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Abstract
Currently, there is a significant amount of research being conducted in the field of artificial
intelligence to improve the explainability and interpretability of deep learning models. It is
found that if end-users understand the reason for the production of some output, it is easier
to trust the system. Recommender systems are one example of systems that great efforts
have been conducted to make their output more explainable. One method for producing a
more explainable output is using counterfactual reasoning, which involves altering minimal
features to generate a counterfactual item that results in changing the output of the system.
This process allows the identification of input features that have a significant impact on the
desired output, leading to effective explanations. In this paper, we present a method for
generating counterfactual explanations for both tabular and textual features. We evaluated
the performance of our proposed method on three real-world datasets and demonstrated a
+5% improvement on finding effective features (based on model-based measures) compared
to the baseline method.

Keywords Explainable recommendation · Counterfactual explanation · Machine learning ·
Explainable AI · Recommender systems

1 Introduction

Deep neural models are commonly used in a variety of tasks, such as healthcare, decision
support systems, and credit risk assessments. However, there is a growing need to ensure the
trustworthiness and reliability of these models to make fair and robust decisions.
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Recommendation systems aim to predict a score that a user would give to an item, and
then suggest the top-ranked items to the user. It is difficult for users to understand why the
system is suggesting a particular item, which can make it difficult for them to trust the
system’s recommendations. Additionally, understanding the reasoning behind a recom-
mendation can help developers debug the system. As a result, this motivated researchers to
focus on the explainability of recommendation system outputs.

In this paper, we propose a feature-based method for predicting item scores using a
matrix of features. For users, this matrix is based on the items they have interacted with. We
then use a deep neural model to predict the score that a new user would give to an item
based on these features.

Some methods extract different aspects of an item from user reviews and use these
aspects as features. However, as many features may not be immediately mentioned in user
reviews, we also utilize metadata from the items’ descriptions to extract additional features.
This allows for a combination of continuous, categorical, and textual features to be used for
training the model.

Inspired by counterfactual explanation generation methods, we introduce methods that
use cost functions to identify and highlight the features that have the greatest impact on the
predicted item score. For example, if a particular mobile phone is predicted to have a high
score, these methods can identify the features that contributed to this high score, such as the
model, battery, RAM, and camera. In one of these methods, we employ the Gumbel
Softmax trick, allowing us to consider all types of important features (continuous, cate-
gorical, and textual) simultaneously. To the best of our knowledge, this is the first time that
all types of features have been simultaneously included in counterfactual explanations.

It is worth noting that we have chosen to use counterfactual explanation generation
methods, as they have been shown to be more understandable to humans and more closely
align with human thought processes, according to Yang et al. (2020).

Our paper makes several contributions to the field of recommender systems:

– We introduce a novel feature-based method for predicting item scores, which allows for
a combination of continuous, categorical, and textual features to be used for training.

– We modify the counterfactual explanation generation method proposed by Tan et al.
(2021) to enable it to generate explanations when raw text is used as a feature in a
recommender system.

– We propose a new counterfactual explanation generation method that utilizes a genetic
algorithm to generate explanations when raw text is used as a feature.

– We introduce a counterfactual explanation generation method based on the Gumbel-
softmax method, which can generate explanations when all types of features
(continuous, categorical, and textual) are used in a recommender system.

These contributions can have practical applications in various domains.
The paper is structured as follows: in Sect. 2, we review related works in counterfactual

explanations and explainable recommendations. In Sect. 3, we introduce our three expla-
nation generation methods, which include CountER, Genetic algorithm, and Gumbel-
Softmax based method. In Sect. 4, we describe the experiments we conducted to evaluate
the different methods. We then present the results of our experiments on the Amazon and
Yelp datasets. Finally, in Sect. 5, we conclude with a discussion of our findings and sug-
gestions for future work.
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2 Related works

As we introduce a counterfactual explanation method and test it for a recommendation
system, we divide the related works into two categories: counterfactual explanation methods
applied to text, and explainable recommendation systems. Our method represents a novel
combination of counterfactual explanations and recommendation systems, and we expect it
to be of interest to researchers and practitioners in both fields.

2.1 Related works in counterfactual explanations

In simple terms, a counterfactual explanation for a prediction identifies the smallest alter-
ation that can be made to the input features to produce a desired or predefined outcome
instead of the predicted one (Molnar, 2022). There have been many efforts to apply
counterfactual explanations to textual data. In such cases, the explanations should appear
natural to humans. Simply removing words from the text to generate counterfactual
explanations is not effective. Yang et al. (2020) addressed this issue by ensuring that
replaced words are grammatically correct. They demonstrate their approach on a sentiment
analysis task, introducing two lists of words: one containing words that are suitable for
replacement based on grammar, and another containing words with opposite senses to those
in the sentiment dictionary. They then identified the intersection of these two lists and
replaced words in the main text with words from this intersection until the predicted class
was changed. This approach helps to generate counterfactual explanations that are more
understandable to humans.

Many works have addressed the issue of generating natural-sounding counterfactual
explanations in text using language representation models such as BERT (Devlin et al.,
2018). Fern and Pope (2021) proposed one example of such an approach. They first gen-
erated a candidate set of words to replace each word in the text. They then used BERT as a
language model to determine the probability of each candidate token for a given position. In
the second step, they found the best combination of changes using shapley values (Kalai &
Samet, 1987) and generated the explanations using beam search. This approach allows the
generation of more coherent and understandable counterfactual explanations in text.

The proposed models by Madaan et al. (2021) and Wu et al. (2021) both generated
counterfactual explanations in a conditional manner using GPT2. Madaan et al. (2021)
defines named-entity tags, semantic role labels, or sentiments as conditions for the words,
while Wu et al. (2021) controls the types and locations of perturbations in the text. Both
approaches allow more targeted and controlled generation of counterfactual explanations in
text.

Using pre-trained language models to generate alternative texts as adversarial examples
for text has become a popular approach in recent years. As the goal of generating adversarial
examples is similar to that of generating counterfactual explanations (i.e., minimally
changing the input text to change the prediction class), works in this direction can be
considered related to our approach. Guo et al. (2021) attempted to generate the most
probable sentence using BERT as a language model, while Garg and Ramakrishnan (2020)
and Li et al. (2020) used BERT to suggest word replacements. These works demonstrate the
utility of language models in generating alternative text that can fool prediction models.

There are many tasks, such as recommendations and healthcare, that involve hybrid data
comprising text, continuous features, and categorical features. To generate counterfactual
explanations for this type of data, a method that can handle all data types simultaneously is
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needed. None of the previously mentioned methods address this issue. In this paper, we
propose a method to address this issue and generate counterfactual explanations for hybrid
data.

2.2 Related works in explainable recommendations

There have been numerous efforts to make recommender systems more explainable. One
approach involves extracting various aspects of items from user reviews and using them as
input features for black-box models. After training the black-box model, the goal is to
identify the minimal set of features that are most important in ranking items for a particular
user. Zhang et al. (2014) employed matrix factorization to achieve this, while Chen et al.
(2016) and Wang et al. (2018a) used tensor factorization instead. Other works have utilized
counterfactual reasoning to generate explanations. For example, Zhou et al. (2021)
employed three strategies to make white-box, gray-box, and black-box models explainable
by using attention weights, adversarial and counterfactual perturbations, and extracting
aspects from user reviews as features. Ghazimatin et al. (2020) attempted to find the
minimal set of user actions, such as ratings, that would cause a recommended item to change
when removed. Tan et al. (2021) introduced an aspect-based recommender system and
attempted to make it explainable through the use of counterfactual reasoning by trying to
solve a joint optimization problem that minimally changes item aspects such that the new
item is no longer recommended. Pan et al. (2021) attempted to map uninterpretable features
to interpretable ones by minimizing both prediction and interpretation loss.

On the other hand, Wang et al. (2018b) argued that tree-based models are inter-
pretable and neural-based models have acceptable results in recommender systems.
Therefore, proposed combining these two types of models to create an explainable rec-
ommender system.

Other works have utilized knowledge graphs to make recommender systems more
explainable. For example, Wang et al. (2020) attempted to represent knowledge-graph paths
with the semantic information of entities and their relations in order to make recommen-
dations generated by the knowledge graph more explainable. Syed et al. (2022) used first-
order logic to generate triples from users’ complex queries and then tried to find entities that
satisfy these logical queries using a knowledge graph. These entities were sorted based on
the information they captured from the context, and explanations were generated using the
triples. Shimizu et al. (2022) introduced a knowledge graph attention network that used side
information of items to make recommendations and generate explanations. Geng et al.
(2022) trained a language model on the paths of a knowledge graph consisting of entities
and edges, which were based on user actions and item features as well as the relationships
between them. Explanations were generated using the resulting graph.

While many of the explanations generated through these methods can help users
understand why an item is recommended to them, they do not necessarily assist sellers and
managers in better satisfying their users. Counterfactual explanations, on the other hand, can
provide sellers and managers with information about which features of items need to be
changed in order to more effectively recommend them to users. In this paper, we utilize
counterfactual reasoning to generate accurate, trustworthy, and comprehensive explanations.

3 Explanation generation methods

In this section we introduce three methods to generate explanations.
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3.1 CountER

Inspired by the work of Tan et al. (2021), we sought to identify a slight change vector to add
to the weights of textual feature vectors when averaging them. In this section, we first
discuss the base Counterfactual method, and then propose our own method.

3.1.1 The base CountER model

Suppose we have a set of m users, U ¼ fu1; u2; :::; umg, and a set of n items,
V ¼ fv1; v2; :::; vng. For each type of item (e.g., cell phones), we extract a list of r aspects,
A ¼ fa1; a2; :::; arg. We then construct the user-aspect preference matrix, X 2 Rm�r, and
the item-aspect quality matrix, Y 2 Rn�r, using scores calculated as follows:

X i;k ¼
0; if useruidid not mentioned aspectak

1þ N � 1ð Þ 2

1þ expð�ti;kÞ � 1

� �
; otherwise

8><
>:

Y j;k ¼
0; if itemvjis not reviewed on aspectak

1þ N � 1

1þ expð�tj;k :sj;kÞ
� �

; otherwise

8><
>:

ð1Þ

In this context, N represents the rating scale, which is set to 5 in this case. ti;k denotes the
frequency with which user ui mentions aspect ak , tj;k denotes the frequency with which
aspect ak is mentioned in item vj reviews, and sj;k represents the average sentiment of these
mentions.

After training the black-box model, researchers identify the most effective aspects by
solving the following optimization problem:

minimize CðDÞ ¼ kDk22 þ ckDk0
s.t. SðDÞ ¼ si;jD � si;jKþ1

ð2Þ

D ¼ fd0; d1; :::; drg is a vector with zero or negative values. In this optimization problem, D
is learned for item vj such that by applying it on the Y j vector (Y jþD), the item will no longer

be in the top K list of items recommended to user ui. The term kDk22 controls the amount of
change in the D values, while kDk0 controls the number of values that change in D vector.
si;jKþ1 is the ranking score of the marginal item (the last item in the top K list of recom-
mended items), and si;jD is the ranking score of item vj after applying D to its aspect vector.

By optimizing this equation, D is learned such that the item’s aspect vector is minimally
changed until it is removed from the top K recommended items for user ui.

Finally, the aspects that have negative values in D are important, and removing them
from the list of aspects causes a change in the system’s recommendation decisions.

Since the terms kDk0 and si;jD � si;jKþ1 are not differentiable, they choose kDk1 instead of
kDk0 and relax si;jD � si;jKþ1 as a hinge loss. Therefore, the final optimization equation is as
follows:

minimize
D

kDk22 þ ckDk1 þ kmaxð0; aþ si;jD � si;jKþ1Þ ð3Þ

where a ¼ 0:2, k ¼ 100 and c ¼ 1 based on the proposed model by Tan et al. (2021).
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3.1.2 CountER for word vectors

To determine which words in the text are more important and critical to the model, we
attempt to learn a vector D ¼ fd0; d1; :::; dzg as in the base CountER model and add it to the
basic weight vector H ¼ f1; 1; :::; 1g, for a list of word features W ¼ fw0;w1; :::;wzg of
item vj. The basic weight vector assigns a weight of 1 to every word wt in the list of item vj
features. At the end, words that have a weight less than a threshold t are considered
important features, so that removing them causes the item to no longer be in the top K list.

Since the existence of words in the features is a binary decision, we remove the term

kDk22 from Eq. 3, as the amount of change is not important in this case.

3.2 Genetic algorithm

As previously stated, the inclusion of words in the features is a binary decision, and thus, we
introduce another algorithm based on genetic algorithms. The Genetic Algorithm in its
conventional form employs a collection of potential solutions that act as representations of a
resolution to the optimization problem that requires solving (Kramer, 2017). For a list of
word features W ¼ fw0;w1; :::;wzg for item vj, we define chromosomes as binary vectors of
size z. The steps of the algorithm are as follows:

– Making random population: We considered population sizes of 2 f100; 200; 400g.
The first population was generated randomly, with a probability of 0.9 for the number of
ones and 0.1 for the number of zeros in each chromosome, as we aim to minimize the
number of removed words.

– Selection: In order to select chromosomes for the next generation, we first calculate the
fitness score for each chromosome. The probability of a chromosome being chosen is
based on its fitness score, where chromosomes with higher fitness scores are more likely
to be selected. For a chromosome c with size z, we calculate the fitness as follows:

fitnessc ¼ 1

k� ðaþ si;jc � si;jKþ1Þ þ countScorec

countScorec ¼
0:5� ð1�

P
r:cr 6¼0 1

z
Þ si;jc [ si;jKþ1

b� ð
P

r:cr 6¼0 1

z
Þ otherwise

8>>><
>>>:

ð4Þ

where si;jc is the ranking score of item vj after applying the values of chromosome c as
weights to its main vector, and si;jKþ1 is the ranking score of the marginal item. As can
be seen, the fitness function has two parts. The first part increases when the score of the
item decreases. a ¼ 1 is added to the difference of scores to prevent negative values. The
second part of the fitness function ðcountScorecÞ is a penalty term that aims to minimize
the number of removed features. When the ranking score of the item is greater than the
marginal ranking score, some features need to be removed to decrease the ranking score,
so in this situation, removing more features is better, but we consider a low coefficient
(0.5) for that. On the other hand, when the ranking score of the item is less than the
marginal ranking score, it means that the item is no longer in the top-K items and the
goal has been met. Therefore the number of removed features should be minimized as
much as possible for this model. k and b are hyperparameters that need to be tuned.
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– Cross over: After the selection phase, it is time to perform crossover on pairs of
chromosomes. Crossover is done with a rate of 99%.

– Mutation: Mutation is performed with a rate of 10% on at most 50% of the population.
For each chromosome, at most 10% of its genes are changed.

Steps 2 to 4 are repeated for 10 iterations if the best fitness score exceeds a threshold (1 is
chosen based on experiments), otherwise, the algorithm continues for up to 50 iterations to
allow for the possibility of finding a better solution.

3.3 Gumbel-softmax based method

In counterfactual explanations, we need to make minimal changes to the features such that
the recommended item is no longer in the top K list. For continuous features, this is
straightforward, but for textual features, changing them is equivalent to removing them or
replacing them with other words. Removing words from text can produce meaningless
sentences. Therefore replacing them with other words is a better approach. This is also true
for categorical features, which must have predefined values. Since they cannot be removed
from features, changing them is equivalent to choosing a new value from a predefined set.

For optimization problems where the parameters are discrete, such as this one, a new
gradient estimator called Gumbel-Softmax has been introduced by Jang et al. (2016). It is
based on Gumbel-Softmax distribution and is a powerful gradient estimator that swaps out
the non-differentiable sample from a categorical distribution with a differentiable sample
from a Gumbel-Softmax distribution. This distribution’s crucial characteristic is its ability to
smoothly anneal into a categorical distribution. Guo et al. (2021) used this trick to generate
new meaningful text, we use it to find the best alternative words. In the following, we
describe the method we use for textual features. As the textual features are similar to
categorical features, we can use this method for categorical features as well.

Suppose we have a list of words (as textual features) w ¼ fw0;w1; :::;wzg for item vj.
Changing these words is equivalent to replacing them with other probable words such that
the meaning of the whole sentence does not change much. We find the five most probable
alternative words for each of them using BERT as a language model. We mask a word and
make BERT predict alternative words.

Consider a distribution PH parameterized by a matrix H 2 Rz�ð5�zÞ. For each word wr,
we have a vector of token probabilities in the H matrix named pr, where pr ¼ SoftmaxðHrÞ.
At first, we choose the probabilities such that for each word, the word itself is chosen as the
alternative word. After that, the parameter matrix H is optimized such that the score of the
item decreases with minimum replacements in the words. As the Softmax function is not
differentiable, the Gumbel-Softmax approximation is used. Samples from the Gumbel-
Softmax distribution ~PH are drawn as follows:

ð~prÞk :¼
expððHr;k þ gr;kÞ=TÞPV
v¼1 expððHr;v þ gr;vÞ=TÞ

ð5Þ

where ð~prÞk is the kth value of the vector ~pr, gr;k �Gumbelð0; 1Þ, V ¼ 5� z is the size of
the alternative words list, and T [ 0 is a temperature parameter that controls the smoothness
of the Gumbel-softmax distribution. When T ! 0 this distribution converges to a cate-
gorical distribution.

To find the contextual vector for each alternative word, we replace the main word in the
sentence with the alternative word and then extract the contextual word vector as will be
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discussed in Sect. 4.2.1. Finally, we have a matrix C 2 RV�768 such that for each alternative
word, we have a vector of size 768. By multiplying the p 2 Rz�V matrix by the C 2 RV�768

matrix, we have a matrix with dimensions z� 768. Therefore for each word wr in w ¼
fw0;w1; :::;wzg we have a vector of size 768. The optimization equation defined in Eq. 3
changes as follows:

minimize
H

kmaxð0; aþ si;jH � si;jKþ1Þ ð6Þ

where si;j;H is the predicted score of item vi for user uj after using H to calculate p values
and then applying p on the word vectors, as previously mentioned. In order to replace more
probable words with each word, we define a matrix L 2 Rz�V . For each li;k 2 L, if the word
ak is in the alternative list of the word wi, li;k equals the BERT output layer logit for the word
ak , otherwise it equals -1. Note that higher values of logits indicate higher ranks in the top 5
alternative words list. Furthermore, we add the l1 norm of the difference between the main p
calculated with the main words (no words are replaced) and the p calculated while opti-
mizing the H matrix, as the penalty term for the number of replaced words. Therefore, the
final optimization equation is as follows:

minimize
H

kmaxð0; aþ si;jH � si;jKþ1Þ þ b
1:0

~p � Lþ ck~pmain � ~pk1 ð7Þ

where a ¼ 0:2, k ¼ 100 (as stated in Sect. 3.1), b and c are hyperparameters, and ~p � L is the
dot product of ~p and L. It is worth noting that as the model chooses more probable words,
this dot product increases.

For categorical features, we use the same formulation, except that the alternative values
for each categorical feature are not words anymore. Additionally, there is no need to
calculate the second term in Eq. 7. Finally, for a combination of continuous, categorical and
textual features the optimization problem is as follows:

minimize
D;H1;H2;H3

lscore þ ltextual þ lcat þ lcontinuous

lscore ¼ kmaxð0; aþ si;jD;H1;H2;H3 � si;jKþ1Þ

ltextual ¼ b
1:0

~p1 � Lþ ck~pmain1 � ~p1k1
lcat ¼ ck~pmain2 � ~p2k1

lcontinuous ¼ kDk2

ð8Þ

Here, lscore is the same as the loss explained in Eq. 6, with one main difference: all types of
features are used to calculate the new score. Therefore, all values of D;H1;H2;H3 are used
to calculate this score. ltextual is the same as the one defined in Eq. 7, in which H1 is used to
calculate ~p1. lcat is calculated for all categorical features, in which H2 is used to calculate
~p2. Finally, lcontinuous is used to ensure that the D used for continuous features changes
minimally.
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4 Experiments

In this section, we first specify datasets and settings needed for the experiments. Next, we
evaluate the introduced methods both quantitatively and qualitatively. Finally, we discuss
the results. Note that all experiments were conducted on NVIDIA T4 Tensor Core GPUs
using Colab.

4.1 Datasets

We test our methods on the Amazon and Yelp datasets. The Amazon dataset contains 29
sub-datasets, each of them for a specific product category. We use two sub-datasets of
different scales, Cell Phones and Accessories and CDs and Vinyl. Each dataset contains user
reviews of items, item descriptions, and some additional features as textual data. The Yelp
dataset, on the other hand, contains information on various businesses such as their geo-
graphic location (latitude and longitude), opening hours, and other special features (e.g.,
parking, food types for restaurants, etc.). It also includes user reviews and tips on the
businesses. We consider longitude and latitude as continuous features, tips as textual fea-
tures, and some other features as categorical features.

Table 1 shows the statistics of the datasets. For all datasets, we drop users and items with
less than 5 and 10 reviews, respectively. To prepare the train, validation and test sets, we
only use users with more than 15 items interacted with. For each user, these items are
considered as positive samples. We hold out the last 10 items for validation and test sets (5
each) and use the remaining items for the train set. We also sample negative instances
randomly from the non-interacted items with a ratio of 1:5, meaning for each positive
instance, we sample five negative instances.

4.2 Data preparation

4.2.1 Preparing amazon dataset

As can be seen in Fig. 1 for amazon datasets we extract textual features from descriptions,
titles and features of items by using the BERT. The steps to extract textual features are as
follows:

– Cleaning texts: We remove URLs and some xml tags like ‘‘\=b[ } and the text
between them. We remove words which are the combination of digits and characters,
because there are many meaningless words like them in the text.

– Extracting contextual vectors using BERT: We use “bert_base_uncased which
produces a vector of size 768 for each word in each hidden layer. To extract

Table 1 Statistics of the datasets

Dataset Users Items Reviews Tips Train Test

Cell phones and accessories 6794 1945 36,762 N/A 2871 93

CDs and vinyl 11,467 11,677 224,090 N/A 686,172 3631

Yelp 243,531 48,089 1,426,442 626,069 501,606 3529
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contextualized vectors for the words in the sentences, we use the last hidden layer of the
BERT.

– Preprocessing: To extract valuable words from the sentences we remove stop-words
and punctuation marks from the texts.

– Generating final item vector: We calculate the average of the remaining word vectors
and then concatenate descriptions, titles and features vectors to get a vector of size 2304
as the final item vector. Note that for the words which are not in the BERT vocabulary
and BERT tokenizes them into several parts, we calculate the average of all parts vectors
as the word vector.

4.2.2 Preparing Yelp dataset

The proposed method was tested on the Yelp dataset, which contains a combination of
textual, continuous, and categorical features. Textual features were extracted from user tips
on businesses, and vectors were generated as previously described for the Amazon dataset.
Continuous features included the latitude and longitude of each business, while categorical
features included information such as the time periods during which the business is open,
whether it has parking, and the types of food it serves. A binary vector was created to
represent the time periods, with a value of 1 indicating that the business is open during that
hour and a value of 0 otherwise. The 87 categorical features were encoded with three values:
-1 for businesses that do not have the feature, 0 for businesses for which it is not specified
whether or not they have the feature, and 1 for businesses that have the feature. All
continuous and categorical features were then scaled to have zero mean and unit variance.
The final vector for each business was obtained by concatenating the textual features vector
with the scaled continuous and categorical features, resulting in a vector of size 168+87
+768=1023.

Fig. 1 Preparing amazon data for black-box model
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4.3 setup of experiments

4.3.1 Black-box model

The black-box model is a feed forward network with 2 hidden layers containing 512 and
256 neurons. The input to the model is a concatenation of two vectors. The first vector is for
the item and the second one is for the user. Any kind of textual features, as well as
continuous and categorical features can be used in this model based on their availability.
Note that we generate the user vector by averaging the items vectors he/she interacted with.

We apply the ReLU activation function after each layer except the last one, in which we
use a Sigmoid activation function. The output layer maps the ranking score, si;j, to a value
within the range of (0,1), allowing us to recommend top-K items for a user based on the
predicted ranking scores.

A cross-entropy loss is used for training the model, and we employ a stochastic gradient
descent (SGD) optimizer with a learning rate of 0.01.

4.3.2 Hyper-parameters

A stochastic gradient descent (SGD) optimizer with a learning rate (lr) is employed to
optimize all methods, with the exception of the genetic method. A value of lr ¼ 0:01 is
chosen for the countER methods, and it is tuned for the Gumbel-softmax-based method.

As previously discussed in Sect. 3.1, for the main countER method, we set the hyper-
parameters in Eq. 3 to the same values as those used by Tan et al. (2021). However, for the
countER for word vectors, we tested different values for c in 0.2, 0.3, 0.4, ..., 1.0 and for the
threshold t in 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 on the validation set and found that the best values
were c ¼ 0:7 and t ¼ 0:3.

For the genetic method, we tested different values for k in 2, 5, 10 and for b in 2, 10, 50
on the validation set and found that the best values were k ¼ 10 and b ¼ 10.

The Gumbel-softmax-based method has temperature T, learning rate lr, b, and c as hyper-
parameters. We test different values for each dataset separately. We tested different values
for T in f0:5; 1:0; 1:2; 1:4; 1:5; 2:0; 2:2; 2:4g (best= 2.0 and 2.2), for lr in f0:1; 0:2; :::; 0:7g,
(best= 0.5 and 0.7) for b in f1000; 2000; 10000g (best= 1000) and for c in f1; 2; 5g (best=
1).

4.3.3 Evaluation metrics

We use NDCG (Normalized Discounted Cumulative Gain) as a metric for measuring the
ranking quality of the black-box model.

Inspired by Tan et al. (2021), we evaluate the explanation generation methods from two
perspectives: user-oriented and model-oriented evaluations.

– user-oriented evaluation: In user-oriented evaluation, we examine the extent to which
the features of an item extracted by the explanation generation method are mentioned in
the user’s reviews of that item. Therefore, for an item vj and user ui, if the explanation

generation method outputs Ei;j ¼ eð1Þi;j ; e
ð2Þ
i;j ; :::; e

ðNÞ
i;j as the important features, and the user

ui mentions the words Gi;j ¼ gð1Þi;j ; g
ð2Þ
i;j ; :::; g

ðMÞ
i;j in their review of item vj, the precision,

recall and F1 metrics for the user-oriented evaluation are calculated as follows:
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Precision ¼
PN

k¼1 p
k
i;j

N
;Recall ¼

PN
k¼1 p

k
i;j

M

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

pki;j ¼
1 eki;j 2 Gi;j

0 otherwise

( ð9Þ

where N is the number of features chosen by the explanation generation method and M
is the number of words used by the user in their review of the item. Finally, we average
the scores of all pairs to obtain the final precision, recall and F1. It should be noted that
before using the user’s reviews as ground-truth features, we preprocess them by
removing punctuation marks and stop-words. The review words are then tokenized and
used as the ground-truth features.

– model-oriented evaluation: In user-oriented evaluation, we determine whether the
generated explanation features are consistent with the user’s preferences. To check
whether the generated explanation features truly capture the model’s behavior, we use
two additional metrics, Probability of Necessity (PN) and Probability of Sufficiency
(PS). The PN metric answers the question Are the generated features necessary for the
model to predict the rank correctly? To answer this question, we remove the specified
features from the list of features, and check whether the item is still recommended to the
user. The PS metric answers the question Are the generated features sufficient for the
model to predict the rank correctly? To answer this question, we use only the specified
features and remove other features from the list of features and check whether the item is
still recommended to the user. We calculate the harmonic mean of PN and PS as a third
metric named FNS, similar to the F1 measure.

Another important metric in evaluating explanation generation methods is their stability.
This metric measures how consistent the explanation features generated by the model are
across different runs. We define the stability of the model for an item vj and user ui as
follows:

Stabilityi;j ¼ 1

NðN � 1Þ
XN
k¼1

XN
l¼1;k 6¼l

jrk \ rlj
jrk [ rlj ð10Þ

where rk is the set of explanation features generated by the method in the kth run and N is
the number of runs, which is set to 10 for all datasets. The final stability of the model is
determined by averaging the scores of all pairs. We calculate the stability for all datasets by
using 10 examples from the test set, which are chosen randomly.

4.3.4 Comparable baseline

In our experiments, we used the baseline method proposed by Tan et al. (2021) as our sole
competitor. This method was compared to other state-of-the-art methods in their paper, and
it was demonstrated to significantly outperform them. Therefore, we chose to compare our
method with the baseline method, which itself outperformed other methods.

While we acknowledge that there may be other methods that could potentially be used as
competitors, we decided to focus on the baseline method due to its superior performance
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and the fact that it has already been compared to other competitors in the field. Additionally,
given the changes in the dataset, it would not be appropriate to directly compare our results
to those of other papers without re-running their codes. Therefore, we chose to re-run the
code from Tan et al. (2021), which achieved the best results in the field and has already been
compared to other competitors.

4.4 Amazon dataset results

As we use different types of features for the Amazon and Yelp datasets, we present their
results separately. The results of our experiments for the Amazon dataset can be seen in
Tables 2 and 3. It should be noted that the baseline method in these tables refers to the main
countER method presented by Tan et al. (2021).

4.4.1 Are generated features based on user preferences?

As can be seen in Table 2, the value of precision, recall and F1 score of user-based measure
decreases for all of the introduced methods compared to the baseline. The reason is as
follows: the baseline method uses a fixed set of aspects with 88 and 230 aspects for the cell-
phones and CDs datasets respectively. and the model outputs a subset of these aspects as the
important features. However, our methods output important words from the item’s
descriptions, titles and features which are not a specific set of words. Besides, these words
may be really important for the user while making a decision but not used in his/her review
directly. So this is not fair to compare our methods with the baseline method with this
measure.

By comparing our methods to each other with this measure, we can find there is no
significant difference between them.

4.4.2 Are generated features specifying the model’s behavior?

The results presented in Table 2 demonstrate that our proposed methods, which are based on
model-based measures, significantly outperform the baseline. Upon examination of the data,
it becomes apparent that the genetic and Gumbel-softmax algorithms yield the best results

Table 2 Amazon dataset explanation results, user-based and model-based

Dataset User-based Model-based

Pre Rec F1 PN PS FNS

Cell-phones Baseline 0.273 0.298 0.250 0.950 0.918 0.934

countERText 0.1075 0.0497 0.057 0.915 0.971 0.9426

Genetic 0.085 0.092 0.072 0.890 0.995 0.940

Gumbel 0.110 0.068 0.073 0.970 0.990 0.980

CDs Baseline 0.223 0.329 0.228 0.778 0.679 0.725

countERText 0.177 0.016 0.025 0.820 0.997 0.90

Genetic 0.121 0.034 0.038 0.957 0.997 0.97

Gumbel 0.117 0.024 0.028 0.796 0.998 0.886

The best result in each measure is highlighted in bold
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for both datasets. Specifically, when analyzing the cell-phone dataset, the Gumbel-softmax
algorithm exhibits superior performance in regards to the PN and FNS measures, with the
difference in performance for the PS measure being negligible when compared to the
Genetic algorithm. On the other hand, when analyzing the cds dataset, the Genetic algorithm
demonstrates a marked improvement in PN and FNS measures in comparison to all other
methods, while its performance in regards to the PS measure is comparable to that of the
other methods.

4.4.3 The effect of changing features on ranking

As can be seen in Table 3, the NDCG value, which measures the ranking quality of the
black-box model, increases significantly compared to the baseline for both datasets. This
improvement is due to the use of different feature inputs. However, it should be noted that
the three models, countERText, Genetic, and Gumbel, have the same recommendation
method, while benefiting from different explanation generation models. Therefore, NDCG
shows the same results for all three models. This is because NDCG only determines the
accuracy and quality of the recommendation.

Overall, by using these features, it appears that it is possible to recommend items to the
user more reliably. The next step is to determine whether the proposed methods are reliable
enough to generate accurate explanations based on user preferences.

4.4.4 Which method finds explanations with lower number of features in average?

As can be seen in Table 3, the baseline (countER) and the countERText methods generate
explanations with the least number of features for the cell-phones and cds datasets,
respectively. The Gumbel-softmax method is the next one in this ranking, and finally, the
genetic algorithm finds the most number of features. However, it is worth noting that the
genetic algorithm is also able to find more explanations, which may suggest that it is able to
find explanations for pairs that other algorithms cannot by using a larger number of features.
Another reason may be the difference in the formulation and optimization of the genetic
algorithm compared to the other methods.

Table 3 Amazon explanation results, other measures

Dataset NDCG Features avg Exp found rate (%) Stability Time(sec)

Cell-phones Baseline 0.3561 2.97 78 0.862 1.28

countERText 0.4047 6.05 98.9 0.862 1.69

Genetic 0.4047 15.94 98 0.175 4

Gumbel 0.4047 9.61 99 0.51 7.4

CDs Baseline 0.481 5.09 72 0.68 1.35

countERText 0.712 2.567 98 0.65 0.43

Genetic 0.712 7.32 95 0.47 1.76

Gumbel 0.712 6.97 74 0.54 4.8

The best result in each measure is highlighted in bold
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4.4.5 Which method finds explanations for more pairs?

One notable difference in the evaluation measures is the explanation found rate, which
assesses the number of user-item pairs for which an explanation can be found. As can be
seen in Table 3, in general, the countERText technique performed the best, with an
Explanation Found Rate of 98.9% for cell-phones and 98% for CDs. The Genetic and
Gumbel techniques also performed well, but with lower Explanation Found Rates. This
discrepancy is understandable, as the Gumbel-softmax algorithm requires changing words
to other, semantically appropriate words, which can make it more difficult for the expla-
nation generation method to find explanations. In contrast, the genetic and countERText
methods only need to remove some words from the text, which is a simpler task. However,
it is worth noting that the Gumbel-softmax method is designed to work well with datasets
that contain a variety of feature types, such as textual, categorical, and numerical features.
Therefore, it should not be expected to perform particularly well on a dataset that only
contains textual features. Despite this, the Gumbel-softmax method still outperforms the
baseline in both datasets.

4.4.6 Stability

It is shown in Table 3 that, the baseline and countERText methods are the most stable on
both datasets. The Genetic method has low stability on both datasets, with a stability score
of 0.175 on the cell-phones dataset and 0.47 on the CDs dataset. The Gumbel method also
has low stability, with a stability score of 0.51 on the cell-phones dataset and 0.54 on the
CDs dataset.

The low stability scores for the Genetic and Gumbel methods could be due to the fact that
these methods use randomness in their algorithms. For example, the Genetic method uses a
genetic algorithm that involves random mutations and crossovers, which can lead to dif-
ferent results across runs. Similarly, the Gumbel method involves generating random
variables and using them to calculate a probability distribution, which can also result in
different results across runs. Moreover, the variance in the results across different runs could
be attributed to the types of features utilized by each method. The baseline method employs
a limited set of features, which results in less variance across runs. Conversely, the other
methods utilize words as features, which can result in a greater degree of variability.
However, in the context of recommender systems, it may be beneficial to obtain different
sets of features in different runs to provide users with diverse explanations from multiple
perspectives. Thus, in this scenario, it would not be appropriate to determine whether a
higher or lower stability is better.

4.4.7 Time complexity

We evaluated the proposed method by measuring the average time spent generating
explanations for a user-item pair. The time taken is reported in seconds in Table 3. For the
cellphone and CD datasets, which only have textual features, the time spent generating
explanations using our proposed methods depends entirely on the length of the textual
descriptions, titles, and features of each item. As can be seen from our three proposed
approaches, Gumbel-softmax takes the most time, while countERText takes the least time.
However, the baseline method takes almost the same amount of time as countERText and
Genetic algorithm. This is because the number of words used as features in our proposed
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algorithms is greater than the number of aspects used in the baseline method, and the search
space is larger than that of the baseline method. Therefore, this difference is logical.

4.5 Yelp dataset results

For the Yelp dataset, we conduct three experiments to investigate the effect of various types
of features on the accuracy of the black-box model. Additionally, we examine the combi-
nation of multiple features on the explanations generated by the model. The experiments
aim to determine the most effective features and feature combinations for both accurate
predictions and clear explanations of the model’s decisions.

In the first experiment, we use all features, including textual features (extracted from
users’ tips), categorical features, and continuous features, to train a black-box model. To find
explanations, we combine Eqs. 3 and 7 to define a new loss function, which can be used to
find explanations for all types of features mentioned. Specifically, Eq. 3 is used for con-
tinuous features and Eq. 7 is used for textual and categorical features. The second experi-
ment focused solely on textual features and compared various methods for finding
explanations, as previously conducted in the experiments on the Amazon dataset in
Sect. 4.4).The final experiment employed only categorical and continuous features to train
the black-box model, and explanations were generated using the same methodology as in
the first experiment. The results of our experiments for the Yelp Dataset can be seen in
Tables 4 and 5.

4.5.1 Are generated features based on user preferences?

As can be observed in Table 4, the results of evaluating features based on user preferences
are consistent with those obtained from the Amazon datasets. Given that user-preference
ground-truth features are extracted from textual features, it is not possible to evaluate
methods that do not utilize textual features. By comparing the results for textual features, it
can be inferred that the baseline method achieves better results in this aspect, as fewer
features need to be identified by the method. The analysis of results in this section aligns
with the findings presented in Sect. 4.4.

Table 4 Yelp dataset results, user-based and model-based

Feature Types User-based Model-based

Pre Rec F1 PN PS FNS

All Gumbel 0.101 0.059 0.044 0.607 0.609 0.608

Textual Baseline 0.080 0.1661 0.0909 0.9544 0.9619 0.9582

countERText 0.092 0.058 0.051 0.8966 0.9385 0.9171

Genetic 0.099 0.101 0.072 0.9712 0.956 0.9638

Gumbel 0.072 0.040 0.041 0.75 0.918 0.826

Non-Textual Gumbel N/A N/A N/A 0.647 0.495 0.555

The best result in each measure is highlighted in bold
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4.5.2 Are generated features specifying the model’s behavior?

As can be seen in Table 4, when only textual features are used, the generated explanations
provide a better understanding of the model’s behavior. However, when using non-textual
features, the generated explanations are not as effective in specifying the model’s behavior.
It may be due to the fact that many of the non-textual features may be unrelated to certain
businesses, and thus their removal from the list of features does not significantly impact the
ranking score of these businesses. As a result, the PN score is lower than that of other
methods. Similarly, for the PS score, the same phenomenon occurs, where some features are
unrelated to certain businesses and are thus insufficient to place them in the top K list,
resulting in a lower score compared to other methods. One potential solution to this issue is
to consider categorical features related to each type of business separately.

Additionally, when all features are utilized, the results are better than using only non-
textual features but not as favorable as when only textual features are used. This is likely
because non-textual features are included among the textual features.

Furthermore, when utilizing textual features, the genetic algorithm performed the best,
but with a larger number of features found. Moreover, the baseline and countERText
methods were the next best performers, while the Gumbel method performed the worst.

In conclusion, our contribution is the ability to find explanations that contain multiple
types of features simultaneously through the Gumbel-softmax method. By improving the
formulation of categorical and continuous features, it is hoped that the results will further
improve.

4.5.3 The effect of changing features on ranking

As can be seen in Table 5, when all features are employed or only categorical and con-
tinuous features are utilized, the NDCG value is more favorable. Conversely, the utilization
of textual features resulted in a lower NDCG value for the black-box model. This can be
attributed to the fact that the textual features used in this study were extracted from users’
tips on the items, rather than from the items’ features directly. This trend is consistent with
the results observed when using user reviews to extract textual features for the Amazon
dataset. In that case, we use the item’s descriptions and features directly instead of user
reviews, to avoid this issue. Nonetheless, non-textual features demonstrated a noteworthy
NDCG score. By comparing the methods used for extracting textual features, it can be
inferred that the method of feature extraction plays a crucial role in the NDCG score of the
black-box model.

Table 5 Yelp dataset results, other measures

Feature types NDCG Features avg Exp found rate (%) Stability Time(sec)

All Gumbel 0.8499 7.6 98.3 0.59 5.4

Textual Baseline 0.515 7.51 68 0.74 1.36

countERText 0.6172 13.819 93.4 0.58 0.78

Genetic 0.6172 17.24 73.76 0.21 4

Gumbel 0.6172 11.39 59.2 0.51 2.8

Non-Textual Gumbel 0.8434 2.73 89.9 0.77 2

The best result in each measure is highlighted in bold
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4.5.4 Which method finds explanations for more pairs with lower number of features
in average?

As can be seen in Table 5, when all features are used, the explanation generation algorithm
is able to generate explanations for 98% of pairs with an average of 7.6 features. This high
success rate is achieved despite the need to search through a large number of features,
indicating that the algorithm is able to generate explanations for a significant proportion of
pairs with relatively few features. On the other hand, the baseline method which only
utilizes textual features generates explanations for only 68% of pairs with an average of 7.51
features. The countERText method performs well with 93.4% of explanation found rate but
with a large number of features in average (13.81). The genetic algorithm also performs well
but with more features in average 17.24. The Gumbel softmax method, however, performs
relatively poorly, generating explanations for only 59.2% of pairs with an average of 11.39
features. Utilizing only non-textual features results in generating explanations for 89.9% of
pairs with an average of 2.73 features. Overall, it appears that the Gumbel method when
using all features is able to generate explanations for a high proportion of pairs with a
relatively low number of features on average.

4.5.5 Stability

As can be seen in Table 5, it becomes apparent that the stability of the baseline method is
0.74 when only textual features are used, which is higher than that of the other methods,
consistent with the findings from the Amazon dataset. On the other hand, the Gumbel
method using all types of features shows a stability of 0.59, which is higher than when only
textual features are used. This suggests that the features generated by the Gumbel method
are more consistent when all types of features are used. When non-textual features are used,
the stability is higher than the other methods. This can be attributed to the fact that the
number of non-textual features is much smaller than the number of textual features. These
results highlight the importance of selecting appropriate features for a given task and using a
robust method to generate stable features.

4.5.6 Time complexity

The time spent generating explanations for the Yelp dataset is shown in Table 5. This time
not only depends on the length of tips used as textual features but also on the number of
categorical features we have. However, since the tips in the Yelp dataset are generally
shorter than the descriptions, features, and titles in the Amazon dataset, the time spent
generating explanations for only textual features is less than that for the Amazon dataset on
average. However, as other categorical features are added and all types of features are used,
the time spent generating explanations increases. Nevertheless, as with the Amazon dataset,
the feature space in which we search for generating counterfactual explanations for our
methods is larger than that of the baseline method, so the difference in the time spent
generating explanations is logical.

4.6 Qualitative evaluation

In this section we present some examples of features found by different methods for dif-
ferent datasets.
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The examples of the cell-phones dataset are presented in Tables 6 and 7. Due to the
length of the user reviews, only the ground-truth aspects and the sentences containing them
have been included. It should be noted that without access to the full reviews, it may not be
possible to fully evaluate the effectiveness of each method. Nevertheless, as observed in the
first example, the word ’charge’ is an aspect identified by the genetic algorithm and men-
tioned in the user review. Additionally, the words ’case’ and ’plastic’ are also found in the
user review and are similar to the aspect ’cover’ identified by the Gumbel method. The
aspect ’light’ is also identified by the baseline method as being important in the user
reviews. However, for a fair comparison, it is necessary to have access to the full
descriptions and features of the item and the entirety of the user reviews to understand the
context in which these words are used and the specific meaning they convey. Due to the
length of these texts, they have not been included in this presentation.

The examples of the CDs dataset are presented in Tables 8 and 9. As can be seen, the
baseline method did not identify any explanations in the first example, while the other
methods found some explanations. However, as with the cell-phones dataset, it is not
possible to determine the relevance of these identified aspects without access to the full
reviews and descriptions. In the second example, it is observed that the user expressed a
preference for the first tracks and the words first and songs are identified as important by the
genetic algorithm. Moreover, the user mentions the words rock, blue, and release in their
review and these words are identified by the baseline method. The Gumbel method and
CountER both identified a name as an important aspect, which may be relevant to the user
but may also be found in other parts of the review that are not included in this table.

Examples for the Yelp dataset are presented in Tables 10 and 11. As demonstrated, when
utilizing all types of features, the Gumbel method can identify changes in continuous,
categorical, and textual features. For instance, in the first example, there are slight modi-
fications in the wording of the tips and the latitude and longitude of the business, the
establishment is no longer recommended to the user.

Table 6 Cell phones dataset example 1

user_id A3VVMIMMTYQV5

item_id B00U7YKO78

Baseline phone, battery, lights

CountERText removing words: ’version’,’international’ ,
’warranty’,’samsung’,’wireless’,’us’

Genetic removing words: ’qi’,’galaxy’,’note’, ’go’,’select’,
’daydream’,’more’,’corner’,’samsung’,’international’,
’us’,devices’,’ micro’,’usb’,’charging’,’wpc’

Gumbel words: [’cover’, ’samsung’, ’wireless’, ’international’, ’white’], change to:
[’daydream’, ’with’, ’galaxy’, ’board’, ’;’]

User review
On item

[’plastic’, ’back’, ’I have a Spigen case that has a clear plastic back’],
[’charge’,’quick’,It charged so quick I didn’t get the chance to really
figure out when it topped off],
[’phone’, ’right’, ’I charged my phone right away to try it out’],
[’case’, ’clear’, ’I have a Spigen case that has a clear plastic back’],
[’case’, ’clear’, ’My Spigen case was a clear plastic’],
[’lights’, ’blue’, ’the blue lights will start blinking’],
[’lights’,’blue’,’it emits 2 deep blue tubular lights along the front side
to let you know
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Furthermore, the second example illustrates that when utilizing only non-textual features,
it is discovered that if the halal option is changed from not mentioned to False, indicating
that the restaurant does not serve halal food, the establishment is no longer recommended to
the user.

An analysis of user reviews for the business reveals that the words ’chicken’, ’salad’ and
’food’ are identified as important by various explanation methods, indicating their results
are acceptable.

It is noteworthy that for each business, changes in categorical features can be identified
separately, and recommendations can be made to the establishment to consider these fea-
tures. For example, informing the manager that serving halal food or providing bicycle
parking may attract more customers.

Table 7 Cell phones dataset example 2

user_id A1F7YU6O5RU432

item_id B00Z7RQ0NC

Baseline phone, quality, buttons,device, case, protection, cases,screen, color, grip

countERText removing words:’lifetime’,’date’,’protects’,’graphic’,’plus’,’iphone’,
’absorbs’,’seamless’,’night’,’withstands’,’edge’,’white’

Genetic removing words: ’phone’,’iphone’,’amp’,’iphone’,’only’,
’date’, ’iphone’,’details’

Gumbel no explanation found

User review
On item

[’case’,’pretty’,’Love the looks of it and when
the sun catches the silver flecks on the case its so pretty’],
[’case’,’clear’,’The case is clear so whatever color your iPhone
is youll be able to see it a bit through the sparkles’],
[’photos’,’online’, ’What might be hard to tell initially from the
online photos is this case has a bunch of gorgeous sparkles inside
the clear plastic n’

Table 8 CDs dataset example 1

user_id A3LEN0P07MGJE2

item_id B001TRDPB4

Baseline no explanation found

countERText removing words: ’christmas’, ’cheers

Genetic removing words: ’members’,’living’,’sell’,’sensation’,’2008’,
’nationwide’,’tour’,’bowl’,’bring’,’another’,’chaser’,’jingle’,
’christmas’,’cheers’

Gumbel words: [’cheers’, ’christmas’, ’reindeer’]
change to: [’, ’filmed’, ’tonight’, ’!’]

User review
On item

[[’twists’,’new’,’There were some songs that were new to me
as well as new twists to old favorites – the introduction to
We Three Kings comes to mind with its hints of the
Mission Impossible theme’],
[’twists’, ’in’,’The twists in Rudolph the Red-Nosed Reindeer’]]
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Table 9 CDs dataset example 2

User_id A1SCJWCMQ3W3KK

Item_id B00006879E

Baseline song, rock, blues, tune, release, disc, collection, hit

CountERText removing words: ’jane’

Genetic removing words: ’first’, ’songs’

Gumbel words:[’stevie’, ’jane’, ’songs’],
change to:[’their’, ’rhythms’, ’those’]

User review
On item

[’release’, ’in’,while ’Tangled’ is more reminiscent of something
Motown would have released back in the 1970s],
[’release’, ’back’, 1, while ’Tangled’ is more reminiscent of
something Motown would have released back in the 1970s],
[’music’, ’fresh’, ’the record still holds up as fresh music’],
[’band’, ’in’, ’which takes the band into a slightly softer feel’]
[’blues’, ’little’, ’a little blues’]
[’rock’, ’in’, ’and rock and roll in a way that was previously
unknown (at least on a grand scale) on US airwaves’]
[’rock’, ’little’, ’a little rock’],
[’tracks’, ’first’, ’the first eight tracks are spectacular’]
[’funk’, ’little’, ’A little funk n’]

Table 10 Yelp dataset example 1

User_id nlReKgQoRz6uPfVaEG93mw

Item_id tU692E8N0xBQ7Ogc78gN2g

All features latitude change from 36.177038 to 36.17646826
longitude change from �86.749691 to �86.75116574
words: [ ’going’, ’anything’, ’rain’, ’potato’, ’house’]
change to: [ ’about’, ’spot’, ’much’, ’!’, ’black’]

Textual
Features

Baseline staff, taste, inside

CountER
Text

removing words:[’milky’,’going’,’way’,’table’,’coffee’,
’place’,’great’,’mocha’,’try’,’yummy’,’numb’,’best’
,’nashville’,’breakfast’,’amazing’,’hangout’,’get’]

Genetic removing words:[’order’,’feastival’,’addictive’,’green’,
’love’,’atmosphere’,’milky’,’best’,’town’,’joe’,’everything’
,’wrong’,’brazilian’,’fuzzy’,’bomb’,’fishy’,’ever’,’roasted’,
’great’,’breakfast’,’simple’,’syrup’,’iris’,’flower’,’cream’,
’sliced’,’table’,’hangout’,’bloom’,’iced’,’americano’,
’grapefruit’,’tea’,’cucumber’,’sweet’,’super’,’latte’,
’office’,’bar’,’pizza’,’apple’,’sauce’, ’decent’,’coffee’]

Gumbel no explanation found

Non-textual features latitude change from 36.177038 to 36.17698086
longitude change from �86.749691 to �86.7495435

User review on business It’s an awesome place to drop in and eat or get something to go
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5 Conclusion and future works

In this paper, we introduced three methods for generating explanations for textual expla-
nations and evaluated them on three real-world datasets of recommender system tasks.
CountERText and Genetic methods were able to find only textual features as explanations,
while the Gumbel method, which employed Gumbel softmax, was able to be applied to all
types of features, including textual, categorical, and continuous features. We conducted
experiments to evaluate these methods and found that when item textual features were used,
our method outperforms the baseline in terms of model-based measures, meaning that the
features found as explanations were both necessary and sufficient for the model to make
accurate predictions. Although the models did not perform well when using user tips on
items as textual features, the Gumbel softmax-based method has the potential to produce

Table 11 Yelp dataset example 2

User_id 0du93EkEwKuxRG_x6hqVUg

item_id KnsY8rh5tigp5t6WpilGdA

All features latitude: change from 36.103133 to 36.10256344
longitude: change from �86.8185 to �86.81997484
Open24 h: change from Not-mentioned to True
words: [’bars’,’gallon’,’sunday’,’bag’,’girl’, ’sausage’,
’breakfast’,’better’,’awesome’]
change to: [’chef’, ’?’, ’red’, ’guy’, ’salad’, ’foods’,
’you’, ’start’, ’dawn’]

Textual
Features

Baseline coffee, favorite, spot, cheese, tasting,
price, eating, hour, ingredients, tea,
chocolate, neighborhood, shop

CountER
Text

removing words:[’mean’,class’,’includes’,’day’,’bar’,’run’,
’nashville’,’buffet’,’hour’,’hills’,’butter’,
’chai’,’guys’,’rush’,’come’,’food’,’beer’,
’thanksgiving’,’see’,’rules’,’pick’,’today’,’salad]

Genetic removing words:[’bags’,’juice’, ’lunch’,’run’,’variety’, ’juice’,
’traditional’,’thanksgiving’,’feel’,’shopping’,’girl’,’thank’,’nice’,’butter’,
’meat’,’watch’,’hockey’,’pork’,’wonderful’,’act’,’ordered’,
’took’,’come’,’salad’,’get’,’thai’,’pump’,’saturdays’,’think’
,’come’,’hidden’,’bar’,’almond’,’including’,’beer’,’narragansett’,
’hot’,’figured’,’delicious’,’desert’,’breakfast’,’consistent’,’option’,
’selection’,’selection’,’breakfast’,’chicken’,’hot’,’rules’,
’looking’,’epic’,’grilled’,’nice’,’pepper’,’guys’,’great’,’organic’,
’pizza’,’order’,’table’,’awesome’,’orange’,’makings’,’free]

Gumbel words:[’southern’,’saturdays’,’best’,’hills’,’locations’,’rules’,
’bar’,’guys’, ’today’,’wonderful’,’awesome’]
change to:
[’noon’,’was’,’any’,’village’,’;’, ’did’,’also’,’sausage’,
’like’,’get’,’.’,’to’,’eat’,’little’]

Non-textual
Features

latitude: change from 36.103133 to 36.10318994
longitude: change from �86.8185 to �86.81864752
halal: change from to Not-mentioned to False

User review
On business

[[’cheese’, You’ll find interesting cheese],
[’chicken salad’, and awesome chicken salad],
[’foods’, ’Their prepared foods are also pretty awesome’]]

123

2010 Machine Learning (2024) 113:1989–2012



explanations based on multiple features, which could be useful for tasks involving multi-
modal features such as healthcare.

In future works, the model can be improved by generating explanations for different
types of businesses separately, so that their categorical features are not combined. Addi-
tionally, one could consider only nouns as textual features and generate explanations based
on them. Furthermore, the way of evaluating explanations based on user preferences can be
improved by considering the semantic similarity of user reviews and all found features.
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