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Abstract

PAC-Bayesian bounds are known to be tight and informative when studying the gener-
alization ability of randomized classifiers. However, they require a loose and costly deran-
domization step when applied to some families of deterministic models such as neural
networks. As an alternative to this step, we introduce new PAC-Bayesian generalization
bounds that have the originality to provide disintegrated bounds, i.e., they give guarantees
over one single hypothesis instead of the usual averaged analysis. Our bounds are easily
optimizable and can be used to design learning algorithms. We illustrate this behavior on
neural networks, and we show a significant practical improvement over the state-of-the-art
framework.
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1 Introduction

In statistical learning theory, PAC-Bayesian theory' (Shawe-Taylor & Williamson,
1997; McAllester, 1998) provides a powerful framework for analyzing the generaliza-
tion ability of machine learning models such as linear classifiers (Germain et al., 2009),
SVM (Ambroladze et al., 2006), or neural networks (Dziugaite & Roy, 2017; Pérez-Ortiz
et al., 2021). In the PAC-Bayesian theory, the machine learning models are considered ran-
domized (or stochastic), i.e., a model is sampled from a posterior probability distribution
for each prediction. The analysis of such a randomized classifier usually takes the form of
bounds on the average risk with respect to a learned posterior distribution given a learning
sample and a chosen prior distribution defined over a set of hypotheses. Note that the prior
distribution can encode an a priori belief on the set of hypotheses, or if we have no belief,
it can be set to a non-informative distribution, such as the uniform distribution. While such
bounds are very effective for analyzing randomized/stochastic classifiers, the vast major-
ity of machine learning methods nevertheless need guarantees on deterministic models. In
this case, a derandomization step of the bound is required to get a bound on the risk of the
deterministic model. In general, the derandomization step consists in obtaining a bound on
the risk of a deterministic model from a bound that is originally for randomized/stochas-
tic models. Different forms of derandomization have been introduced in the literature for
specific settings. Among them, Langford and Shawe-Taylor (2002) proposed a derandomi-
zation for Gaussian posteriors over linear classifiers: thanks to the Gaussian symmetry, a
bound on the risk of the maximum a posteriori (deterministic) classifier is obtainable from
the bound on the average risk of the randomized classifier. Also relying on Gaussian pos-
teriors, Letarte et al. (2019) derived a PAC-Bayesian bound for a very specific determinis-
tic network architecture using sign functions as activations; this approach has been further
extended by Biggs and Guedj (2021, 2022). Another line of works derandomizes neural
networks (Neyshabur et al., 2018; Nagarajan & Kolter, 2019). While technically different,
it starts from PAC-Bayesian guarantees on the randomized classifier and uses an “output
perturbation” bound to convert a guarantee from a random classifier to the mean classifier.
These works highlight the need for a general framework for the derandomization of classic
PAC-Bayesian bounds.

In this paper, we focus on another kind of derandomization, sometimes referred to as
disintegration of the PAC-Bayesian bound, and first proposed by Catoni (2007, Th.1.2.7)
and Blanchard and Fleuret (2007): instead of bounding the average risk of a randomized
classifier with respect to the posterior distribution, the disintegrated PAC-Bayesian bounds
upper-bound the risk of a sampled (unique) classifier from the posterior distribution.
Despite their interest in derandomizing PAC-Bayesian bounds, these kinds of bounds have
only received little study in the literature; especially, we can cite the recent work of Rivas-
plata et al. (2010, Th.1(i)) who have derived a general disintegrated PAC-Bayesian theo-
rem. It is important to note that these bounds have never been used in practice. Driven by
machine learning practical purposes, our objective is thus twofold. We derive new tight
and usable disintegrated PAC-Bayesian bounds (i) that directly derandomize any classi-
fiers without any other additional step and with almost no impact on the guarantee, and
(ii) that can be easily optimized to learn classifiers with strong guarantees. To achieve this
objective, our contribution consists in providing a new general disintegration framework

! The reader can refer to Guedj (2019) or Alquier (2021) for recent surveys on PAC-Bayes.
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based on the Rényi divergence (in Theorem 2), allowing us to meet the practical goal of
efficient learning. From the theoretical standpoint, due to the Rényi divergence term, our
bound is expected to be looser than the one of Rivasplata et al. (2010, Th.1(i)) in which the
divergence term is “disintegrated” but depends on the sampled hypothesis only. However,
as we show in our experimental evaluation on neural networks, their “disintegrated” term
is, in practice, subject to high variance, making their bound harder to optimize. This vari-
ance arises because the sampled hypothesis does not influence our Rényi divergence term.
Our bound has then the main advantage of leading to a more stable learning algorithm with
better empirical results. In addition, we derive a new theoretical result in the form of an
information-theoretic bound, giving new insights into disintegration procedures.

The rest of the paper is organized as follows. Section 2 introduces the notations we fol-
low and recalls some basics on generalization bounds. In Sect. 3, we derive our main con-
tribution relying on disintegrated PAC-Bayesian bounds. Then, we illustrate the practical
usefulness of this disintegration on deterministic neural networks in Sect. 5. Before con-
cluding in Sect. 7, we discuss in Sect. 6 another point of view of the disintegrated through
an information-theoretic bound. For readability, we deferred the proofs of our theoretical
results to the Appendix.

2 Setting and basics
2.1 General notations

We denote by M(A) the set of probability densities on the measurable space (A,X 4)
with respect to a reference measure” where X , is the c-algebra on the set .A. In this paper,
we consider supervised classification tasks with X’ the input space, ) the label set, and
D € M(&XXY) an unknown data distribution on XXY=Z. An example is denoted by
7z=(x,y)€ Z, and the learning sample S={z;}". , is constituted by m examples drawn i.i.d.
from D; the distribution of such an m-sample being D" € M(Z™). We consider a hypoth-
esis set 'H of functions h : X— ). The learner aims to find #€ H that assigns a label y to
an input x as accurately as possible. Given an example z and a hypothesis 4, we assess the
quality of the prediction of & with a loss function £ : HxZ—[0, 1] evaluating to which
extent the prediction is accurate. Given a loss function Z, the true risk Rp(h) of a hypothe-
sis h on the distribution D and its empirical counterpart, the empirical risk, Rs(h) estimated
on S are defined as

m
Rp(h) 2 E,_p(hz), and Rg(h) 2 % 3 ¢z,
i=1

Then, the learner wants to find the hypothesis /# from H that minimizes Rp(h). However,
we cannot compute Rp(h) since D is unknown. In practice, one could work under the
Empirical Risk Minimization principle (erm) that looks for a hypothesis minimizing Rg(h).
Generalization guarantees over unseen data from D can be obtained by quantifying how
much the empirical risk Rg(h) is a good estimate of Rp(h). Statistical machine learning
theory (see, e.g., Vapnik, 2000) studies the conditions of consistency and convergence of

2 The measure considered for (A, X 1) is usually the Lebesgue or the counting measure.
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erm towards the true risk. This kind of result is called generalization bound, often referred
to as PAC (Probably Approximately Correct) bound (Valiant, 1984), and takes the form:

Pspr [lRD(h) Rs(h)| < 5(‘ _)] 21-4.

Put into words, with high probability (at least 1—4) on the random choice of the learning
sample S, good generalization guarantees are obtained when the deviation between the true
risk Rp(h) and its empirical estimate Rg(h) is low, i.e., e( L ) should be as small as possi-
ble. The function € depends mainly on two quantities: (i) the number of examples m for sta-
tistical precision, and (ii) the confidence parameter 5. We now recall three classical bounds
while focusing on the PAC-Bayesian theory at the heart of our contribution. By abuse of
notation, in the following, we use the function ¢ for the different presented frameworks: we
consider an additional argument of € to pinpoint the differences between the frameworks.

2.2 Uniform convergence bound

A first classical type of generalization bounds is referred to as Uniform Convergence
bounds based on a measure of complexity of the set H (such as the VC-dimension or the
Rademacher complexity) and hold for all the hypotheses of H. This type of bound takes
the form:

H)|[ >1-6.

Ps.p | sup [Rp(h) — Rg(h)| <6(é i
heH

Due to sup,,c;,, this bound can be seen as a worst-case analysis. Indeed, it means that the
bound |Rp(h) — Rs(h)| < 5( L_H) holds with a high probability for all € H, including
the best but also the worst ThlS worst-case analysis makes it hard to obtain a non-vacuous

bound i.e., with 6(5 L 'H) < 1. Note that the ability of such bounds to explain the generali-
zation of deep learnlng has been recently challenged (Nagarajan & Kolter, 2019b).

2.3 Algorithmic-dependent bounds

A potential drawback of the Uniform Convergence bounds is that they are independ-
ent of the learning algorithm, i.e., they do not take into account the way the hypothesis
space is explored. To tackle this issue, algorithmic-dependent bounds have been pro-
posed to take advantage of some particularities of the learning algorithm, such as its
uniform stability (Bousquet & Elisseeff, 2002) or robustness (Xu & Mannor, 2012). In
this case, the bounds obtained hold for a single hypothesis %, the one learned with
the algorithm L from the learning sample S. The form of such bounds is:

Ps.on | |[Rolhus)—Rsthus)| < e(L L.0)| 2 1-5.

For example, this approach has been used by Hardt et al. (2016) to derive generalization
bounds for hypotheses learned by stochastic gradient descent.
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2.4 PAC-Bayesian bound

This paper leverages PAC-Bayesian bounds that stand in the PAC framework but borrows
inspiration from the Bayesian probabilistic view that deals with randomness and uncer-
tainty in machine learning (McAllester, 1998). In the PAC-Bayesian setting, we consider
a prior distribution Pe M*(H) € M(H) on H, with M*(H) the set of strictly positive
probability densities. This distribution encodes an a priori belief on H before observing
the learning sample S. Then, given S and the prior P, we learn a posterior distribution
Qe M(H). In this case, the bounds take the form:

Ps.r|¥Q € M(H), By dRpt-Rs(]<e(42,0)| > 13,

A key notion is that the function £() upper-bounds a Q-weighted expectation over the risks
of all classifiers in 7. Hence, it upper-bounds the risk of a randomized classifier.> Such a
randomized classifier can be described as follows: to predict the label of an input x € X,
(i) a hypothesis & € H is sampled from Q and (ii) the classifier predicts the label given by
h(x).

We recall below the classical PAC-Bayesian bounds in a general form as proposed by
Germain et al. (2009); Bégin et al. (2016). The idea is to express the bound in terms of a
generic function ¢ : HXZ"—R that is meant to capture the the deviation between the
true and the empirical risks, instead of deriving a theorem by settling on a specific meas-
ure of deviation such as |Rp(h)—Rg(h)|. Note that, Theorem 1 is expressed in a slightly
different form than the original ones; we prove Theorem 1 in Appendix A for the sake of
completeness.

Theorem 1 (General PAC-Bayes bounds) For any distribution D on Z, for any hypoth-
esis set 'H, for any prior distribution P € M*(H) on H, for any measurable function
¢ HXZm%Ri,for any 6 € (0, 1]we have

; Y0 € M(H), L
i > 1-
S\ B, _oIn((h,S)) < KL(Q|IP) +In [E s Erpd(.S)| P

. J/

(Germain el al., 2009)

and

. VO e M(H) .
« 1 . > 1-6.
S~D" —In [E.gp(h.S)| < D,(QIIP) +In [E[ES~DW[Eh~7¢(h’S)“’I]
(Bégin etal., 2016)

2)
with KL(Q||P)& B0 ln Q(h) the Kullback-Leibler (KL-)divergence between Q and P, and

Da(Q||P)=E In [[Eh~7>[ 7%((:;] } the Rényi divergence between Q and P (a>1).

3 The risk of the randomized classifier Ej.oRp(h) is sometimes referred to as the Gibbs risk in the PAC-
Bayes literature.
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Note that Eq. (2) is more general than Eq. (1). Indeed, the former is obtained from
the latter by the three following steps: (i) substituting ¢(h, S) by q’)(h,S)%I in Eq. (2),
(ii) applying Jensen’s inequality in order to move the expectation over Q in front of the log-
arithm, and (iii) taking the limit when « tends to 1. Note also the original bound statements
of Germain et al. (2009); Bégin et al. (2016) are recovered by choosing a convex func-
tion A : [0, 1]?>=R that captures a deviation between the true risk Rp(h) and the empiri-
cal risk Rg(h). Then, two steps are required: (i) setting ¢(h,S)=exp(mA(Rs(h), Rp(h))) in
Eq. (1), or ¢(h,S)=A(Rs(h), Rp(h)) in Eq. (2), and then (ii) applying Jensen’s inequality
on the left-hand side of the in equation. In fact, our proofs follow the exact same steps than
those of Germain et al. (2009, Th.2.1) and Bégin et al. (2016, Th.9), but instead of starting
from A(Rg(h), Rp(h)), we consider the slightly more general expression ¢(h, S) from the
beginning.*

The advantage of Theorem 1 is that it can be used as a starting point for deriv-
ing different forms of bounds. For instance, for a loss function £ : HXZ—[0, 1] with
¢(h,S)=exp (mA(RS(h), RD(h))) and A(Rg(h), Rp(h)) = 2[R$(h)—RD(h)]2 we retrieve from
Eq. (1) the bound proposed by McAllester (1998):

KL(Q|P) + In 2V
PSND’” VQ, |[Eh~QRS(h)_[Eh~QR'D(h)| S m Z 1-6
KL(Q||P) + In X2 2\F
—Pgpn |VQ, E,ooRp(h) < E,_oRs(h) + o > 1-4.

This bound illustrates the trade-off between the average empirical risk and

\/ T(KL(QllP)+ln M) More precisely, the higher m is, the lower

e( ; ’111 Q) is therefore the smaller the difference between the true risk £, _oRp(h) and the
empirical risk E,_oRs(h).

Another example leading to a slightly tighter but less interpretable bound is the Seeger
(2002); Maurer (2004)’s bound that we retrieve with ¢(h,S)= exp (m A(Rg(h), RD(h))]) and
A(Rg(h), Rp(h)) = KI[Rs(W||Rp(W)]:

KL(Q||P) + In 22 z‘f

Ps.pn |VQ, B, okl(Rs(W)||Rp(h)) < " > 1-6, 3)

where
Ki(gllp) = g1n L4+(1-g) In =2 @)

is the KL divergence between two Bernoulli distributions of parameters ¢ and p. Such
PAC-Bayesian bounds are known to be tight (e.g., Pérez-Ortiz et al. (2021); Zantedeschi
et al. (2021)), but they hold for a randomized classifier by nature (due to the expectation on

4 We refer the reader to the proof sketches given by Figure 1 of Bégin et al. (2016) for more insights.
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‘H). A key issue for usual machine learning tasks is then the derandomization of the PAC-
Bayesian bounds to obtain a guarantee for a deterministic classifier instead of a randomized
one (by removing the expectation on ). In some cases, this derandomization results from
the structure of the hypotheses, such as for randomized linear classifiers that can be directly
expressed as one deterministic linear classifier (Germain et al., 2009). However, in other
cases, the derandomization is much more complex and specific to the class of hypotheses,
such as for neural networks (e.g., Neyshabur et al. (2018), Nagarajan and Kolter (2019b,
Ap. J), Biggs and Guedj (2022)).

The next section states our main contribution, which is a general derandomization
framework (based on the Rényi divergence) for disintegrating PAC-Bayesian bounds into a
bound for a single hypothesis from H.

3 Disintegrated PAC-Bayesian theorems
3.1 Form of a disintegrated PAC-Bayes bound

First, we recall another kind of bound introduced by Blanchard and Fleuret (2007) and
Catoni (2007, Th.1.2.7) and referred to as the disintegrated PAC-Bayesian bound. Its form
is:

Pspm imgg (|Rp(h) —Rs(W| < E(é, i, Q5)> >1-3, (5)

where Q SéA(S, P) with A : Z"x M*(H)— M(H) a deterministic algorithm chosen a priori
which (i) takes a learning sample S€ Z™ and a prior distribution P as inputs, and (i) out-
puts a data-dependent distribution Q ¢2A(S, P) from the set M () of all possible probabil-
ity densities on . Concretely, this kind of generalization bound allows one to derandomize
the usual PAC-Bayes bounds as follows. Instead of considering a bound holding for all the
posterior distributions on H as usually done in PAC-Bayes (the “VQ” in Theorem 1), we
consider only the posterior distribution Qg obtained through a deterministic algorithm A
taking the learning sample S and the prior P as inputs. Then, the above bound holds for a
unique hypothesis 4~Q instead of the randomized classifier: the individual risks are no
longer averaged with respect to Qg; this is the PAC-Bayesian bound disintegration. The
dependence in probability on Q¢ means that the bound is valid with probability at least 1 -6
over the random choice of the learning sample S~D™ and the hypothesis i~Qg. Under
this principle, we introduce in Theorems 2 and 4 below two new general disintegrated
PAC-Bayesian bounds. A key asset of our results is that the bounds are instantiable to spe-
cific settings as for the “classical” PAC-Bayesian bounds (e.g., with i.i.d./non-i.i.d. data,
unbounded losses, etc.): to instantiate the bound, one has to instantiate the function ¢. Note
that, except our bound and the one of Rivasplata et al. (2010, Th.1(i)), the disintegrated
bounds of the literature introduced by Blanchard and Fleuret (2007) and Catoni (2007,
Th.1.2.7) do not depend on such a general function ¢. With an appropriate instantiation,
we obtain an easily optimizable bound, leading to a self-bounding® algorithm (Freund,

5 A self-bounding algorithm minimizes a generalization bound to obtain a model with a generalization
guarantee.
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1998) with theoretical guarantees. As an illustration of the usefulness of our results, we
provide, in Sect. 4, such an instantiation for neural networks.

3.2 Disintegrated PAC-Bayesian bounds with the Rényi divergence
3.2.1 Our main contribution: a general disintegrated bound

In the same spirit as Eq. (2) our main result stated in Theorem 2 is a general bound involv-
ing the Rényi divergence D, (Qg||P) of order a > 1.

Theorem 2 (General Disintegrated PAC-Bayes Bound) For any distribution D on
Z, for any hypothesis set H, for any prior distribution P € M*(H), for any measur-
able function ¢ :HXZ’”—»IR:, for any a >1, for any 6 € (0,1], for any algorithm
A Z"XM*(H)—= M(H), we have

PSNDm,hNQS(a“Tl In ($(1.8)

2a—1, 2 "
< “ IS +D,(QslP)+1n [[ESNW[Eh,Np(d:(h’,S’)u—l )]) > 1-5,

where Q SéA(S, ‘P) is output by the deterministic algorithm A.

Proof (Proof sketch (see Appendix B for details)) Recall that Q¢ is obtained with the algo-
rithm A(S, P). Applying Markov’s inequality on ¢(h,S) with the random variable 4 and
using Holder’s inequality to introduce D,(Qg||P), we have, with probability at least l—g on
S~ D"andh~ Qg,

IA

a (04 2 ’
1 In [¢(h,S)] P In [E[Eh’NQSd)(h’S)]

IA

D(QslIP)+ % 1n % +1n [E, (0009 )|
By applying again Markov’s inequality on ¢(h,S) with the random variable S, we have,
with probability at least l—g onS~ D"and h~ Qg,

In [[Eh,NP(qS(h’, S)= )] < [%ESNDH [Eh,Np(qb(h’, S )]
Lastly, we combine the two bounds with a union-bound argument. O

As for the general classical PAC-Bayesian bounds (Theorem 1), the above theorem can
be seen as the starting point of the derivation of generalization bounds depending on the
choice of the function ¢, as done in Corollary 6 in Sect. 4.1; this property makes it the
main result of our paper.

In its proof, Holder’s inequality is used differently than in the classic PAC-Bayes
bound’s proofs. Indeed, in Bégin et al. (2016, Th. 8), the change of measure based on
Holder’s inequality is key for deriving a bound that holds for all posteriors Q with high
probability, while our bound holds for a unique posterior Q5 dependent on the sample S
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and the prior P. In fact, we use Holder’s inequality to introduce a prior P independent from
&: a crucial point for our bound instantiated in Corollary 6.
Compared to Eq. (2), our bound 1nv01ves the term =—- 2o 1 In = mstead of ln ~, that is an addi-

2a—1
tional constant value of c

ln = — ln -=1In 2+E ln > When a=2, th1s constant equals

In 5—2, which turns out to be a reasonable cost to “derandomize” a bound into a disintegrated
one, as typical choices for ¢(4,S) will make the constant imprint on the bound value decay
with m. This is similar to the bounds of Theorem 2 that tighten as m increases, provided that
¢(h,S) is chosen wisely. For instance, by setting ¢(h,S) = exp( mKkl(Rg(h)||Rp(h)) with
Kkl(-||-) defined by Eq. (4), the bound depends on m and converges as m increases (see Sect/ 4).
Moreover, the tightness of the bound depends also on the deviation between Q g and P, which
makes the bound tighter when Q¢ = P

We instantiate below Theorem 2 for a—1* and a—+oo showing that the bound converges
when a— 1" and a—+co.

Corollary 3 Under the assumptions of Theorem 2, when a— 1%, we have
Psopmpeo (ln ¢(h,S) <In % +1n [esssup sezwen® S’)]) > 1-4,

when a— + oo, we have

Qs(h')

P SNDW’,INQS< In ¢(h,S) < In esssup ey W

+In [:Z[ESNDH[Eh o s’)Dz 1-5,

where esssup is the essential supremum defined as the supremum on a set with non-zero
probability measures, i.e.,

esssup gez,hreﬁzﬁ(h/,s’) = inf{r ER, PS~D”‘,h~QS[¢(haS) > 1—] = 0},

Qs(H)
<Py

and  esssup = inf{r €R, [P’hNQS[ st 1—] = 0},

P(h)

This corollary illustrates that the parameter a controls the trade-off between the Rényi
divergence D,(Qg||P) and In [[ES/NDm E,.pp(H, S’)ﬁ}. Indeed, when a—1%, the Rényi

divergence vanishes while the other term converges toward In [esssup sezwend, S’)],
roughly speaking the maximal value possible for the second term. On the other hand, when

a—+oo, the Rényi divergence increases and converges toward In esssup ;< QP((h) and the

other term decreases toward In [[E s Epp(H S )].
3.2.2 Comparison with the bound of Rivasplata et al. (2020)
For the sake of comparison, we recall in Eq. (6) the bound proposed by Rivasplata et al.

(2010, Th.1(i)), that is more general than the bounds of Blanchard and Fleuret (2007) and
Catoni (2007, Th.1.2.7):
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h
P om0, <1n(¢(h,S)) < %i;)) +1n <%[ESrND,n[Eh,NP¢(h’,S’)>> >1-6.  (6)

The term In % (also involved in Catoni (2007); Blanchard and Fleuret (2007)) can be

seen as a “disintegrated® KL divergence” depending only on the sampled h~Qs. In con-
trast, our bound involves the Rényi divergence D, (Qs||P) between the prior P and the pos-
terior Q 5, meaning our bound involves only one term that depends on the sampled hypoth-
esis (the risk): the divergence value is the same whatever the hypothesis. Our bound is
expected to be looser because of the Rényi divergence (see van Erven & Harremogs,2014)
and the dependence in 6 (which is worse than Eq. 6). Nevertheless, our divergence term is
the main advantage of our bound. Indeed, as confirmed by our experiments (Sect/ 5), our
bound with D, (Qg||’P) makes the learning procedure (in our self-bounding algorithm)

more stable and efficient compared to the optimization of Eq. (6) with In %(g;) that is sub-

ject to high variance.
3.2.3 A parameterizable general disintegrated bound

In the PAC-Bayesian literature, parametrized bounds have been introduced (e.g., Catoni
(2007); Thiemann et al. (2017)) to control the trade-off between the empirical risk and the
divergence along with the additional term. For the sake of completeness, we now provide
a parametrized version of our bound, enlarging its practical scope. We follow a similar
approach to introduce a version of a disintegrated Rényi divergence-based bound that has
the advantage of being parameterizable.

Theorem 4 (Parametrizable Disintegrated PAC-Bayes Bound) For any distribution D on
Z, for any hypothesis set H, for any prior distribution P € M*(H), for any measurable
function ¢ : HXZ"—R, for any § € (0,1], for any algorithm A : Z"XM*(H)—M(H),
we have

A DyslP, 8 ’ o2
IPSN Dm’ <VA>0, In (d)(h,S))S In I:Ee 28=s +W[ES'~D"’|EW~P|:¢(}Z’S) ] Z 1—5,
h~ Qg

where Qg2A(S, P) is output by the deterministic algorithm A.

Note that eP2(@slP is closely related to the y2-distance. Indeed we have:

2
7HQslP) £ [EhNP[%Q(Z;)] —1 = ¢P2sIP—1, An asset of Theorem 4 is the parameter A

controlling the trade-off between the exponentiated Rényi divergence eP2(%slP) and
;—3[E s Epp®(H,S)?. Our bound is valid for all A >0, thus, from a practical view, we
can learn/tune the parameter A to minimize the bound and control the possible numerical
instability due to e?2(9sIP), Indeed, if D,(Qgl|P) is large, the numerical computation can
lead to an infinite value due to finite precision arithmetic. It is important to notice that, like
other parametrized bounds (e.g., Thiemann et al., 2017), there exists a closed-form solution

® We say that the KL divergence is “disintegrated” since the log term is not averaged in contrast to the KL
divergence.
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of the optimal parameter A (for a fixed P and Qy); the solution is derived in Proposition 5
and shows that the optimal bound of Theorem 4 corresponds to the bound of Theorem 2.

Proposition 5 For any distribution D on Z, for any hypothesis set H, for any prior dis-
tribution P on 'H, for any 6€(0, 1], for any measurable function ¢ : HXZ"—RY, for any
algorithm A : Z"XM*(H)—>M(H), let

! QN2
A*=argmin ., In lieDz(QS”PM Fs-pEyp [$901 ST ]
3 ,

2183

Theorem

A\
r Y

* 8p(H, S')?
then, we have 21In [;—eDz(QS”P)+[ES/~Dm[Eh,N7)<%)] 4

Sl 2
= Dy(Q4IP) +1n [ES,NDW,[Eh,NP((b(a—;S,)>] 2witha = 2.,

. /
g

Theorem

* \/IES/ND"‘ [Eh’NP [8¢(h,7 S’)Z]
where A" =
83 exp(D,(QslIP)

Put into words: the optimal A* gives the same bound for Theorem 2 and Theorem 4.

4 The disintegration in action

So far, we have introduced theoretical results to derandomize PAC-Bayesian bounds
through a disintegration approach. Indeed, the disintegration allows us to obtain a bound
for a unique model sampled from the distribution Qg instead of having a bound on the
averaged risk of the models. We propose in this section to illustrate the instantiation and
the usefulness of Theorem 2 on neural networks compared to the classical PAC-Bayesian
bounds.

4.1 Specialization to neural network classifiers

We consider Neural Networks (NN) parametrized by a weight vector we R? and over-
parametrized, i.e., d> m. We aim to learn the weights of the NN leading to the lowest
true risk. Practitioners usually proceed by epochs’ and obtain one “intermediate” NN after
each epoch. Then, they select the “intermediate” NN associated with the lowest valida-
tion risk. We propose translating this practice into our PAC-Bayesian setting by consid-
ering one prior per epoch. Given T epochs, we hence have T priors P={ Pt}tT:v where
vie {1,...,T}, P, = My, O'ZId) is a Gaussian distribution centered at v, (the weights
associated with the #th “intermediate” NN) with a covariance matrix of ¢2I, (where I,
is the dXd-dimensional identity matrix). Assuming the 7 priors are learned from a set

7 One epoch corresponds to one pass of the entire learning set during the optimization process.
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Sprior Such that S, () S=f, then Corollaries 6 and 7 will guide us to learn a posterior
Qs=Mw, 6’1, from a prior P € P minimizing the empirical risk on S (we give more
details on the procedure after the forthcoming corollaries). Note that considering Gaussian
distributions has the advantage of simplifying the expression of the KL divergence, and
thus is commonly used in the PAC-Bayesian literature for neural networks (e.g., Dziugaite
& Roy, 2017; Letarte et al., 2019; Zhou, Veitch, Austern, Adams, & Orbanz, 2019).8

Corollary 6 below instantiates Theorem 2 to this neural networks setting. Then, for the
sake of comparison, Corollary 7 instantiates other disintegrated bounds from the literature;
more precisely, Eq. (7) corresponds to Rivasplata et al. (2010)’s bound of Eq. (6), Eq. (8)
to Blanchard and Fleuret (2007)’s one, and Eq. (9) to Catoni (2007)’s one.

Corollary 6 For any distribution D on Z, for any hypothesis set H, for any set
P={(P,,....,P;} of T priors on H where P,=MNy,,c%1)), for any algorithm
A Z" X M*(H)>M(H), for any loss ¢ : HxZ—[0, 1], for any 5€(0, 1], we have

llw=v,l13 16T+/m
t2+1n 53\/_ >Zl—6

Ps.prieg <V7’ €P. KRsWIIRp(h) < - =

where kl(a||b) = aln + (1-a) ln 1=a Q5 = Mw, O'ZId) and the hypothesis h ~ Qg is par-
ametrized by w+e.

Corollary 7 For any distribution D on Z, for any set 'H, for any set P = {P,, ..., Pr}of T
priors on H where P, = N(v,,6°1), for any algorithm A : Z" x M*(H)— M(H), for any
loss ¢ : HxZ—{0,1}, for any 6€(0, 1], with probability at least 1—6 over the learning
sample S~D™ and the hypothesis h~Q s parametrized by w+€, we have VP, € P

)

lw+e— V||2 |€||2 2T
+
202

KI(Rs(M|Rp(h) < Z[

Vbe B, K, (Rs(h)||Rp(h)< n%

lIw+e=v,lI5~llell; T|C|
1—exp<—cRS(h)—— [ 752 24 1n 5 ©)

)

b1 ]| Iw+e=v,li5-llell3 (b+1)T|B]
= +1In ,
202

Vee C, Rp(h) <

1—e—c¢

with [x],= max(x, 0), and k1 (Rs(h)||Rp(h)=KI(Rs(M)||Rp(h)) if Rs(h)<Rp(h) and O other-
wise. Moreover, e~N(0, O'zld) is a Gaussian noise such that w+e€ are the weights of h~Q¢
with Qs=Mw, 6°1,;), and C, B are two sets of hyperparameters fixed a priori.

As the parameter 4 of the Theorem 4, c€ C is a hyperparameter that controls a trade-off
between the empirical risk Rg(/) and the term

8 Gaussian distributions have been first studied in PAC-Bayes in the context of linear classifiers (e.g.,
Ambroladze et al., 2006; Germain, Habrard, Laviolette, & Morvant, 2009; Germain et al., 2020), but in this
context, the symmetry of the Gaussian distribution also ease the derandomization.
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m 202 6

1| lw+e=v.l3-llell;  T7|C]
+1In .

Besides, the parameter b€ B controls the tightness of the bound. In general, these param-
eters can be tuned to minimize the bound of Eq. (8) and Eq. (9); however, there is no
closed-form solution for the expression of the minimum of this Eq. . In consequence, our
experimental protocol requires minimizing the bounds by gradient descent for each b€ B,
respectively c€ C, in order to learn the distribution Qg leading to the lowest bound value.
To obtain a tight bound, the divergence between one prior P, € P and Q¢ must be low, i.e.,
Iw—v,112 (or || w+e—v,||3—|l€]|3) has to be small. One solution is to split the learning sam-
ple into 2 non-overlapping subsets S, and S, where S, is used to learn the prior, while
S is used both to learn the posterior and compute the bound. Hence, if we “pre-learn” a

good enough prior P, € P from S, then we can expect to have a low [[w—v,|l,.

Algorithm 1 Training Method

The original training set is split into two distinct subsets: Spiior and S
(respectively of size mprior and m, that can be different).

The training has two phases.

1) The prior distribution P is “pre-learned” with Spyior and selected by early
stopping, with S as validation set, using the algorithm Aoy (an arbitrary
learning algorithm).

2) Given S and P, we learn the posterior Qs with the algorithm A (defined
a priori).

At first sight, the selection of the prior weights with S by early stopping may appear
to be “cheating”. However, this procedure can be seen as: 1) first constructing P from the
T “intermediate” NNs learned after each epoch from S, then 2) optimizing the bound
with the prior that leads to the best risk on S. This gives a statistically valid result: since
Corollary 6 is valid for every P, € P, we can select the one we want, in particular the one
minimizing Rg(h) for a sampled & ~ P,. This heuristic makes sense: it allows us to detect if
a prior is concentrated around hypotheses that potentially overfit the learning sample S,
Usually, practitioners consider this “best” prior as the final NN. In our case, the advantage
is that we refine this “best” prior with S to learn the posterior Qs. Note that Pérez-Ortiz
et al. (2021) have already introduced tight generalization bounds with data-dependent pri-
ors for—non-derandomized—stochastic NNs.’ Nevertheless, the weights of the stochastic
NNs are, by definition, sampled from the posterior distribution Q for each prediction. In
that sense, it is important to mention that stochastic NNs differ from derandomized NNs
where only one model is sampled from Qg. Moreover, our training method to learn the
prior differs greatly since 1) we learn 7 NN (i.e., T priors) instead of only one, 2) we fix
the variance of the Gaussian in the posterior Qg. Note that, as illustrated in Sect/ 5, fix-
ing the variance is not restrictive: the advantage is that it simplifies the expression of the
KL divergence while keeping the bounds tight. To the best of our knowledge, our training
method for the prior is new.

% Stochastic NNs were introduced in the PAC-Bayesian literature by Langford and Caruana (2001).
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4.2 A note about stochastic neural networks

Due to its stochastic nature, PAC-Bayesian theory has been explored to study stochastic
NNs (e.g., Langford and Caruana (2001); Dziugaite and Roy (2017, 2018); Zhou et al.
(2019); Pérez-Ortiz et al. (2021)). In Corollary 8 below, we instantiate the bound of Eq. (1)
for stochastic NNs to empirically compare the stochastic and the deterministic NNs associ-
ated to the same prior and posterior distributions. We recall that, in this paper, a determin-
istic NN is a single h sampled from the posterior distribution Qs=Mw, 6°I ;) output by the
algorithm A. This means that for each example, the label prediction is performed by the
same deterministic NN: the one parametrized by the weights w + € € R¢. Conversely, the
stochastic NN associated with a posterior distribution Q=A\(w, 6°1,) predicts the label of a
given example by (i) first sampling & according to Q, (ii) then returning the label predicted
by h. Thus, the risk of the stochastic NN is the expected risk value E,_oRp(h), where the
expectation is taken over all h sampled from Q. We compute the empirical risk of the sto-
chastic NN from a Monte Carlo approximation: (i) we sample n weight vectors, and (ii)
we average the risk over the n associated NNs; we denote by Q" the distribution of such
n-sample. In this context, we obtain the following PAC-Bayesian bound.

Corollary 8 For any distribution D on Z, for any H, for any set P={P,,...., Py} of T
priors on 'H where P, = Mv,, Gzld),for any loss ¢ : HxZ—{0, 1}, for any 6€(0, 1], with
probability at least 1-6 over S~D" and {hy, ..., h,}~Q", we have simultaneously VP, € P,

lw=v,]I2 4T+/m
+1In 5 s

KI(E,-o Rs(W| E,q Rp(h) s% l (10)

1 ¢ 1. 4
and kl(; ;Rs(hi)H[EhNQRS(h)) <<, (11

where @ = Mw, 6*1,) and the hypothesis h sampled from Q is parametrized by w + € with
e ~ MO, azld).

This result shows two key features that allow considering it as an adapted baseline for a
fair comparison between disintegrated and classical PAC-Bayesian bounds, thus between
deterministic and stochastic NNs. On the one hand, it involves the same terms as Corol-
lary 6. On the other hand, it is close to the bound of Pérez-Ortiz et al. (2021, Sec. 6.2),
since (i) we adapt the KL divergence to our setting (i.e., KL(Q||”P)=217||W—V[|I§), (ii) the
bound holds for T priors thanks to a union-bound argument.
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5 Experiments with neural networks'®

In this section, we do not seek state-of-the-art performance; in fact, we have a threefold
objective: (a) we check if 50%/50% is a good choice for splitting the original train set into
(Sprior> S) (Which is the most common split in the PAC-Bayesian literature (Germain et al.,
2009; Pérez-Ortiz et al., 2021)); (b) we highlight that our disintegrated bound associated
with the deterministic NN is tighter than the randomized bound associated with the sto-
chastic NN (Corollary 8); (¢) we show that our disintegrated bound (Corollary 6) is tighter
and more stable than the ones based on Rivasplata et al. (2010), Blanchard and Fleuret

(2007) and Catoni (2007) (Corollary 7).

5.1 Training method

We follow our Training Method (Sect. 4.1) in which we integrate the direct minimiza-
tion of all the bounds. We refer as ours the training method based on the minimization
of our bound in Corollary 6, as rivasplata the one based on Eq. (7), as blanchard the one
based on Eq. (8), and as catoni the one based on Eq. (9). stochastic denotes the PAC-
Bayesian bound with the prior and posterior distributions obtained from ours. To optimize
the bound with gradient descent, we replace the non-differentiable 0-1 loss with a surro-
gate: the bounded cross-entropy loss (Dziugaite & Roy, 2018). We made this replacement
since cross-entropy minimization works well in practice for neural networks (Goodfellow
et al., 2016) and because this loss is bounded between 0 and 1, which is required for the
kl() function. The cross-entropy is defined in a multiclass setting with ye {1,2,...} by
£(h, (X,y)=— %ln(@(h(x)[y]))e [0, 1] where h(x)[y] is the y-th output of the NN, and
Vpe [0, 1], ®(p)=e~?+(1-2¢~%)p (we set Z=4, the default parameter of Dziugaite and
Roy (2018)). That being said, to learn a good enough prior P€ P and the posterior Qg,
we run our Training Method with two stochastic gradient descent-based algorithms A,
and A. Note that the randomness in the stochastic gradient descent algorithm is fixed to
have deterministic algorithms. In phase 1) algorithm A ;. learns from S, the T priors
Pis.... Pr€ P (i.e., during T epochs) by minimizing the bounded cross-entropy loss. In
other words, at the end of the epoch ¢, the weights w, of the classifier are used to define the
prior P, = Mw,, 6’1,). Then, the best prior P€ P is selected by early stopping on S. In
phase 2), given S and P, algorithm A integrates the direct optimization of the bounds with
the bounded cross-entropy loss.

5.2 Optimization procedure in algorithms Aand A;,,
"' Let @ be the mean vector of a Gaussian distribution used as NN weights that we are
optimizing. In algorithms A and A, we use the Adam optimizer (Kingma & Ba, 2015),
and we sample a noise €~ M0, 6°1,) at each iteration of the optimizer. Then, we for-
ward the examples of the mini-batch to the NN parametrized by the weights w+e€, and we
update @ according to the bounded cross-entropy loss. Note that during phase 1), at the

10 The source code of our experiments is available at https:/github.com/paulviallard/MLJ-Disintegrated-
PB. We used the PyTorch framework (Paszke et al., 2019).
' The details of the optimization and the evaluation of the bounds are described in Appendix I.
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end of each epoch 7, P,=Me, 6*1,)=Mv,, *1,) and finally at the end of phase 2) we have
Qs=Mae, UZId)=N(W, azld).

5.3 Experimental setting

5.3.1 Datasets

We perform our experimental study on three datasets: MNIST (LeCun et al., 1998), Fash-
ion-MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky, 2009). We divide each origi-

nal train set into two independent subsets Sy, prior and S of size m with varying

split ratios defined as prior {0,.1,.2,.3,.4,.5,.6,.7,.8,.9}. The test sets denoted by 7

Mprior

of size m

remain the original ones.

5.3.2 Models

For the (Fashion-)MNIST datasets, we train a variant of the All Convolutional Net-
work (Springenberg et al., 2015). The model is a 3-hidden layers convolutional network
with 96 channels. We use 5 X 5 convolutions with a padding of size 1, and a stride of size 1
everywhere except on the second convolution where we use a stride of size 2. We adopt the
Leaky ReLU activation functions after each convolution. Lastly, we use a global average
pooling of size 8 X 8 to obtain the desired output size. Furthermore, the weights are initial-
ized with Xavier Normal initializer (Glorot & Bengio, 2010) while each bias of size [ is
initialized uniformly between —1/ \ﬁ and 1/ \/Z

For the CIFAR-10 dataset, we train a ResNet-20 network, i.e., a ResNet network from
He et al. (2016) with 20 layers. The weights are initialized with Kaiming Normal initial-

izer (He et al., 2015) and each bias of size [ is initialized uniformly between —1/ \/Z and

1//1.

5.3.3 Optimization

For the (Fashion-)MNIST datasets, we learn the parameters of our prior distributions
P,, ..., Py by using Adam optimizer for T = 10 epochs with a learning rate of 107> and a
batch size of 32 (the other parameters of Adam are left by default). Moreover, the parame-
ters of the posterior distribution Q¢ are learned for one epoch with the same batch size and
optimizer (except that the learning rate is either 10~* or 107°). For the CIFAR-10 dataset,
the parameters of the priors P, ..., P are learned for 7 = 100 epochs, and the posterior
distribution Q¢ for 10 epochs with a batch size of 32 by using Adam optimizer as well.
Additionally, the learning rate to learn the prior for CIFAR-10 is 1072,

5.3.4 Bounds

For blanchard ’s bounds, the set of hyperparameters is defined as B={beN |
b= \/;, (x+1)§2\/ﬁ }, i.e., such that blanchard ’s bounds can be tighter than rivasplata ’s
ones. We fixed the set of hyperparameters for catoni as C={ 10Kke{-3,-2,..., +3}}‘ We
try different values for 6>€{1073,107%,107>, 1076} associated with the disintegrated KL
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Fig. 1 Evolution of the bound values in terms of the split ratio. The x-axis represents the different split
ratios, and the y-axis represents the bound values obtained after their optimization using our Training
Method. Each row corresponds to a given variance ¢, and each column corresponds to a dataset (MNIST,
Fashion-MNIST, or CIFAR-10). In this figure, we consider a learning rate of 10~°

% = 2}7(||w+€—v,||§—||€||§), the “normal” Rényi divergence

DZ(QIIP)=6—12||W—V,||§ and the KL divergence KL(QIIP)=$||W—V,||§. For all the figures,
the values are averaged over 400 deterministic NNs sampled from Q¢ (the standard devia-
tion is small and presented in the Appendix K). We additionally report as stochastic (Cor-
ollary 8) the randomized bound value and KL divergence KL( Q||73)=27i2 ||w—v,||§ associ-
ated with the model learned by ours, meaning that n~=400 and that the test risk reported for
ours also corresponds to the risk of the stochastic NN approximated with these 400 NNs.

divergence In

5.4 Results

5.4.1 Analysis of the influence of the split ratio between S,,;,, and S

Figures 1 and 2 study the evolution of the bound values after optimizing the bounds with
our Training Method for different parameters. Specifically, the split ratio of the original
train set varies from 0.1 to 0.9 (0.1 means that m;,, = 0.10m + m;,,)), for four variances
values 62 and the two learning rates (10° and 10~*). For the sake of readability, we present
detailed results when the split ratio is 0 in Table 1. We first remark that the behavior is
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Fig.2 Evolution of the bound values in terms of the split ratio. The x-axis represents the different split
ratios, and the y-axis represents the bound values obtained after their optimization using our Training
Method. Each row corresponds to a given variance ¢, and each column corresponds to a dataset (MNIST,
Fashion-MNIST, or CIFAR-10). In this figure, we consider a learning rate of 1074,

different for the two learning rates. On the one hand, for Ir=10"°, the mean bound values
are close to each other, which is not surprising since the disintegrated KL divergences and
the Rényi divergences are close to zero (see Tables 2, 3, 4, 5, 6, 7, 8, 9, 10). Moreover, for
MNIST and Fashion-MNIST, there is a trade-off between learning a good prior with S,
and minimizing a generalization bound with S. In this case, the split ratio 0.5 appears to
be a good choice to obtain a tight (disintegrated) PAC-Bayesian bound. This ratio is widely
used in the PAC-Bayesian literature (see, e.g., in the context of linear classifiers (Germain
et al., 2009), majority votes (Zantedeschi et al., 2021), and neural networks (Letarte et al.,
2019; Pérez-Ortiz et al., 2021)). On the other hand, when lIr=10"%, the mean bound values
tend to increase when the split ratio increases as well for the bounds introduced in the liter-
ature (i.e., for blanchard, catoni, and rivasplata), while the mean bound values of our bound
remain low. Indeed, m decreases as long as the split ratio increases, which has the effect of
increasing the bound value drastically when the disintegrated KL divergence is high. We
further explain why the disintegrated KL. divergence can become high for the disintegrated
bounds of the literature. To do so, we will now restrict our study to a split ratio of 0.5
in order to (i) compare the tightness of the bounds, (ii) understand why the disintegrated
bounds of the literature diverge.
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Fig.3 The values of the PAC-Bayes bound (Corollary 8) and the values of the disintegrated bound (Corol-
lary 6) for learning rates of 10~* and 107, and a split ratio is 0.5. The y-axis shows the values of the bounds
(the hatched bar for ours (Corollary 6) and the white bar for stochastic (Corollary 8)) and the test risks
R(h) (gray shaded bar). We also report the values of the empirical risk Rg(h), the Rényi divergence (associ-
ated with ours * bound), and the KL divergence (associated with stochastic ’s bound)

5.4.2 Comparison between disintegrated and “classic” bounds

We first compare the “classic” PAC-Bayesian bound (Corollary 8) and our disintegrated
PAC-Bayesian bound (Corollary 6). To do so, we fix the variance 6>=10"3 (along with
the split ratio equals 0.5). We report in Fig. 3, the mean bound values associated with ours
(i.e., the Training Method that minimizes our bound) and stochastic (we recall that sto-
chastic is the PAC-Bayesian bound of Corollary 8 on the model learned by ours). Actually,
ours leads to more precise bounds than the randomized stochastic even if the two empirical
risks are the same and the KL divergence is smaller than the Rényi one. This imprecision
is due to the non-avoidable sampling according to Q done in the randomized PAC-Bayes-
ian bound of Corollary 8 (the higher n, the tighter the bound). Thus, using a disintegrated
PAC-Bayesian bound avoids sampling a large number of NNs to obtain a low risk. This
confirms that our framework makes sense for practical purposes and has a great advantage
in terms of time complexity when computing the bounds.
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Fig.4 The value of the bounds (hatched bars) and the test risks (colored bars) for Corollary 6 (“ours ) and

.

Corollary 7 (“catoni ”, “rivasplata ” and “blanchard ”) in two different settings, i.e., with a learning rate of
10 and 10~* and with split ratio of 0.5. We also plot the value of the bounds (the dashed lines) and the test
risks (the dotted lines) before executing Step 2) of our Training Method. The y-axis shows the values of the
bounds and the test risks R;(h). The empirical risk Rg(h) is presented above each bar. Moreover, the second
value represents the mean value of the divergence (the standard deviations are also given for the disinte-
grated bounds of the literature)

5.4.3 Analysis of the tightness of the disintegrated bounds

We now compare the tightness of the different disintegrated PAC-Bayesian bounds (i.e.,
our bound and the ones in the literature). We study, as before, the case where the split
ratio is 0.5 and the variance o> = 1073. We report in Fig. 4 for ours, rivasplata, blan-
chard and catoni, the mean bounds values; the mean test risk R;(h) before (i.e., with the
prior P) and after applying Step 2) (i.e., with the posterior Qg). Moreover, we report
above the bars the mean train risks Rg(h) and the mean/standard deviation divergence
values obtained after Step 2), i.e., the Rényi divergence DZ(QSII’P)Z(%2 lw—v,|3 for ours

and the disintegrated KL divergence In %:ﬁ [||w+€—v, ||§—||e||§] for the others. First
of all, we can remark that we observe two different behaviors for Ir=10"% and 1r=107°.
For Ir=1079, the bound values are close to each other, as well as the empirical risks and
the divergences (which are close to 0). In Fig. 4, we observe that the bound values and

the test risks are close to the one associated with the prior distribution because the
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Fig.5 We plot the evolution of the mean bound values (the plain lines) in terms of the variance o7 after
optimizing the bounds with our Training Method. Moreover, we plot the mean bound values (the dashed
lines) obtained before executing the Step 2) of our Training Method. The variance is represented on the
x-axis, while the bound values are represented on the y-axis. Furthermore, each row corresponds to a given
learning rate (10~ or 107#), and each column corresponds to a dataset (either MNIST, FashionMNIST, or
CIFAR-10). The split ratio considered is 0.5

divergence is close to 0. This is probably due to the fact that the learning rate is too
small, implying that the bounds are not optimized. With a higher learning rate of
Ir=10"*, we observe that our bound remains tight while the disintegrated bounds of the
literature are looser. Hopefully, our bound is improved after performing Step 2) of our
Training Method. However, for the bounds of the literature, the value of the disinte-
grated KL divergence is large, making the bounds looser after executing Step 2). We
now investigate the reasons for the divergence of the bounds by looking at the influence

of the variance 2.

5.4.4 Analysis of the influence of the variance

Given a split ratio of 0.5 and Ire {1075, 107%}, we report in Fig. 5 the evolution of the
bound values associated with ours, rivasplata, blanchard, and catoni when the variance
varies from 1076 to 1073, First of all, the important point is that ours behaves differ-
ently than rivasplata, blanchard, and catoni. Indeed, for both learning rates, when c?
decreases, the value of our bound remains low, while the others increase drastically due
to the explosion of the disintegrated KL divergence term (see Table 6 in Appendix K for
more details). Concretely, the disintegrated KL divergence in Corollary 7 involves the
noise € through 2Ti2||w+e—vt||§—||€||§ compared to our divergence which is Giz||w—v,||§
(without noise). Then, the sampled noise during the optimization procedure € influences
the disintegrated KL divergence, making it prone to high variations during training
(depending thus ¢?). To illustrate the difference during the optimization, we focus on
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the objective function (detailed in Appendix I) of Corollarys 6 and 7 (Eq. 7). Roughly
speaking, the divergence in Corollary 6 does not depend on the sampled hypothesis &
(with weights @ + €), while the divergence of Eq. (7) does. In consequence, the deriva-
tives are less dependent on & for Corollary 6 than for Eq. (7). To be convinced of this,
we propose to study the gradient with respect to the current mean vector @. On the
one hand, the gradient ;ag ) of the risk w.r.t. @ is the same for both bounds; hence, the
phenomenon cannot come from this derivative. On the other hand, the gradients of the
divergence in Eq. (7) and Corollary 6 are respectively

2 2
o+e—v, | —|lell
2 (1 (" florreviliely = 2 [ llo+ev,IE]
0w | m 202 0w Lm2c?

= %(aﬁe—v,) =9,

mo
o |1 [ lle=v.l3 o 1
o2 (1)) e
an ow |j”< o? 0w m62”a) Vil
2
=7 (@) =9

From the two derivatives, we deduce that ¢ = EQ? + —e Hence, each gradient step
involves a noise in the gradient of the disintegrated KL divergence #e ~ Mo, L Id)
which is high for a small m. This randomness causes the disintegrated KL dlvergence
# ||m+e—v,||;—||e||§ to be larger when o2 decreases since (i) the divergence is divided by
2mo? and (ii) the deviation between @ and v, increases. In conclusion, this makes the objec-
tive function (i.e., the bound) subject to high variations during the optimization, implying
higher final bound values. Thus, the Rényi divergence has a valuable asset over the disinte-
grated KL divergence since it does not depend on the sampled noise €.

5.4.5 Take-home message from the experiments

To summarize, our experiments show that our disintegrated bound is, in practice, tighter
than the ones in the literature. This tightness allows us to precisely bound the true risk
Rp(h) (or the test risk Ry(h)); thus, the model selection from the disintegrated bound is
effective. Moreover, we show that our bound is more easily optimizable than the others.
This is mainly due to the disintegrated KL divergence, which depends on the sampled
hypothesis 7 with weights @+e€. Indeed, the gradients of the disintegrated KL divergence
with respect to @ include the noise €, making the gradient inaccurate (especially with
“high” learning rate and small variance 6?).

6 Toward information-theoretic bounds

Before concluding, we discuss another interpretation of the disintegration procedure
through Theorem 9 below. Actually, the Rényi divergence between P and Q is sensitive to
the choice of the learning sample S: when the posterior Q learned from S differs greatly
from the prior P the divergence is high. To avoid such a behavior, we consider Sibson’s
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mutual information (Verdd, 2015) which is a measure of dependence between the random
variables S€ Z" and he H. It involves an expectation over all the learning samples of a
given size m and is defined for a given a>1 by

h a
INGRSE PEHAH}%H) ﬁln [[ES~D”’[Eh~73 %] ]
The higher 7,(h;S), the higher the correlation is, meaning that the sampling of % is highly
dependent on the choice of S. This measure has two interesting properties: it general-
izes the mutual information (Verdd, 2015), and it can be related to the Rényi divergence.
Indeed, let p(h, S)=Qg(h)D™(S), resp. x(h, S)=P(h)D"(S), be the probability of sampling
both S~D™ and h~Qg, resp. S~D™ and h~P. Then we can write:

P Q)

L= i, i Fenf] S0 | 12
= min Da(P””)
PeM*(H)

From Verdd, 2015 the optimal prior P* minimizing Eq. (12) is a distribution-dependent
prior:
1

[Egpn Qs (h)*] -

-
: T
Eyvppom [Egopr Qo (h')*]*

P (h) =

This leads to an Information-Theoretic generalization bound 2.

Theorem 9 (Disintegrated Information-Theoretic Bound) For any distribution D on Z, for
any hypothesis set H, for any measurable function ¢ : HXZm—HRj, Jor any a > 1, for any
6 € (0,1}, for any algorithm A : Z" x M*(H)— M(H), we have

> > 1-6.

Note that Esposito, Gastpar, and Issa (2020, Cor.4) introduced a bound based on the
Sibson’s mutual information, but, as discussed in Appendix J, Theorem 9 leads to a tighter
bound. From a theoretical view, Theorem 9 brings a different philosophy than the disinte-
grated PAC-Bayes bounds. Indeed, in Theorems 2 and 4, given S, the Rényi divergence
D, (Q;lIP) suggests that the learned posterior Q¢ should be close enough to the prior P to
get a low bound. While in Theorem 9, the Sibson’s mutual information I, (#';S’) suggests
that the random variable 4 has to be not too much correlated to S. However, the bound of
Theorem 9 is not computable in practice due notably to the sample expectation over the
unknown distribution D in /,. An exciting line of future works could be to study how we
can make use of Theorem 9 in practice.

P s <ﬁln (@hS) < I(H:S)+In LL[ESNDW, Eppr [¢(h’,§)rf.]

a=1

h~ Qg

12 We provide a mutual information-based bound in Appendix J.
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7 Conclusion and future works

We provide a new and general disintegrated PAC-Bayesian bound (Theorem 2) in the fam-
ily of Eq. (5), i.e., when the derandomization step consists in (i) learning a posterior dis-
tribution Qg on the classifiers set (given an algorithm, a learning sample S and a prior
distribution P) and (ii) sampling a hypothesis 4 from this posterior Q. While our bound
can be looser than the ones of Rivasplata et al. (2010); Blanchard and Fleuret (2007);
Catoni (2007), it provides nice opportunities for learning deterministic classifiers. Indeed,
our bound can be used not only to study the theoretical guarantees of deterministic clas-
sifiers but also to derive self-bounding algorithms (based on the bound optimization) that
are more stable and efficient than the ones we obtain from the bounds of the literature.
Concretely, the bounds of Rivasplata et al. (2010); Blanchard and Fleuret (2007); Catoni
(2007) depend on two terms related to the classifier drawn: the risk and the “disintegrated
KL divergence”, while in our bound the (Rényi) divergence term depends on the hypoth-
esis set, implying that the divergence remains the same whatever which classifier is drawn.
In this sense, our bound is more stable as the learning algorithm seeking to minimize the
bound allows, in practice, to choose a better hypothesis than with the bounds of Rivasplata
et al. (2010); Blanchard and Fleuret (2007); Catoni (2007). We have illustrated the inter-
est of our bound on neural networks, but our result could be instantiated to other well-
known settings such as linear classifiers (Germain et al., 2009) or the majority vote classi-
fier (Zantedeschi et al., 2021).

Our general framework opens the way to the study of other machine learning settings
by exploiting the proven randomized PAC-Bayesian theorems, for example, for Domain
Adaptation (Germain et al., 2020), Adversarial Robustness (Viallard et al., 2021) or Trans-
ductive Learning (Bégin et al., 2014).

Despite being an important step towards the practical use of PAC-Bayes guarantees, our
disintegrated bounds arguably have a drawback: we sample a hypothesis from a distribution
instead of obtaining a bound for all the possible hypotheses, like for uniform convergence
bounds. While uniform convergence bounds can be vacuous (Nagarajan & Kolter, 2019b),
they hold (with high probability on the choice of the learning sample) for all hypotheses
including the one with the best guarantee (i.e., the one minimizing the bound). In the case
of disintegrated bounds, we learn a distribution on the hypothesis set, and then we sam-
ple a hypothesis according to this distribution. Hence, there is a small probability (i.e.,
less than &) of sampling a bad hypothesis. An interesting research direction is comparing
disintegrated and uniform convergence bounds to understand in which cases using disinte-
grated bounds can be better than using uniform convergence bounds. Knowing that there
are connections between (agnostic) PAC-learnability and uniform convergence (see, e.g.,
Shalev-Shwartz and Ben-David (2014)), we believe that defining a new notion of PAC-
learnability, which better fits with the disintegrated framework, could help to provide such
a comparison.

This Appendix is structured as follows. We give the proof of Theorem 1, Theorem 2,
Corollary 3, Theorem 4, Proposition 5, Corollary 6, Corollary 7, and Corollary 8 in Appen-
dix A, Appendix B, Appendix C, Appendix D, Appendix D, Appendix F, Appendix G,
and Appendix H respectively. We also discuss the minimization and the evaluation of the
bounds introduced in the different corollaries in Appendix I. Additionally, Appendix J is
devoted to Theorem 9. Appendix K provides an exhaustive list of numerical results.
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Appendix A: Proof of Theorem 1

Theorem 1 (General PAC-Bayes bounds) For any distribution D on Z, for any hypoth-
esis set H, for any prior distribution P € M*(H) on H, for any measurable function
¢ 1 HXZ">RY, for any § € (0, 1] we have

P v € MU0, > 1-5
S\ Epeon(@(h.5) < KL(Q|P) +1n é[ESNUn[EhNqu(h,S)] =TT 0

o /

~
(Germain et al., 2009)

and
Pg_pn ( VaQEM(H) 1 N ) > 1-6,
“In [E,gb(h.S)] < Dy(QIIP) +1n [S[ESND,n[EhNW(h,S)a-I]
(Bégin et al., 2016) 3
(2)

with KL(Q||P)2E,,.q In Q(’” the Kullback-Leibler (KL-)divergence between Q and P, and

D, (Q|P)2 ai [[Eh~73[ g((/;] } the Rényi divergence between Q and P (a>1).

Proof By the Donsker-Varadhan’s variational formula (see e.g., Bégin et al., 2016, Lemma
3), we have

VQ € M(H). E,.qln(¢(h.S)) < KL(Q|IP) + In [E,_pp(h, S)|. (A1)

By Markov’s inequality and taking the logarithm to both sides, we have
Pg_pr [ln [E,pb(h,S)] <1n [5[E s Eppdlh, S)” >1-6. (A2)
By merging Egs. (Al) and (A2), we obtain Eq. (1).

The proof of Eq. (2) is similar to the one of Equation (1). Indeed, from the Rényi
change of measure (see e.g., Bégin et al., 2016, Theorem 8), we have

¥Q € M(H), o in [E,o(h.S)] < DL(QIP) +1n[E,ph S| (a3)
By Markov’s inequality and taking the logarithm to both sides, we have

Pgpr [m [[EhNﬂs(h,S)ﬁ] <In [é[ESNDn[EhN#p(h,S)ﬁH >1-6. (Ad)

By merging Equations (A3) and (A4), Eq. (2) is obtained. O
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Appendix B: Proof of Theorem 2

Theorem 2 (General Disintegrated PAC-Bayes Bound) For any distribution D on
Z, for any hypothesis set H, for any prior distribution P € M*(H), for any measur-
able function ¢ :HXZ’"—HRL for any a >1, for any 6 € (0,1], for any algorithm
A Z"XMF(H)—> M(H), we have

Ps.pr M( In($(h.S))

2a-1, 2 "
< 2=+ D(QsIPr In [EgpnEy (04, S)7 )]> > 1-6,

where Qg=A(S, P) is output by the deterministic algorithm A.
Proof For any sample S € Z", prior P € M*(H) and deterministic algorithm A fixed a

priori, let Q5 = A(S, P) the distribution obtained from the algorithm A. Note that ¢(h,S) is
a strictly positive random variable. Hence, from Markov’s inequality, we have

P, [B00S) < 2B, o bS] > 1-2
= Epo. [qb(h S<2 [Eh, 0, bH, S)] >1-2.
Taking the expectation over S ~ D™ to both sides of the inequality gives
Eg pr [EhNQSI[q')(h,S) < %[Eh/Ngsdr(h', S)] >1-2
S Popeg[$0S) < B0 00, S| 2 1-2

Since both sides of the inequality are strictly positive, we can take the logarithm and multi-
ply by ﬁ > 0 to obtain

<2[Eh/~gs¢(h’,5))] s1-0

Pspm h~oy [ 5

We develop the right-hand side of the inequality and take the expectation of the hypothesis
over the prior distribution . We have for all prior P € M*(H),

L <2 Qs(h)

a
n _E ,
_1 kP P(l’l’)

In (%[Eh,NQS¢(h’,5')) -

a—1 1)

B, 5)> ;

Remark that% + lv = lwithr=aands = ﬁ Hence, we can apply Holder’s inequality:

a=1

Qs AN
B P(h') o) < [[E’M’q P(h') ] )} [[Eh’NP(¢(h = )]

Then, since both sides of the inequality are strictly positive, we take the logarithm, add
ln(é) and multiply by ﬁ > 0 to both sides of the inequality, to obtain
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a (2 Qs(h')
& " Py

<5t 3o ([ 5] )] Teestono)] ™

= a%lln <[Eh,NP<[%i_(hl?;)]“>> 4 aal ln§ +1In ([Eh,NP(¢(h’,g)ﬁ> )

+ln<[Eh, <¢(h$) ))

——¢(H, S))

a

=D P)+ —
(QslIP)+ —1n

From this inequality, we can deduce that

Ps.pmi~o [VP € M* (H) 1n B(h.S)) < D(QslIP)
+—11n§+ln<[Eh/~p<¢(h Syt ))] >1-2. (BS)

a—

Given a prior P € M*(H), note that E;, _»¢p(H, S)Tl is a strictly positive random variable.
Hence, we apply Markov’s inequality to have

Ps.pr [Ehr~p(¢(h’,8)ﬁ) < %ESND”E,,,NP@(M 3’)&)] >1-12
Since the inequality does not depend on the random variable 4 ~ Qg, we have
o[ Enn (604,557 ) < 2Eq pnEyp( 000,857 ) |
= [ES~D"‘I[[Eh’~7><¢(h’a «53*1) < %Es’w’" Eh,~p<¢(h/, Sy )]
= [E$~D”’[Eh~QSI[[Eh’~P<¢(h,’ Sﬁ) < %[E S [Eh,NP<¢(h’, =] >]
= P Enep (90857 ) < 2Eq (60,877 )|

Since both sides of the inequality are strictly positive, we take the logarithm to both sides
of the inequality, and we add ﬁ In % to have

Py [Enp (ST € SEs oy p( #0177 )] 21~ 4

o 2 ) o -1, 2
aop g+ in (Brr (000,97 )) < S S g

a

= P SD" Qs [

+In <[ES/NDm[Eh,NP<¢(h', 5’)51))] >1-2.

Combining Equations (B5) and (B6) with a union bound gives us the desired result. a
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Appendix C: Proof of Corollary 3

Corollary 3 Under the assumptions of Theorem 2, when a— 1%, we have
Pspmpeo (ln ¢(h,S) <In % +In [esssup g ez endh’,S') ]) > 1-6,

when a— + oo, we have

Qs(h")
eH P(h/)

4

———+1In [62

Ps. o hoo <ln $(h,S) < In esssup , Eg.prEyy b s’)]> > 1-6.

where esssup is the essential supremum defined as the supremum on a set with non-zero
probability measures, i.e.,

esssup gezpen®.S) = inf{r € R, PSND,,I,hNQS[qb(h,S') > r] = 0},

Qs(H)
Py

and esssup = inf{r eR, [P’hNQS[ &) T] = 0}.

P(h)
Proof Starting from Theorem 2 and rearranging, we have

201,22l p oglip)
) o

Pspm peoy [111 (p(h,S)) <

+1n<[[ESNDm[Eh,NP<¢(h’,S')f1)]ﬂ;l>] > 1-5.

Then, we will prove the case when @ — 1 and @ — +oo separately.

When o — 1.

First, we have lim 20:1 In % =1In % and lim,_, + “T_IDL,(QSII'P) =

a—1+

Furthermore, note that

a=1

112, = [EsomEon (16055015 )] 7 = [Eonyon (0,875 )]

is the La-i-norm of the functiong : 'H x Z" — R, wherelim,_, ||¢|| « =1limy_ o 1Pl

(since we have lim,_, + E = (lim,_,; o)(lim,_,, E) = +00). Then, 1t is well known that
bl = lim libll = esssup sezpend(®'S).

Hence, we have
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(e
(hm Eg. Dm[Eh,NP<¢(h',S');I)]a“I>

=tn (lim gl = ) =1n (_tim 1l )
(

=1In (ll¢lle) =In(esssup gezpend®.S)).

Finally, we can deduce that

a—1 a

- [2a-1 2  a-l L\
lim [ lng + TDa(QS”P)"‘ In ([[ES'~D”[Ehf~p(¢(h/,S')"“ >] )]
=1In % +1In [esssup g ez pendh’.S)).

When o - +c0.

First, we have lim, ., % 1n?=1n? [2 —lim

a—+oo

Y=2m2=mi and pp

. . . 1
”¢”ﬁ =lim,_,; ¢l = ll@ll, (since lim,_, , E =lim,_ T = = 1). Hence, we have

s ([ ()] )
<a131100 Espr [Eh/Np(qb(h’, 8w )] g )

=tn( lim (gl = ) =In (Lim ¢l )
(

a—+00 A—+00

a—+

=In(ll¢ll;) = In (Eg.prEppp(h, ).

Moreover, by rearranging the terms in —D (QslIP), we have

a—1 1 Qs(h) ’ _ Qs(h) “ i
5 eGP =g ln <[EW’<[ PAi) ] >) - <[[E’”7’<[ P } >] )

=in ([E,rr)] ) =0 (I,

where ||y ||, is the L*norm of the function y defined as y(h) = %;Z;). We have

Jim 20,5l = Jim In (Il7ll,) = ( tim 17l

h
=In(ll7lle) = In (esssup ey 7(h)) =1n ( eSSSUP jpy %i)))

Finally, we can deduce that
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. [2a=1., 2  a-I PN
lim In 5 + TDa(Q$||P)+ In <[[E$'~D”’[Eh/~73<¢(/’l/, oY= )] >]

a—+00 a
Qs(h) 4
=1In esssup ey %+ln [S_Z[E‘S/ND]” [Eh,NpqS(h"S/)].

Appendix D: Proof of Theorem 4

For the sake of completeness, we first prove an upper bound on V/ab (see, e.g., Thie-
mann et al., 2017).

Lemma 10 Foranya > 0,b > 0, we have
\/E_ argmin <g+/1b) and 2 ab—min<g+/lb>
p = A0 G ’ TS0\ ’

and VA > 0,Vab < %(% + Ab).

Proof Let f(1) = (% + Ab). The first derivative of f w.r.t. A is

70 =(0-%)

Moreover, from the derivative we can deduce that we have %(/1) <0 <= 1€(0, \/g),
and L()>0 = i> \/; and L()=0 = i= \/; Tt implies that the function is
strictly decreasing on A € (0, \/g ), strictly increasing for 4 > \/g and admit a unique min-
imum at A* = \/% . Additionally, f(1*) = 24/ab which proves the claim. a

We can now prove Theorem 4 with Lemma 10.

Theorem 4 (Parametrizable Disintegrated PAC-Bayes Bound) For any distribution D on
Z, for any hypothesis set H, for any prior distribution P € M*(H), for any measurable
function ¢ : HXZ"—R, for any § € (0,1], for any algorithm A : Z"XM*(H)—M(H),
we have

A DyslP, 8 g2
P pm <v/1>0, In (@(rS)<In |50 +W[Eg~yn[Eh,NP[d)(h,S’) ] > 1-6,
h~ Qg

where Qg2A(S, P) is output by the deterministic algorithm A.

Proof The proof is similar to the one of Theorem 2. Since ¢(h,S) is a strictly positive ran-
dom variable, from Markov’s inequality, we have
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2
Phgg [‘15(’1’3) < SEpgd, S)] >1-2
2
= [Eh~QSI[¢(h,S) < E[E,,,Ngsqs(h’, 5)] >1— g
Taking the expectation over S ~ D™ to both sides of the inequality gives
2 5
Es.prEneg, I[fﬁ(h,S) < E[Eh’~QS¢(h/a S)] >1-3
2 5
=" IFDSND’",]/WQS I:(i)(h,s) < E[Eh,NQSd)(h/’ S)] > 1— E

Using Lemma 10 with a = —d)(h’ S and b =

P(h')z , we have for all prior PEM™(H)

> , Q)2 4
Vis0.  SEy.q d(H.S) = [EN,\/ W S OH.S?

Q(MH\* 4 ,
zl,uE,,,NP <%> +m[Eh,Np(¢(h,532)1 .

Then, since both sides of the inequality are strictly positive, we take the logarithm to obtain

"\’
¥>0,In (%[Eh,NQSd)(h',S)) <In (%lwhw(%> +%[Eh/Np(¢(h’, S)Z)D

—In (;[a exp(Ds(QslIP)+—Epy_p (K., 3)2)] )

A8?

Hence, we can deduce that

P o, |YPEM (H). YA > 0,In (¢(h.S)

1 ) (D7)
<In (z [/leDz(Qs”p) + EE}:’#’(Q’)(”’ S)z)D

6
>1=2
1 >

Given a prior P € M*(H), note that E,, _p¢(H, 8)? is a strictly positive random variable.
Hence, we apply Markov’s inequality:

P [Eiop B, < ZEprBy o, 7] 2 1= 2.
Since the inequality does not depend on the random variable & ~ Q g, we have
o [Enep(904.67) < 2EspnEyp(904.57)]
=Pspri~os [[Ehwp(cb(h', S7) < %EE s Enop(d, S’)z)] '

Additionally, note that multiplying by — 2/152 > 0, addmg exp(Dz(QSHP)) and taking the
logarithm to both sides of the inequality results in the same indicator function. Indeed,
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I[[Eh,Np(d)(h’, 8?) < %[ESINDn,[Eh,NP(zﬁ(h’,S')z)]

= I[V/l >0, 2By (¢, 8?) < 55 Eg prEyp(b(H. 3)2)]

1[¥2 > 0.1n ( £exp(Dy(QslIP)+3Eyp(6.57) )

<In ( Zexp(D,(QslIP) == 7750 [Es’NDm[Eh/NP(Qb(h, Sy ))]

Hence, we can deduce that

VA0, ln< [2expDo(Qsll P+ By (000.57)) )

Pspr iog

262
| (D8)
<in (3 |7 expDy(QslIPY+— = 8 By Epp((, 7)) )] >1-2.
Combining Equations (D7) and (D8) with a union bound gives us the desired result. a

Appendix E: Proof of Proposition 5

Proposition 5 For any distribution D on Z, for any hypothesis set 'H, for any prior dis-
tribution P on ', for any 6€(0, 1], for any measurable function ¢ : HXZ"—R?, for any
algorithm A : Z"XM*(H)—» M(H), let

I Q2
A*=argmin ,_, In ligDz(QSllp)+ Cortier [8¢(h’ - ] ]
> >

21683
Theorem
A Dy(QsIP) 8o, ')
then, we have 2In [?e 22+ B opn By ep 2183 4
8p(H, S')? .
= Dy(QslIP) +1n [ES’~D'"[Eh'~7><5—3 2witha =2.,

'
Theorem

. \/[E s Ep |80, 8]
where A* = .
83 exp(D,(Qs1P))

Put into words: the optimal A* gives the same bound for Theorem 2 and Theorem 4.

Proof We consider the right-hand side of the inequality of Theorem 4 (which is strictly
positive): we have

j’ D(Q 1P) 8 I QN2 ]
In 2t%s +—IE = P (zbh,S . 9
2 2163 S~D" R~ [ ( ) ] (E )

Since In is a strictly increasing function, we have
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~ A DyQslP, 8 1S
ig {1n [2 W e B B 9. S) I}

=1In [min { A PSP 2
>0 L2

s Eup 9. }]

Then, we apply Lemma 10 by taking a = %[Eskv" Ep-pl('.S' )| and b = %eDZ(Qs”P) to

. _ Egt..om Ep _p[ 8. S)?] . e 5
obtain 4 \/7 \/ 5 exp (D01 . Finally, by substituting A* into Eq. (E9), we

obtain
In [’1_*eDz<QS||7>>_,_2/l*63 Eg.orEyp|d(H, Sr)z]]
-1 <D2(QS|IP) +1n [[ESNDK[EWNP<%/’35’)2>] )
which is the desired result. a

Appendix F: Proof of Corollary 6

We introduce Theorem 2°, which takes into account a set of priors P while Theorem 2
handles a unique prior P.

Theorem 2’ For any distribution D on Z, for any hypothesis set H, for any priors set
P={73,}tT:l of T prior P € M*(H), for any measurable function ¢ : HxZ"—R?, for any
a >1, for any é € (0, 1], for any algorithm A : Z"XM*(H)— M(H), we have

Ps g [VP € P, L In($(hS) < DU(QslPI+ - m%

+In %T +1n ([ESNDW[EWNP@(M,S)"% )) ] > 1-6,
where Q2A(S, P) is output by the deterministic algorithm A.

Proof The proof is mainly the same as Theorem 2. Indeed, we first derive the same equa-
tion as Eq. (B5), we have

p SNDW,,,,NQS[VPGM*(H), ﬁ In (¢(h.S)) < D,(QslIP)
o 2 ’ L )
+—In=+In ([Eh,NP<¢(h,S)n—1 ))] >1-2.

Then, we apply Markov’s inequality (as in Theorem 2) T times with the T priors P, belong-
ing to P, however, we set the confidence to % instead of g, we have

PS~D'” h~Q,

In (rE,,,NP' [qa(h',s)ﬁ])

2T a 5
<In =+n (Es-orEper, [¢(h’,5“).,_.]) >1-2.
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Finally, combining the 7 + 1 bounds with a union bound gives us the desired result. a
We now prove Corollary 6 from Theorem 2.

Corollary 6 For any distribution D on Z, for any hypothesis set H, for any set
P={(P,,....P;} of T priors on H where P,=MNy,,c%1,), for any algorithm
A Z" X M*(H)>M(H), for any loss € : HxZ—[0, 1], for any 5€(0, 1], we have

—v, 12 16T+/m
+1n 5

[lw
P s pm h~oq (VP € P, KIRs(W|IRp(h) < — l g

-5,

where kl(a||b) = aln + (1—a)In ]—a , Q¢ = Nw, O'ZId) and the hypothesis h ~ Qg is par-
ametrized by w+e.

Proof We instantiate Theorem 2° with ¢(h.S) = exp ["T_lmkl(RS(h)llRD(h))] and a = 2.
We have with probability at least1 — 6 over S ~ D" and h ~ Qg, for all prior P, € P

8T m /’ A
KIR (W) |Rp()) < [Dz(QS||73)+ln< Eg.prEyp k“RsW“RD(“))].

From Maurer (2004) we upper-bound Eg ;s p, e"™KIRg UDIRp() 1y 2\/% for each prior
P,. Hence, we have, for all prior P,€ P

16T+/m
KRS IRp (M) < L[Dy(QglP) +1n (X22)].
Additionally, the Rényi divergence D,(Qg||P,) between two multivariate Gauss-

ians Q¢=Mw, ozlﬂ) and P-/\/(v,,a I,) is well known: its closed-form solution is
D,(Qs|lP)=—7"2 = v'lz (see, for example, (Gil et al., 2013)). O

Appendix G: Proof of Corollary 7
We first prove the following lemma in order to prove Corollary 7.

Lemma 11 [fQg = Mw, 6°1,) and P = M, 6*1;), we have

Qs(h) 1

N p = 33 e = VI = llell3.

where e~N(0, o-zld) is a Gaussian noise such that w+e are the weights of h~Qg with

QszN(W, Gzld).

Proof The probability density functions of Qg and P for & ~ Qg (with the weights w+€)
can be rewritten as
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d d
1
] exp< Sllwe - w||§)= [ ] exp (—2 2||e||2>

d
1 1 5
and P(h) = exp —||lw+e —v||7 ).
[ 27[] ( 207 2)

Qs(h) = [

o\ 2x o\ 2x

We can derive a closed-form expression of In [%] Indeed, we have
Qsh)
=1 h)| -1 h
n [P(h) n [Qs(h)| — In[P(h)]

d
=lnl 1 ]exp( Lllell3)
o\2n 20272
d
—1In [ ! ]exp(—L||w+e—v||§>
o\ 2n 20°

1 2 2
S lwre = VI = 2 [lIwke = VI - lell.

1 2
—7‘2”6”2 252

We can now prove Corollary 7.

Corollary 7 For any distribution D on Z, for any set 'H, for any set P = {P,,..., Pr}of T
priors on H where P, = N(v,, c*1)), for any algorithm A : Z" x M*(H)—~ M(H), for any
loss ¢ : HxZ—{0,1}, for any 6€(0, 1], with probability at least 1—6 over the learning
sample S~D™ and the hypothesis h~Q g parametrized by w+€, we have VP, € P

lIw+e=v,lI3~llell; 2T\/m
2+1n )

KI(Rs(M|Rp(h) < Z[ 52

vbe B, k1+<Rs(h>||RD<h»s$

b+1 ]| Iw+e=v,li5-llell3 (b+1)T|B]
= +1In ,
b 202
.

lIw+e=v,lI5~llell; T|C|
1—exp<—cR5(h)—— [ 752 241n 5 ©)

)

Vee C, Rp(h) <

1—e—c

with [x],= max(x, 0), and k1 (Rs(h)||Rp(h)=KI(Rs(M)||Rp(h)) if Rs(h)<Rp(h) and O other-
wise. Moreover, e~N(0, GZId) is a Gaussian noise such that w+e€ are the weights of h~Q¢
with Qs=MNw, 6°1,), and C, B are two sets of hyperparameters fixed a priori.

Proof We will prove the three bounds separately.
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Equation (7). We instantiate Theorem 1(i) of Rivasplata et al. (2010) with
¢(h,S) = exp [mkl(RS(h)HRD(h))], however, we apply the theorem 7T times for each prior
‘P, € P (with a confidence g instead of 6). Hence, for each prior P, € P, we have with prob-
ability at least1 — % over the random choice of S ~ D" and h ~ Qg

1 Qg(h)
HRSIRS ) < Lo | S50

T / /
+1In (E[E By pe™ R WDIRp ))> ] .

From Maurer (2004), we upper-bound Eg_pm [Eh,Np[emkl(Rs'(h’)IlRD(h')) by 24/m and using
Lemma 11 we rewrite the disintegrated KL divergence. Finally, a union-bound argument
gives us the claim.

Equation (8). We apply T'|B| times Proposition 3.1 of Blanchard and Fleuret (2007)

with a confidence % instead of 6. For each prior P, € P and hyperparameters b € B, we

have with probability at least 1 — —_ over the random choice of S ~ D" and h ~ Q S

T|B|
b+1 Qs(h)] I (TIBl(b+1)>
+

1
b n

KL, (Rg()|Rp(h) < %

P,(h) )
From Lemma 11 and a union-bound argument, we obtain the claim.

Equation (9). We apply T|C| times Theorem 1.2.7 of Catoni (2007) with a confidence

% instead of 6. For each prior P, € P and hyperparameter ¢ € C, we have with probabil-

ity at least 1 — —— over the random choice of S ~ D" and h ~ Qg

7IC|
1 1 Qs(h) T|C|
R,(h) < 1- —cRo(h)—— |1 In — .
p(h) < 1—e—"[ exp< cRg(h) m[n[Pt(h) +In 5
From Lemma 11 and a union-bound argument, we obtain the claim. O

Appendix H: Proof of Corollary 8

Corollary 8 For any distribution D on Z, for any 'H, for any set P ={P,,...,Pr} of T
priors on H where P, = N(v,,c*1)), for any loss £ : HXZ—{0, 1}, for any 6€(0, 1], with
probability at least 15 over S~D™ and {h,, ... ,h,}~Q", we have simultaneously VP, € P,

lw=v, |12 4T\/r7]
+1In 5 ,

KI(E.q Rs(W)|| Ejq Rp(h) S% l (10)

1 % 1. 4
and kl<; ;Rs(hi)H[EhNQRS(h)) <, (11)

where @ = N(w, 6*1,)) and the hypothesis h sampled from Q is parametrized by w + € with
€ ~ N0, 6%1)).
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Proof We instantiate Eq. (3) (and apply Jensen’s inequality on the left-hand side of the
inequation) for each prior P, with Q=Mw, 6*1,) and P,=M(v,, c1,) with a confidence
2 instead of 5. Indeed, for each prior P,, with probability at least 1—% over the random
choice of § ~ D™, we have for all posterior Q on H,

Note that the closed-form solution of the KL divergence between the Gaussian distribu-
tions Q and P, is well known, we have KL(Q||P,)= I v’ 2 . Then, by applying a union-
bound argument over the 7 bounds obtained with the T prlors ‘P,, we have with probability
at least l—g over the random choice of S ~ D™, for all prior P, € P, for all posterior Q

KI(E).g Rs(WIE,..g Rp()) < [

KI(E).o Rs(WI|E).q Rp(h) <~ [”w i 20 (Bquation (10))
Additionally, we obtained Eq. (11) by a direct application the Theorem 2.2 of Dziugaite

and Roy (2017) (with confidence g instead of 6). Finally, from a union bound of the two
bounds in Equations (11) and (10) gives the claimed result. O

Appendix I: Evaluation and minimization of the bounds
of Corollaries 6,7, 8

This appendix presents more details on the optimization and the evaluation of the bounds.

1.1 Evaluation of the bounds

Note that, except for Eq. (9), a generalization gap is upper-bounded instead of the true risk.
Hence, to evaluate the bounds of the corollaries (except for Eq. (9)) we use the invert binary kl
divergence defined as

K™ (gly)=max {p € O.1) [Kigllp) < |.
where ¢ is typically the empirical risk, and y is the PAC-Bayesian bound. Here, the func-

tion kl_l(quf) outputs the worst true risk p where the inequality kl(¢||p) < y holds. We can
actually instantiate p, g and y for the different corollaries. Indeed, we have for all P, € P
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[ |lw=v, |12 16T+/m
Rp(h) skll(RS(h) | % 62’ 24 1n 53\/_ ,
Corollary 6
_ A
w+e—v,|[—ll€ m
RD(h)Skl‘l(RS(h) |% ” 2;!2 el | 1o Z D
Equ;gon7
_ A
w4e—v. ||—||€
Rp(h) < k1—1<RS(h) | % % l%] +In w] >
- +
- ~ ~
Equation 8
[lw—v, |2 AT+\/m
and E,_oRp(h) §k1_1<Q | %[ 26; “+1n (;/_ :
. ~- 7
Corollary 8

1< 1. 4
h =k = YRe(h)| =In= ).
where & (n; s ’)|nn6)

Hence, kI™! has to be evaluated in order to obtain the value of the upper-bound on Rp(h)
or [, _oRp(h): the evaluation of kl_l(q|u/) is performed by the bisection method. From this
new formulation of the bounds, we can remark that the objective is to minimize the func-
tion k1! (¢|y) in order to minimize the true risk p. To do so, Reeb et al. (2018) introduced
an analytical expression of the derivative of kI~! with respect to the empirical risk ¢ and the
PAC-Bayesian bound y. The two partial derivatives are defined in the following way:

1-q q

K (gly) " Trgm M e
dq - I-¢ ¢ ’
1=k (gly) K™ (gly)
okl (gly) 1
and =
oy 1-¢q q

1=k (qly) K (qly)

Note that these partial derivatives need the evaluation of kl=!(g|y) for a given empiri-
cal risk g and a PAC-Bayesian bound y. Then, by computing the derivatives of g and y
with respect to the parameters and by using the chain rule of differentiation, a library like
PyTorch (see Paszke et al. (2019)) can automatically compute the derivatives of kl~! with
respect to the parameters.

Optimization of the bounds

The optimization of the bounds associated with the corollaries are presented in Algorithm 2.
This algorithm is divided in two steps: 1) optimizing and chosing the prior P (Line 6 to 28);
and 2) optimizing the posterior Q 5 (from Line 32 to 39).

In step 1), the prior P, is obtained after the epoch # € {1, ..., T} (line 16) by updating @
(parameterizing the prior P,) using a mini-batch gradient descent algorithm. For each epoch ¢
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and for each mini-batch U C S,;,, (Line 8 and 11), we sample a hypothesis / parameterized
by ® + € (Line 12 and 13) and update @ with the gradient descent algorithm by minimizing
the risk R,,(h) (Line 14).

After each epoch ¢, the prior P is selected by early stopping on the learning sample S. We
first estimate the risk on S (Line 19 to 23) by sampling 2 ~ P, (Line 20 and 21) and comput-
ing the losses for each mini-batch /. Then, we select the prior P, if it minimizes the risk (Line
24 to 27).

Given the prior P, we learn a posterior Qg in step 2) during 7" epochs. For each epoch and
each mini-batch U/ C S, we sample a hypothesis 4 associated with the weights @ + € (Line 38
and 39). At each iteration, the algorithm updates the weights @ (Line 39) by optimizing

—v,.|? 16T
k1‘1<Ru(h)'$ l”w ML \/ED

o2 & (110)
Objective functi‘oz for Corollary 6
2 2
o+e—v,.|[—l€ll 2T\/m
kI Ru(h)|l | cltels o v ,
m 202 o a1
- -~ _
Objective function for Equation (7)
1 1| b+1 | [|@+e=v, §—||e||§ (b+1)T|B]
K Ry | | 2= oo +1n CEUTBL ),
m d 4 112)
- -~ _

Objective function for Equation (8)

Iw+e=v,l5-llell3 T
! — | 1—exp Ry (h)- 2+ €11
1—e m 20 1) 113)

o

~-
Objective function for Equation (9)

Note that, as stated in Sect. 5.3.3, 7’ = 1 for MNIST and FashionMNIST while 77 = 10 for
CIFAR-10 with a batch size of 32. Additionally, the loss is the bounded cross-entropy loss
£(h, (X,y)=— % In(®(h(x)[y])) of Dziugaite and Roy (2018) in the risk R;,(). The update
of the weights o is done with the Adam optimizer (Kingma & Ba, 2015). Concerning the
optimization of the hyperparameters ¢ € C and b € B for Equations (8) and (9), we (a)
initialize b € B or ¢ € C with the one that performs best on the first mini-batch and ()
optimize by gradient descent the hyperparameter. To evaluate Equations (8) and (9), we
take b € B and ¢ € C that leads to the tightest bound.
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Algorithm 2 Optimization of the bounds (Training Method)

1: Optimizing the prior P — Step 1) — Algorithm Apior
2:

3: w < Initialize the weights w

4: 7% — “+00

5. t* < +00

6: for each epoch t <+ 1,...,T do

7:

8: Optimizing the prior P

9: for each mini-batch ¢ C S;i0r do

10: Sample a noise € ~ N (0, 0%1,)

11: h < Hypothesis parameterized by w-+e

12: w + Update w with Ry (h)

13: end for

14: Pi + N (w,0%1,) where Pi=N (v, 0%1,)

15:

16: Selecting the prior P

17: for each mini-batch &/ C S do

18: Sample a noise € ~ N(0, 0%1)

19: h < Hypothesis parameterized by vi+e€

20: T T Y e L (%,9)

21: end for

22: if r <r* then

23: r* -1

24: P« Py

25: tF <t

26: end if

27: end for

28:

29: Optimizing the posterior Qs — Step 2) — Algorithm A
30:

31: Qs + P =N(w,0%1y) = N (v, 0%1,)

32: for each epoch t' < 1,...,7" do

33: for each mini-batch 4/ € S do

34: Sample a noise € ~ N (0, 0%1,)

35: h < Hypothesis parameterized by w+e€

36: w + Update w with either Equation (110), (I11), (I12), or (I13)
37: end for

38: end for

39: return Qs = N (w, 0%I,) = N(w,0%I,) and P = N (v, 021,)
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Appendix J: About Theorem 9

This section is devoted to (i) the proof of a bound that is easier to interpret than Theorem 9,
(ii) the proof of Theorem 9 and (iii) a discussion about Theorem 9.

J.1: A bound easier to interpret

Since the mutual information is well known, a bound based on this quantity will be more
interpretable than the one with the Sibson’s. Hence, we propose a mutual-information-
based bound in Theorem 13. However, in order to prove this theorem, we need to prove
Lemma 12.

Lemma 12 For any distribution D on Z, for any hypothesis set 'H, for any measur-
able function ¢ : HxX Z" — [1,+oo[, for any 6 € (0, 1], for any deterministic algorithm
A Z" X M*(H)-> M(H), we have

Ps-pmpeo, [YPEME(H), In $(h.S) < [[ESNDmKL(QSII’P)

| =

+1In (EgopnEyopd(h, S))]] >1-6.

Proof By developing Eg pnE),.q, In ¢(h, S), we have for all prior P € M*(H)

Qs(h)yP(h) ]
E n[E 1 h, =E N = ~ 1 — o~ h,
50 Eneg, N @(h,S) = Eg pnEy o, In [P(h)QS(h)d)( S)
Qs(h) P(h
=Eg.prEjo,In [%] +Eg g, In [ﬁq&(h, 5)]
P(h)
= [E mKL P [E m[E 1 I’l, .
S~D (QslP) + Esp h~Qg 1 o) P( 5)]
From Jensen’s inequality, we have for all prior P € M*(H)
P(h)
Es. oKL P)+E E In | ——=¢(h,
s KL(QslIP) + Eg prnEjpg In [Qg(h)d)( 5)]
h
< EgpKLQ]IP) +In [[Ew )0, i(h, 8)] a14)
Qs(h)

= E5.pnKL(QglIP) + In [Eg . Epp(h, S)].

Since we assume in this case that ¢(h,S) > 1 for all h€ H and S € Z", we have
In ¢p(h, S) > 0; we can apply Markov’s inequality to obtain

1
Ps. o, [N $1S) < SEs pnEy g (8. S)] 21 -5, a1s)
Then, from Equations (J14) and (J15), we can deduce the stated result. O

We are now ready to prove Theorem 13.
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Theorem 13 For any distribution D on Z, for any hypothesis set H, for any measur-
able function ¢ : HX Z" — [1,+o0[, for any 6 € (0, 1], for any deterministic algorithm
A Z" X M*(H)» M(H), we have

P o, |10 $(1S) < é[l(h;S) +1n (Eg.prEppr ¢(h,5))]] >1-6,

where P* is defined such that P*(h) =Eg.pnQs(h) and 1(hS) = minpg gy
Es.pn KL(Q||P)-

Proof Note that the mutual information is defined by I1(4;S) = minpe pq+(3) Es.pm KL(QslIP)-
Hence, to prove Theorem 13, we have to instantiate Lemma 12 with the optimal prior, i.e.,
the prior P which minimizes Eg_p;»KL(Qg||P). The optimal prior is well known (see, e.g.,
Catoni, 2007; Lever, Laviolette, & Shawe-Taylor, 2013): for the sake of completeness, we
derive it. First, we have

h
Es-prKL(QglIP) = Eg prE g, In %iiu)
Qs(WIEg..pr Qs ()]
=Fe 1
S~D"=h~Qg n [ P(h)[IES~D"’ Qs’(h)] ]
) o Exr Qs
= EsuprEpegyIn [[Eg~z>m Qs (h) o, In [ P ]
Hence,
| ) . Qsh)
argmin pe g () Egopn KL(Qgl|P) = argmin pe v 3y |EgoprEjeg, In m
Eg.p Qg (h)
+ [EhNQs In [%]]

] IES/ ~D" QS’ (h)
= argmin pe pq+ () [[Eh~Qs In [W

-
where P*(h) = Eg.pn Qg (h). Note that P* is defined from the data distribution D, hence,

P*is a valid prior when instantiating Lemma 12 with P*. Then, we have with probability at
least1-6 over S ~ D" and h ~ Qg

1
In p(h,S) < 5 [EsopnKL(QgllP*) + In (Eg e (1, S)) |
1
=5 [1(h:S) + In (Eg . Eypr p(h, S))].
O
As you can remark, this bound is looser than Theorem 9, which is based on Sib-
son’s mutual information. For example, when we 1nstant1ate this bound with
¢(h,S) = exp [mkl(R S(h)||RD(h))] the bound will be multlphed by —, while the bound

of Theorem 9 is only multiplied by — (but we add the term — ln = to the bound which is
small even for small m).

@ Springer



Machine Learning (2024) 113:519-604 561

J.2: Proof of Theorem 9
We first introduce Lemma 14 in order to prove Theorem 9.
Lemma 14 For any distribution D on Z, for any hypothesis set H, for any prior distribu-

tion P on 'H, for any measurable function ¢ : H X Z", for any a > 1, for any 6 € (0, 1], for
any deterministic algorithm A : Z" x M*(H)—>M(H), we have

Pe oo, [VPEM*(H), —In ($(1S) < D, (pllm)

1
[
Sa-T

+1n ( > 1-6.

EsprEyp( (. 8177 ) )

where p(h, S)=Q (D" (S); n(h, )=P(W)D"(S).

Proof Note that ¢(h,S) is a non-negative random variable. From Markov’s inequality, we
have

1
Py | 01S) < SEspnEyg .S 2 1= 5.

Then, since both sides of the inequality are strictly positive, we take the logarithm to both
sides of the equality and multiply by ﬁ > 0 to obtain

Pspm oy [L In (¢(n,5)) < aaTl In ( 1

— 5[E‘S«NW[E,,,NQS,(p(h’,(s“))] >1-6.

We develop the right-hand side of the inequality in the indicator function and make
the expectation of the hypothesis over the distribution P appear. We have for all priors
PeM*(H),

a 1 ;o o 1 Qg (h) ’
E ln (g'ESlNDnEh,Ngsl ¢(h,8 )) = E 11’1 <3[E$’~D'"IEI’L’NPW¢(]’Z’S,)>

U . . Lo
Then, since ctL= 1 where r=a and s=ﬁ. Hence, Holder’s inequality gives
a=1

O o]

Since both sides of the inequality are positive, we take the logarithm. Moreover, we add
ln(é), and we multiply by ﬁ > 0 to both sides of the inequality. We have

Qg (h)

4
Es~prEngy, #(,SH< =)

Eg.p [Eh'~7><

a 1 '
a0 (5o 9050

a 1 Qs (M) ]*
< atp|isersenl |5 ])

1 Q /(h/) ! 1 ) e
= Eln <[Es'~zyn[Eher<[ 7§(h’) ] >> +1In (6_a[ES~ﬁ"[Eh'~p<¢(h,S)ul )) .

a—1

a—1

a

[EserrErn(o0.8)7 )]

Hence, we can deduce that
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h/
Ps-primo [VPGM (30, - n B(1.) < —=1n <[E$NDH Eyop ([QPS(; ) >>

+1n (#[ES,NDM[Eh,NP<¢(h’, s’)f?)> > 1-6,
a—1

La
where, by definition, we have D, (pll7) = ~1n (EgpEyrp ( [ %] ) O

From Lemma 14, we prove Theorem 9.

Theorem 9 (Disintegrated Information-Theoretic Bound) For any distribution D on Z, for
any hypothesis set H, for any measurable function ¢ : HxZ"—R?, for any a > 1, for any
6 € (0, 1], for any algorithm A : Z" x M*(H)—> M(H), we have

> > 1-6.

Proof Note that Sibson’s mutual information is defined as I, (2;8) = minpg -3y Dy (pl| 7).
Hence, in order to prove Theorem 9, we have to instantiate Lemma 14 with the optimal
prior, i.e., the prior P which minimizes D, (p||7). Actually, this optimal prior has a closed-
form solution (Verdd, 2015). For the sake of completeness, we derive it. First, we have

D, (pll7)

Qs(h)*
= <[ES~D”[E"~7’( 75?51))] )>

—1In [EhNP[ﬂESNDm Qs(h)a)](P(h) a))

1 L
—Es5pEpp [d)(h’, 8y ]

a—1

[F"S e < In (¢p(h,S)) < I,(H; 8’)+ln[
h~ Qg

1 1q@
" pnT[Es/~w(Qg/(h/):x)]n]

Ey [Estpm (Qor (W)*)] ™

~P P

a
1
a

= o tn (Eyps [Es (QeW)7)]* ) + Do I1P),

a—

(
= —ln[[Eth[[EgNgn Qs(h)™)| (P(h)~ )l
(

ln [Eh’~7773(h/ [ES'~'Dm (QS’ (h/)a)] )

1
[Es.pm(Qs)*)]®
* a—lln < "NPP(h)“ [ I

Eyp =T [Esrpm (Qst (h)*)]

where P*(h) = l [Es.pn (Qsti)] ]

1 T
[E,,!NPW[[EslNDm(Qsl(h’)ﬂ)]n
From these equalities and using the fact that D, (P*||P) is minimal (i.e., equal to zero)
when P* = P, we can deduce that

argmin pe v+ 3Dy (ol 7)
argmin pe - ) [—1 In ([Eh NPP(h’ [[E.S'ND (QS/(h/)a)] )+D (’P*HP)]
argmin pe e 3D (P*|P)=P".
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Note that P* is defined from the data distribution D, hence, P* is a valid prior when instan-
tiating Lemma 14 with P*. Then, we have with probability at least 1—§ over S ~ D™ and
h ~ QS

ﬁln @(1h.S)) < D (pllz*) + In ( M;,%I[ESNDn,[Eh,NP<¢(h’,S’)ﬁ) )
=1,(:S)+ In ( ML%[ESNDM[EWNP@(M,S)ﬁ) )

where 7*(h, S) = P*(h)D"(S). |

J.3: About Theorem 9
For the sake of comparison, we introduce the following corollary of Theorem 9.

Corollary 15 Under the assumptions of Theorem 9, when a— 1%, with probability at least
1—-6 we have

In¢(h,S) < In % +In [esssup gz e d.S)).

When a— + oo, with probability at least 1—6 we have

h
In ¢(h,S)<In < eSSSUP seshen 7QD*S_((/1))> +1In [é[ES’ND’” [Eh,di)(h/,S’)].

Proof The proof is similar to Corollary 3. Starting from Theorem 9 and rearranging, we
have

P pn [ln (@(h,S) < aT_lla(h’;S’)
h ~ QS

+lné +In ([[ES/ND/H[E,,,Nps(d)(h’,S’)cL)]a;]>] > 1-6,

Then, we will prove separately the case when @ — 1and @ — +c0.

When o — 1. First, we have lim

a—1+

“T_lla(h’ ;S’) = 0. Furthermore, note that

1015 = [Exeor v (1000:90170)] 7 = [ (s )|

is the L=1-norm of the function¢p : H x Z" — R*, where lim,,_; ||| o= limg o |@ll

(since we have lim,_, . —= = (lim,_ a)(lim,_,, ﬁ) = +00). Then, it is well known that

Ibll = Jim Nl = esssup sezpend®S).

Hence, we have
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hmln<[[E$/ o Eppr <¢(h oY= )])
(hm Eg. DmEh,Nﬁ(¢(h',S)f|)]n“>

=tn (lim gl = ) =1n (_tim 1l )
(

=1In (ll¢lle) =In(esssup gezpend®.S)).
Finally, we can deduce that
. fa-1, ., 1 i\
lim | =1, (458) + In < +1n [[ESNDm[Eh,NP*<¢(h,S)a—I )]
a— a
— 1 / )
=1In 3 +1In [esssup Seznen®@®.S )].
When a - +c0.

First, we have lim [|pll o =1lim,_ ¢l = ll¢ll, Hence, we have
a-1

a—+00

(i
:ln< lim [EgNmEh,Nﬁ(¢(h’,$’)ﬂ)]T>

a—>+00

=t lim ¢l ) =1n(Lim gl )

=In(ll¢ll;) = In (Eg.prEppr d(, S)).

Moreover, by rearranging the terms in —I (W8, we have

- Qs "
_' o2 S)_ <[E5N”'[Eh~7’*< [Pf<h)] >>

(22T

=i ([Epepr 0] 7 ) =10 (I71l,):

where ||y ||, is the L*norm of the function y defined as y(h) = 7%5((:)) We have

a—1

lim “==1,0¢:8) = tim_In (ll7ll,) =1n( lim ||y||a>
—+00 a—+oo

a—+o0

Qs(h)
=In (”7”00) =1In ( esssup Ses,heﬁ)’(h)) In <esssup SeSheH Pf(h) )

Finally, we can deduce that
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. Ja-1, 1 s\
il_IH [aTIa(h ,8’) + lng +In <|:|ES'~D'"|E]1’~’P* <¢(/’l,$ )a—l )] )]
Qs(h) 1 ' o
=In <esssup SeSheH Pf(h) >+ln [5[ES~D'" Eypp(h',S )].
O

As for Theorem 2, this corollary illustrates a trade-off introduced by a between the Sib-
son’s mutual information ,(#";S’) and the term In ([E s.pnE h,Np<¢(h’, S r= ) )

Furthermore, Esposito et al. (2020, Cor.4) introduced a bound involving Sibson’s mutual
information. Their bound holds with probability at least 1-6 over S ~ D" and h ~ Qg:

2Rs(h)-Rp()* < H[1,00; = (16)

Hence, we compare Eq. (J16) with the equations of the following corollary.

Corollary 16 For any distribution D on Z, for any hypothesis set H, for any a > 1, for any
6 € (0,1), for any algorithm A : Z" x M*(H)—M(H), with probability at least 1—5 over
S~D"andh ~ Qg, we have

KRR () < 21,08 +In 257 | o1
and  2(Rs(h)—Rp(h))* < [1 (n'; 2£] J18)
Proof First of all, we instantiate Theorem 9 with ¢(h,S) = exp | —mkI(R S(h)llRD(h))] we

have (by rearranging the terms)

KIR 5(1) || Rp(h)) < l[la(h’;S’)Hn ( 5; Npemklmswh')ukah’»)] .
m a1

Then, from Maurer (2004), we upper-bound Eg_pn[E,, pe"™ ®Rs WIRED) by Zﬁ
to obtain Eq. (J17). Finally, to obtain Eq. (J18), we apply Pinsker’s inequality, i.e.,
2(Rs(h)~Rp(m)* < KIRs(W|Rp(h)) on Eq. (J17). i

Equatlon (J18) is slightly looser than Eq. (J16) since it involves an extra
term of —ln \/;Z— In \/m. However Eq (J17) is tighter than Eq. (J16) when
kl(RS(h)llRD(h)) 2(R8(h) RD(h))2 \/_ (which becomes more frequent as m
grows).

Appendix K: Results presented in Section 5

This appendix presents the details of the results of Sect. 5. Tables 2, 3, 4, 5, 6,7, 8, 9,
10 report empirical results for split ratios going from 0.0 to 0.9 presented in Figs. 1 to 5.
More precisely, we report the test risk R;(h), the empirical risk Rg(h), the bound value
(Bnd), and the divergence value associated with the network 4 sampled from the posterior
Qg for each learning rate, variance, dataset, and bound type. Tables 11, 12, 13 report the
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