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Abstract
It is widely accepted that biased data leads to biased and thus potentially unfair models.
Therefore, several measures for bias in data and model predictions have been proposed, as
well as bias mitigation techniques whose aim is to learn models that are fair by design.
Despite the myriad of mitigation techniques developed in the past decade, however, it is
still poorly understood under what circumstances which methods work. Recently, Wick et al.
showed,with experiments on synthetic data, that there exist situations inwhich biasmitigation
techniques lead to more accurate models when measured on unbiased data. Nevertheless, in
the absence of a thorough mathematical analysis, it remains unclear which techniques are
effective under what circumstances. We propose to address this problem by establishing
relationships between the type of bias and the effectiveness of a mitigation technique, where
we categorize the mitigation techniques by the bias measure they optimize. In this paper we
illustrate this principle for label and selection bias on the one hand, and demographic parity
and “We’re All Equal” on the other hand. Our theoretical analysis allows to explain the results
of Wick et al. and we also show that there are situations where minimizing fairness measures
does not result in the fairest possible distribution.

Keywords Algorithmic fairness · Ethical AI · Classification · Fairness-accuracy trade-off

1 Introduction

In numerous cases it was shown that models trained on biased data may exhibit undesirable
behavior towards certain groups in the population in a systematicway. For instance, according
to Obermeyer et al. (2019), there was racial bias in a widely used algorithm in health care
in the US, such that black patients assigned the same level of risk by the algorithm were on
average more sick than white patients. Obermeyer et al. argue that this bias was the result of
health costs being used as a proxy for health needs while historically less money is spent on
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black patients for the same needs. The type of bias in this case is called label bias, indicating
that the labels (health cost) do not properly reflect the prediction target (health status).

The Dutch childcare benefits scandal, also known as the toeslagenaffaire (Persoons-
gegevens, 2021), is another significant example of the potential consequences of imple-
menting systems to prevent fraud without proper consideration of potential biases. In an
effort to minimize the risk of fraud, the Dutch tax administration implemented a system
to select child benefit recipients for audits. However, this system resulted in thousands of
parents being falsely accused of fraudulently claiming benefits and being required to return
the benefits they had received. Additionally, it was found that the system disproportionately
affected individuals with non-Dutch nationality, as the model used by the administration
considered them to have a higher risk of tax fraud than Dutch nationals. An analysis of the
dataset used to train the model, the Fraude Signalering Voorziening, revealed that it heav-
ily relied on denunciations and tips from citizens (Persoonsgegevens, 2021). This reliance
on denunciations raises the possibility of bias, as it is plausible to assume that people with
a different nationality than Dutch were more likely to be reported anonymously by Dutch
citizens when committing a crime than Dutch people committing the same crime. This kind
of bias can be identify as selection bias: a situation where a sample of data is not descriptive
of the population it is intended to represent due to an under or over representation of certain
groups. This is a possibility in the toeslagenaffaire, where fraudulent non-Dutch residents
may have been disproportionately sampled while fraudulent Dutch ones were overlooked.

In order to identify bias in data and model predictions, several measures have been pro-
posed. One example of such a measure is demographic parity difference (DPD) which
measures the difference in probability of getting assigned the positive label between two
predefined groups: a legally protected group and its complement. See Barocas et al. (2019,
Chapter 3) for a systematic overview of the most common fairness measures, connecting
them to the fairness criteria. For instance, DPD measures to what degree a dataset satisfies
the fairness criterion independence which states that label and sensitive group membership
should be independent. Complementary to the bias measures, fairness interventions were
proposed to learn models that are fair by design, in the sense that they are constrained to
produce models that obey a bias measure of choice. The typical workflow of a fair machine
learning practitioner can hence be divided into the following three steps: (1) selecting a
fairness metric, (2) minimizing that metric for a model, and (3) claiming that the model is
fair. For an overview of bias mitigation techniques we refer to the Fairness Library1 (Ruf &
Detyniecki, 2022).

Despite the large number of fairness measures and interventions, however, it is still poorly
understood what the exact effects of the different fairness interventions are and in which
situations they should be applied.Consider for instance theHealthcare examplewith label bias
and the toeslagenaffaire example with selection bias. Is there any bias mitigation technique
we could apply on the biased data such that the resulting model would be fair? The current
state of the fairness research field does not allow us to answer this question. Moreover, it is
also not immediately clear which definition of fairness would apply in these examples.

Earlier works considered fairness measures as constraints that should be legally enforced
(Feldman et al., 2015). We call this the legal constraint framework. In this framework it
makes sense to maintain accuracy at a high level while constraining models to those that
satisfy the fairness constraint. In such a setting, inevitably there is a tension between the
degree of fairness on the one hand, and the accuracy of models on the other, called the
fairness-accuracy trade-off. Works by legal scholars, such as Wachter et al. (2021), however,

1 https://axa-rev-research.github.io/fairness-compass/src/main/library/.
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Fig. 1 The Fair World Framework on which out theory is based. We assume a fair world in which a fairness
criterion holds. The observed data, however, is obtained through a biased process. Fairness-aware techniques
learn models in the biased data while simultaneously optimizing a fairness measure. This results in a model
that is “fair by design”

have shown this approach to be inadequate because of the impossibility to have a strict
mathematical interpretation of the legal definition of discrimination.

Therefore, in this paper we consider the alternative framework called Fair World Frame-
work depicted in Fig. 1. We assume a fair, underlying world, which we can only observe
through a biased dataset. A good bias mitigation technique would then allow to infer, from
the biased data, a model that would perform accurately in the fair world. In this setting, the
choice of the right mitigation strategy will depend on the type of bias introduced, and on
assumptions we can make about the fair world. Notice that this setting is more challenging
than the legal constraint framework; it is insufficient to optimize for the measure that cor-
responds to the fairness criterion satisfied in the real world. For instance, in the Healthcare
example we may assume that in the “fair world,” the label given to people corresponds to
their true health status. By using Health cost instead, a label bias was introduced. Undoing
the label bias is more complex than rebalancing the labels by constraining the demographic
parity difference measure. Instead, we need to make sure the labels of the right patients get
changed as otherwise wemay stray away from the fair world even further.Moreover, recently,
Wick and Tristan (2019) showed, with experiments on synthetic data, that there exist situa-
tions in which bias mitigation techniques lead to more accurate models when measured on
unbiased data. Their experiment fits well with our framework, as they construct a fair dataset
that satisfies independence, then introduce label and selection bias, and subsequently learn a
model while employing a fairness intervention on the biased data. This model is then shown
to perform with higher accuracy on the unbiased data than a model learned on the biased
data without fairness intervention.

Nevertheless, a thoroughmathematical analysis connectingwhich techniques are effective
under what circumstances is still needed, the lack of which may dampen the importance of
these results that risk to be judged as simply anecdotal.

We propose to address this problem by establishing relationships between the type of bias
and the effectiveness of a mitigation technique. The contributions of this paper are as follows:

1. We introduce the fair world framework, and formally define two bias introduction pro-
cesses: label bias and selection bias. We further consider two fairness criteria that can
be satisfied in the fair world. The choice of bias process and fairness criterion will be
assumptions we have to make when using the framework.

2. For all four combinations of a fairness criterion and a bias introduction process, we show
how it transforms the data resulting in sets of properties that need to be satisfied by the
biased dataset. These properties allow us to check consistency of our assumptions.
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3. We show for each combination of fairness criterion and bias introduction process whether
a fairness intervention aiming for that same criterion on the biased dataset allows for
finding the fair model. These results allow us to explain theoretically the results obtained
by the simulation of recent papers.

The relevance and impact of our work is twofold. On the one hand, it opens up a new
way of addressing fairness. By framing fairness as accuracy in the underlying fair world,
practitioners can select fairness interventions based on assumptions about the process that
introduced bias in the unfair world and the fairness criteria that hold in the fair world. We
believe such assumptions to be more intuitive and natural to make. On the other hand, the
theoretical results allow for explaining the reasons behind important recent empirical findings.

2 Related work

2.1 Measuring fairness

In the algorithmic bias literature, several measures of fairness of models and data have been
proposed, including group fairness measures; such as statistical parity, equal opportunity,
calibration, individual fairness measures, and causality-based measures. These measures
concentrate on different aspects of the classifier: disparity of impact, differences in error rates,
correlation between a sensitive attribute and predicted label.We refer to surveys likeMehrabi
et al. (2021) or Barocas et al. (2019) for an overview of different measures. Although for
each of these measures convincing motivating examples exist, unfortunately it is not possible
to combine them in a meaningful way (Kleinberg et al., 2016).

This abundance ofmeasures can be confusing and frustrating for practitioners. Impossibil-
ity results are showing that fairness criteria that seem mandatory from an ethical perspective,
are internally inconsistent, discouraging data scientists as they imply that any method, no
matter how carefully applied, will break at least one fairness criterion and as such will be
subject to criticism. To address this issue, researchers have come up with categorizations of
which fairness measure is most suitable for a given situation (Ruf & Detyniecki, 2021), and
visual tools to interactively explore fairness of data and models such as FairSight (Ahn &
Lin, 2019) and FairVis (Cabrera et al., 2019) have been proposed.

2.2 Bias mitigation techniques

Plenty of model inference techniques that are fair by design have been developed, many of
which are included in tools like AIF 360 (Bellamy et al., 2019). Models are fair by design in
the sense that they optimize a particularmeasure;models output by these inference techniques
score by design favourably for that particular measure. It is, however, unclear to what extent
satisfying a measure by design makes a classifier fair. That is, blindly improving a fairness
measure may not necessarily lead to an ethical solution; we need a deeper understanding of
bias in data and models to better guide bias mitigation techniques.

In addition, interventions that improve fairness metrics tend to decrease the accuracy
(Menon & Williamson, 2018; Corbett-Davies et al., 2017; Chen et al., 2018; Cooper et al.,
2021). This phenomenon is known as the fairness-accuracy trade-off. However, as noticed by
other authors Wick and Tristan (2019), Dutta et al. (2020), this trade-off is in se a false one
because fairness and accuracy are measured with respect to a dataset we assume is biased.
As a result our measurements of accuracy and fairness will be biased as well. Controlled
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experiments with datasets containing both biased and unbiased labels (Lenders & Calders,
2023) or simulated data (Wick & Tristan, 2019) confirm this claim.

2.3 Understanding bias and its relation to fairness

Recently, the study of algorithmic fairness seems to be moving from fairness as just a con-
straint to satisfy with various techniques (like those in Bellamy et al. 2019) to fairness as
data fallacy and bias to overcome. In that regard the study of fairness under the causal frame-
work is especially rich (Kusner et al., 2017; Loftus et al., 2018). It has been shown that
fairness cannot be well assessed merely based on correlation or association as the aggregate
relationship between the sensitive attribute and the output variable may disappear or reverse
when accounting for other relevant factors (Ghai &Mueller, 2022). Still causal fairness often
requires the a priori knowledge of a causal graph and some classical techniques on Bayesian
networks like Expectation-Maximization may fail (Calders & Verwer, 2010).

A particularly inspiring work for this paper comes from Friedler et al. (2016, 2021),
in their work Friedler et al. assume the existence of three different spaces: the construct,
observed and decision spaces. Their definition of fairness depends on how the three world
interact with each other, and in particular how information from the construct space gets
modified and distorted in the decision space. We use this conceptual framework as well and
we expand it further similarly defining bias as possible interaction between these spaces.

3 Notation

In this paper, we will discuss the difference between the distribution of fair data and the
distribution of data available in dataset D. The main variables at our disposal are:

• X = [X1, . . . , Xn], a random vector containing the attributes Xi .
• A ∈ {a0, a1}, a random variable that represents the sensitive attribute. For convenience

we consider it a binary variable, with A = a0 representing the deprived population and
A = a1 representing the privileged population.

• Y ∈ {y0, y1}, a binary label that we are interested in predicting for each datapoint. We
consider Y = y0 to be the unfavorable outcome and Y = y1 to be the favorable one.

As a result of using an inaccessible fair distribution in contrast to the observed one, we need
to use different notation for the two distributions:

• P(Y , X , A) is the original, fair distribution of the data, which we do not have access to,
but which we would like to predict.

• PD(Y , X , A) is the distribution from which dataset D has been sampled.

It’s important to keep in mind that we cannot guarantee that the two distributions will be the
same. In fact, in general, we will have

PD(Y , X , A) �= P(Y , X , A)

For convenience, we will write P(y, x, a) instead of P(Y = y, X = x, A = a) when this
does not cause confusion. The same rule applies to PD .

Also, to avoid needless repetitions, the reader should be aware that every equation where
probabilities are shown holds for all x ∈ X , unless stated otherwise.

As already mentioned, the use of a binary sensitive attribute is out of convenience: for
non-binary attributes all the results still hold by substituting a0, a1 with ai , a j whenever
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necessary. However, the same cannot be said about the label, which needs to be binary for
many of the propositions to be valid.

4 Fair world framework

In our work, we assume the existence of a fair world that is inaccessible to us and in which
fairness is satisfied by default. The distribution, P(y, x, a), from this world is distorted by a
biasing procedure, resulting in a misrepresentation of the world, PD(y, x, a). Our focus will
be on two different worldviews where different definitions of fairness can hold.

4.1 Statistical parity

Statistical parity assumes that, across all possible sensitive groups, the distribution of the label
is statistically the same. This means that people from different populations have equal access
to the label. This concept has also been referred to as “equal base rates” in the literature
(Kleinberg et al., 2016) when the independence property is satisfied by the original data.
Formally, according to the fair distribution, the following constraint holds:

Y |� A
In other words, the distribution of the label is independent of the sensitive attribute.

This doesn’t imply that the groups are perfectly identical. They can have different charac-
teristics that affect their likelihood of achieving the label differently. For example, if the label
is “being a sports enthusiast”, and hypothetically men liked football more while women liked
volleyball equally, the label would still be equally distributed between the two groups, meet-
ing the criteria for statistical parity. There are multiple measures used to check if statistical
parity holds for a probabilistic model (Bellamy et al., 2019; Feldman et al., 2015). We will
focus on the demographic parity difference (DPD). Given a probabilistic model PM (y| x, a),
we can calculate the demographic parity difference DPD(PM ) as follows:

∣
∣
∣
∣
∣
∣

∑

(y,x,a)∈D

[
PM (y1| x, a0)1a0(a)

|{(y, x, a) ∈ D : a = a0}| − PM (y1| x, a1)1a1(a)

|{(y, x, a) ∈ D : a = a1}|
]
∣
∣
∣
∣
∣
∣

We can see that, as the size of the dataset grows, assuming PM (y| x, a) → PD(y| x, a) the
difference converges to

DPD(PM )
|D|→∞−−−−→ |PD(y1| a1) − PD(y1| a0)|

4.2 We’re all equal

The fairness assumption we will present in this section is what we call “We’re All Equal”
(WAE). According to this worldview, every person has an equal probability of receiving the
positive label regardless of their sensitive attribute. For example, two candidates for a jobwith
the same past experiences should have an equal chance of getting hired, regardless of their
race. This does not mean that the set of features is independent from the sensitive variable,
but rather that the sensitive attribute does not matter for the choice of the label when the rest
of the attributes are known. This also means that it is considered acceptable to observe some
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demographic disparity in our data if some positive traits for the label are correlated with the
sensitive attribute. This can be formalized with the following independence constraint:

Y |� A| X
Both WAE and statistical parity are two extremes of a more general definition: conditional
statistical parity. This definition assumes the existence of a subset S ⊆ X of variables such
that Y |� A | S. Statistical parity is the case where S = ∅, whileWAE is the case where S = X .

5 Bias

Fully comprehending the reasons why bias exists in our society, its reflection in datasets, and
how to address its effects, is a problem deeply rooted in sociology, philosophy, and history,
with extremely complex causes and consequences. Computer science alone cannot solve this
problem. However, to mathematically study how bias affects data, we adopt what we call a
“banality of evil” principle: we assume that bias primarily depends on the sensitive attribute,
which is a simplification necessary for the mathematical analysis of its effect. Nonetheless,
we believe that the results we found provide valuable insights even in more general cases.

We will now proceed to discuss and formalize different types of biases, focusing on two
types: label bias and selection bias.

5.1 Label bias

Label bias occurs when individuals from different sensitive groups are treated differently
solely based on their sensitive feature. This ranges from direct discrimination against
minorities to unjustified privileges of some elitist groups. Excluding the label itself, the
representation of each individual in the dataset is not affected by the biasing procedure.

Formally, we will assume the existence of a new latent binary variable C ∈ {c0, c1} that
indicates whether the datapoint in our possession has been influenced by label bias or not. If
the candidate has undergone label bias (C = c1), the label is changed, while if the candidate
hasn’t been affected by the bias (C = c0), no changes occur. We will also assume that C
depends only on the original label and the sensitive attribute. Formally,

C |� X | A, Y

It should be noted that sinceC directly depends on the original label and the sensitive attribute,
it can be chosen to either discriminate, by setting a high probability of change for minorities
with the positive label, or to favor the already privileged group by randomly upgrading the
label to the positive one, or even to do both. We can already demonstrate some early results
on how label bias affects the distribution of the fair world.

Theorem 5.1 Under label bias, the relation between the conditional distributions P(y1 |
x, a) and PD(y1 | x, a) is linear, that is

αa P(y1 | x, a) + βa PD(y1 | x, a) + γa = 0

for some (αa, βa, γa) ∈ R
3
�{(0, 0, 0)}, while PD(x, a) = P(x, a)

Proof It is easy to see that the only variable affected is Y and it follows this relation

PD(y1 | x, a) = P(c0 | y1, a)P(y1 | x, a) + P(c1 | y0, a)P(y0 | x, a) (1)
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that is because the observed value of y in the dataset is either the true one, if there has been
no change of label (C = c0), or the opposite if C = c1. Because Y is binary we can rewrite
the above equation as

αa P(y1 | x, a) + βa PD(y1 | x, a) + γa = 0

where αa := P(c0 | a, y1) − P(c1 | a, y0), βa := −1 and γa := P(c1 | a, y0). 	


5.2 Selection bias

Selection bias occurs when the selection of data points is not representative of the underlying
distribution. This can occur if the mechanism used to collect data points is flawed. To model
the selection bias we once again use a latent variable K ∈ {k0, k1} which symbolize when a
data point is kept in our dataset (K = k1) or not kept (K = k0). So an element (y, x, a, k) is
visible and belongs to D if and only if K = k1. As with the previous bias notion, selection
bias can either disadvantage the deprived group, advantage the privileged one, or both. We
will further assume that the effect of the variable X on K is negligible. So formally, even if
the process differs from the label bias case, the same independence constraint holds:

K |� X | A, Y

Similarly as the previous bias case we can show some early properties of the probability
distribution under selection bias.

Theorem 5.2 Under selection bias, the conditional probabilities for the unfair world follow
these relationships

PD(y1 | x, a)

PD(y0 | x, a)
= δa · P(y1 | x, a)

P(y0 | x, a)

PD(y1 | a)

PD(y0 | a)
= δa · P(y1 | a)

P(y0 | a)

where δa := P(k1 | y1, a)/P(k1 | y0, a).

Proof Since a datapoint is present in the database if and only if K = k1 we have

PD(y | x, a) = P(y | k1, x, a)

Then by Bayes’ theorem

P(y | k1, x, a) = P(k1 | y, a)P(y | x, a)

P(k1 | x, a)

so

PD(y1 | x, a)

PD(y0 | x, a)
= P(k1 | y1, a)

P(k1 | y0, a)

P(y1 | x, a)

P(y0 | x, a)

and similarly the result holds for PD(y | a). 	


6 Worldview and bias combinations

We now mathematically study how the combination of each fairness worldview and bias
process interact with each other. The advantage of this, as previously mentioned, is that
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finding an accurate model on the fair world corresponds to a model that also satisfies the
fairness constraint considered, overcoming the accuracy-fairness trade-off issue. Moreover
this modeling results in a mathematically rich framework that can be further explored.

6.1 Statistical parity and label bias

The first combination we explore is how a world satisfying statistical parity is impacted by
label bias. The first theorem demonstrates that if this occurs, there are conditions that the
unfair probability must meet.

Theorem 6.1 Let PD be a probability distribution resulting from label biasing a distribution
satisfying statistical parity. Then the following condition must hold

⋂

a∈A

[

1 − PD(y0| a)

maxx∈X PD(y0| x, a)
,

PD(y1| a)

maxx∈X PD(y1| x, a)

]

�= ∅

Proof WLOG let’s suppose P(c1| y0, a) < P(c0| y1, a) and consider Eq. (1). As a conse-
quence we get the following inequalities

P(c0| y1, a) ≥ max
x∈X PD(y1| x, a)

P(c1| y0, a) ≤ min
x∈X PD(y1| x, a)

Let’s now consider Ex∼PD [PD(y1| x, a)| A], because PD(x | a) = P(x | a), Eq. (1) becomes

PD(y1| a) = P(c0| y1, a)P(y1) + P(c1| y0, a)P(y0)

therefore we have that

PD(y1| a) ≥P(y1)max
x∈X PD(y1| x, a)

PD(y1| a) ≤P(y1) + P(y0)min
x∈X PD(y1| x, a)

These inequalities can be rewritten as the following

1 − PD(y0| a)

max PD(y0| x, a)
≤ P(y1) ≤ PD(y1| a)

max PD(y1| x, a)

Since P(y1) is independent from A, we get the result in the thesis. 	

As a Corollary we have the following

Corollary 6.1 Under the conditions of Theorem 6.1, one of the following must happen:

max
x∈X PD(y| x, a) < 1 for some a ∈ A, y ∈ Y or PD(y1| a0) = PD(y1| a1)

The Corollary shows that the condition in Theorem 6.1 is not always trivially solved
by any distribution. It’s important to note that the condition shown is, to some extent, also
sufficient: if the condition holds it is possible to define fair probability distributions that may
have generated the unfair distribution. This is proved in the following theorem:

Theorem 6.2 Let P(y1) ∈ [0, 1] be an element of the following non-empty set

⋂

a∈A

[

1 − PD(y0| a)

maxx∈X PD(y0| x, a)
,

PD(y1| a)

maxx∈X PD(y1| x, a)

]

(2)

123



5090 Machine Learning (2023) 112:5081–5104

Then the conditional distributions P(c| y, a) that satisfy the following conditions

PD(y1| a) = P(c0| y1, a)P(y1) + P(c1| y0, a)(1 − P(y1))

PD(y1| x, a) ∈ [P(c1| y0, a), P(c0| y1, a)] ∪ [P(c0| y1, a), P(c1| y0, a)]
are all and only the distributions that generate PD(Y , X , A) according to the label bias
model under statistical parity. In particular the set of possible P(c| a, y) is not empty.

Proof It should be clear from the proof of Theorem 6.1 why the conditions for P(c | a, y)
must hold when PD(Y , X , A) follows our model, so let’s prove that if the conditions are
respected then we can indeed generate PD(Y , X , A). We first define P(y1| x, a) as follows

P(y1| x, a) :=
⎧

⎨

⎩

PD(y1| x, a) − P(c1| y0, a)

P(c0| y1, a) − P(c1| y0, a)
if P(c0| y1, a) �= P(c1| y0, a)

P(y1) otherwise

It’s clear that 0 ≤ P(y| x, a) ≤ 1 since PD(y1| x, a1) ∈ [P(c1| y0, a1), P(c0| y1, a1)] if
P(c1| y0, a1) < P(c0| y1, a1), or PD(y1| x, a1) ∈ [P(c0| y1, a1), P(c1| y0, a1)] otherwise.
But it’s also clear that Ex∼PD [P(y1| x, a)| A] = P(y1) as it follows directly from the first
condition that

P(y1) = PD(y1| a) − P(c1| y0, a)

P(c0| y1, a) − P(c1| y0, a)

To show that a solution exists let’s first notice that if P(y1) belongs in the interval (2) then
we have

max
x∈X PD(y1| x, a)P(y1) ≤ PD(y1| a) ≤ P(y1) + P(y0)min

x∈X PD(y1| x, a)

By Bolzano’s theorem we have that a suitable choice of P(c| y, a) must exists. 	

Example 6.1 Consider the following datasets:

# of Y = X = A =
copies {+,−} ‘degree’ ‘sex’

×10 − ‘b.sc’ ♂
×8 − ‘m.sc’ ♂
×24 + ‘m.sc’ ♂
×21 + ‘ph.d’ ♂
×20 − ‘b.sc’ ♀
×4 − ‘m.sc’ ♀
×4 + ‘m.sc’ ♀
×3 − ‘ph.d’ ♀
×6 + ‘ph.d’ ♀

Toy Dataset Da

# of Y = X = A =
copies {+,−} ‘degree’ ‘sex’

×10 + ‘b.sc’ ♂
×20 − ‘b.sc’ ♂
×20 + ‘m.sc’ ♂
×10 − ‘m.sc’ ♂
×20 + ‘ph.d’ ♂
×10 − ‘ph.d’ ♂
×10 + ‘b.sc’ ♀
×20 − ‘b.sc’ ♀
×10 + ‘m.sc’ ♀
×20 − ‘m.sc’ ♀
×20 + ‘ph.d’ ♀
×10 − ‘ph.d’ ♀

Toy Dataset Db

Despite not knowing how well the datasets represent the probabilities from which they
were sampled, using Theorem 6.1 we can see why it is improbable for dataset Da to be the
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result of a fair distribution (according to the statistical parity notion) where label bias has
been introduced. For male candidates we have

max
x∈X PD(y0| x, a) = P(Y = −| X = ‘b.sc’, A = ♂) ≈ 1

max
x∈X PD(y1| x, a) = P(Y = +| X = ‘ph.d’, A = ♂) ≈ 1

PD(y1| a) = P(Y = +| A = ♂) ≈ 5/7

while for female candidates we have

max
x∈X PD(y0| x, a) = P(Y = −| X = ‘b.sc’, A = ♀) ≈ 1

max
x∈X PD(y1| x, a) = P(Y = +| X = ‘ph.d’, A = ♀) ≈ 2/3

PD(y1| a) = P(Y = +| A = ♀) ≈ 10/37

So, substituting in Eq. (2), we get {5/7} ∩ [10/37, 15/37] = ∅. On the other hand, sim-
ilar calculations for dataset Db indicate that it might be the outcome of label bias, since
[1/3, 5/6] ∩ [1/6, 2/3] = [1/3, 2/3]. Theorem 2 then guarantees the existence of label-
biasing distributions P(c | y, a) capable of generating the dataset.

6.2 Statistical parity and selection bias

The results presented in this section prove a somewhat counter-intuitive result: even if a
distribution that satisfies statistical parity undergoes selection bias and we are able to retrieve
the original fair distribution, the demographic disparity difference might (and under stricter
conditions, must) still remain strictly positive nonetheless. We start by showing, similar to
the previous case, the set of possible P(k|y, a) that may satisfy the model.

Theorem 6.3 The conditional distributions P(k | a, y) that satisfy the following conditions

PD(y1| a1)
PD(y0| a1)

PD(y0| a0)
PD(y1| a0) = P(k1| y1, a1)

P(k1| y0, a1)
P(k1| y0, a0)
P(k1| y1, a0)

are all and only the distributions that generate PD(Y , X , A) according to the selection bias
model under statistical parity. The set of such distributions is never empty.

Proof Following Theorem 5.2 we have

δa0 · PD(y1 | a1)
PD(y0 | a1) = δa0 · P(y1)

P(y0)
· δa1 = PD(y1 | a0)

PD(y0 | a0) · δa1

from which the condition follow since δa = P(k1 | y1, a)/P(k1 | y0, a). On the other hand,
given P(k1| y, a) satisfying the equation (which is clearly always possible to find), we can
generate P(y| x, a) by solving the following equation

P(y1 | x, a)

P(y0 | x, a)
:= P(k1 | y0, a)

P(k1 | y1, a)

PD(y1 | x, a)

PD(y0 | x, a)

	

The following theorem shows how the conditional probability of Y given A changes when

selection bias happens.
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Theorem 6.4 Let P(k1| a, y) be a conditional selection-biasing distribution. Then the fol-
lowing holds

∫

x∈X
P(y1| x, a)PD(x | a)dx ≥ P(y1| a) ⇐⇒ P(k1| y1, a) ≥ P(k1| y0, a)

Also, all the inequalities are strict unless Y |� X | A = a

Proof To show this we must first define the following parametric function

fδ(t) := t

δ + (1 − δ)t

Using this function we can rewrite Theorem 5.2 by saying that the following equations hold

P(y1| x, a) = fδa (PD(y1| x, a))

P(y1| a) = fδa (PD(y1| a))

where δa := P(k1| y0, a)/P(k1| y1, a). On the interval [0, 1] the function fδ is increasing
for δ ≥ 0 and it’s convex when δ ∈ [1,+∞], concave otherwise if δ ∈ [0, 1]. Therefore if
P(k1| a, y1) ≥ P(k1| a, y0) then δa ∈ [1,+∞] so, by applying Jensen’s inequality

∫

x∈X P(y1| x, a)PD(x | a)dx = ∫

x∈X fδa

(

PD(y1| x, a)

)

PD(x | A = a)dx

≥ fδa

(
∫

x∈X PD(y1| x, a)PD(x | a)dx

)

= fδa

(

PD(y1| a)

)

= P(y1| a)

and similarly we have the result when P(k1| a, y1) ≤ P(k1| a, y0). Notice that Jensen’s
inequality is strict when the inequality on P(k1| a, y) is strict unless Y |� X | A = a. 	


Adirect consequence of this is that if one community is negatively (or positively) impacted
by selection bias, while the other is not, the demographic parity difference of the fair model
does not converge to zero, even if the original distribution satisfied statistical parity.

Theorem 6.5 Let P be fair according to statistical parity. Suppose P(k1| a0, y1) ≤
P(k1| a0, y0) and P(k1| a1, y1) ≥ P(k1| a1, y0) with at least one of the inequalities strict.
Then the calculated disparity of the fair P(y1| x, a) does not converge to zero unless
Y |� X | A = a for all a ∈ A where the inequality is strict.

Proof WLOG let suppose P(k1| y1, a0) < P(k1| y0, a0). As a corollary of the previous
theorem we get that

∫

x∈X
P(y1| x, a0)PD(x | a0)dx < P(y1) ≤

∫

x∈X
P(y1| x, a1)PD(x | a1)dx

unless Y |� X | A = a0. Since

∑

(y,x,a)∈D

P(y1 | x, ai )1ai (a)

|{(y, x, a) ∈ D : a = ai }|
|D|→∞−−−−→

∫

x∈X
P(y1| x, ai )PD(x | ai )dx

the DPD doesn’t converge to zero. 	

Even though we have stated this theorem for P(y1|x, a), the result applies to any model

that aims to address selection bias, regardless of whether it is the original model or not. As
long aswe believe that selection biaswas detrimental (or beneficial) to one community but not
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the other, the DPD of any distribution that used to satisfy statistical parity will not converge
to zero. Additionally, even though the condition that the two populations have been treated
differently is necessary to prove the behavior of the demographic parity difference, in general,
Theorem 6.4 shows that whenever selection bias occurs, there are no theoretical guarantees
that the demographic parity difference will ever approach zero, even if both populations were
affected in the same way. When bias is introduced into a distribution some of the measures
become biased, this can happen to the bias measures themselves.

6.3 WAE and label bias

In the next sections, we will assume that our fair-world definition follows the WAE principle
and the distribution P(y, x, a) is fair since Y |� A|X . Similarly to Sect. 6.1, we will start by
showing what conditions must PD(y|x, a) follow in order to be generated by that worldview
when label bias occurs.

Theorem 6.6 Let PD be a probability distribution resulting from label biasing a distribution
satisfying WAE. Then PD(y1| x, a0) and PD(y1| x, a1) are linearly related, that is:

αPD(y1| x, a0) + βPD(y1| x, a1) + γ = 0 for some (α, β, γ ) ∈ R
3

� {(0, 0, 0)}
Proof Following Theorem 5.1, we have this system of linear equations

⎧

⎪⎨

⎪⎩

α0P(y1| x, a0) + β0PD(y1| x, a0) + γ0 = 0

α1P(y1| x, a1) + β1PD(y1| x, a1) + γ1 = 0

P(y1| x, a0) − P(y1| x, a1) = 0

from which the required relation follows easily. 	

As for the casewith statistical parity,we cannotice that this last relation canbe theoretically

observed from the distribution we have access to, because it only involves PD . The next
proposition shows that if the condition holds then we can find the set of P(c|y, a) that
generates the distribution

Theorem 6.7 Suppose the following relation holds

αPD(y1| x, a0) + βPD(y1| x, a1) + γ = 0 for some (α, β, γ ) ∈ R
3

� {(0, 0, 0)}
Then the conditional distributions P(c| a, y) that satisfy the following conditions

αP(c1| y0, a0) + βP(c1| y0, a1) + γ = 0

αP(c0| y1, a0) + βP(c0| y1, a1) + γ = 0

PD(y1| x, a) ∈ [P(c1| y0, a), P(c0| y1, a)] ∪ [P(c0| y1, a), P(c1| y0, a)]
are all and only the distributions that generate PD(Y , X , A) according to theWAEworldview
under label bias. In particular the set of possible P(c|a, y) is not empty.

Proof WLOG we assume α �= 0 so we can rewrite the equation as

PD(y1| x, a0) = mPD(y1| x, a1) + q

and the set of conditions as

P(c1| y0, a0) = mP(c1| y0, a1) + q
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P(c0| y1, a0) = mP(c0| y1, a1) + q

PD(y1| x, a) ∈ [P(c1| y0, a), P(c0| y1, a)] ∪ [P(c0| y1, a), P(c1| y0, a)]
where m, q are uniquely defined. First let’s show that we can find P(c| y, a) satisfying the
aforementioned conditions and with that we can generate PD(y| x, a) according to the label
bias model. To show the existence of P(c| y, a) let’s notice that we can define

P(c0| y, a) := max
x∈X PD(y| x, a)

since PD(y| x, a) follows the initial constraint then also P(c| y, a) has to. Now, having
P(c| y, a), we can define P(y| x) as follow

P(y1| x) :=
⎧

⎨

⎩

PD(y1| x, a1) − P(c1| y0, a1)
P(c0| y1, a1) − P(c1| y0, a1) if P(c0| y1, a1) �= P(c1| y0, a1)
1 otherwise

For the same argument in Theorem 6.1 we have 0 ≤ P(y| x) ≤ 1 so we only need to
prove that

PD(y1| x, a) = P(c0| y1, a)P(y1| x) + P(c1| y0, a)P(y0| x)
It’s easy to see that the case for A = a0 follows from A = a1 because

PD(y1| x, a0) = P(c0| y1, a0)P(y1| x) + P(c1| y0, a0)P(y0| x)
⇐⇒

mPD(y1| x, a1) + q = [mP(c0| y1, a1) + q]P(y1| x) + [mP(c1| y0, a1) + q]P(y0| x)
⇐⇒

mPD(y1| x, a1) = m[P(c0| y1, a1)P(y1| x) + P(c1| y0, a1)P(y0| x)]
So we need to focus our attention only at the case A = a1. If P(c0| y1, a1) = P(c1| y0, a1)
then PD(y1| x, a) = P(c0| y1, a), therefore

PD(y1| x, a1) = P(c0| y1, a1)P(y1| x) + P(c1| y0, a1)P(y0| x)
If instead P(c0| y1, a1) �= P(c1| y0, a1) by substituting P(y1| x) we get

P(c0|y1, a1)P(y1|x) + P(c1|y0, a1)P(y0|x)
= P(c0|y1, a1) PD(y1|x, a1) − P(c1|y0, a1)

P(c0|y1, a1) − P(c1|y0, a1)
+P(c1|y0, a1) P(c0|y1, a1) − PD(y1|x, a1)

P(c0|y1, a1) − P(c1|y0, a1)
= PD(y1| x, a1) P(c0| y1, a1) − P(c1| y0, a1)

P(c0| y1, a1) − P(c1| y0, a1) = PD(y1| x, a1)

as we wanted.
Let’s now prove that if PD(y1| x, a) is a result of label bias in a WAE world we get the

conditions showed. The condition on PD(y1| x, a) follows from the fact that if

PD(y1| x, a) = P(c0| y1, a)P(y1| x) + P(c1| y0, a)P(y0| x)
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then PD(y1| x, a) is an average of P(c0| y1, a) and P(c1| y1, a). For the other conditions we
can consider the following linear system

⎧

⎪⎨

⎪⎩

PD(y1| x, a0) = P(c0| y1, a0)P(y1| x) + P(c1| y0, a0)P(y0| x)
PD(y1| x, a1) = P(c0| y1, a1)P(y1| x) + P(c1| y0, a1)P(y0| x)
1 = P(y1| x) + P(y0| x)

since P(y1| x) is a solution, by Rouché–Capelli theorem, it follows that

det

⎡

⎣

PD(y1| x, a0) P(c0| y1, a0) P(c1| y0, a0)
PD(y1| x, a1) P(c0| y1, a1) P(c1| y0, a1)

1 1 1

⎤

⎦ �= 0

and this is equivalent to the conditions we were trying to prove. 	

Example 6.2 Let’s once again consider the datasets from Example 6.1. This time, the roles
played by the datasets are swapped: the first dataset is the one that can be generated by the
combination of label bias and theWAE fairness notion, while the other dataset is the one that
cannot. In fact, if we calculate the conditional probabilities for the first dataset we obtain:

P(Y = +| X = ‘b.sc’, A = ♂) ≈ 0 P(Y = +| X = ‘b.sc’, A = ♀) ≈ 0

P(Y = +| X = ‘m.sc’, A = ♂) ≈ 3/4 P(Y = +| X = ‘m.sc’, A = ♀) ≈ 1/2

P(Y = +| X = ‘ph.d’, A = ♂) ≈ 1 P(Y = +| X = ‘ph.d’, A = ♀) ≈ 2/3

So the probabilities appear to satisfy

P(Y = +| X = x, A = ♀) = 2

3
P(Y = +| X = x, A = ♂)

and Theorem 6.6 as well. The other dataset, however, does not satisfy it since

P(Y = +| X = ‘b.sc’, A = ♂) = P(Y = +| X = ‘b.sc’, A = ♀) ≈ 1/3

P(Y = +| X = ‘m.sc’, A = ♂) �= P(Y = +| X = ‘m.sc’, A = ♀)

P(Y = +| X = ‘ph.d’, A = ♂) = P(Y = +| X = ‘ph.d’, A = ♀) ≈ 2/3

6.4 WAE and selection bias

The study of this combination ofworldview and bias ismore straightforward than the previous
case: we start, as in the previous cases, by checking whether it is possible to observe this
combination in our biased dataset.

Theorem 6.8 Let PD be a probability distribution resulting from selection biasing a distri-
bution satisfying WAE then

PD(y1| x, a1)
PD(y0| x, a1) = α · PD(y1| x, a0)

PD(y0| x, a0) for some α ∈ [0,+∞]

Proof It’s a direct consequence of Theorem 5.2, since P(y|x, a) = P(y|x) we have
PD(y1 | x, a1)
PD(y0 | x, a1) = P(k1 | y1, a1)

P(k1 | y0, a1)
P(k1 | y0, a0)
P(k1 | y1, a0)

P(y1 | x, a0)
P(y0 | x, a0)

so

α = P(k1 | y1, a1)
P(k1 | y0, a1)

P(k1 | y0, a0)
P(k1 | y1, a0) 	
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The theorem also already showswhat are the possible values of P(k|y, a), but we formally
state it in the following corollary.

Corollary 6.2 Suppose the following relation holds

PD(y1| x, a1)
PD(y0| x, a1) = α · PD(y1| x, a0)

PD(y0| x, a0)
Then the conditional distributions P(k| a, y) that satisfy the following condition

P(k1| y1, a1)
P(k1| y0, a1) = α · P(k1| y1, a0)

P(k1| y0, a0)
are all and only the distributions that generate PD(Y , X , A) according to theWAEworldview
under selection bias.

Proof Same of Theorem 6.8. 	

Example 6.3 Since the results of this section are quite similar to the results for Sect. 6.3, we
can utilize a modified version of Example 6.2:

# of Y = X = A =
copies {+,−} ‘degree’ ‘sex’

×10 − ‘b.sc’ ♂
×40 − ‘m.sc’ ♂
×30 + ‘m.sc’ ♂
×10 − ‘ph.d’ ♂
×10 + ‘ph.d’ ♂
×20 − ‘b.sc’ ♀
×20 − ‘m.sc’ ♀
×10 + ‘m.sc’ ♀
×30 − ‘ph.d’ ♀
×20 + ‘ph.d’ ♀

Toy Dataset Da′

# of Y = X = A =
copies {+,−} ‘degree’ ‘sex’

×10 + ‘b.sc’ ♂
×20 − ‘b.sc’ ♂
×20 + ‘m.sc’ ♂
×10 − ‘m.sc’ ♂
×20 + ‘ph.d’ ♂
×10 − ‘ph.d’ ♂
×10 + ‘b.sc’ ♀
×20 − ‘b.sc’ ♀
×10 + ‘m.sc’ ♀
×20 − ‘m.sc’ ♀
×20 + ‘ph.d’ ♀
×10 − ‘ph.d’ ♀

Toy Dataset Db′

These new datasets have been generated such that the conditioned odds of (Y = +) in
Da, Db were equal to P(Y = +|X , A) in Da, Db respectfully. As a consequence in Da′ we
have:

P(Y = +| X = ‘b.sc’, A = ♂)/P(Y = −| X = ‘b.sc’, A = ♂) ≈ 0

P(Y = +| X = ‘m.sc’, A = ♂)/P(Y = −| X = ‘m.sc’, A = ♂) ≈ 3/4

P(Y = +| X = ‘ph.d’, A = ♂)/P(Y = −| X = ‘ph.d’, A = ♂) ≈ 1

for males; and for females:

P(Y = +| X = ‘b.sc’, A = ♀)/P(Y = −| X = ‘b.sc’, A = ♀) ≈ 0

P(Y = +| X = ‘m.sc’, A = ♀)/P(Y = −| X = ‘m.sc’, A = ♀) ≈ 1/2

P(Y = +| X = ‘ph.d’, A = ♀)/P(Y = −| X = ‘ph.d’, A = ♀) ≈ 2/3

which satisfies Theorem 6.8, while for similar reasons Db′ does not.
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7 Discussion

7.1 Significance and limitations of the results

To fully comprehend the impact of the results presented in Sect. 6, a thorough discussion is
needed. In primis, we want to clarify that these results do not propose a new fair ML model.
Theorems 6.2, 6.3, 6.7 and Corollary 6.2 all demonstrate how to retrieve the original fair
probability from the unfair one. In principle, this means that one would be able to update the
original scores of a model to new fair scores. But since the conversion of scores is monotonic
for each sensitive attribute, any prediction based on these new scores would be equivalent to
the selection of different thresholds during prediction. In other words, adjusting the scores to
achieve fairness does not change the underlying predictions; it only affects the threshold at
which the predictions aremade. This observation is also corroborated by results fromCorbett-
Davies et al. (2017), Menon and Williamson (2018), which state that when provided with an
unfair probability distribution of the data, the optimal model can be obtained by choosing
labels using different thresholds for the sensitive attributes. This indicates that these claims
seem to hold even when the Fair World Framework is adopted.

On the other hand, the aforementioned theorems and corollary also demonstrate that the
set of possible biasing distributions, when non-empty, contains multiple elements. Therefore,
without prior information or assumptions, it is impossible to determine which of the possible
thresholds is the most suitable according to the fair distribution.

Of greater importance, in our view, areTheorems6.1, 6.6 and 6.8. These theorems establish
the conditions that unfair distributions must meet if they result from a particular combination
of bias and worldview. To fully utilize these theorems, complete knowledge of PD(y|x, a)

is required. Also, since our mathematical exploration assumes the bias to be conditionally
independent from X , we acknowledge that these results may not perfectly model the real
world. However, the significance of these theorems lies in the insights they provide, even
when relaxed. Due to their importance, it is worthwhile to take a moment to discuss each of
these theorems individually.

• Theorem 6.1 and its Corollary 6.1 are dependent on the valuemaxx∈X PD(y|x, a), specif-
ically requiring maxx∈X PD(y|x, a) < 1. Although, in a realistic scenario, it is highly
likely to have data points with conditional probabilities close to one, these propositions
demonstrate that label bias is associated with certainty of prediction. This implies that
if a fairness-unaware model is underperforming on unfair data, exhibiting disparities
based on a sensitive attribute, one of the possible reasons for this could be label bias
in the dataset. Therefore, it might be possible, based solely on the unfair distribution,
to determine not only which fairness measure to employ but also which type of bias to
address.

• Theorem 6.6 requires a linear relationship between conditional probabilities of different
sensitive attributes. Given that the WAE worldview assumes the label to be independent
from the sensitive attribute, given the rest of the attributes, one effective intervention to
address bias would be to remove the sensitive attribute from the dataset before training.
This procedure is known as “Fairness by Unawareness”. This procedure is frequently
criticized by the scientific community for two significant reasons. Firstly, there may be
sufficient information contained within the remaining attributes to predict the sensitive
attribute, leading to an effect known as redlining. Consequently, removing the sensitive
attribute may prove ineffective, if not entirely futile. Secondly, without the inclusion of
the sensitive attribute, achieving and certifying fair-aware models becomes a challenging
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task, as even conventional fairness measures cannot be computed in a canonical manner.
Nevertheless, the proposed theorem provides valuable insights into when “Fairness by
Unawareness” could be a viable procedure. Given a probabilistic model, there should be
a high linear correlation between the scores of data points where the sensitive attribute
is manually swapped.

• Theorem 6.8 shares similar remarks as the previous theorem, with the distinction that the
linear correlation should be computed not on the scores themselves, but on their odds.
This distinction provides additional information about the type of bias that has occurred.

Finally, in our opinion, the most crucial result comes from Theorems 6.4 and 6.5. These
theorems state that minimizing the DPD (or equivalent measure) when sampling bias has
occurred does not lead to an inherently fair distribution. This finding has multiple conse-
quences and interpretations.

Themost general one is that imposing fairness constraints without considering the specific
type of bias can have negative effects. A practitioner should always take into consideration
the type of bias present in their data, and now we have theoretically sound reasons to support
this approach. Another important point that emerges from these results is the intrinsic differ-
ence between models based on the timing of fairness optimization: pre-processing methods
operate under distinct assumptions compared to in-processing and post-processing ones.
More specifically, any in-processing and post-processing method that aims to minimize the
disparity of the output data will encounter the effect described by the theorem, as they do
not consider selection bias as a potential source of bias. In contrast, pre-processing methods
typically focus on minimizing the DPD in the input data. Depending on how they transform
the data, pre-processing methods have the potential to address various types of bias.

A perfect example of the capability of pre-processing methods is the “reweighing” algo-
rithm proposed by Kamiran and Calders (2012). It assigns a weight to each datapoint based
on the sensitive attribute and the label. The weights are chosen such that in the now-weighted
dataset it holds P(y, a) = PD(y)PD(a) for all a ∈ A, y ∈ Y . With calculations similar
to Theorem 5.2, it is possible to show that the new probabilities for the dataset follow the
relation

P(y1 | x, a)

P(y0 | x, a)
= PD(a | y0)

PD(a | y1)
PD(y1 | x, a)

PD(y0 | x, a)

which is the inverse of the equation for selection bias when P(y) = PD(y). Therefore, we
not only have an example of a pre-processing method that aims to address a different case
than label bias but we can also assert that the underlying assumption of reweighing is that a
specific instance of sampling bias has occurred.

7.2 Unlocking fairness

In their paper “Unlocking fairness: a trade-off revisited” (Wick & Tristan, 2019), Wick et al.
argue that the accuracy-fairness trade-off is a false notion. They show that when the F1-score
of a fair model is computed on a fair dataset, fairness and accuracy positively correlate.

To demonstrate this, they generated fair data using statistical parity and WAE as their
fairness assumptions. They then introduced label and selection bias into the dataset with
increasing intensity. Finally, they evaluated six different models on both a biased and an
unbiased test set and evaluated their fairness on the unbiased one.

The six models are:

• A fairness-agnostic supervised model trained on the biased dataset.
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• The same model but trained on a pre-processed dataset using the “reweighing” method
(Kamiran & Calders, 2012).

• The supervised model where the square of the DPD has been added as an extra term in
the cost function to make the model fairness-aware.

• The samemodel butwhere the extra termhasbeen computedon anunbiased andunlabeled
validation set, making it semi-supervised.

• The original supervised model but trained on the unbiased dataset as a baseline.
• A random model assigning labels according to the biased distribution.

Their results are shown in Fig. 2. The results clearly show what they claim, but they also
acknowledge how all the fairness-aware models, besides from the semi-supervised one, “all
succumb to selection bias”. Our theoretical framework provides an explanation for these
findings. As stated in Theorem 5.1, under label bias, PD(x, a) = P(x, a), so the DPD of a
probabilistic model PM (y1| x, a) converges to the same value when evaluated on the biased
data or unbiased data. Therefore, when the original distribution satisfies statistical parity,
any model that tries to minimize the DPD (regardless of where it is calculated) will indeed
approach the fair distribution.However, different results should be expectedwhen considering
the case for selection bias: as shown by Theorems 6.4 and 6.5, under selection bias, the DPD
of the fair model evaluated on the biased dataset doesn’t converge to its original value. Since
both the fairness-aware supervised model and the pre-processed supervised model aim to
achieve statistical parity on the biased data, their DPDs approach zero when evaluated on
the biased dataset. But the DPD of the fair model is not zero, so both models get further
and further away from the fair distribution and their fairness scores overshoot the target. On
the other hand the semi-supervised model evaluates the DPD on an unbiased dataset, so the
DPD for that model does indeed correspond to the fairness behaviour on fair data. Therefore,
even if the fair distribution in the experiment for selection bias had a small disparity, the
performance and fairness of the semi-supervised model remain constant and unfooled by the
bias injection.

Additionally, we can observe that the performance of the unfair supervised model on
biased data tends to degrade as the label bias increases. Then, at some point, it starts to
improve again. This observation aligns with what was explained in Sect. 7.1. Label bias
is closely related to the certainty of prediction: as label bias increases, so does the level of
uncertainty in the predictions. At a certain point, when the bias becomes extremely strong, the
model’s prediction becomes solely dependent on the sensitive attribute. As the bias increases
further, this decision based solely on the sensitive attribute becomes more and more accurate,
resulting in an improvement in performance.

Finally, when we examine the model in which reweighing was applied, we can observe
that it specifically addresses selection bias while failing to address label bias, as predicted.

8 Experiments

Similarly to Wick et al., we conducted experiments on artificial data using models from
the AIF360 library (Bellamy et al., 2019). The main difference from the previous data is
that in our experiments, we focused on statistical parity as the fairness criterion, without
incorporating additional fairness assumptions. This was done to maintain consistency and
avoid introducing potential biases in the results. To achieve this, we utilized a Bayesian
network. For each datapoint, we independently generated a sensitive attribute and a label.
This ensured that statistical parity was maintained. Subsequently, we generated all the other

123



5100 Machine Learning (2023) 112:5081–5104

Fig. 2 Results from Wick and Tristan (2019) on the fairness-accuracy trade-off

features based on the generated label and sensitive attribute, with each feature being generated
independently from the others. Then, we introduced increasing amounts of label and selection
bias into the datasets. The experiment was repeated 10 times, and the results were averaged
across the repetitions. The following algorithms were used in the experiments:

• A fairness-agnostic random-forest classifier was used as a baseline model.
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Fig. 3 Experimental results

• The same model but trained on a pre-processed dataset using the “reweighing” method.
• The adversarial debiasing algorithm from Zhang et al. (2018).
• The initial random-forest classifier on a pre-processed dataset using the “Disparate Impact

Remover (DIR)” algorithm (Feldman et al., 2015).
• The “Learn Fair Representation (LFR)” algorithm from Zemel et al. (2013).

All methodswere trained on biased data and evaluated on fair data, prior to pre-processing.
Results are shown in Fig. 3. As for the previous section, we can observe that the adversar-
ial debiasing method, being an in-processing model, effectively minimizes the disparity of
the data for label bias. However, it does not perform as well in addressing selection bias,
resulting in disproportionate impact on one of the sensitive groups. This is also reflected in
the performance of the classifier, as it performs the best overall in mitigating label bias but
struggles when it comes to addressing sampling bias.

Similarly, the disparity of the LFR algorithm exhibits a behavior comparable to an in-
processing method, albeit to a lesser degree. This is not surprising since, although LFR is
often classified as a pre-processing method, it functions similarly to an in-processing one.
However, qualitatively, the performance of the algorithm is lacking for both biases.

Interestingly, theDIRmethod does not appear to be as significantly affected by the increas-
ing bias compared to the other methods.We believe this could be attributed to the way the fair
data are generated. In particular, the fact that each feature is conditionally independent from
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one another given the label and sensitive attribute aligns closely with some of the assumptions
of the DIR algorithm, which also independently modifies the values of each attribute.

Finally, the performance of the reweighing algorithm was not as expected. While the
behavior of the model under label bias can be explained, as the algorithm specifically
addresses selection bias, the performance of the model on its bias of choice falls short.
We cannot provide an theoretically sound explanation as why this is the case, but we hypoth-
esize this is a consequence of using a random-forest classifier as the main method, which
could be less sensitive than other models to the reweighing method.

9 Conclusion and future work

Our work shows important connections between fairness conditions and bias injections.
Proving theoretical conditions that a distribution must satisfy in order to understand if the
original distribution has been biased is of primary importance for the future of the topic
of fairness. Having these conditions (like Theorems 6.1, 6.6, 6.8) not only hint on which
fairness definition should be used but also what the fair distribution should look like. This
would relieve practitioners from the burden of blindly choosing and minimizing a fairness
metric. On the other hand Theorems 6.4 and 6.5 show the risk of using fairness metrics as
a minimization objectives without understanding how bias might influence them: the fair
distribution could not be between those that minimize the chosen measure.

Nonetheless much work is still needed: the conditions show in this paper are theoretical
in nature and detecting when a distribution might satisfy them still requires work. First of
all having perfect access to PD(y|x, a), as many of the theorems require, poses a significant
challenge in the real world. Also, even if we had access to the distribution, conditions like
those shown in Corollary 6.1 are unrealistically strict and must be relaxed to be able to work
with them.
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