
Vol.:(0123456789)

Machine Learning (2024) 113:647–674
https://doi.org/10.1007/s10994-023-06392-z

1 3

Model‑based trajectory stitching for improved behavioural
cloning and its applications

Charles A. Hepburn1  · Giovanni Montana2,3,4 

Received: 1 December 2022 / Revised: 12 May 2023 / Accepted: 16 August 2023 /
Published online: 27 September 2023
© The Author(s) 2023

Abstract
Behavioural cloning (BC) is a commonly used imitation learning method to infer a sequen-
tial decision-making policy from expert demonstrations. However, when the quality of
the data is not optimal, the resulting behavioural policy also performs sub-optimally once
deployed. Recently, there has been a surge in offline reinforcement learning methods that
hold the promise to extract high-quality policies from sub-optimal historical data. A com-
mon approach is to perform regularisation during training, encouraging updates during
policy evaluation and/or policy improvement to stay close to the underlying data. In this
work, we investigate whether an offline approach to improving the quality of the existing
data can lead to improved behavioural policies without any changes in the BC algorithm.
The proposed data improvement approach - Model-Based Trajectory Stitching (MBTS) -
generates new trajectories (sequences of states and actions) by ‘stitching’ pairs of states
that were disconnected in the original data and generating their connecting new action.
By construction, these new transitions are guaranteed to be highly plausible according to
probabilistic models of the environment, and to improve a state-value function. We dem-
onstrate that the iterative process of replacing old trajectories with new ones incrementally
improves the underlying behavioural policy. Extensive experimental results show that sig-
nificant performance gains can be achieved using MBTS over BC policies extracted from
the original data. Furthermore, using the D4RL benchmarking suite, we demonstrate that
state-of-the-art results are obtained by combining MBTS with two existing offline learning
methodologies reliant on BC, model-based offline planning (MBOP) and policy constraint
(TD3+BC).

Editors: Fabio Vitale, Tania Cerquitelli, Marcello Restelli, Charalampos Tsourakakis.

 *	 Giovanni Montana
	 g.montana@warwick.ac.uk

	 Charles A. Hepburn
	 charlie.hepburn@warwick.ac.uk

1	 Mathematics Institute, University of Warwick, Coventry, England
2	 Department of Statistics, University of Warwick, Coventry, England
3	 WMG, University of Warwick, Coventry, England
4	 Alan Turing Institute, London, England

http://orcid.org/0000-0001-7731-564X
http://orcid.org/0000-0003-3942-3900
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06392-z&domain=pdf

648	 Machine Learning (2024) 113:647–674

1 3

Keywords  Offline reinforcement learning · Behavioural cloning · Imitation learning

1  Introduction

Behavioural cloning (BC) (Pomerleau, 1988, 1991) is one of the simplest imitation learn-
ing methods to obtain a decision-making policy from expert demonstrations. BC frames
the imitation learning problem as a supervised learning one. Given expert trajectories - the
expert’s paths through the state space - a policy network is trained to reproduce the expert
behaviour: for a given observation, the action taken by the policy must closely approximate
the one taken by the expert. Although a simple method, BC has shown to be very effective
across many application domains (Kadous et al., 2005; Pearce & Zhu, 2022; Pomerleau,
1988; Sammut et al., 1992), and has been particularly successful in cases where the dataset
is large and has wide coverage (Codevilla et al., 2019). An appealing aspect of BC is that it
is applied in an offline setting, using only the historical data. Unlike reinforcement learning
(RL) methods, BC does not require further interactions with the environment. Offline pol-
icy learning can be advantageous in many circumstances, especially when collecting new
data through interactions is expensive, time-consuming or dangerous; or in cases where
deploying a partially trained, sub-optimal policy in the real-world may be unethical, e.g. in
autonomous driving and medical applications.

BC extracts the behaviour policy which created the dataset. Consequently, when applied
to sub-optimal data (i.e. when some or all trajectories have been generated by non-expert
demonstrators), the resulting behavioural policy is also expected to be sub-optimal. This
is due to the fact that BC has no mechanism to infer the importance of each state-action
pair. Other drawbacks of BC are its tendency to overfit when giving a small number of
demonstrations and the state distributional shift between training and test distributions
(Codevilla et al., 2019; Ross et al., 2011). In the area of imitation learning, significant
efforts have been made to overcome such limitations, however the available methodologies
generally rely on interacting with the environment (Finn et al., 2016; Ho & Ermon, 2016;
Le et al., 2018; Ross et al., 2011). So, a question arises: can we help BC infer a superior

Fig. 1   Simplified illustration of Model-Based Trajectory Stitching. Each original trajectory (a sequence of
states and actions) in the dataset D is indicated as T

i
 with i = 1,… , 3 . A first stitching event is seen in

trajectory T1 whereby a transition to a state originally visited in T2 takes place. A second stitching event
involves a jump to a state originally visited in T3 . At each event, jumping to a new state increases the cur-
rent trajectory’s future expected returns. The resulting trajectory (in bold) consists of a sequence of states,
all originally visited in D , but connected by imagined actions; it replaces T1 in the new dataset

649Machine Learning (2024) 113:647–674	

1 3

policy only from available sub-optimal data without the need to collect additional expert
demonstrations?

Our investigation is related to the emerging body of work on offline RL, which is moti-
vated by the aim of inferring expert policies with only a fixed set of sub-optimal data
(Lange et al., 2012; Levine et al., 2020). A major obstacle towards this aim is posed by
the notion of action distributional shift (Fujimoto et al., 2019; Kumar et al., 2019; Levine
et al., 2020). This is introduced when the policy being optimised deviates from the behav-
iour policy, and is caused by the action-value function overestimating out-of-distribution
(OOD) actions. A number of existing methods address the issue by constraining the actions
that can be taken. In some cases, this is achieved by constraining the policy to actions close
to those in the dataset (Fujimoto et al., 2019; Fujimoto & Gu, 2021; Jaques et al., 2019;
Kumar et al., 2019; Wu et al., 2019; Zhou et al., 2020), or by manipulating the action-
value function to penalise OOD actions (Kumar et al., 2020; An et al., 2021; Kostrikov
et al., 2021; Yu et al., 2021). In situations where the data is sub-optimal, offline RL has
been shown to recover a superior policy to BC (Fujimoto et al., 2019; Kumar et al., 2022).
Improving BC will in turn improve many offline RL policies that rely on an explicit behav-
iour policy of the dataset (Argenson & Dulac-Arnold, 2020; Fujimoto & Gu, 2021; Zhan
et al., 2021).

In contrast to existing offline learning approaches, we turn the problem on its head:
rather than trying to regularise or constrain the policy somehow, we investigate whether
the data quality itself can be improved using only the available demonstrations. To explore
this avenue, we propose a model-based data improvement method called Model-Based Tra-
jectory Stitching (MBTS) . Our ultimate aim is to develop a procedure that identifies sub-
optimal trajectories and replaces them with better ones. New trajectories are obtained by
stitching existing ones together, without the need to generate unseen states. The proposed
strategy consists of replaying each existing trajectory in the dataset: for each state-action
pair leading to a particular next state along a trajectory, we ask whether a different action
could have been taken instead, which would have landed at a different seen state from a
different trajectory. An actual jump to the new state only occurs when generating such an
action is plausible and it is expected to improve the quality of the original trajectory - in
which case we have a stitching event.

An illustrative representation of this procedure can be seen in Fig. 1, where we assume
to have at our disposal only three historical trajectories. In this example, a trajectory has
been improved through two stitching events. To determine the stitching points, MBTS uses
a probabilistic view of state-reachability that depends on learned dynamics models of the
environment. These models are evaluated only on in-distribution states enabling accurate
prediction. In order to assess the expected future improvement introduced by a potential
stitching event, we utilise a state-value function and a reward model. Thus, MBTS can be
thought of as a data-driven, automated procedure yielding highly plausible and higher-
quality demonstrations to facilitate supervised learning; at the same time, sub-optimal
demonstrations are removed altogether whilst keeping the diverse set of seen states.

Our experimental results show that MBTS produces higher-quality data, with BC-
derived policies always superior than those inferred on the original data. Remarkably, we
demonstrate that MBTS -augmented data allow BC to compete with state-of-the-art offline
RL algorithms on highly complex continuous control openAI gym tasks implemented in
MuJoCo using the D4RL offline benchmarking suite (Fu et al., 2020). Furthermore, we
show that integrating MBTS with existing offline learning methods that explicitly use BC
such as model-based planning (Argenson & Dulac-Arnold, 2020) and TD3+BC (Fujimoto
& Gu, 2021) can significantly boost their performance.

650	 Machine Learning (2024) 113:647–674

1 3

2 � Related work

2.1 � Imitation learning

Imitation learning aims to emulate a policy from expert demonstrations (Hussein et al.,
2017). BC is the simplest of such category of methods and uses supervised learning
to clone the actions in the dataset. BC is a powerful method and has been used suc-
cessfully in many applications such as learning a quadroter to fly (Giusti et al., 2015),
self-driving cars (Bojarski et al., 2016; Farag & Saleh, 2018) and games (Pearce & Zhu,
2022). These application are highly complex and shows accurate policy estimation from
high-quality offline data.

One drawback from using BC is the state distributional shift between training and
test distributions. Improved imitation learning methods have been introduced to reduce
this distributional shift, however they usually require online exploration. For instance,
DAgger (Ross et al., 2011) is an online learning approach that iteratively updates a
deterministic policy; it addresses the state distributional shift problem of BC through
an on-policy method for data collection; similarly to MBTS, the original dataset is aug-
mented, but this involves online interactions. Another algorithm, GAIL (Ho & Ermon,
2016), iteratively updates a generative adversarial network (Goodfellow et al., 2014) to
determine whether a state-action pair can be deemed as expert; a policy is then inferred
using a trust region policy optimisation step (Schulman et al., 2015). MBTS also uses
generative modelling, but this is to create data points likely to have come from the data
that connect high-value regions.

While expert demonstrations are crucial for imitation learning, our MBTS approach
generates higher quality datasets from existing, potentially sub-optimal data, thereby
enhancing offline policy learning. Furthermore, MBTS leverages a reward function
to learn an improved policy, which distinguishes it from the imitation learning set-
ting where access to rewards may not always be available. This key difference enables
MBTS to deliver better performance in certain scenarios compared to traditional imita-
tion learning methods.

2.2 � Offline reinforcement learning

Offline RL aims to learn an optimal policy from sub-optimal datasets without further
interactions with the environment (Lange et al., 2012; Levine et al., 2020). Similarly
to BC, offline RL suffers from distributional shift. However this shift comes from the
policy selecting OOD actions leading to overestimation of the value function (Fujimoto
et al., 2019; Kumar et al., 2019). In the online setting, this overestimation encourages
the agent to explore, but offline this leads to a compounding of errors where the agent
believes OOD actions lead to high returns. Many offline RL algorithms bias the learned
policy towards the behaviour-cloned one (Argenson & Dulac-Arnold, 2020; Fujimoto
& Gu, 2021; Zhan et al., 2021) to ensure the policy does not deviate too far from the
behaviour policy. Many of these offline methods are therefore expected to directly ben-
efit from enhanced datasets yielding higher-achieving behavioural policies.

651Machine Learning (2024) 113:647–674	

1 3

2.2.1 � Model‑free methods

Many model-free offline RL methods typically deal with distributional shift either by
regularising the policy to stay close to actions given in the dataset (Fujimoto & Gu,
2021; Fujimoto et al., 2019; Jaques et al., 2019; Kumar et al., 2019; Wu et al., 2019;
Zhou et al., 2020) or by pessimistically evaluating the Q-value to penalise OOD actions
(An et al., 2021; Kostrikov et al., 2021; Kumar et al., 2020). Both options involve
explicitly or implicitly capturing information about the unknown underlying behaviour
policy. This behaviour policy can be fully captured using BC. For instance, batch-con-
strained Q-learning (BCQ) (Fujimoto et al., 2019) is a policy constraint method which
uses a variational autoencoder to generate likely actions in order to constrain the policy.
The TD3+BC algorithm (Fujimoto & Gu, 2021) offers a simplified policy constraint
approach; it adds a behavioural cloning regularisation term to the policy update bias-
ing actions towards those in the dataset. Alternatively, conservative Q-learning (CQL)
(Kumar et al., 2020) adjusts the value of the state-action pairs to “push down” on OOD
actions and “push up” on in-distribution actions. CQL manipulates the value function so
that OOD actions are discouraged and in-distribution actions are encouraged. Implicit
Q-learning (IQL) (Kostrikov et al., 2021) avoids querying OOD actions altogether by
manipulating the Q-value to have a state-value function in the SARSA-style update. All
the above methods try to directly deal with OOD actions, either by avoiding them or
safely handling them in either the policy improvement or evaluation step. In contrast,
our method rethinks the problem of learning from sub-optimal data. Rather than using
RL to learn a policy, instead we use RL-based approaches to enrich the data enabling
BC to extract an improved policy. Our method generates unseen actions between in-
distribution states; by doing so, we avoid distributional shift by evaluating a state-value
function only on seen states.

2.2.2 � Model‑based methods

Model-based algorithms rely on an approximation of the environment’s dynamics (Janner
et al., 2019; Sutton, 1991), that is probability distributions where the next state and reward
are predicted from a current state and action. In the online setting, model-based methods
tend to improve sample efficiency (Buckman et al., 2018; Chua et al., 2018; Feinberg et al.,
2018; Janner et al., 2019; Kalweit & Boedecker, 2017). In an offline learning context, the
learned dynamics have been exploited in various ways.

One approach consists of using the models to improve the policy learning. For instance,
Model-based offline RL (MOReL) (Kidambi et al., 2020) is an algorithm which constructs
a pessimistic Markov Decision Model (P-MDP), based off a learned forward dynamics
model and a state-action detector. The P-MDP is given an additional absorbing state, which
gives large negative reward for unknown state-actions. Model-based Offline policy Opti-
mization (MOPO) (Yu et al., 2020) augments the dataset by performing rollouts using a
learned, uncertainty-penalised, MDP. Unlike MOPO, MBTS does not introduce imagined
states, but only actions between reachable unconnected states.

Another opportunity to exploit learnt models of the environment is in decision-time
planning. Model-based offline planning (MBOP) (Argenson & Dulac-Arnold, 2020) uses
the learnt environment dynamics and a BC policy to roll-out a trajectory from the current
state, one transition at a time. The best trajectory from the current state is found where the

652	 Machine Learning (2024) 113:647–674

1 3

trajectory horizon has been extended using a value function and the first action is selected.
This process is repeated for each new state. Model-based offline planning with trajectory
pruning (MOPP) (Zhan et al., 2021) extends the MBOP idea, but prunes the trajectory
roll-outs based on an uncertainty measure, safely handling the problem of distributional
shift. Diffuser (Janner et al., 2022) uses a diffusion probabilistic model to predict a whole
trajectory in one step. Rather than using a model to predict a single next state at decision-
time, diffuser can generate unseen trajectories that have high likelihood under the data and
maximise the cumulative rewards of a trajectory ensuring long-horizon accuracy. However,
diffuser’s individual plans are very slow which limits its use case for real-world applica-
tions. Our MBTS method can be used in direct conjunction with planning, especially with
MBOP and MOPP, which both use a BC policy to guide the trajectory sampling.

2.3 � State similarity metrics

A central aspect of the proposed MBTS approach consists of a stitching event, which uses
a notion of state similarity to determine whether two states are “close” together. Relying
on only geometric distances would often be inappropriate; e.g. two states may be close in
Euclidean distance, yet reaching one from another may be impossible (e.g. in navigation
task environments where walls or other obstacles preclude reaching a nearby state). Bisim-
ulation metrics (Ferns et al., 2004) capture state similarity based on the dynamics of the
environment. These have been used in RL mainly for system state aggregation (Ferns et al.,
2012; Kemertas et al., 2021; Zhang et al., 2020); they are expensive to compute (Chen
et al., 2012) and usually require full-state enumeration (Bacci et al., 2013a, b; Dadashi
et al., 2021). A scalable approach for state-similarity has recently been introduced by using
a pseudometric (Castro, 2020) which facilitates the calculation of state-similarity in offline
RL. PLOFF (Dadashi et al., 2021) is an offline RL algorithm that uses a state-action pseu-
dometric to bias the policy evaluation and improvement steps. Whereas PLOFF uses a
pseudometric to stay close to the dataset, we bypass this notion altogether by only using
states in the dataset and generating unseen actions connecting them. Our stitching event is
based from the decomposition of the trajectory distribution which allows us to pick unseen
actions, but with high likelihood, determined by the future state.

2.4 � Data re‑sampling and augmentation approaches

In offline RL, data re-sampling strategies aim to only learn from high-performing tran-
sitions. For instance, best-action imitation learning (BAIL) (Chen et al., 2020) imitates
state-action pairs based from the upper-envelope of the dataset. Monotonic Advantage Re-
Weighted Imitation Learning (MARWIL) (Wang et al., 2018) weights state-action pairs
from an exponentially-weighted advantage function during policy learning by BC. Return-
based data re-balance (ReD) (Yue et al., 2022) re-samples the data based from the trajec-
tory returns and then applies offline reinforcement learning methods. The proposed MBTS
differs from BAIL, MARWIL and ReD as we increase the dataset by adding impactful
stitching transitions as well as removing the low-quality transitions. MBTS has the effect of
re-sampling high-value transitions in the trajectory as well supplementing the dataset with
stitched transitions, connecting high-value regions.

Best action trajectory stitching (BATS) (Char et al., 2022) is a related trajectory stitch-
ing method: it augments the dataset by adding transitions through model-based planning.
MBTS differs from BATS in a number of fundamental ways. First, BATS takes a geometric

653Machine Learning (2024) 113:647–674	

1 3

approach to defining state similarity; state-actions are rolled-out using the dynamics model
until a state is found that is within a short distance of a state in the dataset. Relying exclu-
sively on geometric distances may result in poor results; as such, our stitching events are
based on the dynamics of the environment and are only assessed between two in-distri-
bution states. Second, BATS generates new states that are not in the dataset. Due to com-
pounding model error, resulting in unlikely rollouts, the rewards are penalised for the gen-
erated transitions which favours state-action pairs within the dataset. In contrast, we only
allow one-step stitching between in-distribution states and use the value function to extend
the horizon rather than a learned model. Finally, BATS adds all stitched actions to the orig-
inal dataset, then create a new dataset by running value iteration, which is eventually used
to learn a policy through BC. In contrast, our MBTS method has been designed to be more
directly suited to policy learning through BC: since the lower-value experiences have been
removed through stitching events, the resulting dataset contains only high-quality trajecto-
ries to learn from.

3 � Methods

3.1 � Problem setup

We consider the offline RL problem setting, which consists of finding an optimal deci-
sion-making policy from a fixed dataset. The policy is a mapping from states to actions,
� ∶ S → A , whereby S and A are the state and action spaces, respectively. The data-
set is made up of transitions D = {(st, at, rt, st+1)} that include the current state, st , the
action performed in that state, at , the next state after the action has been taken, st+1 , and
the reward resulting for transitioning, rt . The actions are assumed to follow an unknown
behavioural policy, �� , acting in a Markov decision process (MDP). The MDP is defined as
M = (S,A,P,R, �) , where P ∶ S ×A × S → [0, 1] is the transition probability function
which defines the dynamics of the environment, R ∶ S ×A × S → ℝ is the reward func-
tion and � ∈ (0, 1] is a scalar discount factor (Sutton & Barto, 1998).

In offline RL, the agent must learn a policy, �(at ∣ st) , that maximises the returns defined
as the expected sum of discounted rewards, ��

�
∑∞

t=0
rt�

t
�

 , without ever having access to
�� . Here we are interested in performing imitation learning through BC, which mimics ��
by performing supervised learning on the state-action pairs in D (Pomerleau, 1988, 1991).
More specifically, BC finds a deterministic policy,

This solution is known to minimise the KL-divergence between �� and the trajectory distri-
butions of the learned policy Ke et al. (2020). Our objective is to enhance the dataset, such
that it has the effect of being collected by an improved behaviour policy. Thus, training a
policy by BC on the improved dataset will lead to higher returns than ��.

3.2 � Model‑based trajectory stitching

Under our modelling assumptions, the probability distribution of any given trajectory
T = (s0, a0, s1, a1, s2,… , sH) in D can be expressed as

�BC(s) = argmin
�

�st ,at∼D

[

(�(st) − at)
2
]

.

654	 Machine Learning (2024) 113:647–674

1 3

where p(at ∣ st) is the policy and p(st+1 ∣ st, at) is the environment’s dynamics. First, we
note that, in the offline case, Eq. (1) can be re-written in an alternative, but equivalent form
as

which now depends on two different conditional distributions: p(st+1 ∣ st) , the environ-
ment’s forward dynamics, and p(at ∣ st, st+1) , its inverse dynamics. Both distributions can
be approximated using the available data, D (see Section 3.3). We also pre-train a state-
value function V��

 to estimate the future expected sum of rewards for being in a state s fol-
lowing the behaviour policy �� as well as a reward function (see Section 3.4), which will be
used to predict r(st, ât, st+1) for any action ât not in D.

Equation (2) informs our data-improvement strategy, as follows. For a given transi-
tion, (st, at, st+1) ∈ D , our aim is to replace st+1 with ŝt+1 ∈ D using a synthetic connect-
ing action ât . A necessary condition for such a state swap to occur is that ŝt+1 should be
plausible, conditional on st , according to the learnt forward dynamic model, p(st+1 ∣ st) .
Furthermore, such a state swap should only happen when landing on ŝt+1 leads to higher
expected returns. Accordingly, two criteria need to be satisfied in order to allow swap-
ping states: p(ŝt+1 ∣ st) ≥ p(st+1 ∣ st) and V𝜋𝛽

(ŝt+1) > V𝜋𝛽
(st+1) . The first criterion ensures

that the new next state must be at least as likely to have been observed as the candidate
state under the learnt dynamic model. Furthermore, to be beneficial, the candidate next
state must not only be likely to be reached from st under the environment dynamics, but
must also lead to higher expected returns compared to the current st+1 . This require-
ment is captured by the second criterion using the pre-trained value function. In prac-
tice, finding a suitable candidate ŝt+1 involves a search for candidate next states amongst
all the states that has been visited by any trajectory in D (see Section 3.3). Where the
two criteria above are satisfied, a plausible action connecting st and the newly found ŝt+1
is obtained by generating an action that maximises the learnt inverse dynamics model.
In summary, we have:

Definition 1  A candidate stitching event consists of a transition (st, ât, ŝt+1, r(st, ât, ŝt+1))
that replaces (st, at, st+1, r(st, at, st+1)) and it is such that, starting from st , the new state
satisfies

and the new action is generated by

For every trajectory in the dataset, starting from the initial state, we sequentially
identify candidate stitching events. For instance, in Fig. 1, two such events have been
identified along the T1 trajectory and eventually they yield a new trajectory, T̂1 . When
the cumulative sum of rewards along the newly formed trajectory are higher than those

(1)p(T) = p(s0)

H
∏

t=1

p(at ∣ st)p(st+1 ∣ st, at).

(2)p(T) = p(s0)

H
∏

t=1

p(st+1 ∣ st)p(at ∣ st, st+1),

ŝt+1 = argmax
st+1∈D

V𝜋𝛽
(st+1) s.t p(ŝt+1 ∣ st) > p(st+1 ∣ st)

ât = argmax
â

p(â ∣ st, ŝt+1).

655Machine Learning (2024) 113:647–674	

1 3

observed in the original trajectory, the old trajectory is replaced by the new one in D .
This is captured by the following definition.

Definition 2  A trajectory replacement event is such that, if a new trajectory T̂ started at
the initial state s0 of T has been compiled after a sequence of candidate stitching events,
then T̂ replaces T in D when the following condition is satisfied:

In this definition, p̃ is a small positive constant and the (1 + p̃) terms ensures that the
cumulative sum of returns in the new trajectory improves upon the old one by a given mar-
gin. This conservative approach takes into account potential prediction errors incurred by
using the learnt reward model when assessing the rewards for T̂ .

The procedure above is repeated for all the trajectories in the current dataset. When any
of the original trajectories are replaced by new ones, a new and improved dataset is formed.
The new dataset can then be thought of as being collected by a different, and improved,
behaviour policy. Using the new data, the value function is trained again, and a search
for trajectory replacement events is started again. This iterative procedure is summarised
below.

Definition 3  Trajectory Stitching is an iterative process whereby every trajectory in a data-
set D may be entirely replaced by a new one formed through trajectory replacement events.
When such replacements take place, resulting in a new dataset, an updated value function
is inferred and the process is repeated again.

The trajectory stitching method enforces a greedy next state selection policy (Defini-
tion 1) and guarantees that the trajectories produced by this policy have higher returns than
under the previous policy (Definition 2). Therefore, we obtain a new dataset (Definition 3)
collected under a new behaviour policy for which a new value function can be learned and
the trajectory stitching process can be repeated. This iterative data improvement process is
terminated when no more trajectory replacements are possible, or earlier (see Section 4).

The MBTS approach is highly versatile and can be implemented in a variety of ways.
In the remainder of this section, we describe our chosen methods for modeling the two
probability distributions featured in Eq. (1), as well as our techniques for estimating the
state-value function and predicting the environment’s rewards. Our discussion is primarily
motivated by continuous control problems, focusing on continuous state and action space
domains. For applications in discrete spaces, alternative models should be employed.

3.3 � Candidate next state search

The search for a candidate next state requires a learned forward dynamics model, i.e.
p(st+1 ∣ st) . Model-based RL approaches typically use such dynamics’ models conditioned
on the action as well as the state to make predictions (Janner et al., 2019; Yu et al., 2020;
Kidambi et al., 2020; Argenson & Dulac-Arnold, 2020). Here, we use the model differ-
ently, only to guide the search process and identify a suitable next state to transition to.
Specifically, conditional on st , the dynamics model is used to assess the relative likelihood
of observing any other st+1 in the dataset compared to the observed one. The environment

(1 + p̃)
∑

t∈T

rt <
∑

u∈T̂

ru.

656	 Machine Learning (2024) 113:647–674

1 3

dynamics is assumed to follow a Gaussian distribution whose mean vector and covariance
matrix are approximated by a neural network, i.e.

where � = (�1, �2) indicate the parameters of the neural network. This modelling assump-
tion is fairly common in applications involving continuous state spaces (Janner et al., 2019;
Kidambi et al., 2020; Yu et al., 2020, 2021).

In our implementation, we take an ensemble of N Gaussian models, E ; each component
of E is characterised by its own parameter set, (��i

1
,Σ�i

2
) . This approach has been shown

to take into account epistemic uncertainty, i.e. the uncertainty in the model parameters
(Argenson & Dulac-Arnold, 2020; Buckman et al., 2018; Chua et al., 2018; Yu et al.,
2021). Each individual model’s parameter vector is estimated via maximum likelihood by
optimising

where ∣ ⋅ ∣ is the determinant of a matrix, and each model’s parameter set is initialised dif-
ferently prior to estimation. Upon fitting the models, a state st+1 is replaced by ŝt+1 only
when

In this context, we adopt a conservative approach, as we have greater confidence in the
likelihood prediction of observed state-next state pairs, p̂𝜉i (st+1 ∣ st) , compared to unseen
state-next state pairs, p̂𝜉i (ŝt+1 ∣ st).

Performing this search over all next states in the dataset can be computationally inef-
ficient. To address this, we assume that states that are far apart in Euclidean distance are
not reachable, and therefore, we only evaluate these models on nearby states. We employ a
nearest neighbors search organized by a KD-tree, as shown in line 7 of Algorithm 1, with
the complete procedure detailed in the Appendix.

3.4 � Value and reward function estimation

Value functions are widely used in reinforcement learning to determine the quality of an
agent’s current position (Sutton & Barto, 1998). In our context, we use a state-value func-
tion to assess whether a candidate next state offers a potential improvement over the origi-
nal next state. To accurately estimate the future returns given the current state, we calculate
a state-value function dependent on the behaviour policy of the dataset. The function V�(s)
is approximated by a MLP neural network parameterised by � . The parameters are learned
by minimising the squared Bellman error (Sutton & Barto, 1998),

In our context, V� is only used to observe the value of in-distribution states, thus avoid-
ing the OOD issue when evaluating value functions which occurs in offline RL. The value
function will only be queried once to determine whether a candidate stitching event has
been found (Definition 1).

Value functions require rewards for training, therefore a reward must be estimated for
unseen tuples (st, ât, ŝt+1) . There are many different modelling choices available; e.g., under

p̂𝜉(st+1 ∣ st) = N(𝜇𝜉1
(st),Σ𝜉2

(st))

Lp̂(𝜉) = �st ,st+1∼D
[(𝜇𝜉1

(st) − st+1)
TΣ−1

𝜉2
(st)(𝜇𝜉1

(st) − st+1) + log ∣ Σ𝜉2
(st) ∣],

min
i∈E

p̂𝜉i (ŝt+1 ∣ st) > mean
i∈E

p̂𝜉i (st+1 ∣ st).

(3)LV (�) = �st ,rt ,st+1∼D
[(rt + �V�(st+1) − V�(st))

2].

657Machine Learning (2024) 113:647–674	

1 3

a Gaussian model, the mean and variance of the reward can be estimated allowing uncer-
tainty quantification. Other alternatives include a Wasserstein-GAN, a VAE, and a stand-
ard multilayer neural network. In practice, the impact of the specific reward model and its
effects when used for MBTS appears negligible (e.g. see Section 4.4.1). In the remainder
of this section, we provide further details for one such model, based on Wasserstein-GAN
(Arjovsky et al., 2017; Goodfellow et al., 2014), which we have extensively used in all our
experiments (Section 4) and in our early investigations (Hepburn & Montana, 2022).

Wasserstein-GANs consist of a generator, G� and a discriminator D� , with parameters
of the neural networks � and � respectively. The discriminator takes in the state, action,
reward, next state and determines whether this transition is from the dataset. The generator
loss function is:

Here z ∼ p(z) is a noise vector sampled independently from N(0, 1) , the standard normal.
The discriminator loss function is:

Once trained, a reward will be predicted for the stitching event when a new action has been
generated between two previously disconnected states.

3.5 � Action generation

Sampling a suitable action that leads from st to the newly found state ŝt+1 requires an
inverse dynamics model. Specifically, we require that a synthetic action must maximise the
estimated conditional density, p(at ∣ st, ŝt+1) . Given our requirement of sampling synthetic
actions, a conditional variational autoencoder (CVAE) (Kingma & Welling, 2013; Sohn
et al., 2015) provides a suitable approximation for the inverse dynamics model. The CVAE
consists of an encoder q�1

 and a decoder p�2
 where �1 and �2 are the respective parameters

of the neural networks.
The encoder maps the input data onto a lower-dimensional latent representation z

whereas the decoder generates data from the latent space. We train a CVAE to maximise
the conditional marginal log-likelihood, log p(at ∣ st, ŝt+1) . While intractable in nature, the
CVAE objective enables us to maximize the variational lower bound instead,

where z ∼ N(0, 1) is the prior for the latent variable z, and DKL represents the KL-diver-
gence (Kullback & Leibler, 1951; Kullback, 1997). To generate an action between two
unconnected states, st and ŝt+1 , we use the decoder p� to sample from p(at ∣ st, ŝt+1) . This
process ensures that the most plausible action is generated conditional on st and ŝt+1.

LG(𝜙) = �
z ∼ p(z)

st, at, st+1 ∼ D

r̃t ∼ G𝜙(z, st, at, st+1)

[D𝜓 (st, at, st+1, r̃t)].

LD(𝜓) = �st ,at ,rt ,st+1∼D
[D𝜓 (st, at, st+1, rt)] − �

z ∼ p(z)

st, at, st+1 ∼ D

r̃t ∼ G𝜙(z, st, at, st+1)

[D𝜓 (st, at, st+1, r̃t)].

max
𝜔1,𝜔2

log p(at ∣ st, ŝt+1, z) ≥ max
𝜔1,𝜔2

�z∼q𝜔1
[log p𝜔2

(at ∣ st, ŝt+1, z)]

− DKL[q𝜔1
(z ∣ at, st, ŝt+1) ∣∣ P(z ∣ st, ŝt+1)],

658	 Machine Learning (2024) 113:647–674

1 3

4 � Experimental results

In this section we first investigate whether MBTS can improve the quality of existing
datasets for the purpose of inferring decision-making policies through BC in an offline
fashion, without collecting any more data from the environment. Furthermore, we show
that MBTS can help existing methods that explicitly use a BC term for offline learning
to achieve higher performance. Specifically, we explore the use of MBTS in combination

659Machine Learning (2024) 113:647–674	

1 3

with two algorithms: model-based offline planning (MBOP) (Argenson & Dulac-Arnold,
2020), which uses an explicit BC policy to select new actions, and TD3+BC (Fujimoto &
Gu, 2021), which has an explicit BC policy constraint. Our experiments rely on the D4RL
datasets, a collection of commonly used benchmarking tasks, and include comparisons
with selected offline RL methods. These comparisons provide an insight into the potential
gains that can be achieved when MBTS is combined with BC-based algorithms, which
often reach or even improve upon current state-of-the-art performance levels in offline
RL. In Section 4.2, we show empirically that even with a small amount of expert data, the
MBTS+BC policies become closer to the expert policy, in KL divergence. In all experi-
ments, we run MBTS for five iterations; these have been found to be sufficient to increase
the quality of the data without being overly computationally expensive (Section 4.3).
Finally we provide ablation studies into the choice of reward model, as well as alternative
extraction policies to BC.

4.1 � Performance assessment on D4RL data

We compare our MBTS method on the D4RL (Fu et al., 2020) benchmarking datasets of
the openAI gym MuJoCo tasks. Three complex continuous environments are tested - Hop-
per, Halfcheetah and Walker2d - each with different levels of difficulty. The “medium”
datasets were gathered by the original authors using a single policy produced from the
early-stopping of an agent trained by soft actor-critic (SAC) (Haarnoja et al., 2018a, b).
The “medium-replay” datasets are the replay buffers from the training of the “medium”
policies. The “expert” datasets were obtained from a policy trained to an expert level, and
the “medium-expert” datasets are the combination of both the “medium” and “expert”
datasets. A BC-cloned policy that used a MBTS dataset is denoted by MBTS+BC. All
results and comparisons are summarised in Table 1 and detailed explanations of our meth-
ods are in order. We run MBTS for 3 different seeds, giving 3 datasets, we then train BC
over 5 seeds for each new dataset giving 15 MBTS +BC policies.

4.1.1 � Behaviour cloning: MBTS+BC

The first method we investigate using MBTS with on the D4RL datasets is BC. Enrich-
ing the dataset with more high-value transitions and removing low quality ones leaves the
dataset with closer-to-expert trajectories making BC the most suitable policy extraction
algorithm. From Table 1 we can see that MBTS+BC improves over BC in all cases, show-
ing that MBTS creates a higher quality dataset as claimed.

4.1.2 � Model‑based offline planning: MBTS+MBOP

Given previously presented evidence that MBTS improves over BC, a natural next step is
to investigate whether MBTS can also improve on other methods that are reliant on BC.
Model-based offline planning (MBOP) (Argenson & Dulac-Arnold, 2020) is an offline
model-based planning method that uses a BC policy to rollout multiple trajectories picking
the action that leads to the trajectory with highest returns. For this study, we alter MBOP
slightly to obtain MBTS+MBOP: in this version, actions are selected using our MBTS
extracted policy and we use our trained value function.

660	 Machine Learning (2024) 113:647–674

1 3

As can be observed in Table 1, MBTS+MBOP improves over the MBOP baseline in all
cases. We also compare MBTS+MBOP to state-of-the-art model-based algorithms such
as a MOPO (Yu et al., 2020), MOReL (Kidambi et al., 2020) and Diffuser (Janner et al.,
2022); in these comparisons, MBTS+MBOP achieves higher performance in 5 out of the
9 comparable tasks. Only in the hopper medium and medium-replay tasks does another
model-based method outperform MBTS+MBOP.

4.1.3 � Model‑free offline RL: TD3+ MBTS+BC

We also investigate the benefits of using MBTS in conjunction with a model-free offline
RL algorithm. TD3+BC (Fujimoto & Gu, 2021) explicitly using BC in the policy improve-
ment step to regularise the policy to take actions close to the dataset. As MBTS removes
low-quality data, the learned Q-values will be inaccurate when trained solely on the new
MBTS data. To counter this, we warm start TD3+BC on the original dataset, then use the
new MBTS data to fine-tune both the critic and actor after the Q-values have been suf-
ficiently trained. To keep this a fair comparison, we train the policy over the same number
of iterations as reported in Fujimoto and Gu (2021). We make one small amendment to the
Walker2d medium-replay dataset where we train the critic only using the original data, and
use the MBTS data only to fine-tune the policy. We run TD3+ MBTS+BC on the same 5
seeds as reported in the original dataset.

As reported in Table 1, we find that, in all cases, TD3+ MBTS+BC outperforms the
baseline method thus solidifying the positive effect of MBTS in offline RL. For this com-
parison, we also consider two additional state-of-the-art model-free offline RL algorithms:
IQL (Kostrikov et al., 2021) and CQL (Kumar et al., 2020). In 6 out of the 9 comparable
tasks, TD3+ MBTS+BC significantly improves over the model-free baselines. In the hop-
per medium-replay task, we find that TD3+ MBTS+BC under-performs compared to other
model-free methods (IQL and CQL).

Fig. 2   Comparative performance of BC and MBTS+BC as the fraction of expert trajectories increases up to
40% . For two environments, Hopper (left) and Walked2D (right), we report the average return of 10 trajec-
tory evaluations of the best checkpoint during BC training. BC has been trained over 5 random seeds and
MBTS has produced 3 datasets over different random seeds

661Machine Learning (2024) 113:647–674	

1 3

Ta
bl

e 
1  

A
ve

ra
ge

 n
or

m
al

is
ed

 s
co

re
s

of
 s

ta
te

-o
f-

th
e-

ar
t o

ffl
in

e
R

L
m

et
ho

ds
 a

ch
ie

ve
d

on
 th

re
e

lo
co

m
ot

io
n

ta
sk

s
(H

op
pe

r,
H

al
fc

he
et

ah
 a

nd
 W

al
ke

r2
d)

 u
si

ng
 th

e
D

4R
L

v2
 d

at
a

se
ts

Th
e

re
su

lts
 f

or
 c

om
pe

tin
g

m
et

ho
ds

 h
av

e
be

en
 g

at
he

re
d

fro
m

 th
e

or
ig

in
al

 p
ub

lic
at

io
ns

. B
ol

d
sc

or
es

 r
ep

re
se

nt
 th

e
hi

gh
es

t s
co

re
s

pe
r

ta
sk

. M
B

TS
+

B
C

, T
D

3+
 M

B
TS

+
B

C
,

M
B

TS
+

M
BO

P:
 In

 b
ra

ck
et

s w
e

re
po

rt
th

e
pe

rc
en

ta
ge

 im
pr

ov
em

en
t a

ch
ie

ve
d

by
 M

B
TS

 re
la

tiv
e

to
 th

ei
r r

es
pe

ct
iv

e
ba

se
lin

es

D
at

as
et

B
C

TD
3+

B
C

IQ
L

C
Q

L
M

O
PO

M
O

Re
L

D
iff

us
er

M
BO

P
M

B
TS

+
B

C
 (

ou
rs

)
TD

3+
 M

B
TS

+
B

C
 (o

ur
s)

M
B

TS
+

M
BO

P
(o

ur
s)

M
ed

iu
m

H
op

pe
r

55
.3

59
.3

66
.3

58
.5

28
.0

95
.4

58
.5

56
.9

6
4
.3
±
4
.2

(+
1
6
.3
%
)

6
4
.1
±
4
.4

(+
8
.1
%
)

6
6
.5
±
5
.5

(+
1
6
.9
%
)

H
al

fc
he

et
ah

42
.9

48
.3

47
.4

44
.0

42
.3

42
.1

44
.2

51
.2

4
3
.2
±
0
.3

(+
0
.7
%
)

4
8
.4
±
0
.4

(+
0
.2
%
)

�
�
.�
±
�
.�

(+
0
.2
%
)

W
al

ke
r2

d
75

.6
83

.7
78

.3
72

.5
17

.0
77

.8
79

.7
73

.5
7
8
.8
±
1
.2

(+
4
.2
%
)

�
�
.�
±
�
.�

(+
0
.6
%
)

7
7
.3
±
2
.8

(+
5
.2
%
)

M
ed

Ex
p

H
op

pe
r

62
.3

98
.0

91
.5

10
5.

4
23

.7
10

8.
7

10
7.

2
70

.7
9
4
.8
±
1
1
.7

(+
5
2
.2
%
)

1
0
9
.1
±
3
.9

(+
1
1
.9
%
)

�
�
�
.�
±
�
.�

(+
5
6
.2
%
)

H
al

fc
he

et
ah

60
.7

90
.7

86
.7

91
.6

63
.3

53
.3

79
.8

63
.5

8
6
.9
±
2
.5

(+
4
3
.2
%
)

9
3
.8
±
3
.4

(+
3
.4
%
)

�
�
.�
±
�
.�

(+
4
8
.2
%
)

W
al

ke
r2

d
10

8.
2

11
0.

1
10

9.
6

10
8.

8
44

.6
95

.6
10

8.
4

11
1.

0
1
0
8
.8
±
5
.5

(+
1
6
.9
%
)

1
1
0
.3
±
0
.4

(+
0
.2
%
)

�
�
�
.�
±
�
.�

(+
0
.1
%
)

M
ed

Re
p

H
op

pe
r

29
.6

60
.9

94
.7

95
.0

67
.5

93
.6

96
.8

40
.5

5
0
.2
±
1
7
.2

(+
6
9
.6
%
)

7
7
.4
±
1
7
.0

(+
2
7
.1
%
)

6
8
.2
±
9
.5

(+
6
8
.4
%
)

H
al

fc
he

et
ah

38
.5

44
.6

44
.2

45
.5

39
.0

40
.2

42
.2

45
.4

3
9
.8
±
0
.6

(+
3
.4
%
)

4
4
.7
±
0
.6

(+
0
.2
%
)

�
�
.�
±
�
.�

(+
2
.9
%
)

W
al

ke
r2

d
34

.7
81

.8
73

.9
77

.2
53

.1
49

.9
61

.2
53

.8
6
1
.5
±
5
.6

(+
7
7
.2
%
)

�
�
.�
±
�
.�

(+
1
.2
%
)

7
1
.9
±
5
.6

(+
3
3
.6
%
)

Ex
pe

rt
H

op
pe

r
11

1.
0

10
8.

8
−

−
−

−
−

11
1.

3
�
�
�
.�
±
�
.�

(+
0
.7
%
)

1
1
0
.9
±
2
.7

(+
2
.9
%
)

1
1
1
.3
±
1
.1

(±
0
.0
%
)

H
al

fc
he

et
ah

92
.9

96
.7

−
−

−
−

−
98

.2
9
3
.2
±
0
.6

(+
0
.3
%
)

9
7
.6
±
0
.6

(+
0
.9
%
)

�
�
.�
±
�
.�

(+
0
.5
%
)

W
al

ke
r2

d
10

9.
0

11
0.

2
−

−
−

−
−

10
9.

0
1
0
8
.9
±
0
.2

(−
0
.1
%
)

�
�
�
.�
±
�
.�

(+
0
.1
%
)

1
0
9
.5
±
0
.1

(+
0
.5
%
)

662	 Machine Learning (2024) 113:647–674

1 3

Fig. 3   Estimated KL-divergence and MSE of the BC and MBTS+BC policies on the Hopper and Walker2d
environments as the fraction of expert trajectories increases. (Left) Relative difference between the KL-
divergence of the BC policy and the expert and the KL-divergence of the MBTS+BC policy and the expert.
Larger values represent the MBTS+BC policy being closer to the expert than the BC policy. MSE between
actions evaluated from the expert policy and the learned policy on states from the Hopper (Middle) and
Walker2d (Right) environments. The y-axes (Middle and Right) are on a log-scale. All policies were col-
lected by training BC over 5 random seeds, with MBTS being evaluated over 3 different random seeds. All
KL-divergences were scaled between 0 and 1, depending on the minimum and maximum values per task,
before the difference was taken

Fig. 4   Returns of BC extracted policies as the number of iterations of MBTS is increased. Iteration 0 are
the BC scores on the original D4RL datasets. The errors bars represent the standard deviation of the aver-
age returns of 10 trajectory evaluations over 5 random seeds of BC and 3 random seeds of MBTS

663Machine Learning (2024) 113:647–674	

1 3

4.2 � Expected performance on sub‑optimal data

It is well known that BC minimises the KL-divergence of trajectory distributions between the
learned policy and �� (Ke et al., 2020). As MBTS has the effect of improving �� , this sug-
gests that the KL-divergence between the trajectory distributions of the learned policy and
the expert policy would be smaller post MBTS. To investigate this hypothesis, we use two
complex locomotion tasks, Hopper and Walker2D, in OpenAI’s gym (Brockman et al., 2016).
Independently for each task, we first train an expert policy, �∗ , with TD3 (Fujimoto et al.,
2018), and use this policy to generate a baseline noisy dataset by sampling the expert policy
in the environment and adding white noise to the actions, i.e. a = �∗(s) + � , which gives us a
stochastic behaviour policy. A range of different, sub-optimal datasets are created by adding a
certain amount of expert trajectories to the noisy dataset so that they make up x% of the total
trajectories. Using this procedure, we create eight different datasets by controlling x, which
takes values in the set {0, 0.1, 2.5, 5, 10, 20, 30, 40} . BC is run on each dataset for 5 random
seeds. We run MBTS (for five iterations) on each dataset over three different random seeds
and then create BC policies over the 5 random seeds, giving 15 MBTS+BC policies. Ran-
dom seeds cause different MBTS trajectories as they affect the latent variables sampled for the
reward function and inverse dynamics model. Also, the initialisation of weights is randomised
for the value function and BC policies hence the robustness of the methods is tested over mul-
tiple seeds. The KL divergences are calculated following (Ke et al., 2020) as

Figure 2 shows the scores as average returns from 10 trajectory evaluations of the learned
policies. MBTS+BC consistently improves on BC across all levels of expertise for both
the Hopper and Walker2d environments. As the percentage of expert data increases,
MBTS is available to leverage more high-value transitions, consistently improving over
the BC baseline. Fig. 3 (left) shows the average difference in KL-divergences of the
BC and MBTS+BC policies against the expert policy. Precisely, the y-axis represents
DKL(p�∗ (T), p�BC (T)) − DKL(p�∗ (T), p� MBTS+BC (T)) , where p�(T) is the trajectory distribution
for policy � , Eq. (1). A positive value represents the MBTS+BC policy being closer to the
expert, and a negative value represents the BC policy being closer to the expert, with the
absolute value representing the degree to which this is the case. We also scale the average
KL-divergence between 0 and 1, where 0 is the smallest KL-divergence and 1 is the largest
KL-divergence, per task. This makes the scale comparable between Hopper and Walker2d.
The figure shows that BC can extract a behaviour policy closer to the expert after perform-
ing MBTS on the dataset, except in the 0% case for Walker2D, however the difference is
not significant. MBTS seems to work particularly well with a minimum of 2.5% expert data
for Hopper and 0.1% for Walker2d.

Furthermore, Fig. 3 (middle and right) shows the mean square error (MSE) between
actions from the expert policy and the learned policy for the Hopper (middle) and Walk-
er2d (right) tasks. Actions are selected by collecting 10 trajectory evaluations of an expert
policy. As we expect, the MBTS+BC policies produce actions closer to the experts on
most levels of dataset expertise. A surprising result is that for 0% expert data on the Walk-
er2d environment the BC policy produces actions closer to the expert than the MBTS+BC
policy. This is likely due to MBTS not having any expert data to leverage. However,
even in this case, MBTS still produces a higher-quality dataset than previous as shown
by the increased performance on the average returns. Overall, these results offer empirical

DKL(p�∗ (T), p�(T)) = �s∼p�∗ ,a∼�
∗(s)[log�

∗(a ∣ s) − log�(a ∣ s)].

664	 Machine Learning (2024) 113:647–674

1 3

confirmation that MBTS does have the effect of improving the underlying behaviour policy
of the dataset.

4.3 � On the number of MBTS iterations

We investigate empirically how the quality of the dataset improves after each iteration; see
Definition 3. We repeat MBTS on each D4RL dataset, each time using a newly estimated
value function to take into account the newly generated transitions. In all our experiments,
we choose 5 iterations. Figure 4 shows the scores of the D4RL environments on the differ-
ent iterations, with the standard deviation across seeds shown as the error bar. With itera-
tion 0 we indicate the BC score as obtained on the original D4RL datasets. For all data-
sets, we observe that the average scores of BC increase initially over a few iterations, then
remain stable with only some minor random fluctuations. We see less improvement in the
expert datasets as there are fewer trajectory improvements to be made. Conversely, for the
medium expert datasets more iterations are required to reach an improved performance.

Fig. 5   Assessment of different types of models to predict reward on the hopper-medium D4RL dataset. The
MSE between predicted and true rewards are assessed during training on a test set and training set of the
same size

Table 2   MSE between true and predicted rewards from the reward functions evaluated on the other D4RL
hopper datasets

This table shows the performance of the reward models when evaluated on unseen data. The standard devi-
ation is over the whole dataset

Networks Hopper-random Hopper-expert Hopper-medium replay

GAN 0.013 ± 0.059 0.00019 ± 0.0037 0.0039 ± 0.050

VAE 0.011 ± 0.055 0.000021 ± 0.00011 0.0019 ± 0.032

MLP 0.011 ± 0.061 0.000024 ± 0.00014 0.0022 ± 0.047

Gaussian 5.18 ± 2.05 0.60 ± 0.68 1.59 ± 1.79

665Machine Learning (2024) 113:647–674	

1 3

For Hopper and Walker2d medium-replay, there is a higher degree of standard deviation
across the seeds, which gives a less stable average as the number of iterations increases.

4.4 � Ablation studies

In this Section we perform ablation studies to assess the impact of the reward model on
MBTS performance and the effect of value-weighted BC.

4.4.1 � Choice of reward model

MBTS requires a predictive model for rewards associated to the stitched transitions ena-
bling a value function to be learned on the new dataset. Unlike some online methods (Chua
et al., 2018; Nagabandi et al., 2018) we do not have access to the true reward function
during training time and so a model must be trained to predict rewards. There are many
choices of models. For example, MBPO (Janner et al., 2019), MOPO (Yu et al., 2020) and
MBOP (Argenson & Dulac-Arnold, 2020) use a neural network that outputs the parameters
of a Gaussian distribution, to predict the next state and reward. These models are coupled
with the next state as well as reward. We solely want to predict the reward and consider the
following options: a Gaussian distribution whose parameters are modelled by a neural net-
work, a Wasserstein-GAN, a VAE and multilayer neural network that minimizes the mean
square error between true and predicted reward.

We evaluate the reward models on the D4RL hopper-medium dataset and perform a
95 : 5 training and test split. To make it a fair test all models are trained on the same
training data and each model has two hidden layers with dimension size 512. Fig. 5 shows
the mean-square error (MSE) between predicted and true rewards during training on the
test and train set. From this clearly the VAE model and MLP model perform the best by
attaining the smallest error, getting training and test error to 10−5 . The average reward for a

Table 3   Comparison of BC, MBTS(WGAN)+BC and MBTS(MLP)+BC on the D4RL locomotion tasks

For the MBTS methods, the mean performance is provided over 3 datasets of MBTS and 5 seeds of BC and
the standard deviation is given over the total of 15 policies

Dataset BC MBTS(WGAN)+BC MBTS(MLP) +BC

Hopper-medium 55.3 64.3 ± 4.2 63.7 ± 3.3

Halfcheetah-medium 42.9 43.2 ± 0.3 43.2 ± 0.2

Walker2d-medium 75.6 78.8 ± 1.2 77.6 ± 2.4

Hopper-mediumexpert 62.3 94.8 ± 11.7 97.7 ± 11.0

Halfcheetah-mediumexpert 60.7 86.9 ± 2.5 86.7 ± 2.8

Walker2d-mediumexpert 108.2 108.8 ± 0.5 109.0 ± 0.5

Hopper-mediumreplay 29.6 50.2 ± 17.2 51.9 ± 10.9

Halfcheetah-mediumreplay 38.5 39.8 ± 0.6 40.0 ± 0.4

Walker2d-mediumreplay 34.7 61.5 ± 5.6 58.8 ± 8.9

Hopper-expert 111.0 111.8 ± 0.5 111.5 ± 0.9

Halfcheetah-expert 92.9 93.2 ± 0.6 92.9 ± 0.7

Walker2d-expert 109.0 108.9 ± 0.2 108.8 ± 0.1

666	 Machine Learning (2024) 113:647–674

1 3

transition in the hopper-medium dataset is 3.11, so in fact the GAN also performs very well
by attaining a training and test error of order 10−4.

In MBTS we want to predict a reward for an unseen transition, where s and s′ are in the
dataset but have never been connected by an observed action. Therefore, we evaluate the
trained reward models on unseen data to test their OOD performance. Table 2 shows the
MSE between predicted and true rewards of the models on the rest of the D4RL hopper
datasets: random, expert and medium replay. The GAN, VAE and MLP perform very simi-
larly achieving accurate predictions on all three datasets. The VAE and MLP outperform
the GAN in predicting rewards of the expert dataset. The Gaussian model performed very
poorly on these datasets.

Finally we compare MBTS(WGAN)+BC with MBTS(MLP)+BC on the D4RL data-
sets; here, either a WGAN or MLP is used to predict the reward. Table 3 shows that the
decision between using a WGAN or MLP is insignificant as they are both accurate enough
at predicting rewards.

4.4.2 � Value‑weighted BC

MBTS uses a value function to estimate the future returns from any given state. Therefore
MBTS+BC has a natural advantage over just BC which uses only the states and actions. To
ensure that using a value function is only sufficient to improve the performance of BC, we
investigate a weighted version of the BC loss function whereby the weights are given by
the estimated value function, i.e.

This weighted-BC method gives larger weight to the high-value states and lower weight to
the low-value states during training.

On the Hopper medium and medium-expert datasets, training this weighted-BC method
only gives a slight improvement over the original BC-cloned policy. For Hopper-medium,
weighted-BC achieves an average score of 59.21 (with standard deviation 3.4); this is an
improvement over BC (55.3), but lower than MBTS+BC (64.3). Weighted-BC on hopper-
medexp achieves an average score of 66.02 (with standard deviation 6.9); again, this is a
slight improvement over BC (62.3), but significantly lower than MBTS+BC (94.8). The
experiments indicate that using a value function to weight the relative importance of seen
states when optimising the BC objective function is not sufficient to achieve the perfor-
mance gains introduced by MBTS.

5 � Discussion

The proposed method, MBTS, has been presented for learning an optimal policy in con-
tinuous state and action spaces. For other domains, alternative modeling techniques for
dynamic models should be considered. As demonstrated in Section 4.2, MBTS is expected
to be beneficial in settings with sub-optimal data, even with a small percentage of addi-
tional expert data. Notably, MBTS does not require expert transitions within the initial
dataset, as evidenced by the nearly 80% improvement in Walker2d medium-replay, which
contains no expert data.

�BC(s) = argmin
�

�s,a∼D[V�(s)(�(s) − a)2].

667Machine Learning (2024) 113:647–674	

1 3

Empirically, MBTS does not damage performance; however, this does not guarantee
that performance will not decrease under all circumstances. We believe that the primary
risk of MBTS harming performance lies in the use of imperfect models. To mitigate model
error in the forward models, we employ an ensemble and take a conservative approach
to determining the next state, as shown in Eq. . To further account for model error, we
only replace existing trajectories with new ones if they significantly increase returns, as per
Definition 2. Due to Definition 2, we believe that the MBTS procedure is consistently safe
when replacing existing trajectories, as it guarantees performance improvement. However,
this may result in the loss of potentially useful information that MBTS can no longer use in
future iterations.

Our method might be perceived as computationally intensive due to the number of mod-
els and the need to iterate over the entire dataset. However, we use our models with their
limitations in mind, avoiding extrapolation of unseen states and generating actions only
between in-distribution reachable states. The primary computational burden comes from
searching for reachable next states. We have reduced this burden by evaluating the for-
ward model only on “reasonably close” states using nearest neighbors organized by a KD-
tree. KD-trees are well-studied and have a worst-case time complexity of O(k ⋅ n

1−
1

k) for
k-dimensional trees and n data points (Lee & Wong, 1977). Consequently, we assume that
states far apart in Euclidean distance are not reachable and do not require evaluation. Our
approach is detailed in the Appendix; however, alternative methods could be employed to
reduce complexity, and the technique we used is not strictly integral to the MBTS frame-
work. Moreover, our method converges in a remarkably few number of iterations (max 5),
as shown in Fig. 4, significantly reducing the computational cost.

6 � Conclusion

In this paper, we have proposed an iterative data improvement strategy, Model-Based Tra-
jectory Stitching, which can be applied to historical datasets containing demonstrations
of sequential decisions taken to solve a complex task. At each iteration, MBTS performs
one-step stitching between reachable states within the dataset that lead to higher future
expected returns. We have demonstrated that, without further interactions with the environ-
ment, MBTS improves the quality of the historical demonstrations, which in turn has the
effect of boosting the performance of BC-extracted policies significantly. Extensive experi-
mental results using the D4RL benchmarking data have demonstrated that MBTS always
improves the underlying behaviour policy. We have also demonstrated that MBTS is ben-
eficial beyond BC, when combined with existing offline reinforcement learning methods.
In particular, MBTS can be used to extract an improved explicit BC-based regulariser for
TD3+BC, as well as an improved BC prior for offline model-based planning (MBOP).
MBTS-based methods achieve state-of-the-art results in 10 out of the 12 D4RL datasets
considered.

We believe that this work opens up a number of directions for future investigation. For
example, MBTS could be extended to multi-agent offline policy learning by reformulating
Eq. 2 to actions taken by multiple agents. Besides the realm of offline RL, MBTS may also
be useful for learning with sub-optimal demonstrations, e.g. by inferring a reward function
through inverse RL. Historical demonstrations can also be used to guide RL and improve
the data efficiency of online RL (Hester et al., 2018). In these cases, BC can be used to ini-
tialise or regularise the training policy (Rajeswaran et al., 2017; Nair et al., 2018).

668	 Machine Learning (2024) 113:647–674

1 3

Appendix A: Further implementation details

In this Appendix we report on all the hyperparameters required for MBTS as used on the
D4RL datasets. All hyperparameters have been kept the same for every dataset, notable the
acceptance threshold of p̃ = 0.1 . MBTS consists of four components: a forward dynamics
model, an inverse dynamics model, a reward function and a value function. Table 4 pro-
vides an overview of the implementation details and hyperparameters for each MBTS com-
ponent. As our default optimiser we have used Adam (Kingma & Ba, 2014) with default
hyperparameters, unless stated otherwise. Our code implementation is provided at https://​
github.​com/​Charl​esHep​burn1/​Model-​Based-​Traje​ctory-​Stitc​hing.

Forward dynamics model

Each forward dynamics model in the ensemble consists of a neural network with three hid-
den layers of size 200 with ReLU activation. The network takes a state s as input and out-
puts a mean � and standard deviation � of a Gaussian distribution N(�, �2) . For all experi-
ments, an ensemble size of 7 is used with the best 5 being chosen.

Inverse dynamics model

To sample actions from the inverse dynamics model of the environment, we have imple-
mented a CVAE with two hidden layers with ReLU activation. The size of the hidden
layer depends on the size of the dataset (Zhou et al., 2020): when the dataset has less
than 900, 000 transitions (e.g. the medium-replay datasets) the layer has 256 nodes; when
larger, it has 750 nodes. The encoder q�1

 takes in a tuple consisting of state, action and
next state; it encodes it into a mean �q and standard deviation �q of a Gaussian distribution
N(�q, �q) . The latent variable z is then sampled from this distribution and used as input for
the decoder along with the state, s, and next state, s′ . The decoder outputs an action that is
likely to connect s and s′ . The CVAE is trained for 400, 000 gradient steps with hyperpa-
rameters given in Table 4.

Reward function

The reward function is used to predict reward signals associated with new transitions,
s, a, s′ . For this model, we use a conditional-WGAN with two hidden layers of size 512.
The generator, G� , takes in a state s, action a, next state s′ and latent variable z; it outputs
a reward r for that that transition. The decoder takes a full transition of (s, a, r, s�) as input
to determine whether this transition is likely to have come from the dataset or not. In the
reward ablation study all models use the same number of hidden layers and dimension size
and are trained for 500k iterations.

Value function

Similarly to previous methods (Fujimoto et al., 2019), our value function V� takes the mini-
mum of two value functions, {V�1

,V�2
} . Each value function is a neural network with two

hidden layers of size 256 and a ReLU activation. The value function takes in a state s and

https://github.com/CharlesHepburn1/Model-Based-Trajectory-Stitching
https://github.com/CharlesHepburn1/Model-Based-Trajectory-Stitching

669Machine Learning (2024) 113:647–674	

1 3

determines the sum of future rewards of being in that state and following the policy (of the
dataset) thereon.

KL‑divergence experiment

As the KL-divergence requires a continuous policy, the BC policy network is a 2-layer
MLP of size 256 with ReLU activation, but with the final layer outputting the parameters
of a Gaussian, �s and �s . We carry out maximum likelihood estimation using a batch size
of 256. For the Walker2d experiments, MBTS was slightly adapted to only accept new
trajectories if they made less than ten changes. For each level of difficulty, MBTS is run 3
times and the scores are the average of the mean returns over 10 evaluation trajectories of
5 random seeds of BC. To compute the KL-divergence, a continuous expert policy is also
required, but TD3 gives a deterministic one. To overcome this, a continuous expert policy
is created by assuming a state-dependent normal distribution centred around �∗(s) with a
standard deviation of 0.01.

Search procedure for candidate next states

Calculating p(s� ∣ s) for all s� ∈ D may be computationally inefficient. To speed this up
in the MuJoCo environments, we initially select a smaller set of candidate next states by
thresholding the Euclidean distance. Although on its own a geometric distance would not
be sufficient to identify stitching events, we found that in our environments it can help
reduce the set of candidate next states thus alleviating the computational workload. To pre-
select a smaller set of candidate next states, we use two criteria. Firstly, from a transition
(s, a, r, s�) ∈ D , a neighbourhood of states around s is taken and the following state in the
trajectory is collected. Secondly, all the states in a neighbourhood around s′ are collected.
This process ensures all candidate next states are geometrically-similar to s′ or are pre-
ceded by geometrically-similar states. The neighbourhood of a state is an � − ball around
the state. When � is large enough, we can retain all feasible candidate next states for evalu-
ation with the forward dynamic model. Fig. 6 illustrates this procedure.

D4RL experiments

For the D4RL experiments, we run MBTS 3 times for each dataset and average the mean
returns over 10 evaluation trajectories of 5 random seeds of BC, to attain the results for
MBTS+BC. For the BC results, we average the mean returns over 10 evaluation trajecto-
ries of 5 random seeds. The BC policy network is a 2-layer MLP of size 256 with ReLU
activation, the final layer has tanh activation multiplied by the action dimension. We use
the Adam optimiser with a learning rate of 1e − 3 and a batch size of 256.

The hyperparameters we use for MBOP are given in Table 5. TD3+BC is trained
for 1000k iterations we train TD3+ MBTS+BC also for 1000k iterations with the actor
and critic dimensions the same as the original implementation. For TD3+ MBTS+BC
we warm start the algorithm on the original data and train for 800k iterations and then
carry on training for the remaining 200k iterations on the new MBTS data. As the
MBTS dataset contains many duplicate transitions we remove all duplicates from the
dataset when training with TD3+BC. For the hopper datasets (except medium-expert)

670	 Machine Learning (2024) 113:647–674

1 3

the policy is improved if the data is swapped to the MBTS dataset at 600k iterations.
Also the critic is fixed and training on the MBTS dataset starts at 900k iterations for the
walker2d medium-replay dataset.

Fig. 6   Visualisation of our two definitions of a neighbourhood. For a transition (s
t
, a

t
, s

t+1) ∈ D , the neigh-
bourhoods are used to reduce the size of the set of candidate next states. (Left) All states within an �-ball of
the current state, s

t
 , are taken and the next state in their respective trajectories (joined by an action shown as

an arrow) are added to the set of candidate next states. (Right) All states within an �-ball of the next state,
s
t+1 are added to the set of candidate next states. The full set of candidate next states are highlighted in yel-

low (Color figure online)

Table 4   Hyperparameters and
values for models used in MBTS

Hyperparameter Value

Forward dynamics model
Optimiser Adam
Learning rate 3e-4
Batch size 256
Ensemble size 7
Inverse dynamics model
Optimiser Adam
Learning rate 1e-4
Batch size 100
Latent dim 2*action dim
Reward function
Optimiser Adam

� = (0.5, 0.999)

Learning rate 1e-4
Batch size 256
Latent dim 2
L2 regularisation 1e-4
Value function
Optimiser Adam
Learning rate 3e-4
Batch size 256

671Machine Learning (2024) 113:647–674	

1 3

Acknowledgements  CH acknowledges support from the Engineering and Physical Sciences Research
Council through the Mathematics of Systems Centre for Doctoral Training at the University of Warwick
(EP/S022244/1). GM acknowledges support from a UKRI Turing AI Acceleration Fellowship (EPSRC EP/
V024868/1).

Author Contributions  CAH contributed to the idea, wrote the code, performed the experiments, generated
figures and tables, and co-wrote the paper. GM contributed to the idea, advised on experiments, and co-
wrote the paper.

Funding  CH acknowledges support from the Engineering and Physical Sciences Research Council through
the Mathematics of Systems Centre for Doctoral Training at the University of Warwick (EP/S022244/1).
GM acknowledges support from a UKRI Turing AI Acceleration Fellowship (EPSRC EP/V024868/1).

Data availability  The data was obtained from the public D4RL offline RL benchmarking datasets.

Code availability  All code will be made public on Github upon release of the paper.

Declarations 

Conflict of interest  No conflicts of interest.

Ethical approval  No ethics approval required- the work presented in this manuscript relies on simulated data.

Consent to participate  Not applicable

Consent for publication  Not applicable

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Table 5   Hyperparameters used
for the MBOP method across the
D4RL datasets

Dataset Horizon # Samples Kappa Sigma Beta

Medium Hopper 2 100 1 0.2 0.0
Halfcheetah 2 100 3 0.2 0.0
Walker2d 4 1000 3 0.01 0.0

MedExp Hopper 2 100 1 0.05 0.0
Halfcheetah 2 100 1 0.01 0.0
Walker2d 2 1000 3 0.1 0.0

MedRep Hopper 8 100 1 0.01 0.0
Halfcheetah 2 100 0.3 0.2 0.0
Walker2d 2 1000 0.3 0.2 0.0

Expert Hopper 2 100 0.3 0.01 0.0
Halfcheetah 4 100 0.3 0.05 0.0
Walker2d 2 1000 3 0.05 0.0

http://creativecommons.org/licenses/by/4.0/

672	 Machine Learning (2024) 113:647–674

1 3

References

An, G., Moon, S., Kim, J.-H., & Song, H.O. (2021). Uncertainty-based offline reinforcement learning with
diversified q-ensemble. In: Advances in Neural Information Processing Systems 34

Argenson, A., & Dulac-Arnold, G.: (2020). Model-based offline planning. arXiv preprint arXiv:​2008.​05556
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In: Interna-

tional Conference on Machine Learning, pp. 214–223 PMLR
Bacci, G., Bacci, G., Larsen, K.G., & Mardare, R. (2013). Computing behavioral distances, compositionally.

In: International Symposium on Mathematical Foundations of Computer Science, pp. 74–85 . Springer
Bacci, G., Bacci, G., Larsen, K.G., & Mardare, R. (2013). On-the-fly exact computation of bisimilarity

distances. In: International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pp. 1–15 . Springer

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M.,
Muller, U., & Zhang, J. et al.: (2016). End to end learning for self-driving cars. arXiv preprint arXiv:​
1604.​07316

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).
Openai gym. arXiv preprint arXiv:​1606.​01540

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., & Lee, H. (2018). Sample-efficient reinforcement learning
with stochastic ensemble value expansion. In: Advances in neural information processing systems 31

Castro, P.S. (2020). Scalable methods for computing state similarity in deterministic markov decision pro-
cesses. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10069–10076

Char, I., Mehta, V., Villaflor, A., Dolan, J.M., & Schneider, J. (2022). Bats: Best action trajectory stitching.
arXiv preprint arXiv:​2204.​12026

Chen, D., Breugel, F.v., & Worrell, J. (2012). On the complexity of computing probabilistic bisimilarity.
In: International Conference on Foundations of Software Science and Computational Structures, pp.
437–451 . Springer

Chen, X., Zhou, Z., Wang, Z., Wang, C., Wu, Y., & Ross, K. (2020). Bail: Best-action imitation learn-
ing for batch deep reinforcement learning. Advances in Neural Information Processing Systems, 33,
18353–18363.

Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In: Advances in neural information processing systems 31

Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In: Advances in neural information processing systems 31

Codevilla, F., Santana, E., López, A.M., & Gaidon, A. (2019). Exploring the limitations of behavior clon-
ing for autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 9329–9338

Dadashi, R., Rezaeifar, S., Vieillard, N., Hussenot, L., Pietquin, O., & Geist, M. (2021). Offline reinforce-
ment learning with pseudometric learning. In: International Conference on Machine Learning, pp.
2307–2318 . PMLR

Farag, W., & Saleh, Z. (2018). Behavior cloning for autonomous driving using convolutional neural net-
works. In: 2018 International Conference on Innovation and Intelligence for Informatics, Computing,
and Technologies (3ICT), pp. 1–7 . IEEE

Feinberg, V., Wan, A., Stoica, I., Jordan, M.I., Gonzalez, J.E., & Levine, S. (2018). Model-based value esti-
mation for efficient model-free reinforcement learning. arXiv preprint arXiv:​1803.​00101

Ferns, N., Castro, P.S., Precup, D., & Panangaden, P. (2012). Methods for computing state similarity in
markov decision processes. arXiv preprint arXiv:​1206.​6836

Ferns, N., Panangaden, P., & Precup, D. (2004). Metrics for finite markov decision processes. In: UAI, vol.
4, pp. 162–169

Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via policy
optimization. In: International Conference on Machine Learning, pp. 49–58 PMLR

Fu, J., Kumar, A., Nachum, O., Tucker, G., & Levine, S. (2020). D4rl: Datasets for deep data-driven rein-
forcement learning. arXiv preprint arXiv:​2004.​07219

Fujimoto, S., & Gu, S.S. (2021). A minimalist approach to offline reinforcement learning. In: Advances in
Neural Information Processing Systems 34

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing function approximation error in actor-critic meth-
ods. In: International Conference on Machine Learning, pp. 1587–1596 PMLR

Fujimoto, S., Meger, D., & Precup, D. (2019). Off-policy deep reinforcement learning without exploration.
In: International Conference on Machine Learning, pp. 2052–2062. PMLR

http://arxiv.org/abs/2008.05556
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/2204.12026
http://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1206.6836
http://arxiv.org/abs/2004.07219

673Machine Learning (2024) 113:647–674	

1 3

Giusti, A., Guzzi, J., Cireşan, D. C., He, F.-L., Rodríguez, J. P., Fontana, F., Faessler, M., Forster, C.,
Schmidhuber, J., Di Caro, G., et al. (2015). A machine learning approach to visual perception of forest
trails for mobile robots. IEEE Robotics and Automation Letters, 1(2), 661–667.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio,
Y. (2014). Generative adversarial nets. Advances in neural information processing systems 27

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp.
1861–1870 . PMLR

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., &
Abbeel, P. (2018). et al.: Soft actor-critic algorithms and applications. arXiv preprint arXiv:​1812.​
05905

Hepburn, C.A., & Montana, G. (2022). Model-based trajectory stitching for improved offline reinforcement
learning. arXiv preprint arXiv:​2211.​11603

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan, J., Sendonaris, A.,
& Osband, I. et al: (2018). Deep q-learning from demonstrations. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 32

Ho, J., Ermon, S. (2016). Generative adversarial imitation learning. In: Advances in neural information pro-
cessing systems 29

Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation learning: A survey of learning methods.
ACM Computing Surveys (CSUR), 50(2), 1–35.

Janner, M., Du, Y., Tenenbaum, J.B., & Levine, S. (2022). Planning with diffusion for flexible behavior syn-
thesis. arXiv preprint arXiv:​2205.​09991

Janner, M., Fu, J., Zhang, M., & Levine, S. (2019). When to trust your model: Model-based policy optimi-
zation. In: Advances in Neural Information Processing Systems 32

Jaques, N., Ghandeharioun, A., Shen, J.H., Ferguson, C., Lapedriza, A., Jones, N., Gu, S., & Picard, R.
(2019). Way off-policy batch deep reinforcement learning of implicit human preferences in dialog.
arXiv preprint arXiv:​1907.​00456

Kadous, M.W., Sammut, C., & Sheh, R. (2005). Behavioural cloning for robots in unstructured environ-
ments. In: Advances in Neural Information Processing Systems Workshop

Kalweit, G., & Boedecker, J. (2017). Uncertainty-driven imagination for continuous deep reinforcement
learning. In: Conference on Robot Learning, pp. 195–206 . PMLR

Ke, L., Choudhury, S., Barnes, M., Sun, W., Lee, G., & Srinivasa, S. (2020). Imitation learning as f-diver-
gence minimization. In: International Workshop on the Algorithmic Foundations of Robotics, pp. 313–
329 Springer

Kemertas, M., & Aumentado-Armstrong, T. (2021). Towards robust bisimulation metric learning. In:
Advances in Neural Information Processing Systems 34

Kidambi, R., Rajeswaran, A., Netrapalli, P., & Joachims, T. (2020). Morel: Model-based offline reinforce-
ment learning. Advances in neural information processing systems, 33, 21810–21823.

Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:​1412.​
6980

Kingma, D.P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:​1312.​6114
Kostrikov, I., Fergus, R., Tompson, J., & Nachum, O. (2021). Offline reinforcement learning with fisher

divergence critic regularization. In: International Conference on Machine Learning, pp. 5774–5783
PMLR

Kostrikov, I., Nair, A., & Levine, S. (2021). Offline reinforcement learning with implicit q-learning. arXiv
preprint arXiv:​2110.​06169

Kullback, S. (1997). Information theory and statistics. Courier Corporation
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statis-

tics, 22(1), 79–86.
Kumar, A., Fu, J., Soh, M., Tucker, G., & Levine, S. (2019). Stabilizing off-policy q-learning via bootstrap-

ping error reduction. In: Advances in Neural Information Processing Systems 32
Kumar, A., Hong, J., Singh, A., & Levine, S. (2022). When should we prefer offline reinforcement learning

over behavioral cloning? arXiv preprint arXiv:​2204.​05618
Kumar, A., Zhou, A., Tucker, G., & Levine, S. (2020). Conservative q-learning for offline reinforcement

learning. Advances in Neural Information Processing Systems, 33, 1179–1191.
Lange, S., Gabel, T., & Riedmiller, M. (2012). Batch reinforcement learning. Reinforcement Learning (pp.

45–73). Berlin: Springer.
Le, H., Jiang, N., Agarwal, A., Dudik, M., Yue, Y., & Daumé III, H. (2018). Hierarchical imitation and rein-

forcement learning. In: International Conference on Machine Learning, pp. 2917–2926. PMLR

http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/2211.11603
http://arxiv.org/abs/2205.09991
http://arxiv.org/abs/1907.00456
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2110.06169
http://arxiv.org/abs/2204.05618

674	 Machine Learning (2024) 113:647–674

1 3

Lee, D.-T., & Wong, C.-K. (1977). Worst-case analysis for region and partial region searches in multidimen-
sional binary search trees and balanced quad trees. Acta Informatica, 9(1), 23–29.

Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:​2005.​01643

Nagabandi, A., Kahn, G., Fearing, R.S., & Levine, S. (2018). Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 7559–7566 IEEE

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018). Overcoming exploration in
reinforcement learning with demonstrations. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6292–6299 . IEEE

Pearce, T., & Zhu, J. (2022). Counter-strike deathmatch with large-scale behavioural cloning. In: 2022 IEEE
Conference on Games (CoG), pp. 104–111. IEEE

Pomerleau, D. A. (1988). Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems,1.

Pomerleau, D. A. (1991). Efficient training of artificial neural networks for autonomous navigation. Neural
computation, 3(1), 88–97.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov, E., & Levine, S. (2017). Learn-
ing complex dexterous manipulation with deep reinforcement learning and demonstrations. arXiv pre-
print arXiv:​1709.​10087

Ross, S., Gordon, G., & Bagnell, D. (2011). A reduction of imitation learning and structured prediction
to no-regret online learning. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 627–635 . JMLR Workshop and Conference Proceedings

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learning to fly. In: Machine Learning Proceedings
1992, pp. 385–393. Elsevier

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization. In:
International Conference on Machine Learning, pp. 1889–1897 PMLR

Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional gen-
erative models. In: Advances in neural information processing systems 28

Sutton, R.S., & Barto, A.G. (1998). Reinforcement Learning: An Introduction, MIT press
Sutton, R. S. (1991). Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart Bul-

letin, 2(4), 160–163.
Wang, Q., Xiong, J., Han, L., Liu, H., & Zhang, T. et al.: (2018). Exponentially weighted imitation learning

for batched historical data. In: Advances in Neural Information Processing Systems 31
Wu, Y., Tucker, G., & Nachum, O. (2019). Behavior regularized offline reinforcement learning. arXiv pre-

print arXiv:​1911.​11361
Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S., & Finn, C. (2021). Combo: Conservative offline

model-based policy optimization. In: Advances in Neural Information Processing Systems 34
Yue, Y., Kang, B., Ma, X., Xu, Z., Huang, G., & Yan, S. (2022). Boosting offline reinforcement learning via

data rebalancing. arXiv preprint arXiv:​2210.​09241
Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S., Finn, C., & Ma, T. (2020). Mopo: Model-based

offline policy optimization. Advances in Neural Information Processing Systems, 33, 14129–14142.
Zhan, X., Zhu, X., & Xu, H (2021). Model-based offline planning with trajectory pruning. arXiv preprint

arXiv:​2105.​07351
Zhang, A., McAllister, R., Calandra, R., Gal, Y., & Levine, S. (2020). Learning invariant representations for

reinforcement learning without reconstruction. arXiv preprint arXiv:​2006.​10742
Zhou, W., Bajracharya, S., & Held, D. (2020). Plas: Latent action space for offline reinforcement learning.

arXiv preprint arXiv:​2011.​07213

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/1709.10087
http://arxiv.org/abs/1911.11361
http://arxiv.org/abs/2210.09241
http://arxiv.org/abs/2105.07351
http://arxiv.org/abs/2006.10742
http://arxiv.org/abs/2011.07213

	Model-based trajectory stitching for improved behavioural cloning and its applications
	Abstract
	1 Introduction
	2 Related work
	2.1 Imitation learning
	2.2 Offline reinforcement learning
	2.2.1 Model-free methods
	2.2.2 Model-based methods

	2.3 State similarity metrics
	2.4 Data re-sampling and augmentation approaches

	3 Methods
	3.1 Problem setup
	3.2 Model-based trajectory stitching
	3.3 Candidate next state search
	3.4 Value and reward function estimation
	3.5 Action generation

	4 Experimental results
	4.1 Performance assessment on D4RL data
	4.1.1 Behaviour cloning: MBTS+BC
	4.1.2 Model-based offline planning: MBTS+MBOP
	4.1.3 Model-free offline RL: TD3+ MBTS+BC

	4.2 Expected performance on sub-optimal data
	4.3 On the number of MBTS iterations
	4.4 Ablation studies
	4.4.1 Choice of reward model
	4.4.2 Value-weighted BC

	5 Discussion
	6 Conclusion
	Appendix A: Further implementation details
	Forward dynamics model
	Inverse dynamics model
	Reward function
	Value function
	KL-divergence experiment
	Search procedure for candidate next states
	D4RL experiments

	Acknowledgements
	References

