022), running k-means either 
in the computation of the embeddings (Liu et al., 2022), in each epoch (Sun et al., 2021), or 
as an initialization step (Bo et al., 2020), and hyperparameter tuning for each dataset (Bo 
et al., 2020; Zhao et al., 2021; Liu et al., 2022; Park et al., 2022). In contrast, our model 
uses the same hyperparameters for all datasets, devises a single-objective contrastive loss, 
requires no sophisticated initialization, and detects communities without the need to run k-
means. Nevertheless, in our evaluation, we also compare with DCRN (Liu et al., 2022), the 
most recent of such combined objective methods.

While models like DMoN  (Tsitsulin et  al., 2020) return soft community assignments 
through a softmax output layer, both single and combined objective methods explicitly 
penalize overlap among communities.

NOCD (Shchur & Günnemann, 2019) proposes an overlapping community detection 
loss that maximizes the likelihood of Bernoulli-Poisson models (Shchur & Günnemann, 
2019). NOCD achieves competitive results on overlapping community detection but cannot 
directly detect non-overlapping communities.

2.3 � Graph pooling

Graph pooling (Bruna et al., 2014; Bianchi et al., 2020; Lee et al., 2019) is an operation 
that aggregates nodes so as to learn summarized representations. The purpose of graph 
pooling is to remove redundant information and reduce the number of parameters of the 
GNN.

Model-free pooling coarsens the graph structure by aggregating nodes without consid-
ering the node attributes. Graclus (Dhillon et al., 2007) revisits max-pooling to aggregate 
similar nodes in a hierarchical fashion. SAGPool (Lee et al., 2019) proposes a self-attention 
layer to reweigh nodes in the graph. Model-free approaches act as layers in the network and 
do not provide communities as output.

Model-based pooling learns coarsening operators through a differentiable loss function. 
DiffPool (Ying et  al., 2018) learns a hierarchical clustering assignment of the graph for 
supervised graph classification. Top-K pooling (Gao & Ji, 2019) trains an autoencoder that 
assigns a score to each node; the pooling phase retains the k nodes with the highest score. 
Yet, these methods do not explicitly optimize for cluster assignments resulting in substand-
ard communities (Bianchi et al., 2020).
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MinCutPool (Bianchi et  al., 2020), although a pooling technique, returns community 
assignments by optimizing the min-cut objective of spectral clustering (Shi & Malik, 
2000). MinCutPool does not require eigendecomposition of the Laplacian matrix and 
instead propagates node attributes over the GNN.

2.4 � Node embedding methods

Node embeddings (Cai et al., 2018; Chami et al., 2020) learn node representations of the 
graph structure in an unsupervised manner with shallow neural networks (Perozzi et  al., 
2014; Tang et  al., 2015), autoencoders (Wang et  al., 2016), or matrix factorization (Ou 
et  al., 2016; Qiu et  al., 2018). Similar to GNN-based representations, a clustering algo-
rithm on the embeddings can be used to detect communities from these representations. 
Node embeddings can be seen as a generalization of dimensionality reduction methods, 
and tend to preserve the structure, but disregard node attributes.

A few recent works address the problem of attributed node embeddings through matrix 
factorization (Yang et al., 2015) or deep models (Gao & Huang, 2018). None of these mod-
els are designed for community detection. AGC (Zhang et al., 2019) proposes a combined 
score based on spectral clustering on top of a GNN representation.

3 � Communities and modularity

Consider an attributed graph G = (V, E,A) where V = {v1, .., vn} is a set of n nodes, 
E ⊆ V × V is a set of edges and A = {a1, ..., al} is set of l attributes. Each node vi has an 
associated vector xi ∈ ℝ

l of real features for each attribute. The node features f̣orm an n × l 
matrix X ∈ ℝ

n×l where each node-feature vector xi is a row in such matrix. The adjacency 
matrix is a matrix representation A of the graph’s structure, where Aij = 1 if (vi, vj) ∈ E , 
and 0 otherwise. The degree di of a node vi is the number of neighbors of node i, i.e., 
di =

∑n

j=0
Aij ; d is the vector containing the degree di = di of all nodes, and D is the diago-

nal degree matrix.

Problem  (Attributed graph community detection.) We aim to assign each node to at least 
one of k communities, C1, ..., Ck , such that a score of community cohesiveness is maxi-
mized. The cluster assignment is a probability vector ci indicating the probability of node 
vi belonging to community Cj . Cluster assignments form a matrix C ∈ [0, 1]n×k where row i 
contains node i’s cluster assignment ci.

One of the determinant choices for community detection algorithms is the definition of 
the community cohesiveness score that determines the quality of the cluster assignments. 
We now review modularity (Newman, 2006), a popular measure for community detection.

3.1 � Modularity

Modularity (Newman, 2006) Q(G;C) measures the quality of a partition C of the nodes of 
the graph G ; a high modularity score indicates that node grouped by C have dense inter-
nal connections and sparse connections to outside nodes. More specifically, modularity 
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captures the difference in density between the edges inside a community ci and the edges of 
a fixed null model:

The quantity didj
2∣E∣

 is the null-model representing the probability that two nodes vi, vj are con-
nected by chance. The null model in the modularity score is the rewiring model, in which 
each node vi preserves its degree di but connects randomly to any other node in the graph. 
By defining the modularity matrix B as Bij = Aij −

didj

2∣E∣
 Eq. 1 simplifies into

3.2 � Limits and pitfalls

Modularity maximization is one of the most popular methods for community detection 
(Fortunato, 2010). However, its direct maximization may fail to provide optimal communi-
ties. As shown in (Fortunato & Barthelemy, 2007), modularity may fail to recognize com-
munities that fall below a graph-specific size. Furthermore, modularity is a measure for 
discrete partitioning and does not perform well in the case of overlapping communities 
(Devi & Poovammal, 2016). In the following section, we show how to overcome these 
limitations of modularity by combining the expressiveness of Graph Neural Networks with 
a novel contrastive modularity loss that captures both overlapping and non-overlapping 
communities.

4 � Our solution: UCoDe

The modularity objective in Eq. 2 is NP-hard, but can be solved efficiently with a spectral 
approach similar to spectral clustering (Newman, 2006) if we allow matrix C to be real 
rather than binary. This relaxed objective admits as solutions the k leading eigenvalues of 
the matrix B . This convenient relaxation enables soft clustering assignments and, in princi-
ple, overlapping community detection.

To circumvent the modularity’s resolution limit and capture interactions among nodes 
that are not directly connected, we further assume that C is the output of a Graph Neural 
Network model.

4.1 � Graph neural network approach

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton 
et al., 2017; Bronstein et al., 2017; Battaglia et al., 2018) transform the node attributes by 
nonlinear aggregation of attributes of each node’s neighbors. By virtue of this aggrega-
tion mechanism, these networks are called message passing (Battaglia et  al., 2018). We 
now review the Graph Convolutional Network (GCN) model (Kipf & Welling, 2017). We 
denote as X[0] the initial node attributes X[0] = X,

(1)Q(G; C) =
1

4 ∣ E ∣

k
∑

s=1

∑

ij

(

Aij −
didj

2 ∣ E ∣

)

CisCjs.

(2)Q(G; C) =
1

4 ∣ E ∣
Tr (C⊤

BC)



5064	 Machine Learning (2023) 112:5057–5080

1 3

the normalized adjacency matrix with self-loops, and W[t] the weight matrix at layer t, 
which encodes the parameters of the network. The t+1 layer X[t+1] is

The function � is a non-linear activation function, such as softmax, SeLU, or ReLU. The 
matrix W[0] is randomly initialized, typically as W[0]∼N(0, 1) . The parameters W are 
learned via stochastic gradient descent on a supervised or unsupervised loss function. The 
result of a GNN in the last layer T is a matrix X[T] which rows are embeddings of a node in 
a d-dimensional space.

To train a GNN, we need to specify a differentiable loss function. For instance, in the 
node classification task, the loss function is typically the binary cross-entropy. An opti-
mizer, such as ADAM (Kingma & Ba, 2014), finds the parameters W[1], ...,W[T] that mini-
mize the loss function.

The choice of the architecture and the loss function are determinant choices for GNNs. 
In what follows, we present our model UCoDe  that integrates the simplicity of single-
objective community detection with the power of combined scores, by virtue of a new loss 
function that encourages robust community memberships while maintaining consistent 
separation between dissimilar nodes.

4.2 � UCoDe loss function

We build our loss function based on community modularity (Eq.  2). We start by show-
ing that the entire matrix C⊤BC can be interpreted as the modularity across communities. 
Afterward, we introduce our contrastive loss and show how such a loss aims to detect over-
lapping and non-overlapping communities alike.

4.2.1 � C⊤BC as modularity across communities

We observe that C⊤BC encodes the modularity matrix at the community scale

We refer to QM as the community-wise modularity matrix.
In the simple setting where C is binary, such that C ∈ {0, 1}n×k , then QM reasonably rep-

resents the modularity across the community graph. Note that AC is the weighted adjacency 
matrix of a graph where nodes are communities and the weight AC

ij
 is twice the number of 

edges between community Ci and community Cj . The diagonal entries AC
ii
 , therefore, rep-

resent the weight from community i to itself and are equal to double the number of edges 
between the nodes within community Ci . We also observe that DC = C⊤d is the community 
degree matrix and that DCD

⊤
C
∕(2 ∣ E ∣) represents the likelihood of an edge existing between 

communities. As such, we can interpret QM as the modularity of the graph in which nodes 
are replaced with their corresponding communities.

Â = D−1∕2(A + I)D−1∕2

X[t+1] = 𝜎(ÂX[t]W[t])

C⊤BC = C⊤

(

A −
dd⊤

2 ∣ E ∣

)

C = C⊤AC
���

AC

−
1

2 ∣ E ∣
(C⊤d)(d⊤C)
�����������

DCD
⊤
C

= QM
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In the more practical case of non-binary community memberships with C ∈ [0, 1]n×k , 
we can interpret QM as the modularity across “fuzzy” communities, where each entry of 
the matrix is proportional to the corresponding community membership strengths.

We can now state our objective as maximizing the diagonal values of QM while mini-
mizing off-diagonal entries that correspond to dissimilar communities. Clearly, then, our 
target diagonal values should be 1. However, setting the target off-diagonal values to 0 
would penalize overlapping community detection. For this reason, we define a target distri-
bution y ∈ ℝ

2k as follows:

where � is a threshold parameter set to 0 in the non-overlapping setting and a pre-deter-
mined value in the overlapping setting.1 A 2k vector is necessary to enforce the similarity 
between the first 1, .., k elements and dissimilarity among the next k + 1, ..., 2k elements. 
Under the distribution in Eq. 3, we optimize for community-wide modularity by match-
ing intra-community similarities (QM)ii to the target yi;i≤k and inter-community similarities 
(QM)jl;l≠j to the target yj;j>k . Thus, our loss function becomes

where dg extracts the vector of the diagonal of a matrix, P returns a random row-permuted 
matrix, and � is the element-wise sigmoid. The row permutation ensures that every com-
munity is compared repulsively to another community, as the post-permutation diagonal 
contains the community modularity between separate clusters. Although the loss allows for 
including multiple permutations P of the modularity matrix, in practice, we only consider 
one as we find that this choice strikes a balance between speed and quality. Thus, this loss 
function has the straightforward interpretation of clustering similar groups of nodes while 
encouraging separation between dissimilar ones.

Note that LUCoDe has a natural relationship to cross-entropy and contrastive objective 
functions. In the non-overlapping setting, it corresponds to the cross-entropy loss as it rep-
resents the KL divergence between Bernoulli random variables. Our target is not a prob-
ability distribution in the overlapping setting, however, requiring us to scale the loss by 
(1 + �) to recover the cross-entropy interpretation.

4.2.2 � A loss for overlapping and non‑overlapping communities

Our loss in Eq.  4 clearly encourages non-overlapping community structure by 
maximizing the diagonal of QM and minimizing the off-diagonal. It is less clear 
whether such a loss also supports overlapping community detection. To this 
end, we consider the bowtie graph depicted in Fig.  1 with 5 vertices and edges 
E = {[v1, v2], [v1, v3], [v2, v3], [v3, v4], [v3, v5], [v4, v5]} ; v1,2,4,5 have degree 2, v3 has degree 
4. The optimal overlapping clustering then groups vertices v1, v2, v3 into community c1 , 
v3, v4, v5 into c2 with v3 shared among c1 and c2.

(3)yi =

{

1 if i ≤ k

� otherwise

(4)LUCoDe = −
1

2k

k
∑

i=1

((yi log(dg(�(QM))i)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

intra-community

+ (1 − yk+i) log(1 − dg(P(�(QM)))i
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

inter-community

)

1  � = 0.85 in all datasets in our experimental cohort.
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If we assume our loss is minimized by non-overlapping communities, it would incen-
tivize orthogonal binary community indicator vectors. WLOG, let cn

1
= [1, 1, 0, 0, 0]⊤ 

and cn
2
= [0, 0, 1, 1, 1]⊤ be two such non-overlapping communities. Comparing this to the 

optimal overlapping clustering co
1
= [1, 1, 0.5, 0, 0]⊤ and co

2
= [0, 0, 0.5, 1, 1]⊤ , we obtain

An exhaustive search over all possible communities shows that the minimum of the loss 
function is the clustering C = [co

1
, co

2
] . As such, the loss already encourages overlapping 

communities. Yet, the value of � can increase to allow for additional overlap-sensitivity if 
necessary. In the future, one could consider varying � on a per-community basis.

We support the above example with an ablation study across datasets. Table 2 shows 
that optimizing both elements of the contrastive loss yields the best overlapping and 
non-overlapping NMI.

4.3 � UCoDe architecture

The main purpose of our GCN is to learn the community assignment matrix C using the 
graph structure and the node attributes. Our architecture is a two-layer GCN (Kipf & 
Welling, 2017):

LUCoDe(c
n
1
, cn

2
) = 0.124 > LUCoDe(c

o
1
, co

2
) = 0.094

Fig. 1   Bowtie graph

Table 2   NMI scores optimizing only intra-community similarity with target function yi;i<k , inter-community 
similarity with target function yi;i>k , and the UCoDe objective in Eq. 4

The values in bold indicate the model’s superior performance, achieved through optimizing both inter-com-
munity, intra-community. We did not perform any t-test because of the low variance

Non-overlapping Overlapping

Cora Citeseer Pubmed fb_348 fb_414 fb_686 fb_1684

Intra-community 51.8 28.0 20.9 23.3 33.5 14.6 25.4
Inter-community 0.0 0.0 0.0 16.3 23.7 11.5 25.7
UCoDe 57.4 41.0 25.0 33.9 59.9 22.1 33.3
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The last layer of our GCN outputs community assignments via

This architecture, although simple, allows for propagating information over the entire 
graph, thus capturing relationships within the graph’s structure and the nodes’ attributes.

5 � Experiments

In this section, we empirically evaluate UCoDe  in comparison with state-of-the-art 
approaches for community detection on several benchmark graph datasets. We analyze our 
results in both non-overlapping community detection (graph partitioning), and in overlap-
ping community detection in Sect. 5.1 where nodes may be assigned to more than one com-
munity (as discussed in Sect. 5.2). We further analyse the stability of the performance 5.3 
and sensitivity of our approach to its few hyperparameters (Sect. 5.4).

We implement UCoDe using PyTorch version 1.10.0 and Python v3.8. We release the 
implementation of UCoDe at https://​github.​com/​AU-​DIS/​UCODE. We evaluate our meth-
ods on a 14-core Intel Core i9 10940X 3.3GHz machine with 256GB RAM.

Our method  UCoDe outputs an assignment matrix C where cij represents the likeli-
hood of node vi belonging to community j. For non-overlapping community detection, we 
assign the node to the community with the highest score, i.e., arg max

j

cij.

In additional experiments, we also investigate a second version, UCoDek , which applies 
the k-means algorithm on the representations obtained by the RReLU function in Eq. 5. 
Studying this version, we show the benefit of our method compared to decoupled com-
munity detection approaches. The results suggest that k-means contributes only marginal 
quality improvement, which confirms the validity of our efficient end-to-end loss function 
for community detection.

Adapting to regularization We note that the values in QM can be positive or negative 
and are not necessarily bounded. The sigmoid is thus necessary in order to calculate the 
cross-entropy to the target distribution. However, we found empirically that the division by 
4∣E∣ in Eq. 2 settles the values in C⊤BC close to 0, leaving the sigmoid outputs near 1/2. To 
this end, we apply a logarithm in C⊤BC that preserves the ordering but amplifies the val-
ues. In preliminary experiments, we empirically confirmed that this approach sufficiently 
amplifies the values so as to achieve good performance when using network regularization.

Competitors We collect results for a number of state-of-the-art non-overlapping 
(Sect. 1 in the appendix) and overlapping (Sect. 1 in the appendix) community detection 
methods.

Quality measures For both tasks of overlapping and non-overlapping community 
detection, we provide the Normalized Mutual Information (NMI) between the cluster 
assignments and the ground-truth communities. In addition, for non-overlapping commu-
nity detection we provide the pairwise F1 score between all node pairs and their corre-
sponding ground-truth community; we also provide two intrinsic quality measures, namely 

(5)

GCN(Â,X) = �����(Â ⋅ ����(ÂXW[0])
�����������������

X[1]

W[1])

where Â = D−1∕2(A + I)D−1∕2

C = GCN(Â,X)

https://github.com/AU-DIS/UCODE
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modularity (Eq. 1) and network conductance (Yang & Leskovec, 2015). The network con-
ductance ( C ) measures how well-connected the nodes in the communities are related to the 
escape probabilities of random walks. Modularity (Q) (Newman, 2006) assesses whether 
intra-community nodes are more densely connected than their inter-community counter-
parts. We report the average value of each measure over 10 runs of the algorithms.

Data We perform experiments on 14 real-world graphs with non-overlapping and over-
lapping communities. The largest graph has 34.5K nodes and 247K edges. Further details 
on the datasets, quality measures and parameter settings can be found in Table  3. Our 
choice of datasets includes graphs with different types of communities, density and attrib-
utes, as well as the largest networks evaluated by the competitors.

•	 Cora, Citeseer, and Pubmed (Sen et al., 2008) are co-citation networks among papers 
where attributes are bag-of-words representations of the paper’s abstracts, and labels 
are paper topics.

•	 Amz-Pho and Amz-PC (Shchur et al., 2018) are subsets of the Amazon co-purchase 
graph with the frequency of products purchased together; attributes are bag-of-words 
representations of product reviews, and class labels are product categories.

•	 CoA-CS and CoA-Phy (Shchur et al., 2018) are co-authorship networks based on the 
MS Academic Graph (MAG) for the computer science and physics fields respectively; 
attributes are collections of paper keywords; class labels indicate common fields of 
study.

•	 Fb-X datasets (Mcauley & Leskovec, 2014) are ego-nets from Facebook where X is the 
id of the central node.

•	 Eng (Shchur & Günnemann, 2019) is a co-authorship graph from MAG.

5.1 � Non‑overlapping community detection

We begin our experimental evaluation with an overall comparison of methods for non-
overlapping community detection across different datasets. We compare with the meth-
ods described in Sect.  1 in the appendix. We additionally include NOCD (Shchur & 

Table 3   Datasets and their main 
characteristics

Dataset ∣ V ∣ ∣ E ∣ ∣ A ∣ Dens Comm Overl

Cora 2700 5300 1433 .04 7 ✘
Citeseer 3300 4600 3703 .04 6 ✘
Pubmed 19,700 44,300 500 .01 3 ✘
Amz-Pho 7700 71,800 745 .11 8 ✘
Amz-PC 13,700 143,600 767 .07 10 ✘
CoA-CS 18,300 81,900 6805 .01 15 ✘
CoA-Phy 34,500 247,900 8415 .01 5 ✘
Fb-348 224 3200 21 12.80 14 ✔
Fb-414 150 1700 16 15.10 7 ✔
Fb-686 168 1600 9 11.30 14 ✔
Fb-698 61 270 6 14.80 13 ✔
Fb-1684 786 14,000 15 4.50 17 ✔
Fb-1912 747 30,000 29 10.80 46 ✔
Eng 14,900 49,300 4800 .04 16 ✔
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Günnemann, 2019), a state-of-the-art GNN for overlapping community detection. To 
obtain non-overlapping clusters, we assign each node to the cluster with the highest 
probability.

UCoDe parameter setup We train UCoDe  for 1000 epochs, which shows consistent 
results across datasets and tasks. We use two GCN layers with a hidden dimension 256. We 
default to producing k = 16 communities for all datasets as this choice is consistent with 
MinCut (Bianchi et al., 2020) and DMoN (Tsitsulin et al., 2020) and, in a set of prelimi-
nary experiments, we found the performance with k = 8 and k = 32 to give inferior results. 
We apply batch normalization in both internal layers and set a learning rate 10−3 for the 
Adam optimizer (Kingma & Ba, 2014) for learning. We add weight decay to both weight 
matrices with regularization strength � = 10−1.

We additionally experimented with GraphSAGE (Hamilton et al., 2017) for the internal 
propagation layer, but opt for GCN (Kipf & Welling, 2017) due to the superior perfor-
mance in our analyses.

5.1.1 � Analysis of ground‑truth communities

We compare the methods in terms of NMI and F1-score with respect to ground-truth 
communities. As Fig.  2 confirms, UCoDe  is the most robust choice for non-overlap-
ping communities across datasets. Regardless of dataset characteristics, we observe that 
UCoDe attains competitive results even where existing approaches under-perform in sev-
eral datasets. Indeed, a more detailed analysis reveals that UCoDe ranks on average higher 
than any other competitor (Sect. 2 in appendix). The additional k-means clustering offered 
to DGIkand UCoDekoffers a competitive edge only on three of the seven datasets. Further, 
note that on the denser Amz-PC and Amz-Pho, methods like MinCut and DCRN fail to 
converge. They provide overall lower scores, indicating that graph pooling and combined-
objectives are not viable approaches for the community detection task. Our method outper-
forms traditional methods, such as k-means, demonstrating an advantage of a graph-learn-
ing approach over attribute clustering to capture the structural characteristics of a graph. 
NOCD fares relatively good against methods explicitly targeting non-overlapping commu-
nities, but still fails to provide competitive results against UCoDe.

Fig. 2   NMI, F1, and confidence intervals, for non-overlapping community detection
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In conclusion, there is no clear second choice, promoting UCoDe to be the method of 
choice, as it shows consistent behavior across datasets.

5.1.2 � Analysis of conductance and modularity

We now turn our attention to intrinsic measures to analyze the impact of the various 
objective functions on community connectedness. Table 4 reports conductance ( C ) and 
modularity (Q). UCoDe  shows the best performance in terms of conductance, which 
means that UCoDe is particularly good at identifying well-connected communities. This 
makes sense, as our loss function specifically encourages high intra-connections and 
low inter-connections.

At the same time, DMoN, which optimizes for modularity, does not consistently 
attain the best modularity. Yet, UCoDe attains modularity superior to DMoN  in most 
datasets, although not explicitly encouraging modularity. This indicates that the con-
trastive loss in UCoDe indeed yields a more nuanced community structure than can be 
obtained through optimizing modularity alone. This is even more notable when consid-
ering the other measures where UCoDe outperforms DMoN.

In conclusion, the empirical evaluation clearly shows that our model is highly robust 
and widely applicable in the non-overlapping setting, obtaining competitive results 
across the evaluation metrics and datasets rather than targeting any single one. We note 
that methods that directly optimize modularity achieve good modularity scores at the 
expense of performance on other measures. UCoDe instead achieves competitive results 
across every metric with little-to-no hyperparameter tuning.

5.2 � Overlapping community detection

Here, we analyze the performance of UCoDe on overlapping community detection. The 
list of competitors is described in Sect. 1 in the appendix.

Table 4   Graph conductance C (low is better) and modularity Q 

Best performer in bold; second best performer underlined. Louvain is included for reference since a direct 
comparison is not possible as it is not possible to set the number of communities

Method Cora Citeseer Pubmed Amz-Pho Amz-PC CoA-CS CoA-Phy

C Q C Q C Q C Q C Q C Q C Q

k-means 19.0 64.0 26.1 54.2 19.7 54.2 16.9 63.7 83.0 4.0 45.9 20.9 46.0 33.3
DCRN 11.0 71.0 5.6 76.6 7.8 0.0 – – – – 21.3 70.0 13.1 65.3
DGIk 12.4 70.7 6.1 74.4 12.4 52.7 49.3 22.4 72.0 12.6 33.6 58.6 38.6 51.2
MinCut 22.0 70.3 11.6 80.5 34.8 58.1 – – – – 19.8 72.8 28.8 62.9
NOCD 14.0 78.3 6.5 84.0 22.2 64.8 14.4 68.8 25.0 59.0 20.6 71.8 24.9 65.0
DMoN 22.3 68.1 4.6 75.3 17.0 69.2 19.1 65.3 19.7 55.8 20.0 72.3 23.8 65.8
UCoDek 12.3 72.1 8.1 74.8 9.7 54.0 26.3 53.3 44.6 30.0 23.7 66.5 15.8 60.9
UCoDe 10.9 76.1 7.1 80.9 17.8 65.4 9.4 69.4 13.4 56.0 13.9 70.9 18.7 63.1
Louvain 12.5 81.3 6.2 89.1 15.2 76.9 10.1 74.7 21.0 64.4 17.3 73.6 22.7 66.5
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UCoDe parameter setup While UCoDe  does not require hyperparameter tuning 
across datasets, it requires small adaptations across tasks to accommodate for the uncer-
tain nature of overlapping communities. To reflect the intrinsic dimensionality of each 
dataset that grows with the number of nodes (Tsitsulin et al., 2019), we set the size of 
the first layer to 128 while keeping the output layer’s size fixed to the number of com-
munities k. We apply batch normalization after the first graph convolutional layer. We 
add weight decay to both weight matrices with regularization strength � = 10−2 . The 
rest of the hyperparameters are the same as in non-overlapping community detection.

We set the diagonal elements of the permuted matrix P(QM) in Eq.  4 to a value 
� ∈ [0, 1] to avoid penalizing intra-cluster connections. We find experimentally � = 0.85 to 
attain good experimental results on all datasets, without the need for further tuning.

Community assignment. In the overlapping scenario, we set a threshold p for scores cij 
above which a node i is assigned to a community j. We set a threshold that exhibits good 
average performance on all the datasets, thereby eschewing per-dataset tuning. Our first 
threshold p1 is the average of the exp of the assignment scores, i.e., 1

nk

∑

ij exp(cij) , where 
the exp encourages sparsity by distributing the values on the range [0,+∞) . We note in 
Fig. 5 that this choice corresponds to elbow points in a grid search. For the NOCD model, 
we set p2 = 0.5 as in their experiments. We evaluate the DMoN model using p1 and p2 , and 
p3 = �[C] and report results with p3 as they were the highest in all experiments.

5.2.1 � Analysis of ground‑truth communities

Overlapping community detection results are given in Table 5 and verify that UCoDe out-
performs the state-of-the-art methods on the majority of datasets. The direct optimization 
of modularity in DMoN cannot easily detect overlapping communities, as opposed to our 
contrastive modularity loss. More importantly, UCoDe outperforms NOCD in many cases, 
a GCN that directly aims to detect overlapping communities. Lastly, we note that none of 
the other methods in Table 5 obtain comparable results to our method. This suggests that 
our method, that requires no hyperparameter tuning, is an effective choice for both overlap-
ping and non-overlapping community detection.

Table 5   NMI for overlapping community detection; CDE, SNMF, and BigClam results are from (Shchur & 
Günnemann, 2019)

We highlight the model with the best performance. We did not perform any t-test because of the low variance

Dataset CDE SNMF BigClam NOCD COPRA DMoN UCoDe

Fb-348 24.8 13.5 26.0 33.6 14.6 19.9 33.9
Fb-414 28.7 32.5 48.3 53.0 45.4 39.0 59.5
Fb-686 13.5 11.6 13.8 18.5 9.0 12.6 22.1
Fb-698 31.6 28.0 45.6 34.4 38.5 19.8 34.9
Fb-1684 28.8 13.0 32.7 30.0 32.7 32.7 33.3
Fb-1912 15.5 23.6 21.4 35.7 27.6 24.7 33.1
Eng − 10.1 7.9 33.3 1.0 28.5 33.2
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5.3 � Stability analysis

After having established the top-performers in the respective tasks, namely MinCut, DGIk
, NOCD, and DMoN for non-overlapping community detection, and NOCD for overlap-
ping community detection, we analyze them in terms of variance. Table 6 shows the NMI 
and the confidence intervals at 95% level. UCoDe retains competitive stability across data-
sets. More interestingly, while our k-means variant, UCoDek , attains lower variance due to 
the k-means clustering, UCoDe  is typically comparable and sometimes more stable than 
the competitors.

In overlapping community detection in Table 7, we compare only with NOCD that com-
petes with UCoDe. The probabilistic nature of the two methods is reflected in the devia-
tion, which is typically around 1.0. However, in most of the cases, the deviation does not 
affect the final result and shows that UCoDe is competitive regardless of the variance. 

Table 6   Non-overlapping community detection: NMI and confidence intervals

Dataset DGIk MinCut NOCD DMoN UCoDek UCoDe

Cora 55.4 ± 0.7 37.1 ± 1.6 45.8 ± 1.2 46.3 ± 1.3 55.7 ± 0.6 57.4 ± 1.0

Citeseer 42.5 ± 1.0 23.1 ± 1.6 23.4 ± 1.1 31.4 ± 1.4 44.4 ± 0.6 41.0 ± 0.9

Pubmed 30.0 ± 0.5 23.6 ± 0.8 23.7 ± 0.9 25.1 ± 0.8 23.5 ± 0.7 25.0 ± 1.4

Amz-Pho 15.6 ± 3.3 − 60.6 ± 1.2 55.0 ± 1.4 61.0 ± 1.0 67.8 ± 0.4

Amz-PC 11.8 ± 2.6 − 46.8 ± 1.1 44.3 ± 1.5 38.5 ± 0.4 44.4 ± 0.4

CoA-CS 67.5 ± 2.6 68.1 ± 1.1 73.6 ± 0.9 67.7 ± 1.1 78.4 ± 0.2 77.0 ± 2.1

CoA-Phy 51.0 ± 2.1 45.9 ± 2.1 52.8 ± 0.6 49.8 ± 1.4 55.3 ± 1.7 57.5 ± 1.9

Table 7   Overlapping community 
detection: NMI and confidence 
intervals

Dataset NOCD UCoDe

Fb-348 33.6 ± 0.9 33.9 ± 1.1

Fb-414 53.0 ± 1.1 59.5 ± 1.1

Fb-686 18.5 ± 1.0 22.1 ± 1.2

Fb-698 34.4 ± 0.3 34.9 ± 1.4

Fb-1684 30.0 ± 1.9 33.3 ± 1.2

Fb-1912 35.7 ± 1.6 33.1 ± 0.6

Eng 33.3 ± 1.8 33.2 ± 0.9

Fig. 3   Training (Cora): UCoDe quickly minimizes the loss (left); NMI increases steadily and achieves 21% 
higher value than DMoN (center); UCoDe gradually outperforms DMoN’s modularity (right). The alternat-
ing convergence pattern is characteristic of contrastive loss
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5.4 � Sensitivity analysis

We analyse UCoDe as a function of the number of training epochs. Figure 3 gives results 
for non-overlapping community detection for the Cora dataset (other datasets show similar 
trends). As expected in Fig. 3 (left), the loss decreases with more epochs and converges 
after only about 100 epochs. This behaviour is confirmed in the NMI score (center). Fig-
ure 3 (right) compares the modularity score for DMoN and UCoDe per training epoch. We 
note that while the contrastive loss stabilizes after 200 epochs, the modularity continues to 
increase until it outperforms DMoN, confirming our analysis in Sect. 4.1.

We study the impact of the embedding dimension on the quality of the communities. In 
Fig. 4, we report both NMI and modularity for the Cora dataset (other datasets show simi-
lar trends). For NMI, we note that increasing the dimension is beneficial until the dimen-
sion reaches 256-512. After that point, the quality plateaus and gently decreases. We settle 
on 256 dimensions as it exhibits a consistent behaviour across datasets and tasks. For over-
lapping community detection, 128 and 256 dimensions display comparable results; we opt 
for 128 for the sake of efficiency.

On the other hand, modularity is maximum at 16 dimensions. This discrepancy between 
NMI and modularity reinforces once more the observation that the pure modularity optimi-
zation of models such as DMoN does not necessarily lead to superior quality. Finally, the 
results for other datasets follow a similar trend, confirming the robustness of UCoDe. 

Figure 5 reports the overlapping threshold p1 for the Fb-686 dataset as an example of 
a dataset with overlapping communities; we observe similar results in other datasets. The 
results indicate that there is a relatively broad range of values within [0, 40] in which our 
method performs well. A threshold > 22 misses relevant community assignments, while a 
low value assigns every node to all communities. The choice 21 corresponds to the earlier 
discussed setting p1 (Fig. 5, red line).

Fig. 4   Impact of the embedding dimension for non-overlapping dataset Cora (similar for other data). The 
maximum modularity (right) does not correspond to the best NMI (left). The optimal embedding dimension 
for the intermediate layer is 256

Fig. 5   NMI vs. community assig-
ment threshold; Fb-686 dataset
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5.5 � Ablation study

Table  2  in Sect.  4.1.2 shows the results of the ablation study on three datasets for non-
overlapping and four datasets for overlapping community detection. We experiment with 
a variant of our loss function in Eq. 4 only with intra-cluster similarity (modularity), only 
with inter-cluster similarity (row-permuted modularity) and UCoDe’s loss. In non-overlap-
ping community detection, the intra-cluster similarity produces noisy communities. Yet, 
the results improve significantly with a combination of the two modularity scores, as the 
objective drives the model to discriminate true communities from noise. In overlapping 
community detection, the effect of the row-permuted modularity is more tangible and vin-
dicates the choice of our contrastive loss showing a sensitive increase in performance when 
both similarities are introduced. Furthermore, the introduction of overlapping community 
probabilities in UCoDe effectively encourages the model to discover nodes belonging to 
multiple communities. The results show that the combination of the intra-cluster and the 
inter-cluster similarity brings the largest benefit.

6 � Conclusion

We propose UCoDe, a new Graph Neural Network method for community detection in 
attributed graphs. UCoDe  performs both overlapping and non-overlapping community 
detection, by virtue of a novel contrastive loss that maximizes a soft version of network 
modularity. Our experimental assessment confirms that our method is expressive and over-
all superior in both overlapping and non-overlapping community detection tasks, exhib-
iting competitive performance in comparison with state-of-the-art methods designed for 
either one of the tasks.

A Additional material

Here we introduce additional material for reproducing the experiments and support further 
the analyses in the paper.

A.1 Baselines

A.1.1 Non‑overlapping

We evaluate our method against the following established non-overlapping community 
detection methods:

•	 k-means clusters node attributes with the k-means++ algorithm (Arthur & Vassilvit-
skii, 2007); we use the implementation in the scikit-learn package2.

•	 Louvain (Blondel et al., 2008) is a heuristic method for modularity maximization; we 
use the implementation in the NetworkX library3

2  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​clust​er.​KMean​shtml..
3  https://​netwo​rkx.​org/.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://networkx.org/
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•	 DGIk : Deep Graph Infomax (DGI) (Veličković et al., 2018) is an unsupervised GNN 
model. After obtaining DGI node representations, k-meansclusters these representa-
tions; we use the implementation from the authors4

•	 DMoN (Tsitsulin et  al., 2020) is a state-of-the-art community detection model that 
trains a shallow GCN to exclusively optimize graph modularity; we use the implemen-
tation from the authors5

•	 MinCut (Bianchi et  al., 2020) is a graph pooling technique that trains a GNN with 
a min-cut loss similar to spectral clustering (Shi & Malik, 2000); we use the pytorch 
implementation from DMoN (Tsitsulin et al., 2020).

•	 DCRN (Liu et al., 2022) is the most recent GNN for non-overlapping community detec-
tion. DCRN employs a combined objective and requires a pre-trained DFCN (Tu et al., 
2021) network to initialize the model embeddings; the communities are k-means clus-
ters of the output embeddings. We downloaded the implementation from the authors6 
including the pre-trained networks. We tried to reproduce the experiments in the best of 
our capacity using the same version of the libraries, hyperparameters, and code, but the 
results were inconsistent with the ones reported in (Liu et al., 2022). After a thorough 
investigation, we realized that the reported values must be the maximum NMI across 
epochs. However, in an unsupervised task, the ground-truth communities are unknown, 
hence the maximum NMI is unknown as well. Even considering the maximum value, 
the method does not attain the results declared in the paper. We, therefore, report results 
obtained using standard evaluation methodology, i.e., NMI for a fixed number of train-
ing epochs, consistent with the remainder of our experiments.

Overlapping

We compare UCoDe against the following baselines and state-of-the-art methods for over-
lapping community detection, including DMoN:

•	 NOCD (Shchur & Günnemann, 2019) is a GCN based on the BigClam objective; we 
use the implementation from the authors7

•	 COPRA (Gregory, 2010) discovers an arbitrary number of overlapping communities 
via label propagation; we use the implementation from the authors8

•	 CDE  (Li et al., 2018) and SNMF (Wang et al., 2010) employ non-negative matrix fac-
torization to detect communities; results are from (Shchur & Günnemann, 2019)

•	 BigClam (Yang and Leskovec, 2013) finds overlapping communities optimizing the 
parameters of a Bernoulli-Poisson model; results are from (Shchur & Günnemann, 
2019).

4  https://​github.​com/​Petar​V-/​DGI.
5  https://​github.​com/​google-​resea​rch/​google-​resea​rch/​tree/​master/​graph_​embed​ding/​dmon.
6  https://​github.​com/​yueli​u1999/​DCRN.
7  https://​github.​com/​shchur/​overl​apping-​commu​nity-​detec​tion.
8  https://​grego​ry.​org/​resea​rch/​netwo​rks/​copra/.

https://github.com/PetarV-/DGI
https://github.com/google-research/google-research/tree/master/graph_embedding/dmon
https://github.com/yueliu1999/DCRN
https://github.com/shchur/overlapping-community-detection
https://gregory.org/research/networks/copra/
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Complete results for non‑overlapping communities

For completeness, Table 8 reports the NMI values and Table 9 the F1 values for each 
method reported in Fig. 2.

Table 8   NMI for non-overlapping community detection

The best performer is highlighted in bold, and the second best is underlined

Dataset k-means Louvain DCRN DGIk MinCut NOCD DMoN UCoDek UCoDe

Cora 15.0 45.60 33.3 55.4 37.1 45.8 46.3 55.7 57.4
Citeseer 22.0 32.7 23.0 42.5 23.1 23.4 31.4 44.4 41.0
Pubmed 31.0 20.1 0.0 30.0 23.6 23.7 25.1 23.5 25.0
Amz-Pho 13.6 65.2 – 15.6 – 60.6 55.0 61.0 67.8
Amz-PC 12.0 52.3 – 11.8 – 46.8 44.3 38.5 44.4
CoA-CS 33.8 57.3 63.3 67.5 68.1 73.6 67.7 78.4 77.0
CoA-Phy 20.9 45.7 54.7 51.0 45.9 52.8 49.8 55.3 57.5

Table 9   F1-result scores for non-overlapping community detection results on the seven real world data sets 
as summarized in Fig. 2

The best performer is highlighted in bold, and the second best is underlined

Dataset k-means Louvain DCRN DGIk MinCut NOCD DMoN UCoDek UCoDe

Cora 44.1 39.1 47.8 63.4 40.0 40.6 49.6 61.1 47.5
Citeseer 33.8 20.0 48.1 55.5 30.7 27.1 44.2 55.9 52.7
Pubmed 47.9 21.1 22.3 50.3 37.2 18.5 39.1 49.3 36.1
Amz-Pho 23.4 63.2 – 41.2 – 56.7 57.9 52.9 66.2
Amz-PC 20.8 38.8 – 42.7 – 38.2 46.4 36.0 49.8
CoA-CS 41.2 48.4 42.3 59.3 58.8 60.2 58.0 79.7 79.0
CoA-Phy 41.2 38.6 56.6 30.6 47.7 31.4 47.6 48.5 49.0

Table 10   Results of the t-tests using Normalized Mutual Information (NMI)

p-value < 0.05 ; the arrows indicate statistical significance; ↑ indicates that UCoDe  is significantly better 
than the competitor

Dataset Cora Citeseer Pubmed Amz-Pho Amz-PC CoA-CS CoA-Phy

k-means ↑ ↑ ↓ ↑ ↑ ↑ ↑

Louvain ↑ ↑ ↑ ↑ ↓ ↑ ↑

DGIk ↑ ↓ ↓ ↑ ↑ ↑ ↑

MinCut ↑ ↑ ↑ ↑ ↑ ↑ ↑

NOCD ↑ ↑ ↑ ↑ ↓ ↑ ↑

DMoN ↑ ↑ – ↑ – ↑ ↑
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Statistical significance test

We perform an individual two-sided t-test using NMI to compare each model with UCoDe. 
The arrows in Table 10 indicate a statistically significant difference (with p-value < 0.05 ) 
compared to UCoDe. The results demonstrate that in 85% of the cases, UCoDe is signifi-
cantly better than the competitors.

Extended sensitivity analysis

Figure 6 extends the analysis in Sect. 5.4 to the Citeseerand Amz-Pho datasets. The results 
consistently indicate 256 as an optimal embedding dimension for the intermediate layer.

We additionally present the analysis of the loss function for Citeseer and Amz-Pho in 
Fig. 7. The loss exhibits a steady increasing behaviour, stabilizing around 100 epochs as 

Fig. 6   Impact of the embedding 
dimension on NMI and modular-
ity for non-overlapping com-
munity detection; Amz-Pho and 
Citeseer datasets

Fig. 7   Training UCoDe that quickly minimizes the loss (left); NMI increases steadily and achieves 9% ( 19% 
in Amz-Pho) higher value than DMoN (center); UCoDe gradually outperforms DMoN’s modularity (right)
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experienced in Sect. 5.4. Interestingly, DMoN’s performance is more fluctuating in Amz-
Pho as opposed to other datasets.

Author Contributions  Atefeh Moradan contributed to the concept, the experiments, the writing, and the 
algorithms. Andrew Draganov contributed to the theory, part of the experiments, and writing. Davide Mot-
tin and Ira Assent contributed to the supervision, the writing, and the correction of the paper.

Funding  Open access funding provided by Royal Danish Library, Aarhus University Library. Atefeh 
Moradan is supported by the Innovationsfonden Denmark under the Grand Solutions project Hospital@
Night.

Data availability  The data and the code are available at https://​github.​com/​AU-​DIS/​UCODE.

Code availability  The data and the code are available at https://​github.​com/​AU-​DIS/​UCODE.

Declarations 

 Conflicts of interest  The authors have conflicts with Aarhus university (au.dk). Juelich research center (fz-
juelich.de). Ira Assent: Co-author. laria Bordino: Recent collaborator. rancesco Gullo: Recent collaborator. 
Panagiotis Karras: Colleague. Thomas Seidl: PhD advisor.

Ethical approval  Not applicable.

Consent to participate  The authors provide the appropriate consent to participate.

Consent for publication  The authors provide the consent to publish the images in the manuscript. The data 
used in the publication is publicly available. We provide respective citations for each of the data sources.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Arthur, D., Vassilvitskii, S. (2007). k-means++ the advantages of careful seeding. In: SODA, pp. 1027–1035
Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, 

A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018). Relational inductive biases, deep learning, and 
graph networks. arXiv preprint arXiv:​1806.​01261

Bianchi, F.M., Grattarola, D., Alippi, C. (2020). Spectral clustering with graph neural networks for graph 
pooling. In: International Conference on Machine Learning, pp. 874–883. PMLR

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in 
large networks. Journal of statistical mechanics: theory and experiment, 2008(10), 10008.

Bo, D., Wang, X., Shi, C., Zhu, M., Lu, E., Cui, P. (2020). Structural deep clustering network. In: Proceed-
ings of The Web Conference 2020, pp. 1400–1410

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning: 
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18–42.

Bruna, J., Zaremba, W., Szlam, A., LeCun, Y. (2014). Spectral networks and deep locally connected net-
works on graphs. In: ICLR

Cai, H., Zheng, V. W., & Chang, K.C.-C. (2018). A comprehensive survey of graph embedding: Problems, 
techniques, and applications. TKDE, 30(9), 1616–1637.

https://github.com/AU-DIS/UCODE
https://github.com/AU-DIS/UCODE
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1806.01261


5079Machine Learning (2023) 112:5057–5080	

1 3

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K. (2020). Machine learning on graphs: A model 
and comprehensive taxonomy. arXiv preprint arXiv:​2005.​03675

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast 
localized spectral filtering. NeurIPS, 29, 3844–3852.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the 
em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.

Devi, J. C., & Poovammal, E. (2016). An analysis of overlapping community detection algorithms in social 
networks. Procedia Computer Science, 89, 349–358.

Dhillon, I. S., Guan, Y., & Kulis, B. (2007). Weighted graph cuts without eigenvectors a multilevel 
approach. TPAMI, 29(11), 1944–1957.

Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3–5), 75–174.
Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the 

national academy of sciences, 104(1), 36–41.
Gao, H., Ji, S. (2019). Graph u-nets. In: ICML, pp. 2083–2092
Gao, H., Huang, H. (2018). Deep attributed network embedding. In: IJCAI
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. PNAS, 

99(12), 7821–7826.
Gregory, S. (2010). Finding overlapping communities in networks by label propagation. New journal of 

Physics, 12(10), 103018.
Gregory, S. (2007). An algorithm to find overlapping community structure in networks. In: European Con-

ference on Principles of Data Mining and Knowledge Discovery, pp. 91–102. Springer
Hamilton, W.L., Ying, R., Leskovec, J. (2017). Inductive representation learning on large graphs. In: NIPS, 

pp. 1025–1035
He, D., Song, Y., Jin, D., Feng, Z., Zhang, B., Yu, Z., Zhang, W.: Community-centric graph convolutional 

network for unsupervised community detection. In: Proceedings of the Twenty-Ninth International 
Conference on International Joint Conferences on Artificial Intelligence, pp. 3515–3521 (2021)

Kingma, D.P., Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:​1412.​6980
Kipf, T.N., Welling, M. (2016). Variational graph auto-encoders. Bayesian Deep Learning Workshop at 

NIPS
Kipf, T.N., Welling, M. (2017) Semi-supervised classification with graph convolutional networks. In: ICLR. 

OpenReview.net
Lee, J., Lee, I., Kang, J. (2019). Self-attention graph pooling. In: ICML, pp. 3734–3743
Li, Y., Sha, C., Huang, X., Zhang, Y. (2018). Community detection in attributed graphs: An embedding 

approach. In: AAAI
Liu, Y., Tu, W., Zhou, S., Liu, X., Song, L., Yang, X., Zhu, E. (2022). Deep graph clustering via dual 

correlation reduction. In: Proc. of AAAI
Mall, R., Ullah, E., Kunji, K., Bensmail, H., Ceccarelli, M. (2017). An adaptive refinement for commu-

nity detection methods for disease module identification in biological networks using novel metric 
based on connectivity, conductance & modularity. In: BIBM, pp. 2282–2284

Mcauley, J., & Leskovec, J. (2014). Discovering social circles in ego networks. TKDD, 8(1), 1–28.
Newman, M. E. (2006). Modularity and community structure in networks. PNAS, 103(23), 8577–8582.
Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W. (2016). Asymmetric transitivity preserving graph embedding. 

In: KDD, pp. 1105–1114
Park, N., Rossi, R., Koh, E., Burhanuddin, I.A., Kim, S., Du, F., Ahmed, N., Faloutsos, C. (2022). Cgc: 

Contrastive graph clustering forcommunity detection and tracking. In: Proceedings of the ACM 
Web Conference 2022, pp. 1115–1126

Perozzi, B., Al-Rfou, R., Skiena, S. (2014). Deepwalk: online learning of social representations. KDD
Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J. (2018). Network embedding as matrix factorization: 

Unifying deepwalk, line, pte, and node2vec. In: WSDM, pp. 459–467
Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classifica-

tion in network data. AI magazine, 29(3), 93–93.
Shchur, O., & Günnemann, S. (2019). Overlapping community detection with graph neural networks. 

KDD: Deep Learning on Graphs Workshop.
Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S. (2018). Pitfalls of graph neural network evalu-

ation. arXiv preprint arXiv:​1811.​05868
Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. TPAMI, 22(8), 888–905.
Sun, H., Li, Y., Lv, B., Yan, W., He, L., Qiao, S., & Huang, J. (2021). Graph community infomax. TKDD, 

16(3), 1–21.
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q. (2015). Line: Large-scale information network 

embedding. In: WWW, pp. 1067–1077

http://arxiv.org/abs/2005.03675
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1811.05868


5080	 Machine Learning (2023) 112:5057–5080

1 3

Tsitsulin, A., Palowitch, J., Perozzi, B., Müller, E. (2020). Graph clustering with graph neural networks. 
arXiv preprint arXiv:​2006.​16904

Tsitsulin, A., Mottin, D., Karras, P., Bronstein, A., Müller, E. (2019). Spectral graph complexity. In: 
Companion Proceedings of The Web Conf, pp. 308–309

Tu, W., Zhou, S., Liu, X., Guo, X., Cai, Z., Zhu, E., & Cheng, J. (2021). Deep fusion clustering network. 
In: AAAI, 35, 9978–9987.

Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D. (2018). Deep graph infomax. 
In: ICLR

Wang, F., Li, T., Wang, X., Zhu, S., & Ding, C. (2010). Community discovery using nonnegative matrix 
factorization. Data Mining and Knowledge Discovery, 22(3), 493–521. https://​doi.​org/​10.​1007/​
s10618-​010-​0181-y

Wang, D., Cui, P., Zhu, W. (2016). Structural deep network embedding. In: KDD, pp. 1225–1234
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph 

neural networks. IEEE transactions on neural networks and learning systems, 32(1), 4–24.
Xu, K., Hu, W., Leskovec, J., Jegelka, S. (2018). How powerful are graph neural networks? In: ICLR
Yang, J., & Leskovec, J. (2015). Defining and evaluating network communities based on ground-truth. 

KIS, 42(1), 181–213.
Yang, J., McAuley, J., Leskovec, J. (2013). Community detection in networks with node attributes. In: 

2013 IEEE 13th International Conference on Data Mining, pp. 1151–1156. IEEE
Yang, J., Leskovec, J. (2012). Community-affiliation graph model for overlapping network community 

detection. In: ICDM, pp. 1170–1175
Yang, J., Leskovec, J. (2013). Overlapping community detection at scale: a nonnegative matrix factoriza-

tion approach. In: WSDM, pp. 587–596
Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E. (2015). Network representation learning with rich text 

information. In: IJCAI
Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J. (2018). Hierarchical graph represen-

tation learning with differentiable pooling. In: NeurIPS, pp. 4805–4815
Zhang, X., Liu, H., Li, Q., Wu, X.M. (2019). Attributed graph clustering via adaptive graph convolution. 

In: IJCAI, pp. 4327–4333
Zhang, T., Xiong, Y., Zhang, J., Zhang, Y., Jiao, Y., Zhu, Y. (2020). Commdgi: Community detection 

oriented deep graph infomax. In: CIKM, pp. 1843–1852
Zhao, H., Yang, X., Wang, Z., Yang, E., Deng, C.: Graph debiased contrastive learning with joint represen-

tation clustering. In: IJCAI, pp. 3434–3440 (2021)
Zhou, M. (2015). Infinite Edge Partition Models for Overlapping Community Detection and Link Prediction

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/2006.16904
https://doi.org/10.1007/s10618-010-0181-y
https://doi.org/10.1007/s10618-010-0181-y

	UCoDe: unified community detection with graph convolutional networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Traditional community detection
	2.2 Graph neural networks for community detection
	2.3 Graph pooling
	2.4 Node embedding methods

	3 Communities and modularity
	3.1 Modularity
	3.2 Limits and pitfalls

	4 Our solution: UCoDe
	4.1 Graph neural network approach
	4.2 UCoDe loss function
	4.2.1  as modularity across communities
	4.2.2 A loss for overlapping and non-overlapping communities

	4.3 UCoDe architecture

	5 Experiments
	5.1 Non-overlapping community detection
	5.1.1 Analysis of ground-truth communities
	5.1.2 Analysis of conductance and modularity

	5.2 Overlapping community detection
	5.2.1 Analysis of ground-truth communities

	5.3 Stability analysis
	5.4 Sensitivity analysis
	5.5 Ablation study

	6 Conclusion
	A Additional material
	A.1 Baselines
	A.1.1 Non-overlapping
	Overlapping

	Complete results for non-overlapping communities
	Statistical significance test
	Extended sensitivity analysis

	References




