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Abstract
Behavioural cloning (BC) is a commonly used imitation learning method to infer a sequen-
tial decision-making policy from expert demonstrations. However, when the quality of 
the data is not optimal, the resulting behavioural policy also performs sub-optimally once 
deployed. Recently, there has been a surge in offline reinforcement learning methods that 
hold the promise to extract high-quality policies from sub-optimal historical data. A com-
mon approach is to perform regularisation during training, encouraging updates during 
policy evaluation and/or policy improvement to stay close to the underlying data. In this 
work, we investigate whether an offline approach to improving the quality of the existing 
data can lead to improved behavioural policies without any changes in the BC algorithm. 
The proposed data improvement approach - Model-Based Trajectory Stitching (MBTS) - 
generates new trajectories (sequences of states and actions) by ‘stitching’ pairs of states 
that were disconnected in the original data and generating their connecting new action. 
By construction, these new transitions are guaranteed to be highly plausible according to 
probabilistic models of the environment, and to improve a state-value function. We dem-
onstrate that the iterative process of replacing old trajectories with new ones incrementally 
improves the underlying behavioural policy. Extensive experimental results show that sig-
nificant performance gains can be achieved using MBTS over BC policies extracted from 
the original data. Furthermore, using the D4RL benchmarking suite, we demonstrate that 
state-of-the-art results are obtained by combining MBTS with two existing offline learning 
methodologies reliant on BC, model-based offline planning (MBOP) and policy constraint 
(TD3+BC).
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1  Introduction

Behavioural cloning (BC) (Pomerleau, 1988, 1991) is one of the simplest imitation learn-
ing methods to obtain a decision-making policy from expert demonstrations. BC frames 
the imitation learning problem as a supervised learning one. Given expert trajectories - the 
expert’s paths through the state space - a policy network is trained to reproduce the expert 
behaviour: for a given observation, the action taken by the policy must closely approximate 
the one taken by the expert. Although a simple method, BC has shown to be very effective 
across many application domains (Kadous et al., 2005; Pearce & Zhu, 2022; Pomerleau, 
1988; Sammut et al., 1992), and has been particularly successful in cases where the dataset 
is large and has wide coverage (Codevilla et al., 2019). An appealing aspect of BC is that it 
is applied in an offline setting, using only the historical data. Unlike reinforcement learning 
(RL) methods, BC does not require further interactions with the environment. Offline pol-
icy learning can be advantageous in many circumstances, especially when collecting new 
data through interactions is expensive, time-consuming or dangerous; or in cases where 
deploying a partially trained, sub-optimal policy in the real-world may be unethical, e.g. in 
autonomous driving and medical applications.

BC extracts the behaviour policy which created the dataset. Consequently, when applied 
to sub-optimal data (i.e. when some or all trajectories have been generated by non-expert 
demonstrators), the resulting behavioural policy is also expected to be sub-optimal. This 
is due to the fact that BC has no mechanism to infer the importance of each state-action 
pair. Other drawbacks of BC are its tendency to overfit when giving a small number of 
demonstrations and the state distributional shift between training and test distributions 
(Codevilla et  al., 2019; Ross et  al., 2011). In the area of imitation learning, significant 
efforts have been made to overcome such limitations, however the available methodologies 
generally rely on interacting with the environment (Finn et al., 2016; Ho & Ermon, 2016; 
Le et al., 2018; Ross et al., 2011). So, a question arises: can we help BC infer a superior 

Fig. 1   Simplified illustration of Model-Based Trajectory Stitching. Each original trajectory (a sequence of 
states and actions) in the dataset D is indicated as T

i
 with i = 1,… , 3 . A first stitching event is seen in 

trajectory T1 whereby a transition to a state originally visited in T2 takes place. A second stitching event 
involves a jump to a state originally visited in T3 . At each event, jumping to a new state increases the cur-
rent trajectory’s future expected returns. The resulting trajectory (in bold) consists of a sequence of states, 
all originally visited in D , but connected by imagined actions; it replaces T1 in the new dataset



649Machine Learning (2024) 113:647–674	

1 3

policy only from available sub-optimal data without the need to collect additional expert 
demonstrations?

Our investigation is related to the emerging body of work on offline RL, which is moti-
vated by the aim of inferring expert policies with only a fixed set of sub-optimal data 
(Lange et al., 2012; Levine et al., 2020). A major obstacle towards this aim is posed by 
the notion of action distributional shift (Fujimoto et al., 2019; Kumar et al., 2019; Levine 
et al., 2020). This is introduced when the policy being optimised deviates from the behav-
iour policy, and is caused by the action-value function overestimating out-of-distribution 
(OOD) actions. A number of existing methods address the issue by constraining the actions 
that can be taken. In some cases, this is achieved by constraining the policy to actions close 
to those in the dataset (Fujimoto et al., 2019; Fujimoto & Gu, 2021; Jaques et al., 2019; 
Kumar et  al., 2019; Wu et  al., 2019; Zhou et  al., 2020), or by manipulating the action-
value function to penalise OOD actions (Kumar et  al., 2020; An et  al., 2021; Kostrikov 
et al., 2021; Yu et al., 2021). In situations where the data is sub-optimal, offline RL has 
been shown to recover a superior policy to BC (Fujimoto et al., 2019; Kumar et al., 2022). 
Improving BC will in turn improve many offline RL policies that rely on an explicit behav-
iour policy of the dataset (Argenson & Dulac-Arnold, 2020; Fujimoto & Gu, 2021; Zhan 
et al., 2021).

In contrast to existing offline learning approaches, we turn the problem on its head: 
rather than trying to regularise or constrain the policy somehow, we investigate whether 
the data quality itself can be improved using only the available demonstrations. To explore 
this avenue, we propose a model-based data improvement method called Model-Based Tra-
jectory Stitching (MBTS) . Our ultimate aim is to develop a procedure that identifies sub-
optimal trajectories and replaces them with better ones. New trajectories are obtained by 
stitching existing ones together, without the need to generate unseen states. The proposed 
strategy consists of replaying each existing trajectory in the dataset: for each state-action 
pair leading to a particular next state along a trajectory, we ask whether a different action 
could have been taken instead, which would have landed at a different seen state from a 
different trajectory. An actual jump to the new state only occurs when generating such an 
action is plausible and it is expected to improve the quality of the original trajectory - in 
which case we have a stitching event.

An illustrative representation of this procedure can be seen in Fig. 1, where we assume 
to have at our disposal only three historical trajectories. In this example, a trajectory has 
been improved through two stitching events. To determine the stitching points, MBTS uses 
a probabilistic view of state-reachability that depends on learned dynamics models of the 
environment. These models are evaluated only on in-distribution states enabling accurate 
prediction. In order to assess the expected future improvement introduced by a potential 
stitching event, we utilise a state-value function and a reward model. Thus, MBTS can be 
thought of as a data-driven, automated procedure yielding highly plausible and higher-
quality demonstrations to facilitate supervised learning; at the same time, sub-optimal 
demonstrations are removed altogether whilst keeping the diverse set of seen states.

Our experimental results show that MBTS produces higher-quality data, with BC-
derived policies always superior than those inferred on the original data. Remarkably, we 
demonstrate that MBTS -augmented data allow BC to compete with state-of-the-art offline 
RL algorithms on highly complex continuous control openAI gym tasks implemented in 
MuJoCo using the D4RL offline benchmarking suite (Fu et  al., 2020). Furthermore, we 
show that integrating MBTS with existing offline learning methods that explicitly use BC 
such as model-based planning (Argenson & Dulac-Arnold, 2020) and TD3+BC (Fujimoto 
& Gu, 2021) can significantly boost their performance.
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2 � Related work

2.1 � Imitation learning

Imitation learning aims to emulate a policy from expert demonstrations (Hussein et al., 
2017). BC is the simplest of such category of methods and uses supervised learning 
to clone the actions in the dataset. BC is a powerful method and has been used suc-
cessfully in many applications such as learning a quadroter to fly (Giusti et al., 2015), 
self-driving cars (Bojarski et al., 2016; Farag & Saleh, 2018) and games (Pearce & Zhu, 
2022). These application are highly complex and shows accurate policy estimation from 
high-quality offline data.

One drawback from using BC is the state distributional shift between training and 
test distributions. Improved imitation learning methods have been introduced to reduce 
this distributional shift, however they usually require online exploration. For instance, 
DAgger (Ross et  al., 2011) is an online learning approach that iteratively updates a 
deterministic policy; it addresses the state distributional shift problem of BC through 
an on-policy method for data collection; similarly to MBTS, the original dataset is aug-
mented, but this involves online interactions. Another algorithm, GAIL (Ho & Ermon, 
2016), iteratively updates a generative adversarial network (Goodfellow et al., 2014) to 
determine whether a state-action pair can be deemed as expert; a policy is then inferred 
using a trust region policy optimisation step (Schulman et al., 2015). MBTS also uses 
generative modelling, but this is to create data points likely to have come from the data 
that connect high-value regions.

While expert demonstrations are crucial for imitation learning, our MBTS approach 
generates higher quality datasets from existing, potentially sub-optimal data, thereby 
enhancing offline policy learning. Furthermore, MBTS leverages a reward function 
to learn an improved policy, which distinguishes it from the imitation learning set-
ting where access to rewards may not always be available. This key difference enables 
MBTS to deliver better performance in certain scenarios compared to traditional imita-
tion learning methods.

2.2 � Offline reinforcement learning

Offline RL aims to learn an optimal policy from sub-optimal datasets without further 
interactions with the environment (Lange et  al., 2012; Levine et  al., 2020). Similarly 
to BC, offline RL suffers from distributional shift. However this shift comes from the 
policy selecting OOD actions leading to overestimation of the value function (Fujimoto 
et al., 2019; Kumar et al., 2019). In the online setting, this overestimation encourages 
the agent to explore, but offline this leads to a compounding of errors where the agent 
believes OOD actions lead to high returns. Many offline RL algorithms bias the learned 
policy towards the behaviour-cloned one (Argenson & Dulac-Arnold, 2020; Fujimoto 
& Gu, 2021; Zhan et al., 2021) to ensure the policy does not deviate too far from the 
behaviour policy. Many of these offline methods are therefore expected to directly ben-
efit from enhanced datasets yielding higher-achieving behavioural policies.
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2.2.1 � Model‑free methods

Many model-free offline RL methods typically deal with distributional shift either by 
regularising the policy to stay close to actions given in the dataset (Fujimoto & Gu, 
2021; Fujimoto et  al., 2019; Jaques et  al., 2019; Kumar et  al., 2019; Wu et  al., 2019; 
Zhou et al., 2020) or by pessimistically evaluating the Q-value to penalise OOD actions 
(An et  al., 2021; Kostrikov et  al., 2021; Kumar et  al., 2020). Both options involve 
explicitly or implicitly capturing information about the unknown underlying behaviour 
policy. This behaviour policy can be fully captured using BC. For instance, batch-con-
strained Q-learning (BCQ) (Fujimoto et al., 2019) is a policy constraint method which 
uses a variational autoencoder to generate likely actions in order to constrain the policy. 
The TD3+BC algorithm (Fujimoto & Gu, 2021) offers a simplified policy constraint 
approach; it adds a behavioural cloning regularisation term to the policy update bias-
ing actions towards those in the dataset. Alternatively, conservative Q-learning (CQL) 
(Kumar et al., 2020) adjusts the value of the state-action pairs to “push down” on OOD 
actions and “push up” on in-distribution actions. CQL manipulates the value function so 
that OOD actions are discouraged and in-distribution actions are encouraged. Implicit 
Q-learning (IQL) (Kostrikov et  al., 2021) avoids querying OOD actions altogether by 
manipulating the Q-value to have a state-value function in the SARSA-style update. All 
the above methods try to directly deal with OOD actions, either by avoiding them or 
safely handling them in either the policy improvement or evaluation step. In contrast, 
our method rethinks the problem of learning from sub-optimal data. Rather than using 
RL to learn a policy, instead we use RL-based approaches to enrich the data enabling 
BC to extract an improved policy. Our method generates unseen actions between in-
distribution states; by doing so, we avoid distributional shift by evaluating a state-value 
function only on seen states.

2.2.2 � Model‑based methods

Model-based algorithms rely on an approximation of the environment’s dynamics (Janner 
et al., 2019; Sutton, 1991), that is probability distributions where the next state and reward 
are predicted from a current state and action. In the online setting, model-based methods 
tend to improve sample efficiency (Buckman et al., 2018; Chua et al., 2018; Feinberg et al., 
2018; Janner et al., 2019; Kalweit & Boedecker, 2017). In an offline learning context, the 
learned dynamics have been exploited in various ways.

One approach consists of using the models to improve the policy learning. For instance, 
Model-based offline RL (MOReL) (Kidambi et al., 2020) is an algorithm which constructs 
a pessimistic Markov Decision Model (P-MDP), based off a learned forward dynamics 
model and a state-action detector. The P-MDP is given an additional absorbing state, which 
gives large negative reward for unknown state-actions. Model-based Offline policy Opti-
mization (MOPO) (Yu et al., 2020) augments the dataset by performing rollouts using a 
learned, uncertainty-penalised, MDP. Unlike MOPO, MBTS does not introduce imagined 
states, but only actions between reachable unconnected states.

Another opportunity to exploit learnt models of the environment is in decision-time 
planning. Model-based offline planning (MBOP) (Argenson & Dulac-Arnold, 2020) uses 
the learnt environment dynamics and a BC policy to roll-out a trajectory from the current 
state, one transition at a time. The best trajectory from the current state is found where the 
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trajectory horizon has been extended using a value function and the first action is selected. 
This process is repeated for each new state. Model-based offline planning with trajectory 
pruning (MOPP) (Zhan et  al., 2021) extends the MBOP idea, but prunes the trajectory 
roll-outs based on an uncertainty measure, safely handling the problem of distributional 
shift. Diffuser (Janner et al., 2022) uses a diffusion probabilistic model to predict a whole 
trajectory in one step. Rather than using a model to predict a single next state at decision-
time, diffuser can generate unseen trajectories that have high likelihood under the data and 
maximise the cumulative rewards of a trajectory ensuring long-horizon accuracy. However, 
diffuser’s individual plans are very slow which limits its use case for real-world applica-
tions. Our MBTS method can be used in direct conjunction with planning, especially with 
MBOP and MOPP, which both use a BC policy to guide the trajectory sampling.

2.3 � State similarity metrics

A central aspect of the proposed MBTS approach consists of a stitching event, which uses 
a notion of state similarity to determine whether two states are “close” together. Relying 
on only geometric distances would often be inappropriate; e.g. two states may be close in 
Euclidean distance, yet reaching one from another may be impossible (e.g. in navigation 
task environments where walls or other obstacles preclude reaching a nearby state). Bisim-
ulation metrics (Ferns et al., 2004) capture state similarity based on the dynamics of the 
environment. These have been used in RL mainly for system state aggregation (Ferns et al., 
2012; Kemertas et  al., 2021; Zhang et  al., 2020); they are expensive to compute (Chen 
et  al., 2012) and usually require full-state enumeration (Bacci et  al., 2013a, b; Dadashi 
et al., 2021). A scalable approach for state-similarity has recently been introduced by using 
a pseudometric (Castro, 2020) which facilitates the calculation of state-similarity in offline 
RL. PLOFF (Dadashi et al., 2021) is an offline RL algorithm that uses a state-action pseu-
dometric to bias the policy evaluation and improvement steps. Whereas PLOFF uses a 
pseudometric to stay close to the dataset, we bypass this notion altogether by only using 
states in the dataset and generating unseen actions connecting them. Our stitching event is 
based from the decomposition of the trajectory distribution which allows us to pick unseen 
actions, but with high likelihood, determined by the future state.

2.4 � Data re‑sampling and augmentation approaches

In offline RL, data re-sampling strategies aim to only learn from high-performing tran-
sitions. For instance, best-action imitation learning (BAIL) (Chen et  al., 2020) imitates 
state-action pairs based from the upper-envelope of the dataset. Monotonic Advantage Re-
Weighted Imitation Learning (MARWIL) (Wang et  al., 2018) weights state-action pairs 
from an exponentially-weighted advantage function during policy learning by BC. Return-
based data re-balance (ReD) (Yue et al., 2022) re-samples the data based from the trajec-
tory returns and then applies offline reinforcement learning methods. The proposed MBTS 
differs from BAIL, MARWIL and ReD as we increase the dataset by adding impactful 
stitching transitions as well as removing the low-quality transitions. MBTS has the effect of 
re-sampling high-value transitions in the trajectory as well supplementing the dataset with 
stitched transitions, connecting high-value regions.

Best action trajectory stitching (BATS) (Char et al., 2022) is a related trajectory stitch-
ing method: it augments the dataset by adding transitions through model-based planning. 
MBTS differs from BATS in a number of fundamental ways. First, BATS takes a geometric 



653Machine Learning (2024) 113:647–674	

1 3

approach to defining state similarity; state-actions are rolled-out using the dynamics model 
until a state is found that is within a short distance of a state in the dataset. Relying exclu-
sively on geometric distances may result in poor results; as such, our stitching events are 
based on the dynamics of the environment and are only assessed between two in-distri-
bution states. Second, BATS generates new states that are not in the dataset. Due to com-
pounding model error, resulting in unlikely rollouts, the rewards are penalised for the gen-
erated transitions which favours state-action pairs within the dataset. In contrast, we only 
allow one-step stitching between in-distribution states and use the value function to extend 
the horizon rather than a learned model. Finally, BATS adds all stitched actions to the orig-
inal dataset, then create a new dataset by running value iteration, which is eventually used 
to learn a policy through BC. In contrast, our MBTS method has been designed to be more 
directly suited to policy learning through BC: since the lower-value experiences have been 
removed through stitching events, the resulting dataset contains only high-quality trajecto-
ries to learn from.

3 � Methods

3.1 � Problem setup

We consider the offline RL problem setting, which consists of finding an optimal deci-
sion-making policy from a fixed dataset. The policy is a mapping from states to actions, 
� ∶ S → A , whereby S and A are the state and action spaces, respectively. The data-
set is made up of transitions D = {(st, at, rt, st+1)} that include the current state, st , the 
action performed in that state, at , the next state after the action has been taken, st+1 , and 
the reward resulting for transitioning, rt . The actions are assumed to follow an unknown 
behavioural policy, �� , acting in a Markov decision process (MDP). The MDP is defined as 
M = (S,A,P,R, �) , where P ∶ S ×A × S → [0, 1] is the transition probability function 
which defines the dynamics of the environment, R ∶ S ×A × S → ℝ is the reward func-
tion and � ∈ (0, 1] is a scalar discount factor (Sutton & Barto, 1998).

In offline RL, the agent must learn a policy, �(at ∣ st) , that maximises the returns defined 
as the expected sum of discounted rewards, ��

�
∑∞

t=0
rt�

t
�

 , without ever having access to 
�� . Here we are interested in performing imitation learning through BC, which mimics �� 
by performing supervised learning on the state-action pairs in D (Pomerleau, 1988, 1991). 
More specifically, BC finds a deterministic policy,

This solution is known to minimise the KL-divergence between �� and the trajectory distri-
butions of the learned policy Ke et al. (2020). Our objective is to enhance the dataset, such 
that it has the effect of being collected by an improved behaviour policy. Thus, training a 
policy by BC on the improved dataset will lead to higher returns than ��.

3.2 � Model‑based trajectory stitching

Under our modelling assumptions, the probability distribution of any given trajectory 
T = (s0, a0, s1, a1, s2,… , sH) in D can be expressed as

�BC(s) = argmin
�

�st ,at∼D

[

(�(st) − at)
2
]

.
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where p(at ∣ st) is the policy and p(st+1 ∣ st, at) is the environment’s dynamics. First, we 
note that, in the offline case, Eq. (1) can be re-written in an alternative, but equivalent form 
as

which now depends on two different conditional distributions: p(st+1 ∣ st) , the environ-
ment’s forward dynamics, and p(at ∣ st, st+1) , its inverse dynamics. Both distributions can 
be approximated using the available data, D (see Section 3.3). We also pre-train a state-
value function V��

 to estimate the future expected sum of rewards for being in a state s fol-
lowing the behaviour policy �� as well as a reward function (see Section 3.4), which will be 
used to predict r(st, ât, st+1) for any action ât not in D.

Equation (2) informs our data-improvement strategy, as follows. For a given transi-
tion, (st, at, st+1) ∈ D , our aim is to replace st+1 with ŝt+1 ∈ D using a synthetic connect-
ing action ât . A necessary condition for such a state swap to occur is that ŝt+1 should be 
plausible, conditional on st , according to the learnt forward dynamic model, p(st+1 ∣ st) . 
Furthermore, such a state swap should only happen when landing on ŝt+1 leads to higher 
expected returns. Accordingly, two criteria need to be satisfied in order to allow swap-
ping states: p(ŝt+1 ∣ st) ≥ p(st+1 ∣ st) and V𝜋𝛽

(ŝt+1) > V𝜋𝛽
(st+1) . The first criterion ensures 

that the new next state must be at least as likely to have been observed as the candidate 
state under the learnt dynamic model. Furthermore, to be beneficial, the candidate next 
state must not only be likely to be reached from st under the environment dynamics, but 
must also lead to higher expected returns compared to the current st+1 . This require-
ment is captured by the second criterion using the pre-trained value function. In prac-
tice, finding a suitable candidate ŝt+1 involves a search for candidate next states amongst 
all the states that has been visited by any trajectory in D (see Section 3.3). Where the 
two criteria above are satisfied, a plausible action connecting st and the newly found ŝt+1 
is obtained by generating an action that maximises the learnt inverse dynamics model. 
In summary, we have:

Definition 1  A candidate stitching event consists of a transition (st, ât, ŝt+1, r(st, ât, ŝt+1)) 
that replaces (st, at, st+1, r(st, at, st+1)) and it is such that, starting from st , the new state 
satisfies

and the new action is generated by

For every trajectory in the dataset, starting from the initial state, we sequentially 
identify candidate stitching events. For instance, in Fig. 1, two such events have been 
identified along the T1 trajectory and eventually they yield a new trajectory, T̂1 . When 
the cumulative sum of rewards along the newly formed trajectory are higher than those 

(1)p(T) = p(s0)

H
∏

t=1

p(at ∣ st)p(st+1 ∣ st, at).

(2)p(T) = p(s0)

H
∏

t=1

p(st+1 ∣ st)p(at ∣ st, st+1),

ŝt+1 = argmax
st+1∈D

V𝜋𝛽
(st+1) s.t p(ŝt+1 ∣ st) > p(st+1 ∣ st)

ât = argmax
â

p(â ∣ st, ŝt+1).
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observed in the original trajectory, the old trajectory is replaced by the new one in D . 
This is captured by the following definition.

Definition 2  A trajectory replacement event is such that, if a new trajectory T̂  started at 
the initial state s0 of T  has been compiled after a sequence of candidate stitching events, 
then T̂  replaces T  in D when the following condition is satisfied:

In this definition, p̃ is a small positive constant and the (1 + p̃) terms ensures that the 
cumulative sum of returns in the new trajectory improves upon the old one by a given mar-
gin. This conservative approach takes into account potential prediction errors incurred by 
using the learnt reward model when assessing the rewards for T̂ .

The procedure above is repeated for all the trajectories in the current dataset. When any 
of the original trajectories are replaced by new ones, a new and improved dataset is formed. 
The new dataset can then be thought of as being collected by a different, and improved, 
behaviour policy. Using the new data, the value function is trained again, and a search 
for trajectory replacement events is started again. This iterative procedure is summarised 
below.

Definition 3  Trajectory Stitching is an iterative process whereby every trajectory in a data-
set D may be entirely replaced by a new one formed through trajectory replacement events. 
When such replacements take place, resulting in a new dataset, an updated value function 
is inferred and the process is repeated again.

The trajectory stitching method enforces a greedy next state selection policy (Defini-
tion 1) and guarantees that the trajectories produced by this policy have higher returns than 
under the previous policy (Definition 2). Therefore, we obtain a new dataset (Definition 3) 
collected under a new behaviour policy for which a new value function can be learned and 
the trajectory stitching process can be repeated. This iterative data improvement process is 
terminated when no more trajectory replacements are possible, or earlier (see Section 4).

The MBTS approach is highly versatile and can be implemented in a variety of ways. 
In the remainder of this section, we describe our chosen methods for modeling the two 
probability distributions featured in Eq. (1), as well as our techniques for estimating the 
state-value function and predicting the environment’s rewards. Our discussion is primarily 
motivated by continuous control problems, focusing on continuous state and action space 
domains. For applications in discrete spaces, alternative models should be employed.

3.3 � Candidate next state search

The search for a candidate next state requires a learned forward dynamics model, i.e. 
p(st+1 ∣ st) . Model-based RL approaches typically use such dynamics’ models conditioned 
on the action as well as the state to make predictions (Janner et al., 2019; Yu et al., 2020; 
Kidambi et  al., 2020; Argenson & Dulac-Arnold, 2020). Here, we use the model differ-
ently, only to guide the search process and identify a suitable next state to transition to. 
Specifically, conditional on st , the dynamics model is used to assess the relative likelihood 
of observing any other st+1 in the dataset compared to the observed one. The environment 

(1 + p̃)
∑

t∈T

rt <
∑

u∈T̂

ru.
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dynamics is assumed to follow a Gaussian distribution whose mean vector and covariance 
matrix are approximated by a neural network, i.e.

where � = (�1, �2) indicate the parameters of the neural network. This modelling assump-
tion is fairly common in applications involving continuous state spaces (Janner et al., 2019; 
Kidambi et al., 2020; Yu et al., 2020, 2021).

In our implementation, we take an ensemble of N Gaussian models, E ; each component 
of E is characterised by its own parameter set, (��i

1
,Σ�i

2
) . This approach has been shown 

to take into account epistemic uncertainty, i.e. the uncertainty in the model parameters 
(Argenson & Dulac-Arnold, 2020; Buckman et  al., 2018; Chua et  al., 2018; Yu et  al., 
2021). Each individual model’s parameter vector is estimated via maximum likelihood by 
optimising

where ∣ ⋅ ∣ is the determinant of a matrix, and each model’s parameter set is initialised dif-
ferently prior to estimation. Upon fitting the models, a state st+1 is replaced by ŝt+1 only 
when

In this context, we adopt a conservative approach, as we have greater confidence in the 
likelihood prediction of observed state-next state pairs, p̂𝜉i (st+1 ∣ st) , compared to unseen 
state-next state pairs, p̂𝜉i (ŝt+1 ∣ st).

Performing this search over all next states in the dataset can be computationally inef-
ficient. To address this, we assume that states that are far apart in Euclidean distance are 
not reachable, and therefore, we only evaluate these models on nearby states. We employ a 
nearest neighbors search organized by a KD-tree, as shown in line 7 of Algorithm 1, with 
the complete procedure detailed in the Appendix.

3.4 � Value and reward function estimation

Value functions are widely used in reinforcement learning to determine the quality of an 
agent’s current position (Sutton & Barto, 1998). In our context, we use a state-value func-
tion to assess whether a candidate next state offers a potential improvement over the origi-
nal next state. To accurately estimate the future returns given the current state, we calculate 
a state-value function dependent on the behaviour policy of the dataset. The function V�(s) 
is approximated by a MLP neural network parameterised by � . The parameters are learned 
by minimising the squared Bellman error (Sutton & Barto, 1998),

In our context, V� is only used to observe the value of in-distribution states, thus avoid-
ing the OOD issue when evaluating value functions which occurs in offline RL. The value 
function will only be queried once to determine whether a candidate stitching event has 
been found (Definition 1).

Value functions require rewards for training, therefore a reward must be estimated for 
unseen tuples (st, ât, ŝt+1) . There are many different modelling choices available; e.g., under 

p̂𝜉(st+1 ∣ st) = N(𝜇𝜉1
(st),Σ𝜉2

(st))

Lp̂(𝜉) = �st ,st+1∼D
[(𝜇𝜉1

(st) − st+1)
TΣ−1

𝜉2
(st)(𝜇𝜉1

(st) − st+1) + log ∣ Σ𝜉2
(st) ∣],

min
i∈E

p̂𝜉i (ŝt+1 ∣ st) > mean
i∈E

p̂𝜉i (st+1 ∣ st).

(3)LV (�) = �st ,rt ,st+1∼D
[(rt + �V�(st+1) − V�(st))

2].
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a Gaussian model, the mean and variance of the reward can be estimated allowing uncer-
tainty quantification. Other alternatives include a Wasserstein-GAN, a VAE, and a stand-
ard multilayer neural network. In practice, the impact of the specific reward model and its 
effects when used for MBTS appears negligible (e.g. see Section 4.4.1). In the remainder 
of this section, we provide further details for one such model, based on Wasserstein-GAN 
(Arjovsky et al., 2017; Goodfellow et al., 2014), which we have extensively used in all our 
experiments (Section 4) and in our early investigations (Hepburn & Montana, 2022).

Wasserstein-GANs consist of a generator, G� and a discriminator D� , with parameters 
of the neural networks � and � respectively. The discriminator takes in the state, action, 
reward, next state and determines whether this transition is from the dataset. The generator 
loss function is:

Here z ∼ p(z) is a noise vector sampled independently from N(0, 1) , the standard normal. 
The discriminator loss function is:

Once trained, a reward will be predicted for the stitching event when a new action has been 
generated between two previously disconnected states.

3.5 � Action generation

Sampling a suitable action that leads from st to the newly found state ŝt+1 requires an 
inverse dynamics model. Specifically, we require that a synthetic action must maximise the 
estimated conditional density, p(at ∣ st, ŝt+1) . Given our requirement of sampling synthetic 
actions, a conditional variational autoencoder (CVAE) (Kingma & Welling, 2013; Sohn 
et al., 2015) provides a suitable approximation for the inverse dynamics model. The CVAE 
consists of an encoder q�1

 and a decoder p�2
 where �1 and �2 are the respective parameters 

of the neural networks.
The encoder maps the input data onto a lower-dimensional latent representation z 

whereas the decoder generates data from the latent space. We train a CVAE to maximise 
the conditional marginal log-likelihood, log p(at ∣ st, ŝt+1) . While intractable in nature, the 
CVAE objective enables us to maximize the variational lower bound instead,

where z ∼ N(0, 1) is the prior for the latent variable z, and DKL represents the KL-diver-
gence (Kullback & Leibler, 1951; Kullback, 1997). To generate an action between two 
unconnected states, st and ŝt+1 , we use the decoder p� to sample from p(at ∣ st, ŝt+1) . This 
process ensures that the most plausible action is generated conditional on st and ŝt+1.

LG(𝜙) = �
z ∼ p(z)

st, at, st+1 ∼ D

r̃t ∼ G𝜙(z, st, at, st+1)

[D𝜓 (st, at, st+1, r̃t)].

LD(𝜓) = �st ,at ,rt ,st+1∼D
[D𝜓 (st, at, st+1, rt)] − �

z ∼ p(z)

st, at, st+1 ∼ D

r̃t ∼ G𝜙(z, st, at, st+1)

[D𝜓 (st, at, st+1, r̃t)].

max
𝜔1,𝜔2

log p(at ∣ st, ŝt+1, z) ≥ max
𝜔1,𝜔2

�z∼q𝜔1
[log p𝜔2

(at ∣ st, ŝt+1, z)]

− DKL[q𝜔1
(z ∣ at, st, ŝt+1) ∣∣ P(z ∣ st, ŝt+1)],
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4 � Experimental results

In this section we first investigate whether MBTS can improve the quality of existing 
datasets for the purpose of inferring decision-making policies through BC in an offline 
fashion, without collecting any more data from the environment. Furthermore, we show 
that MBTS can help existing methods that explicitly use a BC term for offline learning 
to achieve higher performance. Specifically, we explore the use of MBTS in combination 
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with two algorithms: model-based offline planning (MBOP) (Argenson & Dulac-Arnold, 
2020), which uses an explicit BC policy to select new actions, and TD3+BC (Fujimoto & 
Gu, 2021), which has an explicit BC policy constraint. Our experiments rely on the D4RL 
datasets, a collection of commonly used benchmarking tasks, and include comparisons 
with selected offline RL methods. These comparisons provide an insight into the potential 
gains that can be achieved when MBTS is combined with BC-based algorithms, which 
often reach or even improve upon current state-of-the-art performance levels in offline 
RL. In Section 4.2, we show empirically that even with a small amount of expert data, the 
MBTS+BC policies become closer to the expert policy, in KL divergence. In all experi-
ments, we run MBTS for five iterations; these have been found to be sufficient to increase 
the quality of the data without being overly computationally expensive (Section  4.3). 
Finally we provide ablation studies into the choice of reward model, as well as alternative 
extraction policies to BC.

4.1 � Performance assessment on D4RL data

We compare our MBTS method on the D4RL (Fu et al., 2020) benchmarking datasets of 
the openAI gym MuJoCo tasks. Three complex continuous environments are tested - Hop-
per, Halfcheetah and Walker2d - each with different levels of difficulty. The “medium” 
datasets were gathered by the original authors using a single policy produced from the 
early-stopping of an agent trained by soft actor-critic (SAC) (Haarnoja et  al., 2018a, b). 
The “medium-replay” datasets are the replay buffers from the training of the “medium” 
policies. The “expert” datasets were obtained from a policy trained to an expert level, and 
the “medium-expert” datasets are the combination of both the “medium” and “expert” 
datasets. A BC-cloned policy that used a MBTS dataset is denoted by MBTS+BC. All 
results and comparisons are summarised in Table 1 and detailed explanations of our meth-
ods are in order. We run MBTS for 3 different seeds, giving 3 datasets, we then train BC 
over 5 seeds for each new dataset giving 15 MBTS +BC policies.

4.1.1 � Behaviour cloning: MBTS+BC

The first method we investigate using MBTS with on the D4RL datasets is BC. Enrich-
ing the dataset with more high-value transitions and removing low quality ones leaves the 
dataset with closer-to-expert trajectories making BC the most suitable policy extraction 
algorithm. From Table 1 we can see that MBTS+BC improves over BC in all cases, show-
ing that MBTS creates a higher quality dataset as claimed.

4.1.2 � Model‑based offline planning: MBTS+MBOP

Given previously presented evidence that MBTS improves over BC, a natural next step is 
to investigate whether MBTS can also improve on other methods that are reliant on BC. 
Model-based offline planning (MBOP) (Argenson & Dulac-Arnold, 2020) is an offline 
model-based planning method that uses a BC policy to rollout multiple trajectories picking 
the action that leads to the trajectory with highest returns. For this study, we alter MBOP 
slightly to obtain MBTS+MBOP: in this version, actions are selected using our MBTS 
extracted policy and we use our trained value function.
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As can be observed in Table 1, MBTS+MBOP improves over the MBOP baseline in all 
cases. We also compare MBTS+MBOP to state-of-the-art model-based algorithms such 
as a MOPO (Yu et al., 2020), MOReL (Kidambi et al., 2020) and Diffuser (Janner et al., 
2022); in these comparisons, MBTS+MBOP achieves higher performance in 5 out of the 
9 comparable tasks. Only in the hopper medium and medium-replay tasks does another 
model-based method outperform MBTS+MBOP.

4.1.3 � Model‑free offline RL: TD3+ MBTS+BC

We also investigate the benefits of using MBTS in conjunction with a model-free offline 
RL algorithm. TD3+BC (Fujimoto & Gu, 2021) explicitly using BC in the policy improve-
ment step to regularise the policy to take actions close to the dataset. As MBTS removes 
low-quality data, the learned Q-values will be inaccurate when trained solely on the new 
MBTS data. To counter this, we warm start TD3+BC on the original dataset, then use the 
new MBTS data to fine-tune both the critic and actor after the Q-values have been suf-
ficiently trained. To keep this a fair comparison, we train the policy over the same number 
of iterations as reported in Fujimoto and Gu (2021). We make one small amendment to the 
Walker2d medium-replay dataset where we train the critic only using the original data, and 
use the MBTS data only to fine-tune the policy. We run TD3+ MBTS+BC on the same 5 
seeds as reported in the original dataset.

As reported in Table 1, we find that, in all cases, TD3+ MBTS+BC outperforms the 
baseline method thus solidifying the positive effect of MBTS in offline RL. For this com-
parison, we also consider two additional state-of-the-art model-free offline RL algorithms: 
IQL (Kostrikov et al., 2021) and CQL (Kumar et al., 2020). In 6 out of the 9 comparable 
tasks, TD3+ MBTS+BC significantly improves over the model-free baselines. In the hop-
per medium-replay task, we find that TD3+ MBTS+BC under-performs compared to other 
model-free methods (IQL and CQL).

Fig. 2   Comparative performance of BC and MBTS+BC as the fraction of expert trajectories increases up to 
40% . For two environments, Hopper (left) and Walked2D (right), we report the average return of 10 trajec-
tory evaluations of the best checkpoint during BC training. BC has been trained over 5 random seeds and 
MBTS has produced 3 datasets over different random seeds
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Fig. 3   Estimated KL-divergence and MSE of the BC and MBTS+BC policies on the Hopper and Walker2d 
environments as the fraction of expert trajectories increases. (Left) Relative difference between the KL-
divergence of the BC policy and the expert and the KL-divergence of the MBTS+BC policy and the expert. 
Larger values represent the MBTS+BC policy being closer to the expert than the BC policy. MSE between 
actions evaluated from the expert policy and the learned policy on states from the Hopper (Middle) and 
Walker2d (Right) environments. The y-axes (Middle and Right) are on a log-scale. All policies were col-
lected by training BC over 5 random seeds, with MBTS being evaluated over 3 different random seeds. All 
KL-divergences were scaled between 0 and 1, depending on the minimum and maximum values per task, 
before the difference was taken

Fig. 4   Returns of BC extracted policies as the number of iterations of MBTS is increased. Iteration 0 are 
the BC scores on the original D4RL datasets. The errors bars represent the standard deviation of the aver-
age returns of 10 trajectory evaluations over 5 random seeds of BC and 3 random seeds of MBTS
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4.2 � Expected performance on sub‑optimal data

It is well known that BC minimises the KL-divergence of trajectory distributions between the 
learned policy and �� (Ke et al., 2020). As MBTS has the effect of improving �� , this sug-
gests that the KL-divergence between the trajectory distributions of the learned policy and 
the expert policy would be smaller post MBTS. To investigate this hypothesis, we use two 
complex locomotion tasks, Hopper and Walker2D, in OpenAI’s gym (Brockman et al., 2016). 
Independently for each task, we first train an expert policy, �∗ , with TD3 (Fujimoto et  al., 
2018), and use this policy to generate a baseline noisy dataset by sampling the expert policy 
in the environment and adding white noise to the actions, i.e. a = �∗(s) + � , which gives us a 
stochastic behaviour policy. A range of different, sub-optimal datasets are created by adding a 
certain amount of expert trajectories to the noisy dataset so that they make up x% of the total 
trajectories. Using this procedure, we create eight different datasets by controlling x, which 
takes values in the set {0, 0.1, 2.5, 5, 10, 20, 30, 40} . BC is run on each dataset for 5 random 
seeds. We run MBTS (for five iterations) on each dataset over three different random seeds 
and then create BC policies over the 5 random seeds, giving 15 MBTS+BC policies. Ran-
dom seeds cause different MBTS trajectories as they affect the latent variables sampled for the 
reward function and inverse dynamics model. Also, the initialisation of weights is randomised 
for the value function and BC policies hence the robustness of the methods is tested over mul-
tiple seeds. The KL divergences are calculated following (Ke et al., 2020) as

Figure 2 shows the scores as average returns from 10 trajectory evaluations of the learned 
policies. MBTS+BC consistently improves on BC across all levels of expertise for both 
the Hopper and Walker2d environments. As the percentage of expert data increases, 
MBTS is available to leverage more high-value transitions, consistently improving over 
the BC baseline. Fig.  3 (left) shows the average difference in KL-divergences of the 
BC and MBTS+BC policies against the expert policy. Precisely, the y-axis represents 
DKL(p�∗ (T), p�BC (T)) − DKL(p�∗ (T), p� MBTS+BC (T)) , where p�(T) is the trajectory distribution 
for policy � , Eq. (1). A positive value represents the MBTS+BC policy being closer to the 
expert, and a negative value represents the BC policy being closer to the expert, with the 
absolute value representing the degree to which this is the case. We also scale the average 
KL-divergence between 0 and 1, where 0 is the smallest KL-divergence and 1 is the largest 
KL-divergence, per task. This makes the scale comparable between Hopper and Walker2d. 
The figure shows that BC can extract a behaviour policy closer to the expert after perform-
ing MBTS on the dataset, except in the 0% case for Walker2D, however the difference is 
not significant. MBTS seems to work particularly well with a minimum of 2.5% expert data 
for Hopper and 0.1% for Walker2d.

Furthermore, Fig.  3 (middle and right) shows the mean square error (MSE) between 
actions from the expert policy and the learned policy for the Hopper (middle) and Walk-
er2d (right) tasks. Actions are selected by collecting 10 trajectory evaluations of an expert 
policy. As we expect, the MBTS+BC policies produce actions closer to the experts on 
most levels of dataset expertise. A surprising result is that for 0% expert data on the Walk-
er2d environment the BC policy produces actions closer to the expert than the MBTS+BC 
policy. This is likely due to MBTS not having any expert data to leverage. However, 
even in this case, MBTS still produces a higher-quality dataset than previous as shown 
by the increased performance on the average returns. Overall, these results offer empirical 

DKL(p�∗ (T), p�(T)) = �s∼p�∗ ,a∼�
∗(s)[log�

∗(a ∣ s) − log�(a ∣ s)].
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confirmation that MBTS does have the effect of improving the underlying behaviour policy 
of the dataset.

4.3 � On the number of MBTS iterations

We investigate empirically how the quality of the dataset improves after each iteration; see 
Definition 3. We repeat MBTS on each D4RL dataset, each time using a newly estimated 
value function to take into account the newly generated transitions. In all our experiments, 
we choose 5 iterations. Figure 4 shows the scores of the D4RL environments on the differ-
ent iterations, with the standard deviation across seeds shown as the error bar. With itera-
tion 0 we indicate the BC score as obtained on the original D4RL datasets. For all data-
sets, we observe that the average scores of BC increase initially over a few iterations, then 
remain stable with only some minor random fluctuations. We see less improvement in the 
expert datasets as there are fewer trajectory improvements to be made. Conversely, for the 
medium expert datasets more iterations are required to reach an improved performance. 

Fig. 5   Assessment of different types of models to predict reward on the hopper-medium D4RL dataset. The 
MSE between predicted and true rewards are assessed during training on a test set and training set of the 
same size

Table 2   MSE between true and predicted rewards from the reward functions evaluated on the other D4RL 
hopper datasets

This table shows the performance of the reward models when evaluated on unseen data. The standard devi-
ation is over the whole dataset

Networks Hopper-random Hopper-expert Hopper-medium replay

GAN 0.013 ± 0.059 0.00019 ± 0.0037 0.0039 ± 0.050

VAE 0.011 ± 0.055 0.000021 ± 0.00011 0.0019 ± 0.032

MLP 0.011 ± 0.061 0.000024 ± 0.00014 0.0022 ± 0.047

Gaussian 5.18 ± 2.05 0.60 ± 0.68 1.59 ± 1.79
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For Hopper and Walker2d medium-replay, there is a higher degree of standard deviation 
across the seeds, which gives a less stable average as the number of iterations increases.

4.4 � Ablation studies

In this Section we perform ablation studies to assess the impact of the reward model on 
MBTS performance and the effect of value-weighted BC.

4.4.1 � Choice of reward model

MBTS requires a predictive model for rewards associated to the stitched transitions ena-
bling a value function to be learned on the new dataset. Unlike some online methods (Chua 
et  al., 2018; Nagabandi et  al., 2018) we do not have access to the true reward function 
during training time and so a model must be trained to predict rewards. There are many 
choices of models. For example, MBPO (Janner et al., 2019), MOPO (Yu et al., 2020) and 
MBOP (Argenson & Dulac-Arnold, 2020) use a neural network that outputs the parameters 
of a Gaussian distribution, to predict the next state and reward. These models are coupled 
with the next state as well as reward. We solely want to predict the reward and consider the 
following options: a Gaussian distribution whose parameters are modelled by a neural net-
work, a Wasserstein-GAN, a VAE and multilayer neural network that minimizes the mean 
square error between true and predicted reward.

We evaluate the reward models on the D4RL hopper-medium dataset and perform a 
95  :  5 training and test split. To make it a fair test all models are trained on the same 
training data and each model has two hidden layers with dimension size 512. Fig. 5 shows 
the mean-square error (MSE) between predicted and true rewards during training on the 
test and train set. From this clearly the VAE model and MLP model perform the best by 
attaining the smallest error, getting training and test error to 10−5 . The average reward for a 

Table 3   Comparison of BC, MBTS(WGAN)+BC and MBTS(MLP)+BC on the D4RL locomotion tasks

For the MBTS methods, the mean performance is provided over 3 datasets of MBTS and 5 seeds of BC and 
the standard deviation is given over the total of 15 policies

Dataset BC  MBTS(WGAN)+BC MBTS(MLP) +BC

Hopper-medium 55.3 64.3 ± 4.2 63.7 ± 3.3

Halfcheetah-medium 42.9 43.2 ± 0.3 43.2 ± 0.2

Walker2d-medium 75.6 78.8 ± 1.2 77.6 ± 2.4

Hopper-mediumexpert 62.3 94.8 ± 11.7 97.7 ± 11.0

Halfcheetah-mediumexpert 60.7 86.9 ± 2.5 86.7 ± 2.8

Walker2d-mediumexpert 108.2 108.8 ± 0.5 109.0 ± 0.5

Hopper-mediumreplay 29.6 50.2 ± 17.2 51.9 ± 10.9

Halfcheetah-mediumreplay 38.5 39.8 ± 0.6 40.0 ± 0.4

Walker2d-mediumreplay 34.7 61.5 ± 5.6 58.8 ± 8.9

Hopper-expert 111.0 111.8 ± 0.5 111.5 ± 0.9

Halfcheetah-expert 92.9 93.2 ± 0.6 92.9 ± 0.7

Walker2d-expert 109.0 108.9 ± 0.2 108.8 ± 0.1
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transition in the hopper-medium dataset is 3.11, so in fact the GAN also performs very well 
by attaining a training and test error of order 10−4.

In MBTS we want to predict a reward for an unseen transition, where s and s′ are in the 
dataset but have never been connected by an observed action. Therefore, we evaluate the 
trained reward models on unseen data to test their OOD performance. Table 2 shows the 
MSE between predicted and true rewards of the models on the rest of the D4RL hopper 
datasets: random, expert and medium replay. The GAN, VAE and MLP perform very simi-
larly achieving accurate predictions on all three datasets. The VAE and MLP outperform 
the GAN in predicting rewards of the expert dataset. The Gaussian model performed very 
poorly on these datasets.

Finally we compare MBTS(WGAN)+BC with MBTS(MLP)+BC on the D4RL data-
sets; here, either a WGAN or MLP is used to predict the reward. Table 3 shows that the 
decision between using a WGAN or MLP is insignificant as they are both accurate enough 
at predicting rewards.

4.4.2 � Value‑weighted BC

MBTS uses a value function to estimate the future returns from any given state. Therefore 
MBTS+BC has a natural advantage over just BC which uses only the states and actions. To 
ensure that using a value function is only sufficient to improve the performance of BC, we 
investigate a weighted version of the BC loss function whereby the weights are given by 
the estimated value function, i.e.

This weighted-BC method gives larger weight to the high-value states and lower weight to 
the low-value states during training.

On the Hopper medium and medium-expert datasets, training this weighted-BC method 
only gives a slight improvement over the original BC-cloned policy. For Hopper-medium, 
weighted-BC achieves an average score of 59.21 (with standard deviation 3.4); this is an 
improvement over BC (55.3), but lower than MBTS+BC (64.3). Weighted-BC on hopper-
medexp achieves an average score of 66.02 (with standard deviation 6.9); again, this is a 
slight improvement over BC (62.3), but significantly lower than MBTS+BC (94.8). The 
experiments indicate that using a value function to weight the relative importance of seen 
states when optimising the BC objective function is not sufficient to achieve the perfor-
mance gains introduced by MBTS.

5 � Discussion

The proposed method, MBTS, has been presented for learning an optimal policy in con-
tinuous state and action spaces. For other domains, alternative modeling techniques for 
dynamic models should be considered. As demonstrated in Section 4.2, MBTS is expected 
to be beneficial in settings with sub-optimal data, even with a small percentage of addi-
tional expert data. Notably, MBTS does not require expert transitions within the initial 
dataset, as evidenced by the nearly 80% improvement in Walker2d medium-replay, which 
contains no expert data.

�BC(s) = argmin
�

�s,a∼D[V�(s)(�(s) − a)2].
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Empirically, MBTS does not damage performance; however, this does not guarantee 
that performance will not decrease under all circumstances. We believe that the primary 
risk of MBTS harming performance lies in the use of imperfect models. To mitigate model 
error in the forward models, we employ an ensemble and take a conservative approach 
to determining the next state, as shown in Eq. . To further account for model error, we 
only replace existing trajectories with new ones if they significantly increase returns, as per 
Definition 2. Due to Definition 2, we believe that the MBTS procedure is consistently safe 
when replacing existing trajectories, as it guarantees performance improvement. However, 
this may result in the loss of potentially useful information that MBTS can no longer use in 
future iterations.

Our method might be perceived as computationally intensive due to the number of mod-
els and the need to iterate over the entire dataset. However, we use our models with their 
limitations in mind, avoiding extrapolation of unseen states and generating actions only 
between in-distribution reachable states. The primary computational burden comes from 
searching for reachable next states. We have reduced this burden by evaluating the for-
ward model only on “reasonably close” states using nearest neighbors organized by a KD-
tree. KD-trees are well-studied and have a worst-case time complexity of O(k ⋅ n

1−
1

k ) for 
k-dimensional trees and n data points (Lee & Wong, 1977). Consequently, we assume that 
states far apart in Euclidean distance are not reachable and do not require evaluation. Our 
approach is detailed in the Appendix; however, alternative methods could be employed to 
reduce complexity, and the technique we used is not strictly integral to the MBTS frame-
work. Moreover, our method converges in a remarkably few number of iterations (max 5), 
as shown in Fig. 4, significantly reducing the computational cost.

6 � Conclusion

In this paper, we have proposed an iterative data improvement strategy, Model-Based Tra-
jectory Stitching, which can be applied to historical datasets containing demonstrations 
of sequential decisions taken to solve a complex task. At each iteration, MBTS performs 
one-step stitching between reachable states within the dataset that lead to higher future 
expected returns. We have demonstrated that, without further interactions with the environ-
ment, MBTS improves the quality of the historical demonstrations, which in turn has the 
effect of boosting the performance of BC-extracted policies significantly. Extensive experi-
mental results using the D4RL benchmarking data have demonstrated that MBTS always 
improves the underlying behaviour policy. We have also demonstrated that MBTS is ben-
eficial beyond BC, when combined with existing offline reinforcement learning methods. 
In particular, MBTS can be used to extract an improved explicit BC-based regulariser for 
TD3+BC, as well as an improved BC prior for offline model-based planning (MBOP). 
MBTS-based methods achieve state-of-the-art results in 10 out of the 12 D4RL datasets 
considered.

We believe that this work opens up a number of directions for future investigation. For 
example, MBTS could be extended to multi-agent offline policy learning by reformulating 
Eq. 2 to actions taken by multiple agents. Besides the realm of offline RL, MBTS may also 
be useful for learning with sub-optimal demonstrations, e.g. by inferring a reward function 
through inverse RL. Historical demonstrations can also be used to guide RL and improve 
the data efficiency of online RL (Hester et al., 2018). In these cases, BC can be used to ini-
tialise or regularise the training policy (Rajeswaran et al., 2017; Nair et al., 2018).
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Appendix A: Further implementation details

In this Appendix we report on all the hyperparameters required for MBTS as used on the 
D4RL datasets. All hyperparameters have been kept the same for every dataset, notable the 
acceptance threshold of p̃ = 0.1 . MBTS consists of four components: a forward dynamics 
model, an inverse dynamics model, a reward function and a value function. Table 4 pro-
vides an overview of the implementation details and hyperparameters for each MBTS com-
ponent. As our default optimiser we have used Adam (Kingma & Ba, 2014) with default 
hyperparameters, unless stated otherwise. Our code implementation is provided at https://​
github.​com/​Charl​esHep​burn1/​Model-​Based-​Traje​ctory-​Stitc​hing.

Forward dynamics model

Each forward dynamics model in the ensemble consists of a neural network with three hid-
den layers of size 200 with ReLU activation. The network takes a state s as input and out-
puts a mean � and standard deviation � of a Gaussian distribution N(�, �2) . For all experi-
ments, an ensemble size of 7 is used with the best 5 being chosen.

Inverse dynamics model

To sample actions from the inverse dynamics model of the environment, we have imple-
mented a CVAE with two hidden layers with ReLU activation. The size of the hidden 
layer depends on the size of the dataset (Zhou et  al., 2020): when the dataset has less 
than 900, 000 transitions (e.g. the medium-replay datasets) the layer has 256 nodes; when 
larger, it has 750 nodes. The encoder q�1

 takes in a tuple consisting of state, action and 
next state; it encodes it into a mean �q and standard deviation �q of a Gaussian distribution 
N(�q, �q) . The latent variable z is then sampled from this distribution and used as input for 
the decoder along with the state, s, and next state, s′ . The decoder outputs an action that is 
likely to connect s and s′ . The CVAE is trained for 400, 000 gradient steps with hyperpa-
rameters given in Table 4.

Reward function

The reward function is used to predict reward signals associated with new transitions, 
s, a, s′ . For this model, we use a conditional-WGAN with two hidden layers of size 512. 
The generator, G� , takes in a state s, action a, next state s′ and latent variable z; it outputs 
a reward r for that that transition. The decoder takes a full transition of (s, a, r, s�) as input 
to determine whether this transition is likely to have come from the dataset or not. In the 
reward ablation study all models use the same number of hidden layers and dimension size 
and are trained for 500k iterations.

Value function

Similarly to previous methods (Fujimoto et al., 2019), our value function V� takes the mini-
mum of two value functions, {V�1

,V�2
} . Each value function is a neural network with two 

hidden layers of size 256 and a ReLU activation. The value function takes in a state s and 

https://github.com/CharlesHepburn1/Model-Based-Trajectory-Stitching
https://github.com/CharlesHepburn1/Model-Based-Trajectory-Stitching
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determines the sum of future rewards of being in that state and following the policy (of the 
dataset) thereon.

KL‑divergence experiment

As the KL-divergence requires a continuous policy, the BC policy network is a 2-layer 
MLP of size 256 with ReLU activation, but with the final layer outputting the parameters 
of a Gaussian, �s and �s . We carry out maximum likelihood estimation using a batch size 
of 256. For the Walker2d experiments, MBTS was slightly adapted to only accept new 
trajectories if they made less than ten changes. For each level of difficulty, MBTS is run 3 
times and the scores are the average of the mean returns over 10 evaluation trajectories of 
5 random seeds of BC. To compute the KL-divergence, a continuous expert policy is also 
required, but TD3 gives a deterministic one. To overcome this, a continuous expert policy 
is created by assuming a state-dependent normal distribution centred around �∗(s) with a 
standard deviation of 0.01.

Search procedure for candidate next states

Calculating p(s� ∣ s) for all s� ∈ D may be computationally inefficient. To speed this up 
in the MuJoCo environments, we initially select a smaller set of candidate next states by 
thresholding the Euclidean distance. Although on its own a geometric distance would not 
be sufficient to identify stitching events, we found that in our environments it can help 
reduce the set of candidate next states thus alleviating the computational workload. To pre-
select a smaller set of candidate next states, we use two criteria. Firstly, from a transition 
(s, a, r, s�) ∈ D , a neighbourhood of states around s is taken and the following state in the 
trajectory is collected. Secondly, all the states in a neighbourhood around s′ are collected. 
This process ensures all candidate next states are geometrically-similar to s′ or are pre-
ceded by geometrically-similar states. The neighbourhood of a state is an � − ball around 
the state. When � is large enough, we can retain all feasible candidate next states for evalu-
ation with the forward dynamic model. Fig. 6 illustrates this procedure.

D4RL experiments

For the D4RL experiments, we run MBTS 3 times for each dataset and average the mean 
returns over 10 evaluation trajectories of 5 random seeds of BC, to attain the results for 
MBTS+BC. For the BC results, we average the mean returns over 10 evaluation trajecto-
ries of 5 random seeds. The BC policy network is a 2-layer MLP of size 256 with ReLU 
activation, the final layer has tanh activation multiplied by the action dimension. We use 
the Adam optimiser with a learning rate of 1e − 3 and a batch size of 256.

The hyperparameters we use for MBOP are given in Table  5. TD3+BC is trained 
for 1000k iterations we train TD3+ MBTS+BC also for 1000k iterations with the actor 
and critic dimensions the same as the original implementation. For TD3+ MBTS+BC 
we warm start the algorithm on the original data and train for 800k iterations and then 
carry on training for the remaining 200k iterations on the new MBTS data. As the 
MBTS dataset contains many duplicate transitions we remove all duplicates from the 
dataset when training with TD3+BC. For the hopper datasets (except medium-expert) 
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the policy is improved if the data is swapped to the MBTS dataset at 600k iterations. 
Also the critic is fixed and training on the MBTS dataset starts at 900k iterations for the 
walker2d medium-replay dataset.

Fig. 6   Visualisation of our two definitions of a neighbourhood. For a transition (s
t
, a

t
, s

t+1) ∈ D , the neigh-
bourhoods are used to reduce the size of the set of candidate next states. (Left) All states within an �-ball of 
the current state, s

t
 , are taken and the next state in their respective trajectories (joined by an action shown as 

an arrow) are added to the set of candidate next states. (Right) All states within an �-ball of the next state, 
s
t+1 are added to the set of candidate next states. The full set of candidate next states are highlighted in yel-

low (Color figure online)

Table 4   Hyperparameters and 
values for models used in MBTS

Hyperparameter Value

Forward dynamics model
Optimiser Adam
Learning rate 3e-4
Batch size 256
Ensemble size 7
Inverse dynamics model
Optimiser Adam
Learning rate 1e-4
Batch size 100
Latent dim 2*action dim
Reward function
Optimiser Adam

� = (0.5, 0.999)

Learning rate 1e-4
Batch size 256
Latent dim 2
L2 regularisation 1e-4
Value function
Optimiser Adam
Learning rate 3e-4
Batch size 256
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Table 5   Hyperparameters used 
for the MBOP method across the 
D4RL datasets

Dataset Horizon # Samples Kappa Sigma Beta

Medium Hopper 2 100 1 0.2 0.0
Halfcheetah 2 100 3 0.2 0.0
Walker2d 4 1000 3 0.01 0.0

MedExp Hopper 2 100 1 0.05 0.0
Halfcheetah 2 100 1 0.01 0.0
Walker2d 2 1000 3 0.1 0.0

MedRep Hopper 8 100 1 0.01 0.0
Halfcheetah 2 100 0.3 0.2 0.0
Walker2d 2 1000 0.3 0.2 0.0

Expert Hopper 2 100 0.3 0.01 0.0
Halfcheetah 4 100 0.3 0.05 0.0
Walker2d 2 1000 3 0.05 0.0
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