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Abstract
Human social learning is an effective process that has inspired many existing machine 
learning approaches, such as learning from observation and learning by demonstration. In 
this paper, we introduce another form of social learning, learning from a casual conversa-
tion or LCC a machine learning approach in which an artificially intelligent agent learns 
new information through an extended natural language dialog with a human. Our system 
enables the agent to add or change information in its knowledge base as a result of the 
human’s conversational text inputs. LCC seeks to close an important gap in the state of the 
art that has focused on teaching computer agents how to perform specific tasks. Further-
more, LCC could also provide an efficient way to enhance the knowledge base of certain 
types of systems without requiring the involvement of a programmer. LCC does not require 
the user to enter specific information; instead, the user can converse naturally with the 
agent. As part of its learning process, LCC identifies the text inputs from the conversing 
human that contain information worth learning, and then determines whether the inputs are 
heretofore unknown and learns it; in agreement with what it already “knows” and ignores 
it; or in conflict with what it “knows” and it must resolve the conflict. LCC’s architecture 
consists of multiple sub-systems combined to perform the above tasks. Its learning com-
ponent can add new information to the knowledge base, confirm existing information, and/
or update existing information found to be related to the user input. The LCC system func-
tionality was rigorously assessed with test statements comprising various difficulty lev-
els. Furthermore, its acceptance by human users was evaluated by two separate groups of 
human test subjects—one group who interacted with the system, and a second group that 
evaluated the logs of the interactions of the first group. The collected results were all found 
to be acceptable and within the range of our expectations.
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1 Introduction

As humans, we are able to learn new things in the process of interacting with each other—
sometimes to purposely learn something; other times, the learning happens casually or 
even accidentally as part of a conversation, such as for example, the score in a particular 
football game or where the other person had dinner last night. Such learning is particularly 
common in conversations among two or more people. However, if what we hear during 
such conversation conflicts with what we already know, we process the new information 
by either trying to convince the interlocutor of the mistake in his/her spoken information, 
or we accept the new information if we become convinced that it is in fact correct. Moreo-
ver, we often learn how to do things by observing others perform a task or exhibit some 
behavior.

Learning from such interaction with humans as a form of machine learning has been 
taken up by a segment of the Artificial Intelligence (AI) research community. One major 
advantage to this form of machine learning is that it uses an often-available and mostly 
reliable resource to train a computer agent directly—the human! The reliability and avail-
ability of the human source will vary depending on the task involved and whether or not 
scarce human expertise is required for the task. These machine learning approaches gener-
ally seek to create agents that mimic the actions of a human when performing a given task. 
These approaches to machine learning have not been as extensively investigated as have 
supervised, unsupervised or reinforcement learning (although there is some overlap), but 
several interesting and potentially transformative approaches have emerged in the last sev-
eral years, such as Learning from Observation (LfO), Learning from Demonstration (LfD), 
Learning from Instruction (LfI) and Behavioral Cloning.1.

Research on learning from direct human interaction has focused on learning two types 
of information (Anderson, 1996): (1) procedural—how to perform a task, and (2) declara-
tive—factual information, such as “The sky is blue.” Our research explores the latter—
learning declarative information from direct human interaction through a dialog (spoken or 
via written text). In spite of the label’s potential ambiguity, we refer to a repository of such 
information as the knowledge base, as other popular labels seem somehow inadequate. 
More specifically, we explore how a computer agent can learn such information through 
a natural and casual conversation with a human, and how such an agent can reason about 
the information provided by the human to update its own knowledge base (KB) accord-
ingly. We refer to our approach as Learning from Casual Conversation (LCC). Section 2 
discusses casual conversations at length.

As a point of comparison, LfO and LfD involve the use of “actors” to perform a task and 
record a time-stamped set of data related to the actor’s actions. These data are considered 
to be the observations, and the data sets are called traces. Such traces are then used to train 
an agent on how to autonomously perform the same actions or behaviors performed by the 
human actor. There is generally no real-time dialog interaction between the system and the 
actor, as the learning is typically done offline after the traces have been collected. For these 
reasons, such learning from human interaction is not relevant to our work described here, 
and we thus omit a discussion of these otherwise very interesting areas of research.

1 Behavioral cloning is a type of imitation learning where the agent receives the states and actions of an 
expert demonstrator as training data then the learning agent uses a supervised machine learning approach 
such as a classifier to replicate the demonstrator policy (Torabi et al., 2018) It is very similar in nature to 
LfO and LfD.
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The type of learning from human interaction that is most similar to our approach is 
Learning from Instruction, as it involves human dialog in the learning process. LfI depends 
on a lesson-based learning protocol instead of one that uses examples (Goldwasser & Roth, 
2011). LfI allows the user to use instructions in the form of natural language statements 
to teach a computer agent how to perform a task. The state of the art in LfI is discussed in 
Sect. 3 below.

Before describing our work, a discussion of what a casual conversation is and what LCC 
seeks to learn from them follows next.

2  What is a casual conversation and what does LCC seek to learn 
from one?

We begin with a discussion about conversation in general.

2.1  Conversations as means for information exchange

As social beings, we humans spend much time talking with each other. Prior to the devel-
opment of a written language, it was the only way to exchange information. While much 
of our exchange of information now takes place via written language and/or via images 
(a picture is indeed worth a thousand words), we still rely heavily on oral expression for 
communication. Eggins and Slade (2004) refer to a conversation as “...a semantic activ-
ity, a process of making meanings” (pg. 6). Certainly, formal means of oral information 
exchange, such as speeches, lectures, storytelling and narrated presentations, among oth-
ers, also involve “making meanings”. These, however, represent a unidirectional flow of 
information—from the speaker to the listener(s). A conversation, on the other hand, is a 
contributory process in which two or more people participate by taking turns at speaking. 
Eggins and Slade describe two general types of conversation—one is functionally moti-
vated (called task-based), where we “...interact ...in order to accomplish a wide range of 
tasks” (Pg. 6), while a second one is “...talk simply for the sake of talking itself” (pg. 6). 
They call the second one casual conversation. They define it functionally, albeit negatively, 
as “...talk which is NOT motivated by any clear pragmatic purpose.” More about casual 
conversations in Sect. 2.2 below.

The concept of turn-taking is an essential feature of a conversation. Sacks et al. (1978) 
call the contributions by each individual participant Turn Constructional Units (TCU), 
which are composed of a grammatically proper sentence or phrase, or of sequences of sen-
tences and/or phrases. The end of a TCU marks a point of potential speaker change, at least 
ideally—assuming no interruptions. If there are more than two participants in a conversa-
tion, who takes on the speaker role next, at the end of a TCU, is negotiated, either subtly 
or explicitly by the participants themselves. The current speaker can determine the next 
speaker by directing a question to him/her. Alternatively, the most assertive participant, 
or the one with the most relevant follow-up TCU takes the turn at being the next speaker. 
Of course, there is much more to turn-taking in a conversation, but any further discussion 
would digress from the objectives of this paper. Those interested in further information 
should see Sacks et al. (1978) and Eggins and Slade (2004).

Clark and Schaefer (1989) discuss the concept of acknowledgement of the speaker’s 
utterance (they assume spoken dialog, which we do not use in our work). That is, that for 
a conversation to not diverge, the listener must in some way signal to the speaker that her/
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his contribution to the conversation (i.e., the utterance) has been heard and understood 
as the latter intended before the conversation can continue. This can be done in various 
ways, whose discussion is also tangential to our subject here. Nevertheless, if the listener 
does not understand (and realizes it), she/he can ask for clarification (i.e., “pardon?”, “say 
again”, “huh?”). On the other hand, the speaker may realize that the listener did not truly 
understand her/his prior contribution as a result of her/his response to it, and may attempt 
to repair the situation (i.e., “You misunderstood. I didn’t say I was sleeping. I said I was 
leaving.”). The LCC prototype system has the (somewhat primitive) ability to ask for clari-
fication about a statement contributed by the human with whom it is conversing. It can do 
so by asking him/her to repeat it. However, this feature was not used in our testing, as the 
medium we used for these tests was typed text, whereas this feature is much more applica-
ble to speech where misunderstandings are more common.

2.2  Casual conversations and their analysis

Casual conversations have been a subject of research by sociologists, philosophers, lin-
guists and psychologists for many years as part of the larger conversation analysis field. 
Their work has generally focused on how to analyze casual conversations. Such a diverse 
group of researchers has made for diverse approaches to such analysis. Eggins and Slade 
(2004) provide an excellent historical discussion of the different lines of research on cas-
ual conversation, beginning with the work of Garfinkel (1967) and of Sacks et al. (1978) 
among others.

Gilmartin et al. (2018) state that “Much daily talk does not seem to contribute to a clear 
short-term task, but builds and maintains social bonds, and is described as ‘interactional’, 
social, or casual conversation.” (P. 51). As did Eggins and Slade before them, Gilmar-
tin et  al. clearly distinguish casual conversation from the more common task-based con-
versation, whose objective, structure, duration and the rights of participants to speak are 
not always set by the conversants themselves. They state that task-based conversations are 
often easier to analyze because they have a specific goal defined (e.g., order a meal at a 
restaurant, finalize a budget, revise a schedule), and everyone is aware of the goal. The con-
versation ends when the goal is achieved. Furthermore, the roles of the participants often 
dictate the turn-taking, especially when the social distances and/or places in an organiza-
tional hierarchy differ among participants, as is often the case for such conversations in 
business settings.

One of the earliest works on analyzing casual conversations was by Ventola (1979). In 
it she states that casual conversations are very important for “...establishing and maintain-
ing contact between people” (pg. 267). She also describes these contacts as “...social rela-
tionships with others” (pg. 267). Ventola states that casual conversations typically happen 
during casual encounters, such as meeting at a bus stop, or on an elevator. In fact, Eggins 
and Slade (2004) based their research on extensive transcriptions of casual conversations 
that took place among co-workers during workplace coffee breaks. Ventola decomposes 
a casual conversation into various components, some of which are obligatory and others 
of which are optional, depending on the type of casual conversation one is having. The 
components, in rough sequential order are Greeting (G)—self-explanatory, and could be 
formal or informal; Address (Ad)—defines the addressee and the social distance between 
the speaker and the addressee (it is optional); Identification (Id) where the interactants 
introduce themselves (also optional); Approach (Ap) which serves as a “bridge to conver-
sation” (Feldman 1959, pg. 149, through Ventola 1979)—can be direct or indirect. These 
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components all address the initial part of the casual conversation. The next component of 
the casual conversation—and the most important one from our perspective—is the Center-
ing (C) component. In a minimal conversation (defined by Ventola) such as in “Hi, how are 
you? Lousy weather, huh?”, there may not be a Centering component, and the conversation 
goes directly to Leave-taking (Lt), followed by Good-Bye (Gb) (as in “OK, gotta go. See 
you soon.”).

The reason Centering is the most important of the components for our purposes is that 
according to Ventola (1979), non-minimal casual conversations can and often do deal with 
some subject (i.e., a theme) and contain information stated by the conversant about that 
theme (i.e., the rheme). In her words, “...they are about something” (pg. 179). It is in the 
Centering part of the casual conversation that such information is normally found. In her 
own words, “C(entering) is realized by cognitive and informative topics” (pg. 273). It is 
exactly such information (the rhemes) that is woven into a casual conversation that we seek 
to learn as part of this research.

Eggins and Slade also had significant impact on casual conversations and how to ana-
lyze them. In their book, Eggins and Slade (2004) make one key distinction about the con-
tents of a casual conversation that is quite relevant to our work: the concept of chats and 
chunks. They define chats as highly interactive parts of a casual conversation where the 
TCUs are short and turn-taking happens in a rapid-fire form. While they do not say this 
directly, their implication is that during chats, little or no useful information is shared by 
the participants. Chunks, on the other hand, are those parts of the conversation where one 
speaker dominates the discourse for an extended period of time. These chunks, accord-
ing to Eggins and Slade, are more predictably structured and move through several stages. 
It is during these chunks that information worth learning is more likely to be shared by 
the speaker. The chunks often take on a storytelling nature, and Eggins and Slade define 
four genres of this: Narratives— tell stories with tension and excitement, resulting in a 
crisis and culminating in some form of resolution; Anecdotes—Similar to Narrative except 
there is no resolution to the crisis, only some reaction expressed as amazement, mystery, 
embarrassment, etc.; Exemplum—a way to express a “...specific message on how the world 
should or should not be.” (Eggins and Slade, Pg. 237); and Recounts—used to “...retell 
events and to share the speaker’s appraisal of these events.” (Eggins and Slade, Pg. 237). 
Our assertion is that these genres of storytelling chunks can often contain information 
worth learning and where LCC focuses.

As did Ventola, Eggins and Slade also analyze casual conversations by the phases of a 
conversation. Certainly, the chats and chunks we described above are some of those phases. 
However, Eggins and Slade go further by decomposing storytelling chunks into their own 
phases. These are: Abstract, Orientation, Complication, Evaluation, Resolution, Coda 1 
and Coda 2. Not all are present in each of the four genres described above, but any further 
discussion of that would also be tangential to our objectives in this paper and therefore not 
included here.

They also define several types of casual conversations, of which storytelling chunks are 
only one. The others include Observation/Comment, Opinion, Gossip, Friendly-ridicule, 
and of course, chat. LCC is designed to neglect the chats and focus on the chunks/Center-
ing segments of a casual conversation where discussion of themes and related rhemes are 
most likely to be present. We further discuss these issues in Sect. 2.3 below.

We furthermore define casual conversation (informally) for the purposes of our work as 
one where the speakers have the ability to speak with a degree of freedom about content 
and form; that is, not limiting the speaker to what words he/she needs to use to commu-
nicate with the computer agent. For example if the person wants to talk about cars or ask 
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something related to cars, he/she can interchangeably and seamlessly say “cars”, “autos” or 
“automobiles”.

2.3  What does LCC seek to learn?

We should start by noting here that we do not claim that our LCC system performs the 
learning in the same manner as do humans. In fact, we are certain it does not. Neverthe-
less, we know that human-to-human conversation is a very complex process, with implied 
meanings spread throughout the conversation, and aided by the context, facial expressions, 
tonal variations, and general body language. Yet, in spite of their complexities, conversa-
tions are one thing that we humans for the most part can seamlessly handle quite well … 
and learn from them. So, then, what exactly is LCC designed to learn?- the rhemes in a 
user statement.

Clark and Schaefer (1989) state the three assumptions that are common in the various 
models of human discourse: (1) Common ground; (2) Accumulation of common ground; 
and (3) Unilateral speech actions. Common ground is the knowledge or information that all 
participants in the conversation (should) have in common, most importantly at the outset 
of a conversation. Without this, conversations could quickly diverge into meaningless bab-
ble. As a (coherent) conversation progresses, the conversational partners accumulate more 
common ground as new information is progressively offered and shared by the conversa-
tional partners. The unilateral speech action (in the form of an assertion) is how a partici-
pant in the conversation can add to the common ground. Clark and Schaefer argue that the 
third assumption is by itself not sufficient to correctly model the discourse, and that there 
are other speech acts that can add to the common ground (e.g., questions, instructions, and 
arguments). However, such a discussion is beyond the scope of this paper. We make the 
case that our LCC mechanism serves to accumulate common ground by the virtual agent 
that results from assertions made by the human participant.

Traum and Hinkelman (1992) discuss the issue of accumulation of common ground in 
depth, although in the context of a task-oriented conversation. (They also discuss the con-
cept of turn-taking in a task-based conversation.) Traum and Hinkelman (1992) speak of 
conversation acts as a specialization of the speech acts mentioned by Clark and Schaefer 
(1989) and many others. The authors state that “Grounding mechanisms are essential to 
the progress of spoken conversation ...” (Traum & Hinkelman, 1992). The important thing 
about this paper is the featured role that accumulation of common ground takes, albeit in a 
task-oriented type of conversation.

An important part of a casual conversation is that of a chatting statement. As discussed 
in the Sect. 2.2 above, Eggins and Slade (2004) define a chat segment vs. a chunk segment 
in a casual conversation. LCC seeks to neglect the chatting statements because of their 
general paucity of useful information. This is not to say that chatting statements contain no 
useful information at all—indeed there may be some things worth learning that are men-
tioned in passing in chatting statements (e.g., “Hope the weather is better when I leave 
tomorrow”. “Oh, you are leaving tomorrow huh?”). Nevertheless, with LCC we have con-
centrated on the chunk/Centering segments because useful information is more likely to be 
found there.

So, then what characterizes the chat statements that are to be neglected by LCC? As 
with many other things in our world, chatting statements are hard to define but we gen-
erally recognize one when we see or hear one. We could not find a satisfactory and for-
mal definition of what a (neglectable) chatting statement would be in our (admittedly 



4795Machine Learning (2023) 112:4789–4836 

1 3

non-exhaustive) review of the literature. Thus, we came up with our own description, if not 
a formal definition:

We consider chatting statements to be those that contain salutations, goodbyes, felic-
itations (“Happy New Year!”), most general comments about current subjects (e.g., the 
weather, politics, sports, celebrity gossip, etc.) that contain a qualitative expression (e.g., 
“Wow! It sure is hot today!”; “That was some game last night!”), statements that contain 
affective expressions (e.g., “I love your shoes!”), or questions/assertions about general 
well-being (“How are you this morning?”), among others. Moreover, questions (as indi-
cated by a question mark) were rightfully classified as questions and forwarded to the Q/A 
module, rather than to the learning module, as they would not generally contain assertions.

LCC seeks to learn information revealed by a conversant during the Centering phase of 
a conversation (as defined by Ventola, 1979) and/or during the chunk segments (as defined 
by Eggins and Slade, 2004). Such information is declarative in nature and comes in the 
form of direct statements that discuss some theme. The theme does not have to be previ-
ously stated in any way and can be changed by the conversant at any time by simply chang-
ing the subject, but the statement must be associated with a general theme (e.g., football, 
ladies’ fashion, rock music, etc.). In effect, LCC is designed to attempt to learn any state-
ment NOT deemed to be a chatting statement or a question.

We fully recognize that sometimes an input statement may contain chatting as well as 
information worth learning. In statements where the chatting portion precedes the informa-
tion worth learning, LCC can isolate and neglect the chatting part of a statement while for-
warding the information worth learning to the Learning unit. As an example, “The weather 
is nice, so there is a car race today”, LCC should be able to extract the information that 
“there is a car race today” from the overall statement if the chatting expression happens in 
the beginning of the sentence, as it does in the example.

2.4  Use case

The relevant definitions above are inevitably relevant to use cases. We believe that the basic 
concepts of LCC (although not necessarily of our prototype implementation) described in 
this paper could be applied to many different use cases in natural language conversations 
between human and machine. One general class of use case relates to the task-oriented con-
versations mentioned above that have specific objectives, such as making doctor appoint-
ments, reserving a table at a restaurant via telephone, deciding on a budget for a project 
or requesting that a specific valve in a nuclear power station be opened. Alternatively, 
the objective of the task could be of a higher nature, such as conversations specifically 
designed to debrief a human, such as when carrying out explicit knowledge acquisition 
from an expert; consultations between a patient and a (possibly virtual) physician, maybe 
in a tele-health context.

Casual conversations, as we have seen above, have no specific goal, so appropri-
ate use cases would be quite different from those applicable to task-based conversations. 
One example of this would be a conversation among two “people” (where one of them 
could be a computer agent) discussing what two (human) friends would typically discuss 
while enjoying each other’s company over a coffee or a beer while discussing automobiles, 
food, the latest political news or football. In such conversations, information to be learned 
can be expressed explicitly (“Ferraris are built in Maranello, Italy”) or implicitly (“in my 
visit to the Ferrari factory in Maranello, I saw the F40 in the Ferrari museum”—the LCC 
could learn that the speaker has been to Maranello, Italy and that Ferraris are built there). 
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Another example of this type of conversation would be an interaction between a person and 
her/his intelligent assistant (e.g., SIRI, Alexa, Google) so that the latter may learn about the 
preferences of its “master” through such interaction (leaving aside for the moment some 
potentially serious privacy implications). It is this type of casual conversation that we spe-
cifically target with our research described here.

We particularly envision a potential commercial application to companion robots or ava-
tars designed to keep company to a home-bound individual—elderly, sick, and/or disabled 
person—who may need a conversation partner to stave off loneliness and/or remind him/
her of medical appointments and medicine intake schedule. We would describe these con-
versations between patient and robot/avatar as casual, such as between two friends, but 
could also contain some task-based elements in the conversations. Some small talk (i.e., 
chatting statements) will likely be involved, but inevitably, information worth learning by 
the agent may be offered by the human, either explicitly or implicitly as part of the conver-
sation. Such casual conversations could also include questions by the human, which the 
system needs to be able to answer i.e., “At what time do I take medicine X?”. Furthermore, 
if the patient is monitored by a health care provider through this companion robot/avatar 
system, then it is likely that some of the information provided by the patient and learned by 
the system (e.g., “Man, what a headache I had this morning!”) may be found to require the 
attention of the health care provider.

2.5  Some assumptions and justifications about casual conversations for LCC

Before continuing to the next section (Work of Others), we should mention that as the early 
exploratory research that our work represents, we made several simplifying assumptions 
for LCC. These are: 1. The human conversant is assumed to be always telling the truth if 
he/she is deemed to be “trustworthy” (explained later). 2. Questions asked can only require 
yes/no answers. 3. The statements presented to LCC must contain no paralinguistic sounds 
such as “hmmm”, “ah ah”, “aha”, “huh?” etc., nor swear words, expletives or slang (LOL, 
BFF, OMG, etc.). 4. An input to LCC must be without errors that would lead to subsequent 
correction by the speaker in the same or in a subsequent statement (i.e., “Sorry, I meant X, 
and not Y”). 5. The input statements (sentence) by the human conversant must be only one 
(relatively) short and complete sentence and must use proper or nearly-proper grammar. 6. 
Typed text is used to communicate, and not speech. 7. Reference pronouns (he, she, it, they, 
etc.) are not (yet) handled well by LCC, so they should be avoided. 8. Facial expressions 
play an important role in communication between humans to indicate humor, irony etc. 
without actually saying it. However, LCC does not take into account such facial expres-
sions, although we envision an ultimate system to be able to do so. 9. Humor, irony, double 
negatives, obvious exaggeration, facetiousness and such other conversational “tricks” are 
not recognized by LCC. 10. LCC only converses with one human user. 11. LCC does not 
attempt to process any indication of the speaker’s affect in the statement, at least to the 
extent that affect can be captured strictly in words. This is not a big drawback, as affect rec-
ognition typically depends on facial expressions, body language, and tone, none of which 
can be expressed easily or well in typed text. 12. LCC does not recognize temporal issues. 
For example, in the statement “John returns home tomorrow”; if this is learned, it will 
always say tomorrow, even months from when it was originally learned.

To be sure, these simplifying assumptions do limit the usefulness of our system at this 
time, and will have to be lifted in any future research. However, we believe that they are 
appropriate in the context of early exploratory research.
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LCC was not designed to be a full conversational agent. While the LCC prototype can 
engage in a simple conversation with the human conversant (let’s call him/her the user) 
through a third party chatbot (described in Sect. 4.5), it does not have the ability to respond 
richly. The statements made by the user and how they are processed by LCC are more 
important than how LCC responds to the user. The responses by LCC are thus of minimal 
value. Like Sacks et al. (1978), we consider a conversation to be a sequence of TCUs made 
by the user, where each TCU is one complete sentence and is considered an input statement 
to LCC. The turn-taking cues are obvious: the human completes the statement (TCU) and 
presses return, while LCC does as computers are wont to do - it simply waits after display-
ing its response.

Finally, we should note that the test statements used in the tests described in Sect. 5 do 
not reflect the envisioned use case of a home-bound patient conversing with a companion 
robot or avatar. Instead, they represent a conversation about specific themes between two 
“friends”, one of which is the LCC system. The topics chosen were food and automobiles. 
The main reason for this is that we did not have access to statements about conversations 
between patients and caregivers, as they are sensitive to privacy issues and normally regu-
lated by privacy laws. Additionally, these conversations reveal information that is invari-
ably time-sensitive (e.g., if the patient has a headache now, such may not be the case in 
24  h). As stated in item 12 above, LCC is not designed to handle time-sensitive infor-
mation at this time—that is one of our areas of future research. Nevertheless, we do not 
believe the type of input statements used for our tests in any way lessens the value of the 
assessments described in Sect. 5.

3  Related work

Liu and Mazumder (2021) emphasize the importance of learning from conversation, as the 
existing chatbots are trained on handcrafted and/or on limited database examples. They 
also suggest the importance of continual learning of skills and knowledge as they chat with 
users. Their work is centered on extracting information from the user input that can be used 
later for conversation. The authors also highlight the difficulties faced during learning in 
real time and how to revise incorrect knowledge previously learned by their chatbot. Their 
paper does not go into great detail on how the learning is being performed or how informa-
tion is matched to what the chatting bot already knew. It does not include any test results or 
even examples of conversations; yet, it serves to indicate that other researchers are address-
ing the same problem as our research being reported in this paper, and identifying the dif-
ficulties involved in such a task.

The earliest form of LfI provided feedback to a system as an additional resource for 
learning. For instance, Kuhlmann et  al. (2004) used instructions to provide feedback 
in plain English about the system’s performance while using reinforcement learning 
in RoboCup KeepAway soccer. The system was evaluated by checking the benefit of 
adding different feedback messages independently as well as jointly. The results were 
reported by measuring the average episode duration over time. An episode represents 
the interval of time between when one of the two teams (called the takers) takes pos-
session of the ball away from its opponent (the keepers). The results indicate that while 
the advice did not speed up the learning process, it was found to help the learner agents 
perform better than without it. Torrey et al. (2005) used reinforcement learning to learn 
how to move in a KeepAway game and later used verbal advice to transfer the learned 
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task to play BreakAway, a very similar game. Transfer advice involves determining 
which actions are best in a given situation, and those actions should be related (i.e., they 
can be transferred to a second task that is similar to the first one, with only minor modi-
fications). The results reflect that advantages resulting from transfer advice started to 
become evident after 2500 games, and it led to higher performance results than without 
it.

LfI requires identifying the instructions explicitly, including their post-conditions, 
actions and goals. One example is the work reported by Rybski et  al. (2007), involv-
ing an interactive task training for a mobile robot. In this system, the learning process 
is a mixture of learning from demonstration and learning from instruction. The user 
must verbally specify when the robot needs to start learning. Therefore, learning from 
instruction places strong syntactical constraints on the user utterances. An example 
from Rybski et al. (2007) is shown below:

When I say deliver message: if person1 is present, give message to person1; other-
wise, report message delivery failure; go to home.

Therefore, learning from instruction depends on the clarity of the communicated infor-
mation, which could result in the system providing the wrong instructions if the commu-
nication environment is noisy. Noise in the environment can come from a noisy physical 
environment (e.g., in an industrial setting, in a setting with a TV or loud music blaring 
in the background), from noisy electronics and/or from the inherent ambiguity of natu-
ral language. Improving this process is not a trivial task (Goldwasser & Roth, 2011).

The research discussed above present interesting approaches in this relatively new 
area of research. Nevertheless, there are several major differences between the LCC sys-
tem and learning from instruction:

• LfI is targeted toward task-oriented systems, where there is a specific task that the 
learning agent/robot needs to accomplish. LCC on the other hand, is designed to 
be an open-ended learner that acquires new information and/or modifies its existing 
information through a casual conversation with a human. This casual conversation 
has no defined objective.

• In LfI, the new task can be changed only slightly from the original task that the 
agent already “knows”. This is because the agent’s capabilities and actions are fixed. 
On the other hand, LCC is not limited in such a way because it is designed to learn 
any statement entered by the conversant that is deemed worthy to be learned, regard-
less of whether it is almost already known or not.

• LCC can make decisions about what should be learned as new information, whether 
existing information should be modified in light of the statements by the human con-
versant, and what statements should be neglected because the information contained 
in them is already known or deemed to be wrong. This means that LCC does not 
always accept the information put forth by the human conversant. This feature is 
important because it protects the system from acquiring incorrect or inappropriate 
information.

Other recent works in the LfI literature involve using human feedback in natural language 
to improve a computer agent’s dialogue skills during a conversation. Weston (2016) devel-
oped an agent that can learn through dialogue with a human who provides feedback as a 
form of natural supervision. Weston studied the effect of using different modes of feedback 
on the agent’s ability to learn. These modes were: 
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1. Imitating an expert: the learner agent tries to imitate an expert while the expert answers 
a human teacher’s questions.

2. Positive and negative feedback: the learner agent receives feedback from the teacher to 
reflect on whether its answer is correct or not.

3. Answers supplied by the teacher: the teacher provides a correction to the learner agent’s 
answer through feedback.

4. Hints provided by the teacher: hints are provided to the learner agent instead of giving 
the right answer directly.

5. Supporting facts provided by the teacher: the teacher provides supporting facts to show 
that the learner agent’s answers are incorrect.

6. Partial feedback: feedback is given only 50% of the time.
7. No feedback: no feedback is given to the learner agent.
8. Mixture of imitation and feedback that combines modes 1 and 2.
9. Asking for help/corrections: the learner agent asks the teacher to provide the correct 

information.

The learning model for Weston’s system (Weston, 2016) uses an end-to-end memory 
network. This memory architecture takes the last user utterance as an input, plus a set 
of memories relevant to the user input, which are called contexts. Then, it converts that 
input into a vector. The main task of the memory network is to generate an output based 
on the user input that best matches the context. There are four training strategies that 
can be used by the system (Weston, 2016): 

1. Imitation learning that involves imitating the user’s speech. The memory model here 
is trained using stochastic gradient descent and it does not have restrictions on what to 
imitate.

2. Reward-based imitation: here, the agent only imitates the action that received a positive 
reward, which can only be received if the action is correct. This eliminates poor choices 
from being part of the learning process.

3. Forward prediction: This process predicts the correct next answer for the teacher by 
using the answers provided by the agent to the speaker question/input.

4. Reward-based imitation plus forward prediction that combines strategies 2 and 3.

The effect of using these modes was tested using the different training strategies to 
improve the probability of answering questions correctly. A task is considered suc-
cessfully passed if an accuracy of at least 95% was achieved. Test results reported the 
accuracy across the four training strategies to answer questions related to the different 
modes discussed above. The results indicated that in general, Reward-based imitation 
plus forward prediction that combines strategies 2 and 3 performed better than the other 
strategies.

The work of Li et al. (2016) can be considered an extension to Weston’s work (Wes-
ton, 2016). It is based on asking questions to improve system performance. The authors 
investigated the importance of the learner agent asking questions by examining how it 
can benefit in two settings; (1) offline supervised learning, and (2) online reinforcement 
learning that also includes knowing when to ask. The authors focused on three tasks:

• Question clarification, when the learner has difficulty understanding the user and/or 
his/her question.
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• Information operation, when the agent asks a question to clarify existing information in 
its KB.

• Information acquisition, when the learner agent’s information is incomplete (Li et al., 
2016).

Question clarifications are needed when the user input contains typos or spelling mistakes. 
Without this feature, the authors must ensure that spelling mistakes are not present in the 
testing or training data. To solve this problem, the authors suggested two methods; (1) ask-
ing the user to rephrase the question, such as responding with “what do you mean?”, and 
(2) verify the question by relating the misspelled word to another question without spelling 
mistakes, and responding with the errorless question.

The system limits the agent’s tendency to ask questions to make the conversation sounds 
natural by setting a cost associated with this action. This is accomplished by allowing the 
learner agent to answer the proposed questions by the human teacher directly if it knows 
the answers, or when the system thinks that the question is so difficult that no clarification 
could help. In the latter case, the system responds by indicating that it has no answer for 
such question. The system also depends on user feedback (both negative and positive) to 
evaluate its performance. Evaluation was performed on both offline and online reinforce-
ment learning where the authors used different combinations of the training strategies dis-
cussed earlier. The results indicated that asking questions in both settings was helpful and 
improved the accuracy of the answers provided by the system. This was because it pro-
vided additional information for the learner to answer correctly. This was confirmed by the 
results, where the agent achieved an accuracy of less than 1% if it did not ask questions.

Zhang et al. (2017) presented a system that enabled the agent to learn the English lan-
guage by interacting with a teacher and consider his/her feedback. The focus of their work 
was on engaging the agent in the learning process. This process is influenced by the idea 
that imitating the speaker is not enough to drive a successful conversation. The learning 
process involved two components:

• Imitation: learning a language model by observing the teacher’s behavior during a con-
versation. The training data depend only on the teacher’s utterances, while the training 
process depends on predicting future words and sentences.

• Reinforcement: learning involves trial and error using the teacher’s feedback.

Interaction with the learner agent involves asking questions of it, which the learner agent 
answers, or describing an object and the learner agent repeats the description. If the 
description is correct, the learner agent receives a reward in the form of positive feedback.

Evaluation involved asking the agent to answer questions considering the case with four 
different objects surrounding the agent in each direction (S, N, E, W). The teacher then 
interacts with the agent in three different forms: (1) asking a question as “what is on the 
south”; (2) describing objects as “apple is in the east” and the agent needs to repeat the 
statement; (3) teacher saying nothing, then the agent describes objects around it and gets 
feedback from the teacher. The agent receives a positive reward of + 1 if it answers cor-
rectly or produces correct statements, and a negative reward of − 1 otherwise. Test results 
showed that combining imitation with reinforcement learning achieved better results—
approximately 20% improvement in accuracy compared with applying each one separately.

In the previously described systems (Weston, Li et al. and Zhang et al), the authors 
defined specific tasks, such as describing an object. Later, the authors tried to measure 
the system performance with and without interactions with the human. On the other 
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hand, LCC seeks to have a computer agent learn declarative information and differenti-
ate between what is considered as important information worth learning and what is not 
considered important. LCC shares with the above systems the idea of using conversation 
to improve the system’s performance, but the objective is quite different because LCC 
focuses on learning information rather than learning how to perform specific actions.

4  Approach to LCC

LCC is composed of two major stages (units). First, LCC determines whether the utter-
ance (or input text as in our case) made by the human user includes information worth 
learning. Utterances that probably do not contain learnable information include small 
talk such as “Wow, it is really hot today!” (we refer to these as chatting statements), and 
questions (“What is the temperature now?”). On the other hand, an example of informa-
tion worth learning could be “The temperature today broke the record high of 99◦ F”). 
As we indicated in Sect. 2, we do acknowledge that chatting statements often include 
information worth learning; however, extracting that information is left for future 
research.

We refer to the first unit as the classification unit, as the system seeks to classify the 
human’s input as either chatting (disregarded in the context of learning), question answer-
ing (e.g., an answer is to be provided from what is currently in the knowledge base), or 
information worth learning. If the input is classified as chatting, the chatbot agent (see 
Sect. 4.5 below) responds with a neutral, yet generally relevant response (e.g., “yes, it sure 
is hot”), but the input is otherwise ignored from the standpoint of learning. If classified as 
a question, then the agent should use its knowledge base to answer the question. However, 
if classified as information worth learning, the input statement is passed to the learning unit 
for further processing, which is the second major stage of LCC.

We should note here that one of the innovative aspects of the LCC system is that the 
knowledge base is a lexically organized semantic network. That is, the nodes in the network 
contain declarative sentences in natural language that convey information (e.g., “The sun 
rises in the east”), linked by arcs that indicate the degree of similarity (discussed in detail 
later) with neighboring nodes (that also contain sentences). The learning stage searches 
the network for the most similar sentence to the human’s text input or utterance, and acts 
in accordance to how similar it is to the most similar sentence found. If sufficiently similar, 
the learning stage assumes it already knows the information and does nothing; if in conflict 
(e.g., “The sun rises in the west”), then it disputes the human’s input, but may accept it as 
an update under some circumstances; if not sufficiently similar, it assumes it is new infor-
mation and adds it to its network. In the last case, it must re-arrange the network to suitably 
position the new sentence among its most similar neighbors and compute their quantitative 
similarities. These stages are discussed in greater detail in their respective sections below.

The main components of the LCC architecture, therefore, are the classifier unit, the 
knowledge base unit and the learning unit. However, the LCC system contains other 
auxiliary components (i.e., units) as shown in Fig. 1. Each unit consists of multiple sub-
components that operate using different algorithms, as briefly described below. LCC 
component units can be summarized as follows:

• Input unit: accepts the user input statement in the form of unrestricted text.
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• Trust determination unit: determines the user’s trustworthiness to allow her/him access 
to the learning feature of LCC. This includes the user’s credibility on the topic being 
discussed as well as his/her intentions for engaging in a dialog with LCC.

• Preprocessing unit: applies text preprocessing to the user’s input statements.
• Classification unit: a major unit that determines to which unit the user’s input will be 

directed next—chatting, question/answering or learning.
• Knowledge base unit: a major unit that contains the agent’s information.
• Learning unit: the third major unit that is responsible for learning the information pre-

sented when it is deemed by the classification unit to be worth learning.
• Memory unit: an auxiliary unit that consists of text files that record the users’ previous 

interactions.
• Question/Answering unit: responsible for answering questions related to the knowledge 

base of LCC.
• Chatting unit (also called the Chatbot): responsible for responding to users’ chatting 

statements.
• Output unit: provides the LCC output to the user.

We now describe these units in detail.

4.1  Trust determination

The trustworthiness of the human user is an important factor to consider when learning 
from casual conversation. In human-to-human conversation, whether we decide to learn 
something from the person with whom we are conversing or decide to neglect it depends 
on the trust we might place on the person providing the information. We consider this trust 
to be two-sided—trust in the intentions of the potential user, and trust that the conversant is 
knowledgeable about the topic of discussion, and thus is a credible source. Consequently, 
if the human conversant is either not credible on the subject or is judged to have dubious 
intentions (i.e., purposely attempt to provide lies to corrupt the system), then LCC should 
neglect the information she/he provides.

As can be seen from Fig.  1, the first interaction a user has with LCC is designed to 
determine the trustworthiness of the user. LCC authorizes humans labeled as trustworthy 
to have full access to its learning process (i.e., add and modify new information). Humans 
labeled as untrustworthy users, on the other hand, can only access the chatting and the sys-
tem’s question-answering units. If users deemed untrustworthy (i.e., unauthorized) attempt 
to provide information to LCC, the system will ignore the statements and instead either 
change the subject or proceed to chat with the user.

The current version of the LCC prototype merely asks the user to enter “1” if he/she is 
self-labeled as trustworthy and “2” if not. If the user enters “1”, he/she will have full access 
to add and modify information in the KB, chat with the system, and ask questions. If, on 
the other hand, he/she enters a “2”, then the user can only ask questions and chat with the 
system. This simple approach is a placeholder until the trustworthiness issue can be fully 
addressed in future research. Determination of whether or not a potential user is trustwor-
thy, however, is an area of research all onto itself. As our work on this project focused on 
the classification and learning functions of LCC, we opted to leave this for future research, 
when we hope to explore more complex approaches to trust determination in LCC, such 
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as password-controlled access, authority evaluation through questions, facial recognition, 
fingerprint recognition, internet inquiries about the user, and other such security measures.

4.2  Input and text‑preprocessing

LCC accepts typed user input in natural language English without putting restrictions on 
how the user input should be formatted. LCC applies text pre-processing to normalize the 
user input to be more compatible with the information in its knowledge base as well as 
with its format. This process facilitates the classification of the user’s input and its match-
ing with existing information in the knowledge base. The pre-processing step involves 
changing upper-case letters to lower-case for consistency with what is found in the knowl-
edge base. A spell checker from the autocorrect library in Python is used to correct words 
misspelled by the user.

We decided to use written text to communicate with LCC rather than spoken speech to 
avoid any errors that might result from automated speech recognition. As the accuracy of 
automated speech recognition systems continues to improve and mature, it will be our goal 
in future research to upgrade the LCC system to also accept spoken speech as input.

4.2.1  The classification process

This is the first of the three major units in LCC, and performs an important step in the LCC 
process by classifying the user input as information worth learning, as a question, or as a 
chatting statement. This is essential because a wrong label will result in an incorrect action 
by the system.

As shown in Fig.  1, LCC uses two levels of classification to determine the type 
(label) of an input statement presented to it. Ensemble Learning is used on each of these 
levels independently. Ensemble learning uses various classifiers on the same input data, 
then applies a majority voting scheme on the labels proposed by the different classi-
fiers to determine the most likely label for the given statement. The benefit of using 
multiple classifiers is the improvement of the overall decision-making process that min-
imizes the chances of making incorrect classifications (Dietterich, 2002). Our imple-
mentation of Ensemble Learning uses the majority vote from a Naïve Bayes classifier 
(Dai et al. 2007; Naïve Bayes text classification https:// nlp. stanf ord. edu/ IR- book/ html/  
htmle dition/ naive- bayes- text- class ifica tion-1. html), a Decision tree classifier (Apté 
et  al., 1994), and a Max Entropy classifier (Chieu & Ng, 2002; Nigam et  al., 1999). 
These classifiers employ different mechanisms to determine the label of the given input. 
This diversity of classification mechanisms likely improves the overall decision. More-
over, these particular classifiers have been successfully used in the literature for text 
classification.

4.2.2  The two levels of LCC classifiers

The overall algorithm for the classifier unit is shown in Algorithm  1. The first level of 
the classification process (line 3) classifies the input text at the sentence level, where all 

https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
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words in the user input statement contribute to the classification process. When unanimity 
is achieved among the three classifiers with regards to the label of the input text, the clas-
sification process ends here and the second level is bypassed altogether. LCC then forwards 
the labeled input to either the chatbot, the Q/A unit, or the learning unit, depending on the 
label determined.

However, when the decisions of the classifiers in level 1 are not unanimous, the second 
level is invoked (line 7 in Algorithm 1). The idea behind creating a second level is to give 
an opportunity to the classifiers to reconsider their decisions on the first level. This is done 
by classifying nouns in the sentences without considering the entire sentence. This sec-
ond level uses the same three classifiers, but they use part-of-speech tagging to extract the 
nouns from the input text. These nouns are fed to the three classifiers to determine their 
labels. However, the second level does not make use of the results generated in the first 
level.

If there is unanimous agreement among the classifiers in the second level about the 
label of the user input being information worth learning (there must be at least one noun 
is a non-chatting statement for it to be evaluated in the second level), the sentence is 
reconstructed to include everything after that noun, and neglects the words coming before 
this first non-chatting noun in the sentence. However, this will only happen if the recon-
structed sentence is a complete sentence in order to ensure that LCC doesn’t consider a 
sentence fragment to be worth learning. To determine completeness, LCC checks whether 
the resulting text contains a noun and verb, and the sentence consists of at least three 
words.

If there is no unanimous agreement on the information worth learning label in the sec-
ond level, then the user’s input is labelled as a chatting statement. Our future research will 
apply a similar concept to other variations of sentence structures. Such an extension will 
consider removing chatting-related information found in different parts of a sentence. This 
will require rebuilding the sentence and making sure that its meaning remains accurate and 
grammatically correct. An overall diagram that shows the two levels and how they interact 
with each other is depicted in Fig. 2.

Fig. 2  A block diagram to show level 1 and level 2 classification process
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4.2.3  Classifier training and testing

To train the classifiers, 650 sentences from various sources in the Internet were collected. 
Sentences labeled as non-chatting were gathered from an online article about random facts 
(https:// www. facts lides. com) as well as from data extracted from reviews on various topics 
as part of a project at the University of Illinois (Ganesan et al., 2010). To train the clas-
sifiers to recognize chatting statements, we used statements from the chatterbot training 
corpus for greeting (Cox, 2017) and for general conversation such as “good morning, how 
are you?” and “Tell me about yourself” (Cox, 2019). Moreover, we generated 20 additional 
statements that were similar to those statements, such as “how was your day?” and “can we 
go to a movie?” A full list of those statements can be seen in appendix C in Mohammed 
(2019). The classifiers were trained on 80% of the collected data and tested on the remain-
ing 20% The sentences were labeled manually by the lead researcher. We used the 80/20 
split based on the Pareto Principle (Dunford et al., 2014) that is commonly used in splitting 
training and testing data, such as in the work of Chang et al. (2010) and Joseph and Vakayil 
(2021). For example, the sentence “All cars have four wheels” was labeled as information 
worth learning as it contains declarative information. While “Hi, the weather sure is lovely 
today” was labeled as a chatting sentence.

4.3  Representation of information in the knowledge base

The knowledge base contains two forms of representation of the same information: a text 
file that holds the content of the knowledge base as strings in plain text, and a semantic 

https://www.factslides.com
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network that is constructed based on the contents of that text file. Those representations are 
continually updated in real time as a conversation with the user progresses.

We opted to include these two forms of representations for two reasons: (1) the text 
file will be more easily ported for use in other applications, such as for example, using the 
learned knowledge for intelligent assistant systems such as SiriⓇ , AlexaⓇ or CortanaⓇ , and 
(2) the semantic network is used to speed up the process of finding matches in the knowl-
edge base for a user input statement during the learning process.

In our modified version of a semantic network, the nodes represent sentences rather than 
words, and the edges contain the similarity scores between two neighboring (i.e., similar) 
sentences. This approach was chosen because it is more appropriate to relate sentences that 
include similar information. The edges between the nodes are weighted using the Jaccard 
similarity measure (https:// scikit- learn. org/ stable/ modul es/  gener ated/ sklea rn. metri cs. jacca 
rd_ score. html) that is typically used to represent the similarity between two sentences/doc-
uments. A value of 1 means that the sentences are identical; a value of 0 means that they 
are completely dissimilar. Values between 0 and 1 reflect the degree of similarity. There-
fore, sentences with similar meaning are linked using the Jaccard similarity measure to 
represent the degree of similarity between the sentences in connected nodes.

The Jaccard index is defined as the size of the intersection of the two sentences (number 
of similar words) divided by the size of the union of them (number of unique words in both 
sentences).

Where A represents the set of words in the first sentence and B holds the set of words in the 
second sentence.

In order to calculate the similarity between two sentences, LCC first applies lemmati-
zation to return the words to their roots; this facilitates the word comparisons. For exam-
ple, to measure the Jaccard similarity between “this girl has a pretty dress” and “those 
girls have pretty outfits”. By applying lemmatization, the words “this” and “those” become 
“this”, “girl” and “girls” become “girl”, and “has” and “have” become “has”.

The generated semantic network uses undirected edges to connect nodes whose Jaccard 
similarity measure is above 0.1. Therefore, the generated networks are typically sparse.

The benefit of transforming the text file into a semantic network is to take advantage 
of such sparseness to prune away the low likelihood search space for the learning pro-
cess. This speeds up matching the user input statement with the existing information in 
the knowledge base, as it precludes the need for an exhaustive search of the knowledge 
base. For example, assume the user input contains information about cars such as “my car 
has four wheels”. When LCC compares this input with the first sentence in the knowledge 
base, say “the sky is blue”, there is no similarity between the two sentences. Therefore, 
LCC will exclude all the neighbor nodes of “the sky is blue” from further comparison, and 
move on to compare the input to other nodes. This is further discussed in Sect. 4.6 below.

There are two ways to modify the knowledge base: (1) by adding a new piece of infor-
mation and (2) by modifying existing information. Adding new information to the text doc-
ument version of the knowledge base is accomplished by simply appending the new sen-
tence as a string to the end of the text file. The semantic network can then be reconstructed 
from the updated text file to add the new node and place it in its proper location. This will 
allow the new node to build connections with the existing nodes. The new node is assigned 
a new unique numerical label.

(1)J(A,B) =
|A ∩ B|
|A ∪ B|

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html


4808 Machine Learning (2023) 112:4789–4836

1 3

Modifying an existing piece of information requires updating the knowledge base by 
replacing an existing sentence with the user input statement that is deemed to be valid 
information worth learning by the classifier unit. Therefore, the new node is placed in the 
position of the previous node whose information is to be overwritten, and receives the node 
ID of the overwritten node. That will trigger a rebuild of the semantic network, as the 
new node might have different connections with existing nodes than had the node being 
replaced.

The knowledge base (both, the text file and the semantic network) is updated repeatedly 
to ensure that new changes in the knowledge base are always reflected in the semantic net-
work. This is done immediately after any and all changes made to the text file.

Because the network uses ID numbers (integers) to represent the sentences in the knowl-
edge base, a relational database is created to map those ID numbers to their original sen-
tences. This database provides an efficient way to map the ID numbers back to their respec-
tive sentences and is updated after every change is made to the knowledge base during the 
learning process. Examples of the generated semantic networks are shown in Fig. 3, and 
the dictionary mapping between the nodes in these networks and their IDs is shown in 
Fig. 4.

It is worth mentioning here that there are other potential approaches for representing 
vectors of words. Therefore, it is appropriate at this point to briefly discuss some of these 
methods and point out how they differ from our implementation.

Vector of words representation e.g., Word2Vec (Goldberg & Levy, 2014) represent 
words as multidimensional continuous floating-point numbers in which semantically simi-
lar words are mapped to nearby points in geometric space. Each point captures a dimen-
sion of the word’s meaning to humans, as the LCC semantic network does not reflect the 

Fig. 3  Example of the semantic 
network

Fig. 4  The sentences for the 
nodes in Fig. 3
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meaning of a word and semantically similar words have similar vectors. This means that 
words such as “motor” and “engine” should have similar word vectors to the word “car” 
because of the similarity of their meanings. LCC does not represent words as vectors: 
instead it uses Jaccard similarity to cluster/link together sentences with similar meaning in 
the knowledge base. In other words, LCC doesn’t per se use a vector representation for the 
data in the knowledge base; rather, each sentence has a unique number that links semanti-
cally similar information together. As a result of the runtime efficiency tests run as part of 
this research, (see Sect. 5 below) LCC clearly seems, at this point in its development, to 
be better suited to small and medium-sized knowledge bases. The long runtimes it takes to 
search and retrieve information from large KB’s results in an unacceptable user experience. 
Our future research will explore other means to represent, store and index the information 
that can result in significantly faster responses to user interactions. Using word2vec repre-
sentation could be beneficial to the LCC when considering large knowledge bases.

Another representation that could prove beneficial is that of Bidirectional Encoder Rep-
resentations from Transformers (BERT). The BERT system is a set of pre-trained language 
models that can be fine-tuned for downstream tasks (Devlin et al., 2018). It is designed to 
help computers understand the meaning of ambiguous language from the surrounding text. 
It is based on transformers (Vaswani et al., 2017)—a deep learning approach that solves 
sequence-to-sequence tasks taking in consideration long-range dependencies between 
the words. Similar to other deep neural networks, it uses encoders and decoders; beyond 
that, however, transformers use a mechanism called self-attention (Luong et al., 2015) that 
assigns different weights based on the significance and importance of each part in the input 
data. Self-attention helps passes the position of the word to the decoder in a way similar to 
how humans read a text, as we always focus on the current word, but we remember key-
words related to what we had read before to understand the whole sequence. Transformers 
have been widely used in natural language processing for tasks such as summarization and 
language translations. For example, to figure out the meaning of a word, it is important to 
know the context in which that word appear and the further we go, the more accurate the 
prediction for the meaning will be. BERT is different from other deep learning approaches 
because it is designed to read both, the word before and the word after at the same time. 
The main difference between systems such as BERT and how LCC represents the informa-
tion as semantic networks is that LCC doesn’t use a pre-trained model on a large volume of 
training data; rather, LCC makes use of a small to medium size volume of training data to 
train its classifiers to classify the user input. Yet, using a pre-trained model such as BERT 
could improve the classification process for LCC. We will consider using it in our future 
research.

4.4  Memory function

The memory function unit saves prior information about the user and his/her statements 
made to LCC. The memory can be accessed only through the learning unit, as indicated in 
Fig. 1. LCC memory consists of three different dictionaries: (1) one in which LCC saves 
information related to a user’s trustworthiness, (2) a second one where logs of prior inter-
actions are kept, and (3) a third one that holds information related to earlier modifications 
of the knowledge base.

In general, a memory model is closely related to learning because it is necessary to 
have somewhere to keep records of the input information prior to learning it, as well as 
to remember the users who have previously interacted with the system. The memory unit 
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saves previous modifications in the knowledge base to remind returning users what modifi-
cations had been made earlier as a result of their prior interactions with LCC. It can make 
the conversation sound more natural if recently learned knowledge can be brought into a 
conversation later, specifically in Q/A. Those modifications are tracked during the LCC 
learning process by assigning a negative integer to information that is modified, a positive 
integer for confirmed information and a floating point number for new information. LCC 
would be able to know the type of information (modified, or new) by checking its assigned 
number. Those numbers are assigned by the learning process to determine the state of the 
information. Inputs that contain chatting statements or questions are not considered by the 
memory unit, as it is not important to remember them. More details about this are included 
in Sect. 4.6.5. An example is shown in Fig. 5. For the dictionary that records the modifica-
tion of previous information, the key is the node ID, and its associated value is a list of pre-
vious versions of the original information that was in the knowledge base. It is important 
to note that this dictionary only holds information about modified sentences. We did this to 
make the size of the document more manageable.

For the user’s previous interactions file, the key is the username, and its associated value 
is a set of his/her input statements from prior sessions with LCC. The updated information 
is saved in a text file corresponding to that user when the user ends his/her interaction with 
the system.

4.5  Chatbot

LCC uses a chatbot to produce responses for statements classified as chatting, or for when 
the user enters information worth learning information but he/she has been classified as an 
unauthorized user. However, as we have stated earlier, LCC was not intended or designed 
to be a full conversational agent. The chatbot is built with the ChatterBot library (Chatter-
Bot-machine learning, conversational dialog engine, https:// chatt erbot. readt hedocs. io/ en/ 
stable/) that uses searching and classification algorithms to produce a variety of answers. 
ChatterBot uses an example-based model and the responses are selected by choosing the 
best matching answer to the user input. The training data are stored in the form of ques-
tions and answers. The program can also be trained from the user input, as it saves the 
user’s input and the statements generated by the system as responses.

Fig. 5  Memory representation of the numerical associated values

https://chatterbot.readthedocs.io/en/stable/
https://chatterbot.readthedocs.io/en/stable/
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ChatterBot consists of four adapters, (1) input adapter that accepts the user input and 
passes it to the chatbot; (2) storage adapter that stores the information in a database; (3) 
logic adapters that are responsible for selecting the answers; (4) output adapter that returns 
the answer.

ChatterBot has multiple logic adapters that use Naïve Bayes classifiers to determine 
whether a given input by the user meets some criteria to guarantee a response by the sys-
tem. It also uses search algorithms to help the system choose a response by measuring the 
similarity of an existing statement to the input statement, and the frequency of having simi-
lar responses that have occurred before.

The logic adapter plays the role of dialogue manager; therefore, it is responsible for 
finding an answer to the user input. The database in Chatterbot is divided into categories: 
For example, computers, food, greetings, health, etc. An example of how the knowledge 
base for the Chatterbot database is organized for the computer topic is shown in Fig. 6. The 
logic adapter first searches the database for a known statement that is similar or close to 
the user input. Later, it selects a known response to that statement, where there are usually 
several of them. For instance, if the user asks “what is a computer?”, the logic adapter will 
first search the knowledge base to find the best match, which in this case will be an exact 
match to the first question shown in Fig. 6. Later, the logic adapter will respond to the user 
input with one of the responses on the left that will be chosen at random. More information 
can be obtained from the Chatterbot documentation (ChatterBot-machine learning, conver-
sational dialog engine, https:// chatt erbot. readt hedocs. io/ en/ stable/).

4.6  Learning unit and learning algorithm

The process of how to update a computer agent’s knowledge base in real time while in a 
conversation with a human takes place in the learning unit. Therefore, the main task of the 
learning process is to find a correlation between a user input statement that is deemed by 
the classifier to be information worth learning and its best match in the knowledge base. 
LCC searches through all the matches made through three different similarity measures 
(discussed in this section below) to find the best match. How these three measures are com-
bined in this matching process is also described in detail later in this section.

Character-based similarity measures the distance between two strings of characters 
based on the length of contiguous chains of characters that are present in both strings. In 
this research, we applied fuzzy string matching that uses a Levenshtein distance to com-
pute the similarity between the texts strings (Yujian & Bo, 2007).

Knowledge-based similarity is a semantic measure that calculates the degree of similar-
ity between two words using various pieces of information derived from publicly available 
sources, such as WordNet. Similarity measure based on WordNet, and Word alignment 
matching can be considered examples of this type of measure. The idea behind using dif-
ferent types of similarity measures was to overcome the limitations inherent in each meas-
ure, as well as to create a collaborative environment that narrows down the search space in 
the knowledge base to find the best match for the user input. LCC does not understand the 
meaning of the sentences as do humans; rather, it depends on those similarity measures to 
determine the closeness between two sentences.

We now discuss these measures in greater detail. However, we should note here that 
the three similarity measures discussed in the next three sub-sections are only used in the 
search and match process for the most similar node to the user input. These similarity 

https://chatterbot.readthedocs.io/en/stable/
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measures are not used to link similar nodes in the semantic network version of the knowl-
edge base, as the latter is built using the Jaccard similarity measure as discussed earlier.

4.6.1  Fuzzy string matching

Fuzzy string matching is used as a first step to prune the search space. The pruning process 
is discussed in Sect. 4.6.4 below, but a look at the similarity metrics used is warranted prior 
to that discussion.

The fuzzy string matching similarity metric uses Levenshtein distance (Chacón et al., 
2014) to calculate the similarity between two strings/sentences. There are three different 

Fig. 6  An example of how the database in chatterbot is organized
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variations of this measure: (a) token sort ratio, (b) simple ratio, and (c) partial ratio. Token 
sort ratio sorts the words in the strings to be compared by alphabetical order. Therefore, 
it does not consider the position of the words in the sentence, as it sorts the words in the 
strings alphabetically and applies fuzzy string matching to them. The simple ratio com-
pares the similarity between two strings having the same length. The partial ratio can com-
pare two strings of different lengths by finding a substring of the shorter string in the longer 
string. For example, “I have an appointment tomorrow” and “I have an appointment tomor-
row with the doctor at 3:00 pm” have a partial ratio of 100% because the first sentence is a 
substring of the second.

In our approach, we used token sort ratio (fuzzywuzzy, https:// github. com/ seatg eek/ 
fuzzy wuzzy) to measure the string similarity rather than simple ratio or partial ratio. This 
was done because simple ratio requires both strings to be of the same length, which is 
impractical for the purpose of LCC. The partial ratio looks to find substrings rather than 
matching the whole string. Token sort ratio has a drawback of not considering the posi-
tion of the words in the comparison, but it takes into account all the words in both strings. 
For instance, in the above example comparing “I have an appointment tomorrow” and “I 
have an appointment tomorrow with the doctor at 3:00 pm”, partial ratio is computed to be 
100%. Yet, the token sort ratio between them is 69%, which is intuitively more representa-
tive of their similarity. Moreover, the token sort ratio is more acceptable for our purposes 
because we are not looking to find a substring in both strings.

4.6.2  Similarity measure based on WordNet

This similarity measure is an example of a knowledge-based similarity measure. We used a 
modified version of the work by Mihalcea et al. (2006) that uses WordNet (https:// wordn et. 
princ eton. edu/) to measure the semantic score between two segments/sentences. The work 
of Mihalcea et  al. is one of the first approaches that goes beyond simple word-to-word 
comparison for estimating the similarity using segments with more than three words. This 
approach uses a function of the semantic similarity at the word level to model the semantic 
similarity of the whole segment. This similarity measure combines the metrics of word-to-
word similarity into a formula to measure the similarity between two sentences. There are 
multiple word-to-word semantic similarity measures suggested in Mihalcea et al. (2006). 
In our work we used Pointwise Mutual Information to use data collected by information 
retrieval (PMI-IR) to measure the degree of statistical dependency between two words. 
PMI-IR is measured as follows:

where w1 and w2 are the two words between which we wish to measure the PMI-IR; 
p(w1&w2) represents the probability that both w1 and w2 appear together, while p(w1) and 
p(w2) represents the probability that each of those words appears separately in a sentence. 
More information about PMI-IR can be found in Mihalcea et al. (2006).

The complete process to measure the semantic similarity between the two strings oper-
ates as follows: for each word w in the first segment S1 , the system tries to identify the word 
in the second segment S2 that has the highest semantic similarity (maxSim(w, S2)). The 
same process is applied in the other direction, i.e., decide the most similar words in the first 
segment S1 for words found in S2 . The results are summed and normalized over the length 
of each text segment. The results of the measure are later combined using a simple average 

(2)PMI-IR(w1,w2) = log2
p(w1&w2)

p(w1) ∗ p(w2)

https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/
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of the measures in both directions. The average is computed because the similarity meas-
ures computed are typically not the same in both directions. This is a drawback in their 
work, as it is more practical to have the same value in both directions; however, the differ-
ence between the two values is generally small, and averaging the values makes the result 
more acceptable as it considers both directions. The final formula to calculate the semantic 
similarity is as follows:

The similarity value can be any value between 0 and 1 inclusive; where 1 means exact 
match and 0 indicates no match at all between the two sentences.

In their work, Mihalcea et al. added a weight to the similarity measure using TF-IDF.2 
For our research, the extra computation of calculating TF-IDF was not included, as our 
desire was to have a uniform distribution by giving each word the same weight and impor-
tance. This is acceptable here because we are dealing with short text input and we believe 
that every word should contribute equally when the similarity score between two sentences 
is calculated. Another reason to not use TF-IDF is that while TF-IDF is beneficial for docu-
ments that contain large paragraphs, as it emphasizes the importance of words that occur 
more often, the fact is that LCC only works with relatively short sentences.

WordNet can only compare the words with the same part of speech tags i.e., it com-
pares nouns with nouns, verbs with verbs, etc. Therefore, to measure the degree of similar-
ity between the user input and the knowledge base contents, part-of-speech tagging (POS) 
is used. Furthermore, WordNet can only include nouns, verbs, adjectives and adverbs, so 
other parts-of-speech tags (e.g., articles and pronouns) are ignored during the comparison.

To show an example of how the similarity measure is computed between two sentences, 
we show the results of calculating the similarity measure between: S1: “a cup of caffein-
ated coffee significantly improves blood flow”, and S2: “a cup of coffee can enhance blood 
flow”. The similarity measure starting with the words in the first sentence (S1) and com-
pare it with the words in the second sentence (S2) are reported in Table 1. While the results 
of the similarity measure starting with the words in S2 and compare it with those in S1 are 
shown in Table 2.

As reported, the results were not identical in both directions, as we can see that when 
comparing the words “enhance” and “better” in Tables  1 and 2. This is because of the 

(3)Sim(S1, S2) =
1

2

∑
w∈{S1}

maxSim(w, S2)

S1 length
+

∑
w∈{S2}

maxSim(w, S1)

S2 length

Table 1  Word similarity scores 
between Text1 and Text2 starting 
with S1

S1 S2 maxSim 
( w ∈ S1, S2)

Cup Cup 1.0
Coffee Coffee 1.0
Significantly None
Better enhance 0.125
Blood Blood 1.0
Flow Flow 1.0

2 TF-IDF stands for Term Frequency-Inverse Document Frequency, a numerical measure that reflects the 
importance of a word in a document or corpus.
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limitation of this approach that we discussed earlier; however, the simplest way to over-
come this problem is by taking the average of the values in both tables. Therefore, the total 
similarity score (calculated using Eq. 3) of Table 1 is 0.825 and the score of Table 2 is 
0.829. By averaging the results of both directions, we get 0.827 which is the semantic simi-
larity measure between these two sentences.

Additionally, we can see that the word “better” was not a part of the first sentence but 
it is the synset of the word “improve” because this measure uses the words most common 
synset in calculating the similarity score. Therefore, this similarity measure was able to 
relate them to each other. Furthermore, from both tables, we can see that this measure only 
considers the nouns, verbs, adverbs, and adjectives in the comparison.

4.6.3  Word alignment matching

The second similarity measure used here is adopted from the Semantic Evaluation 
(SemEval 2015) competition.3 The basis of the SemEval competition is to measure the 
semantic similarity between two sentences using a scale from 0–5, where 5 indicates 
identical pairs and 0 means no similarity. The system used in our research, proposed 
by Sultan et  al. (2015), was ranked 1st during the SemEval competition. It operates 
by aligning semantically-similar words across the two sentences and it depends on 
extracting word similarity and extracting contextual similarity. To identify word simi-
larity, three levels are considered as follows:

• Exact word match, where the similarity score is 1.
• A degree of similarity that matches non-identical words. In order to do that, the authors 

used a database called Paraphrase Database (PPDB)4 to identify such relations. This 
level assigns scores between 0 and 1, which represent the degree of similarity.

• No similarity exists, which receives a value of 0.

An example of the alignment process is shown in Fig. 7 where five words are aligned between 
the two strings, including words that have a similar meaning, “awarded” and “received”. 
Therefore, the number of alignments between the two strings is five.

Table 2  Word similarity scores 
between S1 and S2 starting with 
S2

S2 S1 maxSim 
( w ∈ S2, S1)

Cup Cup 1.0
Coffee Coffee 1.0
Enhance Better 0.143
Blood Blood 1.0
Flow Flow 1.0

3 SemEval is an ongoing series of evaluations of computational semantic analysis systems. The evaluation 
involves exploring the natural meaning of the language. This task is not intuitive to machines as it is for 
humans (International workshop on semantic evaluation, 2015).
4 http:// parap hrase. org

http://paraphrase.org
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Extracting contextual similarity depends on two resources: syntactic dependencies and 
words occurring within a small window of the area of the two words to be aligned (three 
words from each side, left and right) (Sultan et al., 2014). This approach also matches mis-
spelled words when the difference is one letter using the Levenshtein distance.

The work of Sultan et  al. operates in a form of a pipeline that aligns words within the 
same category, as shown in their general architecture in Fig. 8. Alignment of identical word 
sequences is the simplest form of alignment, as it aligns sentences that have identical words in 
the sequence and contextually similar words in both sentences. Named Entity is aligned sepa-
rately to allow the alignment of full and partial names such as initials and abbreviations. The 
Stanford Named Entity Recognizer (Finkel et al., 2005) is used to identify the names in both 
sentences that need to be aligned during named entity alignment. Content Words is used to 
match contextually similar words. Stop words use the same approach in matching contextually 
similar words, but because they are the last things that become aligned, it does not consider 
the neighboring words (on the left and right) in the alignment process, and it aligns word-to-
word only.

The similarity measure is computed as follows:

Where na
c
(Si) and nc(Si) are the total number of words and the number of aligned words in 

sentence Si respectively. The words are aligned only when there is some semantic contex-
tual similarity between them.

(4)Sim(S1, S2) =
na
c
(S1) + na

c
(S2)

nc(S1) + nc(S2)

Fig. 7  Example of the alignment process (International workshop on semantic evaluation, 2015)

Fig. 8  Word alignment architecture (Sultan et al., 2014)
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4.6.4  Searching the semantic network in the knowledge base

Finding the most similar sentence in the semantic network requires searching the seman-
tic network. Therefore, similarity measures were used not only to find the best match but 
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also to minimize the search space, and avoid an exhaustive search of every node (sentence) 
in the network, as this would be computationally prohibitive given the real time require-
ments of the LCC application. So, the matching algorithms were not used to compare the 
user input with every single node/sentence in the knowledge base; rather, the user input is 
compared to a subset of the knowledge base that is chosen after using one of the similar-
ity measures discussed above—the fuzzy string matching algorithm—to prune the search 
space. It excludes not only those nodes whose similarity to the user input is minimal, but 
also their neighboring nodes (i.e., those whose edges connect to these nodes).

Fuzzy string matching is the simplest and fastest algorithm for computing the similar-
ity measure of the three similarity measures discussed above. Nevertheless, selecting an 
appropriate threshold to which to compare the obtained similarity scores was a critical 
task. An overly tight threshold would excessively prune the search space, possibly exclud-
ing good matches. On the other hand, a threshold that only prunes minimally would result 
in computing inefficiencies that would render the process unworkable for this real time 
application.

Optimal threshold determination was employed by trying different combinations of 
similarity scores and adjusted the thresholds until we became satisfied with how informa-
tion between the KB and the user input were correlated. More details of this process can 
be found in Mohammed (2019). After implementing this method, we selected the value 
of 40%, where this value represents the threshold for deciding whether to prune a node or 
not. For example, the fuzzy string similarity ratio between “bananas grow on trees” and 
“bananas are yellow” is 40%. Using a threshold greater than 40% would mark those two 
sentences as unrelated; however, in reality they would still be slightly related as they both 
deal with bananas.

To visualize how the pruning process works, assume that the knowledge base con-
tains information about food, cars and planets. When the user enters a statement related 
to cars, the learning process will start pruning the search space by computing the fuzzy 
string matching value between the user input and each node in the knowledge base with a 
threshold of 40% similarity. The 40% value provided a good compromise between pruning 
too much of the search space (if > 40%) and thereby possibly eliminate potentially good 
matches, or pruning too little (if < 40%) and increasing the runtime unnecessarily. Nodes 
that have scores below that threshold when compared with the user input are excluded. 
Therefore, all their connected neighbors nodes with sentences that deal with food and plan-
ets are likely to not be included in the search space.

Algorithm 2 describes how the process works used in LCC to prune the search space.

4.6.5  Combining similarity measures to find the best match

Algorithm 2 also shows the entire learning algorithm that combines the similarity measures 
described above to find the best match in the KB to the user input. The algorithm works to 
identify the node in the knowledge base that is most similar to the user input. Based on the 
similarities between the nodes in the network and the user input, and by comparing them to 
a predefined threshold, the information will be determined to be either a match to the user 
input (and therefore already “known”), information that needs to be updated, or new infor-
mation to be added to the KB (i.e., learned).

Determining the thresholds to which to compare the similarity scores was a challeng-
ing task. (Note that these thresholds are different from the threshold of 40% selected for 
the pruning process described in the section above). Optimal thresholds determination 
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was again employed by trying different combinations of similarity scores and adjusted 
the thresholds until we became satisfied with how information in the KB and the user 
input were correlated. More details of this process can be found in Mohammed (2019).

LCC selects the nodes that are found to be similar to the user input and adds them 
to a dictionary called the related dictionary, with their corresponding similarity scores 
(lines 12–18 of Algorithm 2). More specifically, the nodes that have at least two aligned 
words (words in common) using Sultan et al. (2015) work and their semantic similarity 
measure is greater than or equal to 0.5 using Mihalcea et al. (2006) method are consid-
ered to be part of the related dictionary. The threshold of 0.5 was suggested by Mihalcea 
et al. as a good threshold for considering two sentences semantically related. Note that 
the fuzzy string similarity measure is not used as criterion for inclusion in the related 
dictionary. However, it is used for further decision-making.

The key in the related dictionary is the node number (ID), and the values are the 
three similarity scores (fuzzy string matching, semantic similarity measure and the 
word alignment matching score) between the node and the user input statement. The 
related dictionary can be empty if no node in the KB is found to be above the specified 
thresholds.

Based on more restrictive thresholds (discussed below), LCC then determines which 
nodes are related to the user input by choosing the node from the related dictionary that 
has the highest combined similarity score. This is called the dominant node in the seman-
tic network. The last phase in the learning process is when LCC determines whether the 
user’s information (comparing it to the dominant node) is new information, a modification 
of existing information or similar to existing information in the knowledge base. An empty 
related dictionary inherently indicates that there is no similar information to the user input 
in the knowledge base, and that the input statement should be considered as new informa-
tion to be added to the KB.

However, if the related dictionary is not empty, the decision becomes more complicated, 
as LCC then determines the disposition of the dominant node according to where the val-
ues fall within the following ranges:

For LCC to consider the user input as existing information, the similarity scores 
between the dominant node in the KB and the user input should satisfy all the following 
criteria (lines 26–28 in Algorithm 2):

• The fuzzy string matching score should be equal to or greater than 80.
• The semantic similarity score is more than 0.9.
• There are at least four aligned words.

The threshold of 80 means that the fuzzy string matching should match at least 80% of the 
information in both the user input statement and the dominant node in the knowledge base. 
The semantic similarity measure of 0.9 or above reflects a close semantic relation between 
the two compared sentences. For the fuzzy matching score, an alignment of four words was 
chosen to eliminate the effect of matching stop words (words that do not hold important 
information such as: is, are, the, etc.). However, the length of the sentences should include 
more than four words for this measure to be accurate.

The ranges of the matching scores were chosen to be not so tight in order to allow a 
small gap when a slight difference exists between the user input and the most similar infor-
mation in the KB. For example, if the user enters “bananas are radioactive” and the KB 
contains “bananas are slightly radioactive.” should be considered the same as they both 
refer to the same thing, which is that bananas are radioactive. During our optimal threshold 
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determination to select the thresholds, we selected those thresholds that matched closely 
relevant information.

Alternatively, a fuzzy string matching score > 50 and the semantic similarity score > 
0.6, LCC considers that to be a close relation to the user input, with some modifications 
(lines 29–38). Therefore, LCC asks the user (trustworthy, of course) if he/she wants to 
update information in the KB with the user text input statement. Those values are chosen 
not to be so high as the values that reflect exact information, and also not too low because 
having lower values of the fuzzy string matching and the semantic similarity measure can 
result in incorrectly assuming the information to be related. For example, “English is the 
language spoken in most US cities” and “US has many cities” are related as both refer to 
something in the US and its cities; however, they contain entirely different information. 
Therefore, they should not be considered as closely related.

Lastly, if the dominant node scores in the related dictionary are not within the previous 
ranges, LCC considers the information as new information and adds it to the knowledge 
base. Lines (40–45) add the user input as a piece of new information in the knowledge 
base, as none of the previous thresholds were satisfied.

During the learning process, the system assigns a numerical label to the action taken 
(adding, exchanging and confirming information). Those labels are assigned as identifiers 
so the system can know what information has been changed, added or confirmed. A 0.5 is 
given when the piece of information is deemed to be new information and is added to the 
dictionary that keeps a record of the state of the knowledge base. A label of 1 is assigned 
each time the user text input statement is confirmed to be existing information. A label of 
− 1 is given when the user text input replaces what is in the KB.

4.7  Question/answering system

To answer users’ questions that are relevant to the knowledge base, LCC uses a similar 
approach as the learning algorithm to find the most suitable answer to the user question. 
However, rather than modifying the knowledge base when the user text input contains dif-
ferent or new information, LCC only outputs a message to the user indicating whether it 
has the same information or not. It replies that it has the same information when the sim-
ilarity scores are within the range of confirming information (the fuzzy string matching 
score ≥ 80; the semantic similarity score > 0.9, and there exists at least four aligned words/
expressions between the user input and the dominant node. If the sentence only includes 
three words, it will be ignored; therefore, anything below four will not be considered.

Occasionally, LCC will be presented with input that contains slightly different informa-
tion from what it has in the knowledge base. This results in a partial match that is deter-
mined using similar thresholds to those used in the learning process with partial matching. 
In these cases, LCC will decide that it has related information to the user input and will put 
out that information. When the matching scores are not within the ranges described above, 
then LCC will produce a message indicating that it does not know the answer to the user’s 
question.

For example, if the knowledge base contains information such as “cars have four 
wheels”, when the user asks, “Do cars have four wheels?”, LCC will answer “Yes, I have 
similar information”. When the user asks, “Do cars have six wheels?”, the system answers 
with, “I know that cars have four wheels”. Yet, when the user asks about information that 
does not show any similarity to any sentence in the knowledge base, the system will simply 
answer, “I do not know”.
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We should note that as we stated earlier, LCC can only answer a yes/no type of ques-
tions; it cannot answer questions such as “how many wheels does a car have?”. We 
acknowledge that this is a limitation of the LCC question answering system and is left for 
future research.

5  Testing and results

A series of tests were performed to assess the performance of the LCC prototype system 
and to learn the opinions of human users about the system. The evaluation process was 
composed of the following three independent assessments:

• Test 1: Two functional tests were performed to test the effectiveness of the classifica-
tion and of the learning units.

• Test 2: A two-stage assessment to gauge the acceptance of the LCC concept by human 
test subjects was carried out. The protocol involved asking the test subjects to interact 
with and/or evaluate the LCC prototype system.

• Test 3: A computation-only experimental assessment was done to determine the com-
putational complexity of the LCC system. This was done to better understand the 
impact of increasing the size of the knowledge base on the runtime performance of the 
LCC prototype. The results indicate how scalable the system would be for use in real-
world applications.

We discuss each of these individually.

5.1  Test 1: functional testing

The functional testing involved evaluating the ability of the LCC prototype to carry out the 
correct learning action (Test 1-A) and classification decision (Test 1-B) when presented 
with input statements of varying levels of difficulty. Test 1-B was specifically designed to 
assess the impact of using the two levels of decision-making in the LCC input classifica-
tion process. No human test subjects were used in these functional tests. All test statements 
assumed a trustworthy user.

5.1.1  Functional tests, part 1‑A experimental procedure: learning unit assessment 
with difficulty level testing

A series of tests were conducted by the authors to measure the effectiveness of the LCC 
learning unit. The authors composed a test set consisting of 90 input test statements/sen-
tences that played the role of user text inputs. Each test statement was manually labeled by 
the authors with the expected correct action that should be taken by the LCC prototype, 
either: (1) add the statement as new information; (2) confirm that the statement represents 
existing information; (3) exchange/update existing information with the test statement; (4) 
answer a question posed by the input statement; or (5) respond to a chatting statement. 
These developer-assigned labels were considered the ground truth labels that were later 
used to determine the correctness of the action taken by LCC in response to each test input 
sentence.



4822 Machine Learning (2023) 112:4789–4836

1 3

The 90 test statements/sentences were placed into three groups of 30 test statements 
each based on their level of difficulty. The test sentences were created by the lead developer 
(the first author) with full knowledge of the contents of the KB, and in accordance with the 
difficulty criteria set forth below for each group, The grammatical structure for the sen-
tences used in Groups 1, 2 and 3 were fundamentally the same:

The differences are in what words were used for the qualifying adjectives and for the noun 
phrases. Our means for identifying similarity depend heavily on individual words, so if dis-
similar words are used, this could result in an incorrect matching of the test input sentence 
with the contents of the knowledge base. We should note that the 90 sentences that com-
prise the three test groups were designed to achieve specific test objectives. 

1. Group 1: The objective of the Group 1 test sentences was to verify that LCC had a 
“floor” of relatively easy sentences that it could successfully match to the KB contents. 
Therefore, Group 1 sentences were short sentences that used words that were largely 
the same as those found in the KB, although with additional qualifiers for the noun and/
or the object phrase. For example, a test input of “Electric cars fake engine noise”, can 
be matched rather easily by the LCC’s similarity measures to “Most electric cars fake 
engine noise through speakers”, which is what was contained in the KB. LCC should 
have been able to easily match these two sentences because “electric cars” and “fake 
engine noise” were found verbatim in both sentences. The differences of “Most ...” as an 
adjective quantifying the subject, and “...through speakers” qualifying the object would 
not make them dissimilar enough to result in a mismatch. Thus, LCC should respond 
that it has similar information in its KB.

2. Group 2: The objective of Group 2 was to challenge the LCC algorithm with input 
test sentences that would present a challenge to LCC, but which it was designed to 
successfully match. Therefore, the sentences used in Group 2 are not as similar to the 
sentences that exist in the knowledge base as were those of Group 1. In particular, they 
contain different words with the same meaning, use different tenses, use definitives and 
change the voice of the verbs (active vs. passive). An example sentence used in Group 
2 is “Soybeans were used to make a car by Ford”, while the most similar sentence in 
the KB would be: “Henry Ford made a car out of soybeans”. In this match, the tenses 
are different (make vs. made), the definitive form of “make” was used in one but not the 
other, and, the voice of the test input is passive while that of the sentence in the KB is 
active. Moreover, “Ford” is qualified by “Henry”. Furthermore, “soybeans” goes from 
being the subject in the user input to being part of the qualifying noun phrase for “car” in 
the KB. For those reasons, this is a more difficult match to make by the LCC algorithm. 
Nevertheless, albeit with greater difficulty, LCC should be able to determine that those 
two sentences are related and hold similar information.

3. Group 3: Sentences were purposely chosen to try to “break” the LCC matching algo-
rithm in order to find its upper bound of effectiveness, but short of making it impossible 
to match. In this group, we used test input sentences that had significant differences—
more so than those of Group 2—to the sentences in the KB. As in Group 2, the differ-
ences were not in the sentence structure but rather, in the length of the sentences, the 
voice of the sentence (active or passive) and in the words used. The test sentences in 
Group 3 also quantify various ways and use words instead of numbers to represent the 
same numeral contained in a sentence in the KB. For example, a test input is “Almost 

(5)
(qualifying adjective) subject noun − verb − (qualifying adjective) object phrase
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half of Americans eat a sandwich every day” while what is in the KB is: “49% of US 
Adults eat one sandwich a day”. LCC must infer that “almost half” and “49%” are the 
same thing. A second example test sentence is “Do you like artichoke? It is a vegetable”, 
LCC’s task was to extract the information that artichoke is a vegetable and add this to 
its knowledge base.

The entire list of sentences that were classified as Groups 1, 2, and 3 can be found in 
Appendix B of Mohammed (2019) under the Difficulty Level column. Note that some of 
the test sentences used as examples above were slightly changed to make the exposition 
here more clear.

The LCC prototype was manually given an initial knowledge base consisting of 30 sen-
tences in the text file version of the KB. The corresponding semantic network for these 
sentences was built by LCC prior to the testing. These sentences were obtained from a 
website (Random facts, https:// www. facts lides. com) that contains random facts related to 
various topics; cars and food were used as the topics of interest in this test. The classifiers 
were trained prior to the start of the tests and tested as described in Sect. 4.2.3.

Note that the knowledge base was not changed between presentations of test in-puts, 
even though some of the earlier inputs may have involved additions and/or up-dates to the 
knowledge base. This was done to make the tests impervious to the order of presentation of 
the test inputs. However, we further note that in actual operation, additions and deletions/
updates of information to the KB would happen immediately after each individual user 
input was processed, thereby possibly making the decisions taken later by LCC different 
from what resulted in these tests. The 90 test sentences and the sentences in the knowledge 
base can be found in Mohammed (2019)

The next sub-section describes and discusses the results of Functional Test, Part 1-A

5.1.2  Functional tests, part 1‑A—results and discussion

The results are shown in Table 3. The accuracy was calculated by comparing these labels of 
each test statement with the actual actions taken by the LCC prototype for that statement, 
and dividing the total number of correct actions by 30, as shown in the formula below.

As expected, the accuracy of 96.7% obtained for Group 1 was the highest among the three 
groups. The LCC prototype only mishandled one input that was expected to be a question 
for the chatting statement: “can we chat?”. The classifiers labeled it as information worth 
learning and directed the input statement to the learning system.

The accuracy for Group 2 decreased from that of Group 1, as we had expected. The 
LCC prototype was able to handle correctly 70% of the 30 test sentences presented. We 
consider this to be an acceptable result considering the increased level of difficulty of 

(6)Accuracy =
No. of correct answers

30

Table 3  Accuracy as a measure 
of effectiveness in carrying out 
the correct actions in functional 
test, part 1-A in relation to the 
three difficulty groups

Group No. of test sentences Accuracy (%)

Group 1 30 96.7
Group 2 30 70.0
Group 3 30 43.3

https://www.factslides.com
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this second group. A good benchmark for comparison would have been to compare these 
results with those of others found in the relevant literature. However, we could not find 
any comparable tests in the literature. Therefore, borrowing from the standard academic 
passing threshold of 70% as the minimum for acceptability, we used 70% as the minimum 
threshold of acceptable results in our work. Therefore, we consider this test of the second 
group to be acceptable.

The accuracy was further reduced for the third group, as it was only able to handle less 
than a half (43.3%) of the inputs presented. This decrease was expected, as the inputs were 
purposely misleading and likely to be mishandled by LCC. Most of the errors occurred 
when the classifiers mistakenly classified several inputs as chatting when they were not, or 
vice versa. For example, the sentence “I am confused and worried” in truth a chatting state-
ment—was mistakenly classified by LCC as information worth learning.

An alternative way to assess the results gathered from this test was to combine the 90 
test sentences in the three groups and report the accuracy over all the test sentences accord-
ing to the correct type of action expected. Table 4 contains the accuracy measure and the 
number of test sentences under each action. LCC was able to handle correctly at least 72% 
of the text inputs in each column, which can be considered an acceptable average consider-
ing the level of difficulty of the third group.

From the observed results and considering 70% as an acceptable passing rate (as in aca-
demia), we can further infer that the main problem that faced LCC was the limitation of the 
classification process. Although the classification algorithm was designed to be resilient 
with the addition of the second level, such was not always the case, as the second level was 
not always activated (it only activates when there is no unanimity in the vote in the first 
level).

5.1.3  Functional tests, part 1‑B: classifiers testing—experimental procedure

The objective of this test was to evaluate the performance of the classification process for 
the LCC inputs and to measure the impact of using Ensemble learning with the two levels. 
The test procedure involved comparing the classification results of the Ensemble learning 
to the performance of each of the classifiers individually.

The classifiers were all trained using the same pre-labeled dataset of 520 sentences that 
is the 80% training data from the 650 sentences that were discussed earlier in the classifica-
tion process. LCC is designed to use only the common outputs of the three classifiers in 
the first level (the sentence level) when there is unanimous agreement between them on the 
label of the user input. When there is no unanimity among the classifiers in the first level, 
however, LCC activates the second level (the word level). In such cases, LCC uses the 
results from the majority vote of the second level only, even if they are not unanimous, and 
neglects the results of the first level.

Several metrics were used to report the results of Part 1-B. These are commonly used in 
the literature to evaluate the effectiveness of classifiers, as suggested in Provost and Fawcett 
(1997). In the discussion of these metrics, TP refers to True Positive statements—correctly 

Table 4  Accuracy measurement 
among the five types of actions 
taken by LCC

Update/replace Disregard Learn Chat Q/A

Count 24 15 18 21 12
Accuracy (%) 82.6 73.3 72.2 75.0 83.3
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classified as information worth learning; TN refers to True Negative statements—(cor-
rectly classified as chatting or Q/A; FP refers to False Positive—chatting or Q/A statements 
incorrectly classified as information worth learning; and FN referring to False Negative 
information worth learning statements incorrectly classified as chatting or Q/A. There 
was no attempt to further identify whether an input was a chatting statement or a question. 
Those metrics are as follows:

• The true positive rate (TPR): measures the proportion of the test sentences that were 
correctly identified as content-related information; Therefore, the higher the value, the 
better the classifier performance is. This is also known as the sensitivity or the recall. 

• The false positive rate (FPR): represents the number of negative (chatting or Q/A) 
statements that are wrongly categorized as positive statements (content-related). This 
implies that the desired value of FPR needs to be small, as that will minimize the num-
ber of test sentences that were classified incorrectly to be information worth learning 
while they were in truth chatting or Q/A statements. 

• Accuracy is the measure of the closeness of a assigned label by the classifier to the 
actual label. 

• Error-rate is the complement of the accuracy measure. 

• Precision, also known as positive predictive value, answers what is the correct ratio 
of the actual positive values/label over all the positive identifications. The higher the 
value, the better the classifier, as it measures the number of test sentences that had been 
truly classified as information worth learning over all the sentences (true positive and 
false positive) that had been classified as information worth learning. It is calculated as 
follows: 

• F1 measure, the harmonic mean between precision and recall 

5.1.4  Functional tests, part 1‑B: results and discussion

A dataset of 60 input statements was used to perform this set of tests. Thirty statements 
contained information worth learning and 30 statements were either chatting or questions. 

(7)TPR =
TP

TP + FN

(8)FPR =
FP

TN + FP

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)Error-rate = 1 − Accuracy

(11)Precision =
TP

TP + FP

(12)F1 = 2 ∗
Precision ∗ Recall

Precision + Recall
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The statements were created by the developers and manually labeled by them as informa-
tion worth learning (assigned a positive label) or not (assigned a negative label). Although 
the information was available, no effort was made to identify whether a negative label 
assignment was chatting or a question, as it was irrelevant for the purposes of these tests. 
Furthermore, the statements used as inputs had a unique label—that is, there were no state-
ments with mixed labels, such as chatting and information worth learning. This was done 
to make the results more definitive.

The input statements were not determined a-priori to be able to trigger the second level 
of classification or not. Nevertheless, the results were segregated based on whether the sec-
ond level became activated or not. Table 5 contains the results of the performance of the 
LCC Ensemble classifiers.

It is clear that the Ensemble classifier performed significantly better where the second 
level was activated, when compared to those cases where only the first level executed. This 
occurred in spite of the fact that in order to trigger the second level, the first level opera-
tions must have shown some ambiguity. Thus, it is noteworthy that the execution of the 
second level outperformed that of the first level, even when the classifiers in the first level 
were in unanimous agreement. Keep in mind that when triggered, the second level does not 
make any use of the results of the first level in its classification process.

5.2  Test 2: user testing

The objective of the human user tests was to determine how well the LCC prototype sys-
tem would deal with real world user input and what effect this would have in what human 
users thought of it. This assessment was done by creating two separate groups of anony-
mous human test subjects. The first group of test subjects, called Group A, was asked to 
interact directly and mostly freely with the LCC prototype via typed text. After the period 
of interaction ended, they were asked to complete a survey. The second test involved asking 
a second, larger group of different (and also anonymous) human test subjects, called Group 
B, to evaluate the LCC system indirectly by reviewing the logs of the interactions of Group 
A subjects with the LCC system. Thus, Group B subjects did not directly interact with 
LCC, as did Group A subjects. Group B subjects were also subsequently asked to complete 
a survey to evaluate the system performance.

5.2.1  Group A test procedure

Group A consisted of 15 anonymous test subjects of age 18 or older (self-reported) who 
had never had any prior involvement with the LCC or with this project. The Group A par-
ticipants were recruited from the undergraduate as well as graduate student population at 
our home university, as well as from professionals who worked outside of the university. 
The students were invited to interact with LCC at the Intelligent Systems Laboratory at the 
University of Central Florida. They were asked to use a laptop that had the LCC prototype 
system installed, and the actions taken by these test subjects were recorded and placed into 

Table 5  Comparison of 
classifiers performance on 
dataset-1 (scaled to a range 
between 0 and 1)

Classifier TPR FPR Recall Precision F1

LCC with level 1 only 0.83 0.30 0.83 0.74 0.78
LCC with level 2 activated 1.00 0.05 1.00 0.92 0.96
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logs. There was no time limit to the duration of the interaction period. After the interaction 
period ended, they were presented with a survey-type questionnaire, which they completed 
immediately after concluding the interactive session. Although the test subjects were met 
personally by us at the time of their test experience, their names or any other identifying 
information (other than whether they were 18 or older) was not requested, thereby ensuring 
anonymity. In the case of the professionals who served as test subjects, they were given the 
choice of either physically going to the Intelligent Systems lab on campus for their session, 
or to be visited by a member of our research staff who would bring them the same lap-
top containing the LCC prototype to their nearby place of employment. Thus, all subjects 
interacted with the LCC system on the same laptop computer. The Internet was not used at 
any time for the assessments of Group A.

Test subjects from Group A were directed to enter the system first as trustworthy users 
and then later as untrustworthy users. The test subjects were asked to hold a conversation 
with the LCC prototype via typed text that involved new information, existing information, 
updated information, chatting and questions. However, they were not told what to say in 
their conversations. More specifically, the procedure used was as follows:

The test subject was first informed about the LCC prototype system through a discus-
sion with the lead LCC developer (the first author). Then, a brief demonstration of how 
to interact with the prototype was presented to the subject. This included how the proto-
type would add information, how to ask it a question, how to chat, and how it confirms or 
exchanges information. All subjects in Group A were given access to the knowledge base 
to reveal what information the LCC KB contained at all times throughout their interac-
tion experience. This was done to guide their line of questioning and avoid a large number 
of irrelevant questions. It also served to provide the subjects with immediate feedback as 
to how their previous statement was handled by LCC, without the need to ask questions 
about it every time. The knowledge base used in the testing was composed of 30 sentences 
(shown in Mohammed, 2019). This number was selected to avoid overwhelming the user 
by having to review a large document, as well as to achieve fast response by LCC to the test 
input.

As mentioned above, each subject was asked to log in twice, once as a trustworthy user 
and then again later as an untrustworthy user. Both terms (i.e., trustworthy and untrustwor-
thy) were explained to the test subjects before they started, and they were told what they 
should expect while in each mode. In the trustworthy mode, the test subjects were asked 
to submit statements that were new to the LCC, others that were already known, and yet 
others that varied somewhat from what was already in the knowledge base. This was to 
have them informally assess the ability of LCC to do the right thing in their opinion. In 
the untrustworthy mode, the subjects were asked to try to modify the knowledge base to 
see whether LCC permitted the modification or not. Additionally, the test subjects were 
asked to ask questions of the LCC and as well as to engage in a simple chat with it. The 
subjects were asked to perform at least 10 dialogue turns in each mode as part of the test 
procedure before exiting the conversation. This was important to ensure having meaningful 
conversations for the second group of test subjects (Group B) to review. Finally, the Group 
A subjects were informed that anonymous logs of their interactions with the LCC system 
would be saved to be used as part of the testing assessment with the Group B set of testers.

The survey given to Group A subjects consisted of 13 statements to which they were to 
indicate their level of agreement or disagreement. These statements were divided into four 
groups:

• General statements to assess what the subjects thought about conversing with LCC.
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• Specific questions to assess the performance of LCC when he/she logged in as a trust-
worthy user.

• Specific questions to assess the performance of LCC when he/she logged in as an 
untrustworthy user.

• There was one open-ended question to allow the test subject to provide general feed-
back and any thoughts he/she might have regarding LCC that was not specifically asked 
in the other questions.

The subjects were asked to use a 5-point Likert scale to evaluate whether they agreed or 
disagreed with the statement posed in each “question”, where 1 represented complete disa-
greement and/or total dissatisfaction with the posed statement, and 5 meant strong agree-
ment and/or total satisfaction with the statement. The subjects could use any integer value 
within this range to reflect their opinions, but no fractions (e.g., 3.5).

The actual verbatim statements are described in Table  6, along with the results in 
Table 7.

Table 6  The statements that are used in Table 7

No Statement

1 I found the conversation with the system to be natural, as if conversing with a human
2 I found the system to be intuitive and easy to use
3 I found the user interface to be acceptable for the purpose of this program
4 I found that the system correctly added new information to its knowledge base
5 LCC correctly neglected to add information that is already in the knowledge base
6 The system correctly identified the most similar information in the knowledge base
7 The system correctly distinguish between chatting statements and content-related statements
8 I found the system was able to answer my questions
9 Transitions back and forth among the users’ different inputs
10 LCC was able to correctly separate the chatting information from the related information
11 LCC prohibited me from adding and updating information in its knowledge base
12 LCC answers my questions

Table 7  Median, InterQuartile 
range (iqr), mean, and standard 
deviation for group A survey

Statement No Median IQR Mean STD

1 3 2.00 2.87 1.19
2 4 2.00 4.07 0.96
3 4 1.00 4.20 0.94
4 5 0.00 4.67 0.72
5 5 2.00 4.13 1.30
6 3 1.00 3.33 1.29
7 4 2.00 4.13 0.99
8 4 2.00 4.07 1.03
9 4 1.00 3.60 1.05
10 5 0.00 4.67 0.72
11 4 1.00 3.93 1.16
12 4 2.00 3.93 0.96
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5.2.2  Group A tests—results and discussion

We begin the discussion with the first three questions, which are general questions about 
interacting with the system. Question 1, which asks about the “naturalness” of the con-
versation resulted in relatively low user scores. A median of 3 and a mean of 2.87 indi-
cate neutral or slightly worse user satisfaction. This is the only question of those posed 
whose statement can be interpreted in many different ways by the test subjects (i.e., how 
exactly is a conversation natural?). In reality, we do not consider the results for question 
#1 particularly discouraging, as conversing with a machine is still not quite the same 
“natural” experience that is conversing with another human. Moreover, achieving a full 
conversational agent was not one of our primary objectives in this research.

The test subjects’ responses to questions 2 and 3 (about the intuitiveness and the 
user interface) were significantly better, with medians of 4 and means of slightly more 
than 4.0 (4.07 and 4.20). This indicates that the users found the system quite usable, an 
important consideration for any future commercialization of the concept.

The next six questions in the survey contain statements that seek to evaluate the opin-
ions of the test subjects as to whether they thought that the LCC was able to make the 
correct decisions about how to handle the subjects’ inputs in the context of a trustworthy 
user. The test subjects in general thought that the prototype was able to effectively add new 
information to the knowledge base when it was appropriate to do so (median of 5 and mean 
of 4.67). This was quite good. Only slightly less good was its perceived ability to discern 
when not to add information to the knowledge base when it was already there (median of 5 
and mean of 4.13, albeit with relatively high IQR and standard deviation). Not so good was 
the perceived ability of the prototype to identify the most similar information in the knowl-
edge base (question #6), with a median of 3 and a mean 3.33. This was somewhat puzzling 
in light of the high scores given to the statements of questions #4 and #5, knowing that to 
have done those first two actions well, the prototype would have also had to determine the 
most similar information well. The perception scores for question #7 were also good, with 
a median of 4 and a mean of 4.13. This belies the mixed results obtained from Test 1-b 
where the effectiveness of the classifiers was directly tested, as the results here are a direct 
consequence of classifier performance. The reader should keep in mind that unlike Test 
1-b, these results are not totally objective as they assess the opinions of the test subjects. 
So, perhaps these inconsistencies can be attributed to the irregular and unpredictable rigor 
applied by the test subjects compared to the defined criteria used in the functional test. 
Lastly, questions #8 and #9 achieved a good score (median 4, mean 4.07 for #8 and median 
4, mean 3.60 for #9) indicating its ability to answer questions to a trustworthy user as well 
as transition back and forth between chatting, questions and information worth learning.

With regards to the questions that pertain to an untrustworthy user, questions #10, 
#11 and #12 achieved good scores. Questions #10 and #12 are similar to those asked 
to trustworthy users (questions #7 and #8 respectively), and the results are quite good 
as well as comparable. This indicates that the mode of operation does not affect the 
users’ opinion of the ability of LCC to do its job. Interesting, however, was question 
#11, which asks whether the system was able to keep the untrustworthy users from add-
ing and changing information in the knowledge base, as that is an important security 
feature. The test subjects clearly opined that it was able to do so, with a median of 4 and 
a mean of nearly 4.0. Question #13—the open-ended question—provided relatively few 
responses and few, if any, new insights into the thinking of the test subjects beyond what 
is displayed in the first 12 questions. Therefore, those results are not included here.
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In summary, the medians and the means for most of the 12 questions/statements in the 
survey were 3 or greater. The only exception was question #1, which had a mean below 3.0. 
Moreover, seven of the questions reported means of 4 or greater. Lastly, ten of the 12 ques-
tions had a median value of 4 or greater. These results generally reflect positive opinions of 
LCC system by the test subjects of Group A.

5.2.3  Group B testing procedure

We designed the group B testing to expose LCC to a larger sample of human test subjects 
and obtain their opinions about the LCC system and its performance. However, the Group 
B test procedure did not involve direct test subject interaction with the LCC prototype, but 
rather, they were asked to review and assess the interaction logs of Group A test subjects. 
This was done to facilitate the larger sample size, as these test subjects did not need to 
physically use the prototype deployed only on the one laptop, and participation could be 
widely distributed anonymously via the Internet. One hundred (100) human test subjects 
participated in Group B testing. All test subjects were upper division undergraduate or 
graduate computer science students at the University of Central Florida.

Two conversation logs from the Group A tests were presented to each Group B sub-
ject. The logs were chosen randomly from Group A participant logs and they reflected the 
interactions between the (two) Group A subjects and the LCC system—in effect, their con-
versations. The Group B subjects were also given access to the contents of the knowledge 
base, before and after the conversations reflected in the logs, so they could discern the dif-
ferences made by the operation of LCC. However, unlike the Group A subjects, this access 
was not available at times between the start and end of the Group A interaction sessions.

The Group B subjects were likewise then given a survey to assess their opinions. This 
survey was similar to that given to Group A subjects, except that it contained only eight 
questions (instead of 12). The second and third questions, which related to the evaluation 
of the system interface were removed, as were the last two questions (11 and 12) of the 
Group A survey related to untrustworthy users. This was done because Group B subjects, 
not having interacted directly with the prototype, rendered these four questions irrelevant to 
them. The logs are too long to display in this paper; however, an interested reader can refer 
to Mohammed (2019) for a full description of these logs.

5.2.4  Group B tests—results and discussion

Similar to Group A, the results were measured by calculating the median and the Inter-
Quartile Range for the 100 participants. Also computed were the mean and the standard 
deviation for each question. These results are shown in Table 9 and the exact statements 
associated with the questions of Table 9 are found in Table 8. Note that the results of the 
Group B tests should not be formally compared to those of Group A, as the two tests fol-
lowed two very different test protocols (their experiences were very different). We next 
discuss each group of related questions.

Question #1, as did its counterpart in Group A results, showed a relatively low score, 
with a median of 2 and a mean of 2.72—below neutral. As mentioned above, naturalness 
was not one of our major objectives, but this is a good thing to know for future research.

The scores of the other questions all had medians of 4 and means ranging from 3.5 
to slightly over 4.0 (question #4). These are good results in our opinion. In spite of the 
fact that we stated previously that a direct comparison between these results and those of 
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Group A should not be made, it is unavoidable to notice that the Group B results generally 
track the Group A results fairly well for the same questions, although somewhat lower. 
This serves as an informal confirmation of both sets of results.

Overall, the results across Group B indicate satisfaction with the LCC on the part of 
the test subjects, as the median is 4 for all the questions except the first one, which had a 
median of 2.

5.3  Test 3: complexity and scalability assessment

To assess the runtime complexity of the LCC algorithm, we performed an empirical analy-
sis by measuring wall clock runtime over various knowledge base sizes. More specifically, 
we measured how long it takes LCC to respond to the user inputs for varying sizes of 
the knowledge base. The time taken to produce a response by the system is thought to be 
proportional to the size of the knowledge base because the larger the knowledge base, the 
more search that is required to relate the user input to the most similar information in the 
knowledge base. Our question was whether this relationship would be linear or non-linear, 
and if linear, how steep would the curve be.

The scalability was measured with the knowledge base size ranging from 30 sentences 
to 960 sentences. Those sentences were specifically selected to be closely related and have 
many connections in the semantic network so as to make the conditions more demanding 
in terms of search.

Table 8  The statements that are used in Table 9

No Statement

1 I found the conversation with the system to be natural, as if conversing with a human
2 I found that the system correctly added new information to its knowledge base
3 LCC correctly neglected to add information that is already in the knowledge base
4 The system correctly identified the most similar information in the knowledge base
5 The system correctly distinguish between chatting statements and content-related statements
6 LCC was able to answer questions
7 Transitions back and forth among the users’ different inputs
8 The system was able to correctly separate the chatting information from the related information

Table 9  Median, Interquartile 
range (IQR), mean, and standard 
deviation (STD) for group B (100 
participant) survey

Statement No Median IQR Mean STD

1 2 2.00 2.72 1.44
2 4 2.00 3.78 1.08
3 4 2.00 3.93 1.18
4 4 1.00 4.16 1.00
5 4 2.00 3.55 1.19
6 4 2.00 3.69 1.14
7 4 2.00 3.61 1.17
8 4 2.00 3.56 1.19
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We measured the time it took for each of the operations to produce a response: add/
learn, update/replace, confirm/disregard, question-answering or chatting. The results 
were averaged over five runs for each KB size. The actual sentences used can be found in 
Mohammed (2019). Figure 9 shows the means of the various operations (adding, exchang-
ing, confirming, question-answering and chatting) averaged over five runs. The x-axis rep-
resents the number of sentences in the knowledge base, while the y-axis represents the 
average time it took LCC to respond to the user input in seconds of wall clock time.

From the results of Fig. 9, it is clear that the system spent a nearly constant amount of 
time responding to the chatting statements across all the sizes of the knowledge base. This 
was fully expected, as the chatting engine does not use the knowledge base and thus, its 
time to respond to a chatting input has no relation to the size of the knowledge base.

From Fig. 9 we can see that LCC takes longer to respond to a Q/A request, a confirm 
operation, an exchange operation and an add operation, as the knowledge base increases in 
size. As the figure shows, the proportion of time vs. KB size is definitely linear for all these 
functions. At the upper end of the KB size, the time responses were in the order of two+ 
minutes, which is troubling in absolute terms, as no user would willingly put up with such 
lengthy delays. This points to an area where significant improvement will be necessary in 
future research. However, for small and medium sized KBs, the performance is deemed 
acceptable, as there were no indications in Question #13 of intolerance on the part of the 
test subjects in the Group A user-based testing described above that used small knowledge 
bases.

As a note to the interested reader, a theoretical derivation of the algorithmic complexity 
of the LCC overall algorithm can be seen in Mohammed (2019) It also resulted in a linear 
complexity.

6  Summary and future work

This research explored the idea of how a computer agent can learn new information from 
a “natural” conversation with a human, similar to how humans learn from each other 
through extended dialogues. In this paper, we present a system called Learning from a 
Casual Conversation (LCC) that involves direct human interaction with a learning agent 

Fig. 9  Scalability of the LCC system



4833Machine Learning (2023) 112:4789–4836 

1 3

through a natural language dialogue to allow the agent to acquire new information. This 
research can have an impact on improving the breadth, depth and accuracy of a com-
puter agent’s knowledge base, by allowing the agent to learn new information without 
the need to involve a programmer to update its knowledge base.

LCC operates by combining multiple components to form the overall architecture of 
the system. The most important and fundamental components of LCC are the classifier 
unit, the learning unit, and the knowledge base unit. The classifier unit is responsible 
for labeling the user input as either a chatting statement, a question or as a statement 
that contains information worth learning. The learning unit determines exactly what, if 
anything, is to be learned from the human input passed to it by the classifier. The knowl-
edge base unit holds the information “known” by the agent in the form of a semantic 
network linking together the sentences that make up the agent’s information.

An LCC prototype system was built, and assessed using various tests. The overall 
results showed that it was effective in learning what was to be learned. It also showed 
good user acceptance of the concept and of the prototype itself. This all indicates that 
this approach is a significant step towards extending a computer agent’s ability to learn 
through a novel means.

There are many possible applications for LCC. For example, it can be used for social 
companions where the human user can share information with a robot or an avatar using 
natural language. LCC can also be applied to help human-robot assistants such as Alexa 
and Siri to automatically update their knowledge base without the involvement of a 
developer. Finally, we should note that we do not claim that our results are generaliz-
able, but only apply to the specific prototype we developed, the tests we executed, the 
training data we used and other such very specific decisions taken in our design

We found several areas where future research is warranted. One major area of 
improvement is having the LCC “understand” the meaning of the user input statements. 
The current version is limited to using similarity measures to determine how similar/
different the words/sentences in the user’s input are from what already exists in the KB, 
also in the form of sentences. Therefore, application of natural language understanding 
could be used to improve the learning process significantly.

Another possible enhancement would be to use voice instead of text to communicate 
with the system. This would allow for an easier and a more natural interaction with the 
system. Moreover, it can help users with disabilities who cannot use a keyboard to com-
municate with the agent. Such an enhancement would require additional work to deal 
with errors in the speech recognition system as well as adding text-to-speech capability 
for responding to the user in speech.

Trust evaluation of the users and of the credibility of the human source of informa-
tion would be an important enhancement to LCC, mainly for when the system could 
potentially be used by less-than-competent and/or by malicious users to unwittingly or 
purposely corrupt its knowledge base.

Improving the classification process also represents a major need for improvement, as 
the current approach leads to relatively large number of misclassifications. We also hope 
to explore the use of online training for the classifiers (the current training was per-
formed offline). Continually on-going training that would take place as the system oper-
ates would allow the classifiers to learn the new patterns that a particular user employs, 
which could improve the classification process in general.

Improving/enhancing the “naturalness” of the conversation will also be undertaken 
in future research, as that was the one statement that stood out as being deficient in the 
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human test subject scores. Lastly, the 12 simplifying assumptions stated in Sect. 2 must 
be lifted in order to make a future LCC operational in the real world.
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