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Abstract
Hybrid ensemble, an essential branch of ensembles, has flourished in the regression field, 
with studies confirming diversity’s importance. However, previous ensembles consider 
diversity in the sub-model training stage, with limited improvement compared to single 
models. In contrast, this study automatically selects and weights sub-models from a het-
erogeneous model pool. It solves an optimization problem using an interior-point filtering 
linear-search algorithm. The objective function innovatively incorporates negative correla-
tion learning as a penalty term, with which a diverse model subset can be selected. The 
best sub-models from each model class are selected to build the NCL ensemble, which 
performance is better than the simple average and other state-of-the-art weighting methods. 
It is also possible to improve the NCL ensemble with a regularization term in the objective 
function. In practice, it is difficult to conclude the optimal sub-model for a dataset prior 
due to the model uncertainty. Regardless, our method would achieve comparable accuracy 
as the potential optimal sub-models. In conclusion, the value of this study lies in its ease 
of use and effectiveness, allowing the hybrid ensemble to embrace diversity and accuracy.

Keywords  Hybrid ensemble · Diversity · Negative correlation learning · Optimization

Editor: Zhi-Hua Zhou.

 *	 Yanfei Kang 
	 yanfeikang@buaa.edu.cn

	 Yun Bai 
	 baiyun12138@buaa.edu.cn

	 Ganglin Tian 
	 ganglin.tian@imt-atlantique.net

	 Suling Jia 
	 jiasuling@buaa.edu.cn

1	 School of Economics and Management, Beihang University, Beijing 100191, China
2	 The Centre for Processes, Renewable Energies and Energy Systems (PERSEE), MINES Paris - 

PSL University, Sophia Antipolis, France
3	 Faculty of Microwave, Observation, and Perspection of Environment, IMT Atlantique, 

Plouzané 29280, France

http://orcid.org/0000-0001-8769-6650
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06364-3&domain=pdf


3882	 Machine Learning (2023) 112:3881–3916

1 3

1  Introduction

Ensemble learning has been proven to be theoretically and empirically superior to single 
models by state-of-the-art literature as a method of combining pre-trained models in a cer-
tain way to obtain final predictions (Brown et al., 2005; Chandra and Yao, 2006; Mendes-
Moreira et al., 2012). Typically, ensemble models sample the input space of data and fea-
tures, such as cross-validation or down-sampling of data (LeBlanc and Tibshirani, 1996). 
Meanwhile, features can be selected by calculating feature importance (Mendes-Moreira 
et al., 2012). Then, ensembles are followed by combining multiple but homogeneous weak 
learners to form a strong learner to achieve higher accuracy. The famous examples of 
ensemble models are bagging (Breiman, 1996), boosting (Freund et al., 1996), and stack-
ing (Wolpert, 1992). In recent years, solutions based on ensemble models often achieve 
good results in Kaggle competitions (Taieb and Hyndman, 2014; Hoch, 2015; Bojer and 
Meldgaard, 2020).

In some pioneering studies, researchers attempted to train completely heterogeneous 
models for the same input space and then averaged or weighted the predictions of these 
models. This approach considered that heterogeneous models were more likely to increase 
diversity during training and produce more robust results compared to homogeneous mod-
els (Zhao et al., 2010; Mendes-Moreira et al., 2012). Training with heterogeneous models 
also refers to the hybrid ensemble. For load prediction, Salgado chose several support vec-
tor machines and neural networks, ranked and filtered the candidates, and finally weighted 
the predictions of the selected models. Their hybrid ensemble model improved perfor-
mance by 25% over the best single predictor (Salgado et al., 2006). Ala’raj took five clas-
sifiers and combined their predictions. The experimental results demonstrated the ability 
of the proposed method to improve the accuracy of credit scoring prediction (Ala’raj and 
Abbod, 2016). Qi constructed a hybrid ensemble model for predicting slope stability in 
geology, which included six sub-models, such as support vector machines and artificial 
neural networks. A genetic algorithm was introduced to calculate the classification weights 
for each model. This hybrid ensemble outperformed any single model, even though the sin-
gle model already had its optimal parameters (Qi and Tang, 2018). Some researchers con-
structed ensembles containing both homogeneous and heterogeneous models. For example, 
Merz chose six multivariate adaptive regression splines and six back-propagation networks 
to build a model pool, ranked the sub-models by principal components with the variance 
from the learning process to highlight the contributions of different sub-models (Merz and 
Pazzani, 1999).

Scholars have identified model diversity as a critical factor to hybrid ensemble suc-
cess (Brown, 2004; Webb and Zheng, 2004; Chandra and Yao, 2006). In recent years, 
researchers have put effort into ensemble diversity and generalization. The authors 
developed a pruning method for classification ensembles utilizing the tradeoff between 
accuracy and diversity (Bian and Chen, 2021). Several methods to increase the diversity 
of sub-models within an ensemble are also proposed. For earlier schemes, practition-
ers trained models with cross-validation or chose different parameter combinations for 
homogeneous models, followed by majority voting or weighted averaging of the model 
predictions. Cross-validation yet provided limited improvement for model accuracy, and 
Stone proved as early as 1974 that estimators generated by cross-validation behaved 
similarly (Stone, 1974). Hansen and Salomon proposed using neural networks to con-
struct ensembles in the 1990 s. They used neural networks to fit different parts of the 
training data, which were then majority voted as the result of ensemble (Hansen and 

https://www.kaggle.com/
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Salamon, 1990). Both Ting and Cano obtained a diversity of sub-models by using differ-
ent subsets of features (Ting et al., 2011; Cano and Krawczyk, 2020). Ting emphasized 
that unstable learners could generate sufficient diversity of global models since they 
were more sensitive to data changes (Ting et  al., 2011). Cano suggested dynamically 
monitoring the model pool to eliminate the oldest and weakest sub-models in time for 
the streaming data scenario (Cano and Krawczyk, 2020). Sirovetnukul pointed out that a 
hybrid ensemble could learn negative knowledge from less well-performed models that 
were easily ignored and removed in previous studies. Such knowledge could help the 
models converge to better solutions while producing diverse results (Sirovetnukul et al., 
2011). Brown considered the negative knowledge across sub-models and provided quan-
titative methods for the diversity of hybrid ensembles (Brown et al., 2005).

Some empirical evidence demonstrated the ability of Negative Correlation learning 
(NCL) to increase model diversity and improve ensemble models (Liu and Yao, 1999; 
Liu et  al., 2000; Chandra and Yao, 2006; Sirovetnukul et  al., 2011; Alhamdoosh and 
Wang, 2014; Peng et al., 2020). NCL introduces a correlation penalty term in the objec-
tive function of each sub-model to measure the deviation from the current ensemble. 
All sub-models can be trained simultaneously and interactively on the same training 
set, and the final experimental results will achieve a bias-variance-covariance bal-
ance, as theoretically deduced. Current applications of NCL are focused primarily on 
the training process of ensemble neural networks to diversify each sub-model (Liu and 
Yao, 1999; Liu et al., 2000; Tang et al., 2009; Alhamdoosh and Wang, 2014; Hadavandi 
et al., 2015; Peng et al., 2020). Although the ensemble neural network trains the sub-
models with diversity under NCL, they are still structurally homogeneous models, dif-
fering only in specific parameters. To our knowledge, only some studies apply NCL to 
hybrid ensembles. Next, we will discuss the feasibility of using NCL to improve hybrid 
ensembles.

Generally, ensembles contain two stages: sub-model training and combination (Merz, 
1999). Previous ensembles used NCL as a penalty term to train diverse sub-models in the 
first stage, followed by some basic methods, such as majority voting or simple averaging, 
to combine the predictions, ignoring the role of diversity in the second stage. In contrast, 
the hybrid ensemble trains multiple heterogeneous models based on the consensus that het-
erogeneous models will produce diverse predictions in the first stage (Zhao et  al., 2010; 
Mendes-Moreira et al., 2012). In the second stage, if we apply NCL to the objective func-
tion to optimize the weights of each sub-model, it is possible to select a diverse set of sub-
models to obtain the final results. We present the methods for obtaining diversity at differ-
ent stages of the ensemble models in Table 1 for comparison.

To improve hybrid ensembles with NCL, we design a generic scheme in this study for 
regression problems. Eleven well-established regression prediction methods, including 
ensemble and generalized linear regression models, are fed to the model pool. Each sub-
model is trained and generates a set of predictions. Cross-validation and grid search are 
applied to the training process to obtain the predictor with the optimal parameters. Sub-
sequently, we view the process of the second stage of hybrid ensembles, sub-model com-
bination, as an optimization problem. This problem can be solved using the interior-point 
filter line-search algorithm (Wächter and Biegler, 2006), which is a solver in the Gekko 
optimizer developed by Beal et al. (2018). We add NCL as a penalty term to the objec-
tive function of the optimization problem. We designed several experiments to evaluate the 
proposed method from multiple dimensions. The hybrid ensemble for regression based on 
NCL achieves excellent results, demonstrating its great potential.

The main contributions of this study are three-fold: 
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1.	 Initially, this study attempts to migrate the application scenario of NCL from the tradi-
tional sub-model training stage to the sub-model combination stage, with good results 
in a hybrid ensemble consisting of heterogeneous sub-models.

2.	 The model selection and combination process is treated as an optimization problem. 
This problem leads to a diverse set of sub-models in the model pool, given by a weight 
vector.

3.	 Ultimately, the approach in this study again verifies that diversity is the key to the suc-
cess of ensemble models, and it is an innovation to ensure model diversity in both stages 
of the hybrid ensemble.

The rest of this paper is organized as follows. Section 2 introduces the theories and meth-
ods involved in the proposed framework. Section 3 presents a hybrid ensemble based on NCL, 
accounting for model diversity. In Sect. 4, we systematically investigate the application of the 
proposed method on twenty publicly available datasets and analyze the contribution of NCL 
to performance improvement. Section  5 reviews the background of our proposed method, 
illustrates the method’s ability to remedy some of the shortcomings of current hybrid ensem-
ble studies, and synthesizes the experimental performance and scope for improvement of our 
method. Finally, Sect. 6 concludes the paper.

2 � Related works

This section first introduces ambiguity and bias-variance-covariance decompositions, which 
are the theoretical basis for Negative Correlation Learning (NCL) to increase the diversity 
of hybrid ensembles (Brown et al., 2005). The general form of the NCL is presented in the 
second part. The third part shows the computational principles and applications of the interior-
point filter line-search algorithm.

2.1 � Two types of decomposition

In the context of multiple regression, there is a dataset containing n samples with 
{(x1, y1),… , (xn, yn)} . The objective of the problem is to find a function f that maps ℝn to ℝ1 
to gain predictive capability for future data. In machine learning, f is a model or an estimator.

2.1.1 � Ambiguity decomposition

In a general scenario, m sub-models can form a hybrid ensemble fh with a weighted average. 
fh is a convex combination of all components:

where 
∑m

j=1
�j = 1 , and fj is the predictions of jth sub-model. According to Brown, the 

Mean Square Error (MSE) �h of fh can be expressed as the difference between the follow-
ing two terms (Brown et al., 2005):

(1)f (xi) = yi, f ∶ ℝ
n
→ ℝ

1, xi ∈ ℝ
n, yi ∈ ℝ

1.

(2)fh =

m∑

j=1

�jfj,
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where �j =
1

n

∑n

i=1

�
fj(xi) − yi

�2 . The first term of Eq.  (3) is the weighted average of the 
MSE of each sub-model; the second is the ambiguity term. Equation (3) indicates that �h 
is less than the weighted average �j of all sub-models, given that the sub-models are not 
identical and the second ambiguity term is positive. This fact reveals that the more sig-
nificant the difference between each sub-model and the current hybrid ensemble, the larger 
the ambiguity term and the smaller the MSE of the hybrid ensemble. Notably, without an 
established criterion to judge the best model in advance, it is efficient to use the hybrid 
ensemble directly, even if some member has the lowest error.

2.1.2 � Bias‑variance‑covariance decomposition

The MSE of the sub-models and the hybrid ensemble are employed in the ambiguity 
decomposition to measure diversity; the higher the second term in Eq.  (3), the more 
diverse the ensemble. However, as the sub-models increase in volume, they are more 
likely to deviate from the actual value, although they would get more diverse. This 
situation leads to an increase in the first term of �h when it is not so beneficial to con-
sider increasing the diversity of the hybrid ensemble. Thus, balancing the diversity and 
accuracy of the sub-models and ensemble is of interest. The bias-variance-covariance 
decomposition is a well-defined trade-off (Brown et al., 2005).

For simplicity, given the simple average form of the hybrid ensemble fh =
1

m

∑m

j=1
fj 

and the unbiased estimation of the ground truth ŷ = E(y) , the bias-variance-covariance 
decomposition is written as the following equation:

where B, V, and C are the averaged bias, variance, and covariance of each sub-model in the 
hybrid ensemble. The equations for the three terms are as follows:

Unlike ambiguity decomposition, the bias-variance-covariance decomposition can reduce 
the error of the hybrid ensemble by decreasing the covariance without increasing the bias 
and variance. Additionally, the covariance term can be negative, implying that negative 
correlations between sub-models can contribute to the prediction of the hybrid ensemble.

(3)�h =

m∑

j=1

�j�j −
1

n

m∑

j=1

n∑

i=1

�j(fh(xi) − fj(xi))
2,

(4)E
(
(fh − ŷ)2

)
= B2 +

1

m
V +

(
1 −

1

m

)
C,

(5)B =
1

m

m∑

j=1

(
E(fj) − ŷ

)
,

(6)V =
1

m

m∑

j=1

E
(
(fj − E(fj))

2
)
,

(7)C =
1

m(m − 1)

k∑

j=1

∑

k≠j

E
[
(fj − E(fj))(fk − E(fk))

]
.
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2.2 � Negative correlation learning

Liu has proposed to achieve diversity within an ensemble by NCL (Liu and Yao, 1999). 
They designed NCL as a training method for neural network ensembles. It adds a pen-
alty term to the objective function of each network and trains all networks simultane-
ously and interactively before combining them. The purpose of this training pattern 
is not to obtain multiple accurate and independent neural networks but to capture the 
correlations and derive sub-networks with negative correlations using penalty terms, 
which in turn form a robust combination. Brown also used NCL by adding a heuristic 
penalty term to the mean squared error as an objective function (Brown et  al., 2005). 
They systematically control the bias-variance-covariance trade-off by optimizing this 
objective function. In addition, they derived a systematic upper bound on the strength 
of negative correlation, which tended to stabilize as the number of models within the 
ensemble increased. As mentioned in Table 1 before, there are sub-model training and 
combination stages in generating an ensemble model. The application of NCL in neural 
network ensembles belongs to the first stage and the objective function for training the 
sub-model in a typical ensemble is given below:

It is still given that m networks in the ensemble and n samples in the dataset. For the jth 
network, its objective function Fj during training processing is MSE with an NCL penalty 
term. In Eqs.  (8) and (9), � is the negative correlation strength. When � equals 0, Fj is 
equivalent to MSE �j , and the higher the � , the stronger the negative correlation strength of 
the objective function. Previous approaches to increasing model diversity, such as changing 
the model structure, were mainly implicit. Contrastingly, the NCL controls model diversity 
explicitly by adding a penalty term to the objective function using only the parameter � . 
The effect of NCL is to pull the predictions of the sub-models away from the ensemble 
while drawing the ensemble closer to the actual values (Reeve and Brown, 2018).

2.3 � Interior‑point filter line‑search algorithm

The interior-point filter linear-search algorithm has mature applications in many fields 
as a general-purpose method for solving optimization and programming (Simmons 
et  al., 2019; Carpio et  al., 2021; Pulsipher et  al., 2022). This optimization algorithm 
has been well integrated as an Interior Point OPTimizer (IPOPT) solver in Gekko for 
friendly use, which is designed by Beal et  al. (2018). As an algebraic modeling lan-
guage, it excels in solving dynamic optimization problems. Additionally, Gekko is a 
Python library that integrates model building, analysis tools, and optimization visualiza-
tion. Following, we will briefly introduce IPOPT (Wächter and Biegler, 2006).

(8)Fj = �j + �pi(n),

(9)

pi(n) =
1

n

n∑

i=1

(fj(xi) − fh(xi))
∑

k≠j

(fk(xi) − fh(xi))

= −
1

n

n∑

i=1

(fj(xi) − fh(xi))
2.
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For convenience, researchers are used to writing the objective function and con-
straints of the optimization problem by adding equation constraints and slack variables 
in the standard form, as in Eq. (10):

To solve an optimization problem using the interior point method, one adds an auxiliary 
barrier to Eq. (10) and, correspondingly, removes the inequality constraint, as in Eq. (11):

As introduced by Wächter, � is a logarithmic barrier term, and 𝜇 > 0 (Wächter and Biegler, 
2006). As � → 0 , the optimization problem (11) is more likely to converge to an optimal 
solution. The solution of Eq.  (11) starts with a relatively small � , such as 0.1, and then 
iterates using the Newton method combined with a linear search. IPOPT then determines 
whether the current feasible solution reduces ��(x) compared to the previous feasible solu-
tion. In the absence of a feasible solution, IPOPT transforms the problem (11) into a feasi-
bility restoration phase by finding a feasible solution that minimizes the norm of the con-
straint violation ‖c(x)‖1 , temporarily ignoring the objective function, and thus solving it 
flexibly. The above steps are repeated, with � being reduced each time, until the solution 
of Eq. (11), or the solution satisfying the first-order optimality condition, is found. All the 
procedures would be done by Gekko automatically.

3 � Hybrid ensemble for regression with negative correlation learning

As one of the most fundamental mathematical problems, regression has many well-estab-
lished models designed from different perspectives. A hybrid ensemble is a method to 
solve regression by the weighted average of the predictions of multiple members. In this 
study, by introducing NCL in the hybrid ensemble, the sub-models with diversity will be 
selected, combined, and weighted to improve the prediction accuracy. Specifically, this sec-
tion examines these aspects: model pool construction, sub-model training stage, sub-model 
combination stage, evaluations, and the proposed hybrid ensemble framework.

3.1 � Model pool construction

Many ensemble models adopt cross-validation to train homogeneous models and per-
form majority voting to select models that work well. In contrast, this study draws on 
the conclusion of Mendes-Moreira that heterogeneous models control diversity and per-
form better than homogeneous candidates in the model training stage (Mendes-Moreira 
et  al., 2012). When constructing the model pool, we chose the models from different 
methods. Eleven regression models are selected in this study, including Simple Lin-
ear Regression (SLR) (Zou et al., 2003), Ridge Regression (RR) (Hoerl and Kennard, 
1970), Bayesian Regression (BR) (Box and Tiao, 2011), Stochastic Gradient Descent 

(10)

argmin
x∈ℝn

F(x)

s.t. c(x) = 0,

xi ≥ 0.

(11)
argmin

x∈ℝn
��(x) = F(x) − �

m∑

i=1

ln(xi)

s.t. c(x) = 0.
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Regression (SGDR) (Jain et al., 2018), Polynomial Regression (PR) (Stigler, 1974) from 
Linear methods; Decision Tree Regression (DTR) (Wu et  al., 2008), Random Forest 
Regression (RFR) (Ho, 1995), and Gradient Boosting Decision Tree (GBDT) (Fried-
man, 2001) from Tree-based methods; Adaptive Boosting Regression (ABR) (Solo-
matine and Shrestha, 2004), Support Vector Regression (SVR) (Drucker et  al., 1997), 
and Multilayer Perceptron Regression (MPR) (Rosenblatt, 1961). Methods, models, and 
sub-models will be mentioned several times in this paper, and we have drawn an exam-
ple in Fig. 1 to distinguish these three terms.

3.2 � Sub‑model training stage

In practice, grid search is to find the best parameter set of a model to improve the predic-
tion (Chicco, 2017). Cross-validation is the basis for judging whether a parameter set is 
good or not (Geisser, 1975). In a typical model fitting task, there will be situations where 
the training set predicts better than the test set, also known as over-fitting, which can be 
solved by cross-validation. In this paper, a 5-fold cross-validation is used, whereby the 
training data is divided into five equal parts, and a model with a particular parameter set is 
fitted five times. The model takes one copy of the data from the training set as the valida-
tion set and the remaining four copies as a new training set. After five fits, the prediction 
scores on each validation set are averaged as the final score of the current model. Once the 
grid search has traversed all possible parameter combinations, the highest-scoring param-
eter set is taken as optimal.

Figure 2 illustrates the process of grid search and cross-validation. The value range for 
each parameter is first set manually to form a discrete parameter space. The grid search 
then traverses the space to obtain all parameter sets, calculates the average prediction error 
on each validation data, and selects the parameter set with the lowest error. Once the grid 
search and cross-validation are finished, we expect to obtain the best parameter set for a 
model.

Fig. 1   The relationship between the method, models, and sub-models. The top level is a tree-based method, 
the middle level is different models, and the bottom level are sub-models written as P

i
 with different param-

eter sets. The sub-models serve as the members of the hybrid ensembles in this paper
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3.3 � Sub‑model combination stage

3.3.1 � Objective function for hybrid ensemble

This subsection explains the difference between the proposed NCL-based hybrid ensem-
ble and the neural network ensemble in Liu and Yao (1999) and claims the contributions 
in detail. We have introduced how NCL is used in neural network ensemble in Sect. 2.2. 
If combining the Eqs. (8) and (9), we get the error function for each network:

All network members optimize the error function (12) during training and achieve interac-
tion between members by the penalty term in the function. The ensemble of networks thus 
is trained on the ‘sub-model training’ stage in Table 1.

Unlike the neural network ensemble containing homogeneous members, we applied 
a heterogeneous ensemble to generate the estimators with specialty and accuracy in the 
different regions of solution space (Brown et  al., 2005). Training and interacting sub-
models with different architectures in parallel are challenging, so we train each model 
separately, incorporating diversity in the ‘sub-model combination’ stage. We consider 
designing an optimization problem to implement a hybrid ensemble in which candidate 
sub-models are automatically selected and assigned weights. We still wrapped the error 
function of each sub-model as a penalty term to encourage the emergence of diversity 
as Eq.  (12). Then the objective function of the hybrid ensemble is obtained with the 
weighted average of all the error functions and is written as follows:

(12)Fj = �j −
�

n

n∑

i=1

(
fj(xi) − fh(xi)

)2
.

Fig. 2   The process of grid search and cross-validation
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At this point, we claim the contribution of optimizing Formula  (13) to the performance 
of the final hybrid ensemble. Formula  (13) and Formula  (3), also the ambiguity decom-
position, are similar in form, with the only difference being the � in the second term in 
Formula (13). Further, the Formula (3) describes the performance of the hybrid ensemble. 
The issue then naturally arises on why hybrid ensemble optimizes Formula (13) instead of 
Formula (3). There are three explanations: (1) it would be overfitted if one only minimis-
ing the Formula (3) with focus on the training data; (2) the ensemble diversity cannot be 
guaranteed if only the second term of Formula (3) is optimized without causing a change 
in the first term, as both terms contain variance (Brown, 2004). (3) Formula  (3) can be 
decomposed into the three terms in Formula (4) considering the sample distribution. The 
NCL penalty term in Formula (13) could control the covariance through � without causing 
bias and variance terms to change and obtain the trade-off between accuracy and diversity.

The differences between the hybrid ensemble and the neural network ensemble can be 
stated as follows: (1) when training the neural network ensemble, each network has the 
identical error function as Formula  (12) and interacts with other networks. The network 
optimization and weight updating are simultaneous. (2) The proposed ensemble is post-
hoc, consisting of heterogeneous sub-models that are pre-tested for the performance on the 
validation set before being combined. This operation avoids the homogeneity of the neu-
ral network ensemble but preserves the interaction and enhances the generalization of the 
hybrid ensemble. (3) Formula (13) takes a weighted average of the error functions of all 
the sub-models instead of optimizing them separately as in the neural network ensemble. 
Formula (13) focuses more on optimizing weights given the known MSE of sub-models on 
the validation set. If a sub-model has a higher MSE, Formula (13) puts less emphasis, or 
weight, on the sub-model. The weight can be zero if � = 0 . However, if this sub-model has 
a higher difference from the current hybrid ensemble at the same time, it contributes to the 
diversity of the ensemble and attracts some attention from the Formula (13). The penalty 
term achieves the trade-off between diversity and accuracy with this mechanism.

3.3.2 � Automatic search algorithm for negative correlation penalty

The � in Formula  (13) controls the strength of the negative correlation penalty. We 
designed an algorithm to select a suitable � from a list as Algorithm (1). The basic idea of 
searching � is to traverse from 0 to 1 given the step s. We use Gekko to solve Formula (13) 
to obtain weight vector � regarding the different sub-models. Algorithm (1) then calculates 
the error of the generated hybrid ensemble on the validation set under � . The error here 
is a simple average of RMSE, MAE, and MAPE, considering that these three metrics are 
the evaluation criteria in this paper. We attempt to treat these three metrics fairly without 
preference. After the algorithm targets the optimal �∗ with minimum error, the step s is 
reduced, and a more refined search is started locally on that �∗ . In this paper, we retain the 
lambda with three digits, i.e., the search stops when s < 0.001.

(13)

argmin
�

Φ(�) =

m∑

j=1

�j

{
�j −

�

n

n∑

i=1

(
fj(xi) − fh(xi)

)2}
,

s.t.

m∑

j=1

�j = 1,

0 ≤ � ≤ 1.
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3.4 � Model evaluation metrics

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percent-
age Error (MAPE) are three metrics to evaluate the accuracy of regression models. The equa-
tions of them are as follows with ŷi the predicted value, and yi the true value:

(14)RMSE =

√√√√1

n

n∑

i=1

(ŷi − yi)
2,

(15)MAE =
1

n

n∑

i=1

||ŷi − yi
||,

(16)MAPE =
1

n

n∑

i=1

||||
ŷi − yi

yi

||||
.
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3.5 � Framework of the hybrid ensemble

Figure 3 demonstrates our proposed hybrid ensemble framework incorporating NCL. This 
framework includes model pool construction, hybrid ensemble generation, and future data 
prediction.

Initially, according to expert experience, we select eleven regression sub-models from 
different aspects like linear models, ensemble models, and neural networks with various 
structures and parameters to construct the heterogeneous model pool. Additionally, hybrid 
ensemble generation contains two stages: sub-model training and sub-model combination. 
In the first stage, the training set from the dataset is trained individually by the heterogene-
ous sub-models in the model pool. Grid Search and 5-fold Cross-Validation are involved in 
the training process to find the best parameter set for every model class and avoid overfit-
ting. In the second stage, the NCL-based objective function is designed for model selec-
tion and weighting to find sub-models whose predictions have negative correlations, thus 
enhancing the diversity within the hybrid ensemble. The weights of each sub-model are 
automatically updated in the process of solving the objective function using the IPOPT 
solver in the Gekko optimizer. Finally, we treat the test set as future data to evaluate the 
proposed hybrid ensemble with RMSE, MAE, and MAPE, to see an improvement in con-
trast to the best-performed sub-model and other benchmarks.

4 � Experiments

This section begins with an introduction of the datasets and model configurations in 
Sect. 4.1. Subsequently, we design several sets of experiments from different perspectives 
to highlight the strength of the proposed approach. Section 4.2 starts with the simple aver-
age of the elements in each ensemble. Section 4.3 applies the NCL method on the poten-
tial ensembles and explores whether the prediction accuracy will be improved. Section 4.4 

Fig. 3   Framework of the hybrid ensemble



3894	 Machine Learning (2023) 112:3881–3916

1 3

analyses the weights assigned by NCL on sub-models. Section 4.5 performs the competi-
tive analysis between the NCL ensemble and the state-of-the-art weighting methods. Sec-
tion 4.6 compares the prediction effect between the NCL ensembles and the best sub-mod-
els in each class. As the final experimental section, Sect. 4.7 provides a sensitivity analysis 
of the negative correlation penalty parameter �.

4.1 � Datasets and model configurations

In this study, we chose twenty public datasets from Kaggle1 and UCI machine learning 
repository2 to test the proposed NCL-based ensemble. These datasets cover the fields of 
economy, business, meteorology, and energy. The names and descriptive statistics are 
listed in Table 2.

Before modeling, data pre-processing is necessary. We first removed samples contain-
ing null values for each dataset, then transformed nominal variables into one-hot codes 
and sequential variables into continuous numeric codes. This paper divided the datasets 
into training, validation, and test sets. In our experiments, the training set was 50% of the 
overall. When setting the proportion of the validation set, there were two considerations: 
(1) the proportion of the validation set cannot be too high. Otherwise, the proportion of 

Table 2   Description statistics of twenty datasets

Datasets # Samples # Features Max of Y Min of Y Mean of Y Median of Y Std. of Y

01-Car 4322 7 8,900,000 20,000 504,785 350,500 578,800
02-House 21,613 20 7,700,000 75,000 540,182 450,000 367,362
03-Insurance 1338 6 63,770 1121 13,270 9382 12,110
04-Life_expectancy 2938 21 89 36 69 72 10
05-Walmart 6435 7 3,818,686 209,986 1,046,965 960,746 564,323
06-Blackfriday 537,577 10 23,961 185 9334 8062 4981
07-PM25 43,824 12 994 0 99 72 92
08-Temperature 7752 30 39 17 30 31 3
09-Power 9568 4 496 420 454 452 17
10-Concret 1030 8 82 2 36 34 17
11-Gas-2011 7410 10 119 28 68 66 11
11-Gas-2012 7628 10 120 12 69 67 10
11-Gas-2013 7152 10 120 43 70 69 12
11-Gas-2014 7158 10 118 27 60 59 10
11-Gas-2015 7384 10 120 26 60 57 11
12-Traffic 48,205 8 7280 0 3260 3380 1987
13-Produce 1198 14 1.12 0.23 0.74 0.77 0.17
14-Election 21,644 27 106 0 1.13 0 6.87
15-Bike 8761 13 3556 0 705 505 645
16-Steel 35,041 10 157 0 27 5 33

1  https://​www.​kaggle.​com/
2  https://​archi​ve.​ics.​uci.​edu/​ml/​index.​php

https://www.kaggle.com/
https://archive.ics.uci.edu/ml/index.php
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the test set would be too low, and the predictions would face a loss of accuracy. (2) with a 
high proportion of validation set, the Gekko solver would not produce a feasible solution 
due to data overload. Hence for most of the datasets in this paper, the validation set propor-
tion was 10% of the total sample. As dataset 06-Blackfriday is sufficiently large and dataset 
07-PM25 cannot be solved with a validation set ratio of 10%, the validation set proportions 
for these two datasets were set to 1% of the total.

Following this, we set the range of values for the critical parameters of each model. The 
grid search and cross-validation will select the optimal set of parameters from the param-
eter space for each model. The name, parameter range, and the number of sets for each 
model are listed in Table 3. All models and their parameters form the model pool for this 
paper. If the model corresponding to each parameter set is considered a sub-model, the 
model pool contains 2634 elements.

4.2 � Comparison of simple average weighting

Starting with the simple average weighting of sub-models, this section considers the com-
position of three kinds of ensembles: (1) an ensemble of all sub-models; (2) ensembles of 
the sub-models within each model class; (3) an ensemble of the best sub-models in each 
model class.

4.2.1 � Diversity of the ensembles

Intuitively, the more types of models in an ensemble, the higher the level of diversity. In 
practice, however, it is difficult to define the model types and thus to infer whether the 
ensemble diversity is caused by the variation of parameters or by the model design itself. It 
has been an opening problem in ensemble learning that needs a consensus diversity meas-
urement. Nevertheless, we measured the diversity in an ensemble with correlation coeffi-
cients as introduced in Dutta (2009). For several sub-models in an ensemble, we computed 
the absolute Pearson correlations pairwise and picked the median value as the diversity 
measurement. Figure 4 illustrates the diversity values across the ensembles in twenty data-
sets with stacked bars.

In Fig. 4, the lower values indicate higher diversity since we used the absolute correla-
tions to measure the diversity within an ensemble. The ensemble SVR has the lowest corre-
lation and the highest diversity, followed by DTR. Best_models ranks 3rd and is better than 
All_models that ranks 10th. This fact shows that a diverse ensemble does not expect a large 
amount sub-models.

4.2.2 � Performance of the ensembles

To examine the performance of these ensembles statistically, the Friedman and Nemenyi 
(FN) tests are used in this section (Demšar, 2006). The FN tests are based on the 13 ensem-
bles in Fig. 4 ranking on the 20 datasets. The original hypothesis H0 of the Friedman test is 
that all ensembles do not perform significantly differently on all datasets. If the Friedman 
test rejects H0 , the Nemenyi test is further used to test whether a significant difference 
exists between specific ensembles. Suppose the difference between the mean ordinal values 
of the two ensembles is greater than the threshold range of Nemenyi at a certain confi-
dence level. In that case, the predictions of the two ensembles are significantly different. 
The results of the FN tests on RMSE, MAE, and MAPE are visualized in Fig. 5.
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Table 3   Parameters sets for each model

Models Parameters # Parameter sets

SLR fit_intercept:[True,False] 2
RR alpha: [0.5,1,2] 189

max_iter:[100,500,1000]
solver:[auto, svd, cholesky, lsqr, sparse_cg, sag, saga]
tol:[0.0001,0.001,0.01]

BR n_iter:[100,300,500] 576
tol:[0.0001,0.001,0.01]
alpha_1:[0.000001,0.0001]
alpha_2:[0.000001,0.0001]
lambda_1:[0.000001,0.0001]
lambda_2:[0.000001,0.0001]
compute_score:[True,False]
fit_intercept:[True,False]

SGDR loss:[squared_loss,huber,epsilon_insensitive,squared_epsilon_
insensitive]

1296

penalty:[l1,l2,elasticnet]
alpha:[0.00001,0.0001,0.001]
max_iter:[500,1000,1500]
tol:[0.0001,0.001,0.01]
learning_rate:[constant,optimal,invscaling,adaptive]

PR polynomialfeatures_degree:[2,3] 16
polynomialfeatures_interaction_only:[True,False]
polynomialfeatures_include_bias:[True,False]
polynomialfeatures_order:[C,F]

RFR n_estimators:[50,100,200] 108
max_depth:[2,3,4]
min_samples_split:[2,3,4]
min_samples_leaf:[2,3]
bootstrap:[True,False]

ABR n_estimators:[10,50,100] 27
learning_rate:[0.01,0.1,1]
loss:[linear,square,exponential]

GBDT n_estimators:[50,100,200] 216
learning_rate:[0.01,0.1,0.5]
loss:[ls,lad,huber,quantile]
min_samples_split:[2,3]
max_depth:[2,3,4]

SVR kernel:[linear,poly,rbf,sigmoid] 72
degree:[2,3,4]
C:[0.5,1,2]
gamma:[scale,auto]

DTR splitter:[best,random] 24
min_samples_split:[2,3]
min_samples]_leaf:[2,3]
max_features:[auto,sqrt,log2]
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In Fig. 5, each ensemble is represented by a line segment running through a point. The 
points are the average orders of an ensemble over all datasets, and the lower the value 
on the corresponding horizontal axis, the better the ensemble performs. The intervals 
of the line segments are the threshold ranges of the Nemenyi test. When comparing two 

Table 3   (continued)

Models Parameters # Parameter sets

MPR activation:[identity,logistic,tanh,relu] 108

solver:[lbfgs,sgd,adam]

alpha:[0.00001,0.0001,0.001]

learning_rate:[constant,invscaling,adaptive]

Fig. 4   The diversity values across the ensembles in twenty datasets. X-axis is the ensembles. The name 
Best_models is the ensemble of the best sub-models in each class, All_models is the ensemble of all sub-
models, and the rest are ensembles of the sub-models in each class with the same name of the models in 
Table 3. Y-axis is the diversity values of each ensemble for all datasets, with the stacked form

Fig. 5   Friedman and Nemenyi test on RMSE (left), MAE (middle), and MAPE (right). The horizontal axis is 
the differences in average ranked values of each ensemble, and the vertical axis is the names of the ensem-
bles
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ensembles, they are significantly different if there is no overlapping part of their line seg-
ments. We put red dashed lines in the figures to indicate the maximum average ranked val-
ues of the Best_models ensemble.

As can be seen in Fig. 5, the ensemble Best_models is significantly better than All_mod-
els, in line with that the Best_models is more diverse than All_models in Fig. 4. Another 
fact is that the ensemble of linear models, except the PR, do not offer either high diver-
sity or good performance. Moreover, we can not tell the significant difference among the 
ensembles MPR, DTR, PR, and the Best_models. In Fig. 4, these good-performing ensem-
bles have similar diversity and rank in the top 5. This phenomenon provides evidence 
from an experimental perspective that ensemble diversity is associated with performance, 
whether the ensemble is composed of the same or multiple types of sub-models. There 
is still an exception in the ensemble SVR, which performs unsatisfactorily compared to 
the others. Although it is far more diverse in Fig. 4 and there are some cases that SVR is 
the best sub-model in Table 12. This mismatch inspires the future search for the balance 
between diversity and performance, and an ensemble with excessive diversity may be risky.

4.3 � Construction of NCL ensemble

This section constructs an NCL ensemble and compares it with other ensembles designed 
from different aspects. In detail, the NCL-based ensemble was built through the best 
sub-models in each model class, containing eleven members. The best sub-models were 
selected by the performance of the model on the validation set. Then the predictions on the 
validation set were input into the Algorithm (1) to finish the search for an optimal negative 
correlation strength �∗ . We could also obtain the weights � for each sub-model through 
Algorithm (1). Finally, we weighted average the predictions on the test set with � to gener-
ate the final outputs of the NCL-based ensemble.

We would compare the NCL-based ensemble with others considering the sub-model 
weights 4.3.1, the ensemble members in Sect. 4.3.2, the objective function in Sect. 4.3.3, 
the training modes in Sect. 4.3.4, and the number of sub-models in Sect. 4.3.5.

4.3.1 � NCL‑based v.s. simple average ensembles

The difference between NCL-based and simple average ensembles regards the weights 
of the sub-models. To explore how the weights influence performance, we compared two 
ensembles: one with the NCL method paying different attention to each sub-models, the 
other with equal weights. Table 4 demonstrates the improvement of the NCL-based ensem-
ble over the simple average, in which the metrics with a prefix Imp are all measured with 
percentage.

In Table 4, the NCL-based ensemble could improve the simple average in most cases, 
around 15% in RMSE, 17% in MAE, and 10% in MAPE on the average of the twenty data-
sets. This fact verifies that the ensemble places varying emphasis on its sub-models to 
enhance performance further, although the sub-models are already diverse.

4.3.2 � Best sub‑models v.s. other ensemble members

Different types of ensemble members are considered here, including (1) the best sub-mod-
els in each model class, (2) all the sub-models in DTR, and (3) the average sub-models in 
each model class. The sub-models in DTR are chosen for the higher diversity and similar 
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performance as the Best-models in Sect. 4.2. The NCL method is used in all three ensem-
bles with different members to generate the weights of sub-models and obtain the final 
predictions.

Table  5 presents the prediction errors of the three ensembles. The Best-NCL is the 
ensemble with the best sub-models of each model class. The DTR-NCL refers to the ensem-
ble with the sub-models in DTR. The Mean-NCL is the ensemble comprising the average 
predictions generated by each model class. The values with bold font are the minimum 
values of error metrics.

Table 5 displays that the Best-NCL and DTR-NCL ensembles take the majority of the 
minimum errors. In this case, if an ensemble achieves the minimum error on a dataset, we 
count it as a win. The total competition count for each ensemble is 60, with 20 datasets and 
3 metrics. Best-NCL wins 31 times out of 60, more than half of them (9, 9, and 13 counts 
on the three metrics, respectively). DTR-NCL wins 25 times, with 8, 10, and 7 counts on 
the three metrics. The Mean-NCL wins just 4 times. The inferior performance of Mean-
NCL could be explained by the spatial distribution of the predictions from the different 
models. Taking ‘01-Car’ as an example, we dimensionalized more than 2000 groups of 
predictions using the t-SNE technique. We visualized them on a two-dimensional plane, as 
shown in Fig. 6.

The visualization provides an intuitive representation of the prediction distributions. 
Specifically, predictions generated by one model class with different parameters are dis-
tributed in clusters in space and are distinguished from those of other models. We further 
abstract this distribution as shown in Fig. 7.

In Fig. 7, we suppose there are three model classes, each containing several sub-mod-
els. According to Fig. 6, the predictions from the same model class form a cluster in the 
space. A red star is put in the two-dimensional plane representing the ground truth. The 

Table 4   Improvement of the NCL-based ensemble over the simple average

Metrics(%) 01-Car 02-House 03-Insurance 04-Life_Expec-
tancy

05-Walmart

ImpRMSE 2.21 18.29 7.00 9.22 59.86
ImpMAE 3.45 19.97 14.16 10.72 71.80
ImpMAPE −4.48 12.96 15.15 16.25 36.15

Metrics(%) 06-Blackfriday 07-PM25 03-Insurance 09-Power 10-Concret

ImpRMSE 2.57 27.22 15.92 1.74 20.11
ImpMAE 4.13 31.76 17.23 1.87 26.04
ImpMAPE −19.42 −18.50 16.35 9.74 22.35

Metrics(%) 11-Gas-2011 11-Gas-2012 11-Gas-2013 11-Gas-2014 11-Gas-2015

ImpRMSE 13.68 22.67 28.56 20.41 16.44
ImpMAE 15.48 23.57 31.35 25.93 18.07
ImpMAPE 12.13 17.52 25.20 48.99 13.24

Metrics(%) 12-Traffic 13-Produce 14-Election 15-Bike 16-Steel

ImpRMSE 0.17 −0.17 8.47 20.65 6.82
ImpMAE 0.42 0.17 4.79 26.69 6.85
ImpMAPE −9.45 −3.02 3.01 6.29 1.56
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first sub-plot in Fig. 7 shows the location of the ground truth and predictions. The second 
sub-plot considers the average of the predictions in each class, which locates in the clus-
ter center. When combining the three cluster centers to form an ensemble, the predictions 
of the ensemble would be in the center of the triangle region in the sub-plot. In the third 
sub-plot, we continue to find the best predictions from each class, which is the point that is 
nearest to the ground truth. Then it is evident that the triangle region shrinks as the points 
are near to the ground truth than the cluster center. Thus, the ensemble predictions of the 
best sub-models are closer to the ground truth.

4.3.3 � NCL objective function with regularization term

Section 3.3.1 presents the objective function of the NCL ensemble as Formula (13), which 
includes the MSE and NCL penalty terms. As pointed out by Chen and Yao (2009), the 
model is easily overfitted when the data has nontrivial noise. The authors suggest adding a 
regularization term in the objective function to alleviate the overfitting problem. Similar as 

Fig. 6   Predictions distribution in the two-dimensional plane of 01-Car

Fig. 7   Illustration of the best and average sub-model predictions for each model class
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the neural network ensemble in Chen and Yao (2009), we redesigned the Formula (13) as 
follows:

where �j is the strength of the regularization term 
∑m

j=1
�T
j
� . Now we compare the NCL 

ensemble with and without the regularization term. The �j for each sub-models is set equal 
to 0.05 for simplicity. Table 6 illustrates the performance of NCL ensembles on the twenty 
datasets. The Best-NCL is the NCL ensemble without regularization term, and Best-NCLR 
is the NCL ensemble with � = 0.05 . Table 6 shows that the regularization term marginally 
improved the NCL ensemble, with more than half of the data sets on each error metric.

4.3.4 � Hybrid ensemble v.s. neural network ensemble

As introduced in Sect. 2.2, the NCL was developed in the scenario of the neural network 
ensemble training period. The hybrid ensemble in this paper transfers the NCL from model 

(17)

argmin
�

Φ(�) =

m∑

j=1

�j

{
�j −

�

n

n∑

i=1

(
fj(xi) − fh(xi)

)2}
+

m∑

j=1

�j�
T
j
�j,

s.t.

m∑

j=1

�j = 1,

0 ≤ � ≤ 1.

Table 6   Prediction errors of NCL ensembles with and without regularization term

Dataset RMSE MAE MAPE

Best-NCL Best-NCLR Best-NCL Best-NCLR Best-NCL Best-NCLR

01-Car 0.698 0.780 0.332 0.397 1.989 2.358
02-House 0.381 0.368 0.199 0.198 1.313 1.276
03-Insurance 0.348 0.359 0.191 0.194 0.558 0.560
04-Life_Expectancy 0.265 0.245 0.189 0.166 1.075 0.941
05-Walmart 0.254 0.257 0.141 0.142 1.369 1.295
06-Blackfriday 0.718 0.714 0.573 0.562 7.415 8.203
07-PM25 0.549 0.544 0.360 0.356 1.703 1.720
08-Temperature 0.319 0.307 0.240 0.233 1.117 1.121
09-Power 0.230 0.228 0.178 0.176 1.666 1.647
10-Concret 0.309 0.312 0.226 0.223 0.798 0.817
11-Gas-2011 0.346 0.345 0.198 0.198 1.059 1.053
11-Gas-2012 0.344 0.344 0.224 0.225 1.161 1.161
11-Gas-2013 0.298 0.305 0.208 0.212 1.071 1.206
11-Gas-2014 0.345 0.343 0.211 0.209 1.290 1.269
11-Gas-2015 0.290 0.285 0.200 0.193 0.902 0.927
12-Traffic 0.975 0.970 0.848 0.845 1.459 1.407
13-Produce 0.498 0.499 0.295 0.296 0.568 0.565
14-Election 0.034 0.032 0.011 0.011 0.087 0.086
15-Bike 0.405 0.394 0.266 0.255 1.079 1.018
16-Steel 0.075 0.070 0.041 0.038 0.109 0.104
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training to the combination stage while keeping heterogeneous sub-models as a diverse 
model pool. It is still worth comparing the ensembles where NCL works in separate stages.

Given the well-predicted multilayer perceptron in Fig. 5, we set up a fully connected 
forward neural network as the sub-model. After tuning the hyperparameters, we set each 
sub-network containing two hidden layers, with 16 neurons in each layer. The forward 
propagation took sigmoid as the activation function, and the backward propagation used 
gradient descent with a regular term to update the weights and biases with a factor of 0.01. 
The individual sub-networks were trained in batches to improve robustness and computa-
tional speed, with a batch size of 256. To match the number of sub-models in the hybrid 
ensemble, we also set up 11 sub-networks in the network ensemble. The learning rate of 
the network ensemble was 0.001, and the negative correlation strength � of both ensembles 
was 0.5.

Similar to Tables 4 and 7 illustrates the percentage improvement of the hybrid ensem-
ble consisting of the best sub-models over the network ensemble trained by NCL. In most 
cases, the hybrid ensemble improves the network ensemble with around 19% on RMSE, 
22% on MAE, and 25% on MAPE on the average of all the datasets. Compared to the sim-
ple average, the NCL-based hybrid ensemble achieves a higher percentage improvement 
over the network ensemble. The results indicate that even a simple averaged heterogeneous 
ensemble outperforms a weight-optimized homogeneous ensemble in our regression case.

4.3.5 � The number of sub‑models in the NCL ensemble

In this paper, 11 model classes were initially selected empirically according to the model 
design and architecture, and the corresponding 11 best sub-models were generated based 
on the prediction results on the validation set, thereby forming the NCL hybrid ensemble. 

Table 7   Improvement of the hybrid ensemble over the network ensemble

Metrics(%) 01-Car 02-House 03-Insurance 04-Life_Expec-
tancy

05-Walmart

ImpRMSE −16.38 23.87 4.40 16.69 65.29
ImpMAE −22.82 27.10 13.98 21.96 73.41
ImpMAPE −16.57 32.41 37.91 48.46 44.90

Metrics(%) 06-Blackfriday 07-PM25 08-Temperature 09-Power 10-Concret

ImpRMSE 3.07 30.77 26.19 7.07 11.62
ImpMAE 5.02 34.62 27.13 8.13 14.93
ImpMAPE −35.31 18.43 31.38 3.82 14.15

Metrics(%) 11-Gas-2011 11-Gas-2012 11-Gas-2013 11-Gas-2014 11-Gas-2015

ImpRMSE 8.29 11.59 22.32 20.04 9.30
ImpMAE 9.89 13.49 20.74 23.35 7.17
ImpMAPE 11.02 23.97 38.97 24.54 11.10

Metrics(%) 12-Traffic 13-Produce 14-Election 15-Bike 16-Steel

ImpRMSE −0.14 8.05 71.78 23.80 42.30
ImpMAE −0.55 12.89 82.31 27.35 45.23
ImpMAPE 6.86 22.09 81.57 46.58 60.59
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Regarding the number of sub-models in the NCL ensemble, we construct the ensemble 
with the top 5 and top 3 sub-models in each dataset. Table 8 lists the prediction errors of 
the ensembles with all the sub-models, the top 5 and top 3 sub-models in each dataset.

In Table 8, the column name NCL-ALL is the NCL ensemble with all the eleven sub-
models, the NCL-T5 and NCL-T3 correspond to the ensembles with top 5 and top 3 sub-
models. The errors with bolded font are the NCL-T5 or NCL-T3 exceeding NCL-ALL. It 
could be observed that NCL-T5 or NCL-T3 performs better than NCL-All of each metric 
only on less than half of the datasets. This fact leads to the conclusion that the sub-model 
that constitutes the ensemble is not necessarily the top performer on the dataset. Some of 
the less-performing sub-models could still contribute negative knowledge to the ensemble, 
which coincides with the findings of Sirovetnukul et al. (2011).

4.4 � Analysis of sub‑model weights

As stated in Sect.  4.3.5, the components of the ensemble are not necessarily the good-
performing sub-models. In other words, good sub-models may not always contribute to the 
hybrid ensemble. In the hybrid ensemble, each sub-model is assigned a weight obtained by 
the NCL penalty term. The weights are regarded as the proportion of the sub-models in the 
ensemble. This subsection explores whether the weight values of sub-models are related to 
their ability to contribute to the ensemble. Concretely, for each dataset, we computed the 

Table 8   Prediction errors of NCL ensembles with different numbers of sub-models

Dataset RMSE MAE MAPE

NCL-All NCL-T5 NCL-T3 NCL-All NCL-T5 NCL-T3 NCL-All NCL-T5 NCL-T3

01-Car 0.698 0.780 0.780 0.332 0.397 0.397 1.989 2.349 2.349
02-House 0.381 0.388 0.388 0.199 0.209 0.209 1.313 1.336 1.336
03-Insurance 0.348 0.374 0.388 0.191 0.212 0.218 0.558 0.558 0.598
04-Life_

Expec-
tancy

0.265 0.280 0.306 0.189 0.184 0.201 1.075 1.001 1.101

05-Walmart 0.254 0.248 0.599 0.141 0.143 0.424 1.369 0.969 2.377
06-Blackfri-

day
0.718 0.737 0.737 0.573 0.572 0.572 7.415 7.873 7.873

07-PM25 0.549 0.673 0.736 0.360 0.464 0.468 1.703 2.287 1.723
08-Tempera-

ture
0.319 0.307 0.332 0.240 0.233 0.242 1.117 1.121 1.119

09-Power 0.230 0.212 0.205 0.178 0.160 0.152 1.666 1.290 1.096
10-Concret 0.309 0.300 0.300 0.226 0.224 0.224 0.798 0.785 0.784
11-Gas-2011 0.346 0.367 0.349 0.198 0.221 0.199 1.059 1.202 0.986
11-Gas-2012 0.344 0.374 0.351 0.224 0.248 0.215 1.161 1.557 1.290
11-Gas-2013 0.298 0.321 0.321 0.208 0.224 0.225 1.071 1.314 1.315
11-Gas-2014 0.345 0.340 0.339 0.211 0.206 0.208 1.290 1.208 1.251
11-Gas-2015 0.290 0.287 0.287 0.200 0.196 0.196 0.902 0.941 0.941
12-Traffic 0.975 0.975 0.975 0.848 0.848 0.848 1.459 1.459 1.459
13-Produce 0.498 0.517 0.549 0.295 0.312 0.342 0.568 0.629 0.707
14-Election 0.034 0.037 0.036 0.011 0.013 0.016 0.087 0.100 0.120
15-Bike 0.405 0.384 0.410 0.266 0.243 0.273 1.079 0.901 1.078
16-Steel 0.075 0.069 0.055 0.041 0.036 0.028 0.109 0.116 0.099
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Pearson correlation coefficients between the predictions of each sub-model and the hybrid 
ensemble. The sub-models were ranked according to their correlation with the ensemble 
from highest to lowest. Then followed by another ranking list of the sub-model weights 
from maximum to minimum. We make scatter plots with the two ranking lists as in Fig. 8.

Figure 8 illustrates the relationship between the prediction correlation and weight for 
each sub-model and dataset. There are some scatters on the top row of several subplots, 
such as ‘01-Car’ with five and ‘02-House’ with four. These scatters correspond to sub-
models with zero weights that are filtered out by the NCL ensemble automatically. Besides 
that, the other scatters surround the identity line, exhibiting obvious positive correlations. 
These subplots reveal that the higher the weight, the more the sub-model correlates with 
the ensemble predictions and the more significant its contribution to the final performance.

4.5 � Comparison with state‑of‑the‑art weighting methods

The target of a hybrid ensemble is to assign weights to the sub-model with the super-
vised or unsupervised method. Besides the NCL-based hybrid ensemble proposed in 

Fig. 8   Scatter plot between the rankings of prediction correlation and sub-model weights for 20 datasets. 
The x-axis is the correlation rankings of the 11 sub-models, and the y-axis is the weight rankings. Each sub-
plot is titled by the name of the dataset and contains the scatters as sub-models. The identity line in each 
subplot indicates that a sub-model has the same ranking in correlation and weight
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this study, state-of-the-art methods also assign weights to sub-models. According to 
the summary of Mendes-Moreira, there are constant and not-constant weighting meth-
ods for building an ensemble (Mendes-Moreira et al., 2012). As the name implies, the 
constant methods assign constant weights to each sub-model. On the other hand, the 
weights generated by the non-constant methods vary depending on the input data.

4.5.1 � Constant weighting methods

The most typical constant weighting method is simple averaging, also called the Basic 
Ensemble Method (BEM) in Mendes-Moreira et al. (2012). It does not regard the impor-
tance of any sub-model nor depend on data attributes and assigns the same weight to all 
sub-models. In addition to the simple averaging, the sub-models selected by the NCL-
based ensemble are considered here for simple averaging, denoted as BEM-NCL, which 
has a filtering effect compared to the simple averaging of all sub-models.

Another constant method is Generalized Ensemble Method (GEM) (Perrone and 
Cooper, 1992). GEM generates weights according to the sub-model errors between the 
actual values and predictions. In contrast to the BEM, there is no need to assume that 
these errors are mutually independent and zero-mean. Let ej(xi) = yi − fj(xi) is the error 
between true value yi and prediction fj(xi) from the jth sub-model. Then let wj be the 
weight assigned on this sub-model, and it is calculated as:

in which Cij = E[ei(x), ej(x)] is a symmetric correlation matrix of order M.
Linear Regression (LR) is also a constant weighting method, with the predictions 

of the individual sub-models as the independent variables and the true values as the 
dependent variables. After the linear regression has fitted the data, the coefficients are 
taken as the weights for each sub-model. Unlike GEM, the sum of the linear regression 
weights does not need to be equal to 1.

4.5.2 � Non‑constant weighting methods

Meta Decision Trees (MDT) method was proposed by Todorovski and Džeroski (2003) 
to solve the classification problem, then introduced by Mendes-Moreira et al. (2012) as 
a method of non-constant weighting. MDT is trained on the predictions of the individ-
ual sub-models to target true values. However, it produces a decision tree model rather 
than a set of coefficients, as in linear regression. This decision tree model is fitted over 
the new data to produce the final predicted values, and its potential weights are a deci-
sion tree.

Mendes-Moreira classified dynamic weighting, based on the local performance of dif-
ferent sub-models, as a non-constant weighting method (Mendes-Moreira et  al., 2012). 
Two intuitive examples are Error Inverse Weighting (EIW) and Error Exponential Weight-
ing (EEW) from Armstrong’s design (Armstrong, 2001). These two weighting methods 
connect weights to errors, assuming that the higher the error, the less the proportion of the 
sub-model in the overall ensemble. The formulas for EIW and EEW are

(18)wj =

∑m

j=1
C−1
ij

∑m

i=1

∑m

j=1
C−1
ij

,
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in which Errorj can be any of the metrics from RMSE, MAE, and MAPE.
The NCL-based ensemble proposed in this paper is a dynamic weighting method that 

integrates model selection with model weighting and belongs to the category of non-con-
stant weighting.

4.5.3 � Comparison with constant and non‑constant methods

After an overview of the classical constant and non-constant weighting methods, this sub-
section compares the proposed NCL-based ensemble with these weighting methods. The 
comparisons between our proposed NCL method (noted as Best-NCL) and the state-of-
the-art weighting methods are listed in Tables 9, 10, and 11. These three tables contain the 
RMSE, MAE, and MAPE results on all twenty datasets. Besides, we add another row to 
describe the average ranking of the methods on all datasets in each table.

(19)EIWj =
1∕Errorj

∑m

j=1
1∕Errorj

,

(20)EEWj =
e−Errorj

∑m

j=1
e−Errorj

,

Table 9   Comparison with constant and non-constant methods on RMSE

Dataset BEM BEM-NCL GEM LR MDT EIW EEW Best-NCL

01-Car 0.696 0.683 1.432 1.527 1.050 0.694 0.694 0.678
02-House 0.463 0.423 0.454 0.466 0.521 0.446 0.454 0.377
03-Insurance 0.383 0.375 0.428 0.400 0.526 0.376 0.380 0.355
04-Life_Expectancy 0.294 0.294 0.535 0.278 0.596 0.281 0.290 0.266
05-Walmart 0.636 0.321 0.256 0.256 0.404 0.492 0.563 0.256
06-Blackfriday 0.736 0.718 0.717 0.716 0.978 0.732 0.733 0.718
07-PM25 0.752 0.685 0.534 0.533 0.758 0.725 0.732 0.549
08-Temperature 0.376 0.371 0.340 0.346 0.448 0.366 0.372 0.319
09-Power 0.234 0.234 0.217 0.217 0.278 0.231 0.233 0.230
10-Concret 0.380 0.329 0.396 0.363 1.001 0.357 0.369 0.309
11-Gas-2011 0.405 0.348 0.385 0.382 0.730 0.384 0.395 0.346
11-Gas-2012 0.443 0.423 0.474 0.471 0.522 0.406 0.422 0.344
11-Gas-2013 0.419 0.319 0.369 0.395 0.484 0.381 0.400 0.298
11-Gas-2014 0.436 0.423 0.373 0.377 0.606 0.407 0.421 0.345
11-Gas-2015 0.342 0.328 0.329 0.333 0.459 0.321 0.333 0.290
12-Traffic 0.975 0.975 1.030 1.047 1.324 0.975 0.975 0.975
13-Produce 0.490 0.490 0.536 0.500 0.831 0.490 0.490 0.498
14-Election 0.036 0.036 0.009 0.014 0.079 0.016 0.035 0.034
15-Bike 0.511 0.513 0.414 0.414 0.597 0.483 0.496 0.405
16-Steel 0.080 0.080 0.031 0.031 0.064 0.051 0.077 0.075
Average ranking 5.8 3.7 3.9 3.7 7.55 3.35 4.65 1.85
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As illustrated in Tables 9, 10, and 11, some remarks can be summarised: (1) con-
sidering the BEM constant weighting method, NCL is a choice to improve the predic-
tions; (2) Best-NCL performs better than all the methods regarding the number of data-
sets; (3) the average ranking of Best-NCL is higher than all the methods on RMSE and 
MAE metrics; (4) on the MAPE metric, the average ranking of Best-NCL is close to 
that of EEW, although Best-NCL is better than EEW on more datasets. This is caused 
by the extreme errors on MAPE (06-Blackfriday), while EEW is affected less.

To significantly show the comparison between the Best-NCL and other methods, the 
FN tests were performed on the prediction results of the eight weighting methods on 
the 20 datasets. Figure 9 presents the results of the statistical analysis of the FN test.

From Fig.  9, our proposed Best-NCL performs better than the other methods on 
RMSE and MAE significantly. In MAPE, Best-NCL performs comparably to the two 
non-constant methods, EIW and EEW, and outperforms the other weighted methods. 
These results are in line with what is observed from Tables 9,  10, and  11. All the con-
stant weighting methods listed in this section perform unsatisfactorily, although BEM-
NCL with the same sub-models as Best-NCL. The experiments confirm the superiority 
of the NCL ensemble and illustrate that fusion of sub-model selection and weighting is 
necessary when building the ensemble.

Table 10   Comparison with constant and non-constant methods on MAE

Dataset BEM BEM-NCL GEM LR MDT EIW EEW Best-NCL

01-Car 0.339 0.325 0.677 0.688 0.468 0.337 0.338 0.325
02-House 0.248 0.226 0.265 0.275 0.288 0.234 0.244 0.198
03-Insurance 0.229 0.225 0.266 0.199 0.298 0.213 0.225 0.196
04-Life_Expectancy 0.213 0.213 0.383 0.197 0.448 0.198 0.209 0.190
05-Walmart 0.499 0.208 0.151 0.151 0.204 0.329 0.438 0.142
06-Blackfriday 0.597 0.574 0.564 0.564 0.739 0.591 0.593 0.573
07-PM25 0.527 0.476 0.347 0.346 0.478 0.495 0.512 0.360
08-Temperature 0.288 0.281 0.262 0.268 0.330 0.278 0.285 0.240
09-Power 0.182 0.182 0.160 0.160 0.207 0.179 0.182 0.178
10-Concret 0.298 0.253 0.300 0.267 0.819 0.276 0.290 0.226
11-Gas-2011 0.235 0.201 0.236 0.240 0.333 0.219 0.230 0.198
11-Gas-2012 0.293 0.277 0.302 0.302 0.355 0.267 0.284 0.224
11-Gas-2013 0.303 0.236 0.268 0.290 0.331 0.274 0.294 0.208
11-Gas-2014 0.285 0.276 0.235 0.234 0.380 0.258 0.276 0.211
11-Gas-2015 0.242 0.235 0.234 0.236 0.332 0.224 0.236 0.200
12-Traffic 0.851 0.851 0.855 0.857 1.056 0.850 0.850 0.848
13-Produce 0.290 0.290 0.347 0.296 0.504 0.289 0.289 0.295
14-Election 0.011 0.011 0.001 0.001 0.014 0.002 0.011 0.011
15-Bike 0.363 0.354 0.287 0.287 0.443 0.332 0.351 0.266
16-Steel 0.044 0.044 0.016 0.016 0.028 0.024 0.043 0.041
Average Ranking 5.9 3.85 4 3.6 7.35 3.45 4.7 1.85
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4.6 � Comparison with best sub‑model in each group

The previous subsections compared and analyzed NCL-based ensemble with other ensem-
ble methods. This subsection aims to continue the exploration of the NCL-based ensemble 
concerning the best sub-models in each model class. Table 12 lists the model class that the 
best sub-model belongs to for each dataset on the validation and test set under the three 
metrics. There are columns named ‘ � = 0 ’ also in Table 12, given that the hybrid ensem-
ble only selects one sub-model when there is no NCL. Bolded fonts in Table 12 are the 
sub-models that perform consistently on the validation and test sets. If the NCL ensemble 
outperforms the best sub-model on the final test set, that sub-model is marked with a star.

Table 11   Comparison with constant and non-constant methods on MAPE

Dataset BEM BEM-NCL GEM LR MDT EIW EEW Best-NCL

01-Car 1.842 1.817 3.628 3.705 2.380 1.782 1.731 1.923
02-House 1.449 1.476 1.757 1.818 2.050 1.347 1.285 1.269
03-Insurance 0.656 0.678 0.820 0.515 0.651 0.580 0.597 0.555
04-Life_Expectancy 1.211 1.211 2.956 1.295 6.873 1.074 1.024 1.013
05-Walmart 2.021 1.590 0.968 0.855 2.900 1.309 0.920 1.277
06-Blackfriday 6.202 7.601 7.909 7.814 14.491 4.350 1.966 7.415
07-PM25 1.434 1.649 1.926 1.916 3.112 1.360 1.317 1.703
08-Temperature 1.322 1.284 1.267 1.337 2.109 1.275 1.255 1.117
09-Power 1.724 1.724 1.303 1.311 2.452 1.583 1.499 1.666
10-Concret 0.999 0.820 1.040 0.954 2.409 0.927 0.913 0.798
11-Gas-2011 1.163 1.079 1.332 1.230 2.228 1.104 1.087 1.059
11-Gas-2012 1.371 1.374 2.037 2.015 2.292 1.300 1.249 1.161
11-Gas-2013 1.452 1.057 1.439 1.403 2.065 1.229 1.116 1.071
11-Gas-2014 2.382 2.303 1.911 1.550 1.929 1.812 1.350 1.290
11-Gas-2015 1.006 1.001 1.160 1.148 1.348 0.960 0.950 0.902
12-Traffic 1.332 1.332 1.849 1.847 4.023 1.308 1.301 1.459
13-Produce 0.557 0.557 0.783 0.558 1.217 0.545 0.551 0.568
14-Election 0.089 0.089 0.011 0.010 0.019 0.021 0.085 0.087
15-Bike 1.355 1.346 1.112 1.110 1.360 1.196 1.125 1.079
16-Steel 0.115 0.115 0.077 0.077 0.128 0.092 0.111 0.109
Average Ranking 5.2 4.55 5.4 4.5 7.4 3.25 2.5 2.85

Fig. 9   Friedman and Nemenyi test on RMSE (left), MAE (middle), and MAPE (right). The horizontal axis is 
the differences in average ranked values of each method with the vertical axis the names of them



3910	 Machine Learning (2023) 112:3881–3916

1 3

Ta
bl

e 
12

  
C

om
pa

ris
on

 w
ith

 b
es

t s
ub

-m
od

el
s

D
at

as
et

R
M

SE
M

A
E

M
A

PE

Va
lid

at
io

n 
se

t
Te

st 
se

t
�
=
0

Va
lid

at
io

n 
se

t
Te

st 
se

t
�
=
0

Va
lid

at
io

n 
se

t
Te

st 
se

t
�
=
0

01
-C

ar
B

R
D

TR
B

R
R

FR
SV

R
B

R
PR

B
R

B
R

02
-H

ou
se

G
B

D
T

SV
R

G
B

D
T

D
TR

D
TR

G
B

D
T

A
B

R
SV

R
G

B
D

T
03

-I
ns

ur
an

ce
G

B
D

T
M

PR
*

G
B

D
T

M
PR

M
PR

G
B

D
T

R
R

R
FR

G
B

D
T

04
-L

ife
_E

xp
ec

ta
nc

y
M

PR
SV

R
D

TR
SV

R
D

TR
D

TR
SV

R
M

PR
D

TR
05

-W
al

m
ar

t
M
PR

M
PR

G
B

D
T

M
PR

M
PR

*
G

B
D

T
D

TR
G

B
D

T
G

B
D

T
06

-B
la

ck
fr

id
ay

A
B

R
PR

*
PR

SV
R

A
B

R
PR

R
FR

D
TR

PR
07

-P
M

25
SV

R
G

B
D

T*
D

TR
SV

R
SV

R
D

TR
R
FR

R
FR

D
TR

08
-T

em
pe

ra
tu

re
M

PR
D

TR
*

M
PR

D
TR

SV
R

*
M

PR
R

FR
D

TR
*

M
PR

09
-P

ow
er

A
B

R
D

TR
G

B
D

T
SV

R
D

TR
G

B
D

T
PR

D
TR

G
B

D
T

10
-C

on
cr

et
M
PR

M
PR

*
M

PR
M
PR

M
PR

*
M

PR
SV

R
M

PR
*

M
PR

11
-G

as
-2

01
1

M
PR

M
PR

SV
R

M
PR

M
PR

SV
R

SV
R

G
B

D
T

SV
R

11
-G

as
-2

01
2

M
PR

M
PR

*
D

TR
D

TR
M

PR
D

TR
G

B
D

T
M

PR
D

TR
11

-G
as

-2
01

3
D
TR

D
TR

*
M

PR
D

TR
M

PR
*

M
PR

SG
D

R
M

PR
M

PR
11

-G
as

-2
01

4
SV

R
M

PR
*

G
B

D
T

D
TR

M
PR

*
G

B
D

T
R

FR
D

TR
G

B
D

T
11

-G
as

-2
01

5
SV

R
M

PR
*

SV
R

D
TR

M
PR

SV
R

R
FR

M
PR

*
SV

R
12

-T
ra

ffi
c

PR
G

B
D

T
R

FR
SG

D
R

A
B

R
R

FR
SV

R
D

TR
R

FR
13

-P
ro

du
ce

R
FR

SD
G

R
*

G
B

D
T

R
FR

PR
G

B
D

T
SV

R
M

PR
G

B
D

T
14

-E
le

ct
io

n
M
PR

M
PR

D
TR

D
TR

D
TR

D
TR

G
B

D
T

D
TR

D
TR

15
-B

ik
e

D
TR

D
TR

G
B

D
T

D
TR

D
TR

G
B

D
T

D
TR

SV
R

G
B

D
T

16
-S

te
el

D
TR

M
PR

G
B

D
T

D
TR

M
PR

G
B

D
T

G
B

D
T

D
TR

G
B

D
T



3911Machine Learning (2023) 112:3881–3916	

1 3

From Table 12, the single sub-model selected by the NCL ensemble when � = 0 might 
differ from those in the columns ‘Validation set’ since the objective function takes MSE 
error. Table 12 is an ideal example of model instability. In the 20 datasets, only a few sub-
models perform both best on the validation and test sets. Model instability occurs when, 
despite promising results for the current local model, the original optimal model is hard to 
maintain once new data are available and the data distribution changes. In some cases, our 
proposed NCL ensemble is even better than the best-performing sub-models, according to 
the star marks in Table 12, and is a relatively robust ensemble under the RMSE metric.

Building NCL ensembles is a challenging task. Not only do we have to compare and 
select sub-models on the validation set thoroughly, but we also have to manipulate the 
approach to solve the optimization problem, which will undoubtedly consume some time. 
However, if the proposed NCL ensemble eventually achieves results comparable to the 
best-performing sub-model, it means that the ensemble can overcome model instability 
to some extent. This is quite important. In practice, testing a best-performing sub-model 
involves picking from a large model pool, which is as time-consuming as building an NCL-
based ensemble. Once the data distribution changes in the future, this sub-model may not 
continue to predict well, as no perfect single model is suitable for all data. In this case, the 
NCL-based ensemble performs more robustly and is a better choice.

4.7 � The sensitivity analysis of negative correlation strength

The parameter � in the NCL objective function controls the strength of the negative cor-
relation. If � is close to 0, the NCL objective function can only pick the sub-model with the 
lowest MSE error on the validation set, which is no different in methodology from select-
ing a sub-model based on other metrics. If � is close to 1, The optimization task will search 
for the most diverse sub-models for the ensemble. We plot Fig. 10 to present how the pre-
diction errors change with �.

From Fig. 10, we observe that the RMSE and MAE errors first decrease at � within 0.1 
and 0.2. This phenomenon shows in more than half of the datasets. There are also data-
sets with higher data volume that decreases at higher � , such as 06-BlackFriday, and some 
datasets take lower � and will increase when � is higher than 0.1. The MAPE error is more 
sensitive than the other two metrics on the change of � . Our findings fit that of Brown 
et al. (2005). The authors found an upper bound of � , and � stabilized when the number 
of sub-models in the ensemble increased to a certain level. There is a similar pattern in 

Fig. 10   Relationship between ensemble performance and � . The horizontal axis is � values from 0 to 1 with 
step 0.1, and the vertical axis is the corresponding prediction metric RMSE, MAE, and MAPE 
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our sensitivity analysis of � . According to Fig. 10, it is necessary to try different � for dif-
ferent datasets. Thus, the Algorithm 1 designed in this paper to automatically search � is 
beneficial.

5 � Discussion

As one of the essential branches of ensemble models, the hybrid ensemble has made signif-
icant progress in research and practice. However, the hybrid ensemble still faces the prob-
lem of choosing the appropriate model subset and assigning weights to the sub-models. 
Simply averaging the predictions of all sub-models does not achieve the expected results; 
even the corrections using weighted averaging methods are limited. This study proposes a 
novel method for a hybrid ensemble that automatically selects models and generates appro-
priate weights, yielding comparable performance with the optimal sub-models in regres-
sion problems.

A body of studies has experimentally demonstrated that diversity is a critical factor in 
the success of hybrid ensembles. Most studies investigated the sub-model training stage, 
working on sampling the data and modifying the parameters of homogeneous models, but 
the diversity generated in this way could be improved. This study proposes a regression 
prediction framework incorporating NCL, considering the diversity in both the sub-model 
training and combination stages. Eleven regression models with different structures and 
parameters are chosen in the sub-model training stage to build a model pool and fit the 
training set separately. Second, the study extends the use of NCL from the previous model 
training to the model combination. Using the interior-point filter linear-search algorithm in 
the Gekko solver, we solve the optimization problem of model selection and combination 
to select the negatively correlated model directly sets from the model pool and generate 
weighted predictions simultaneously. Furthermore, the solution to the optimization prob-
lem depends on the negative correlation strength � . Based on this, an algorithm is designed 
to automatically search for the optimal � , avoiding the time wastage of manual search and 
testing.

The experimental results support that using NCL in the hybrid ensemble is a beneficial 
initiative, and the importance of diversity is demonstrated in both stages of the ensemble. 
In the sub-model training stage, if all the sub-model predictions are projected into a two-
dimensional plane, it is evident that those from the same model class will gather into a 
cluster. Spatially, the best sub-model in each model class is closer to the true value than 
the average center of each class. The range of geometries formed by the best sub-models is 
thus more minor, and the ensemble falling in this range has a higher probability of exceed-
ing the average of each model class. This paper also demonstrates that the ensemble perfor-
mance is related to the sub-model diversity and that it is statistically better to construct the 
ensemble with the best sub-models from different model classes.

In the sub-model combination stage, we innovatively considered diversity and solved 
the optimization problem by incorporating NCL using an interior-point filtering linear-
search algorithm. The experimental results show some inspiring points: (1) the NCL 
ensemble improves the simple average that lacks selecting and weighting procedures; (2) 
the NCL penalty is beneficial in the sub-models with higher diversity, such as the best 
sub-models and DTR members; (3) the NCL ensemble can be improved further by adding 
a regularization term in the objective function; (4) the NCL ensemble performs better than 
the network ensemble with training the homogeneous sub-models; (5) it is necessary to 
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keep some not-satisfying sub-models in the ensemble due to the negative knowledge they 
may offer; (6) the weights of the sub-models are in line with the ensemble performance; (7) 
as a non-constant weighting method, NCL ensemble is superior to other constant weight-
ing methods; (8) the NCL ensemble can overcome the model instability and performs close 
to the best sub-model; (9) the auto-searching algorithm is helpful in finding an optimal �.

A limitation of this study is that the eleven sub-models in the model pool need to cover 
more established models in the regression field, which also provides researchers with the 
freedom to replace candidate models. This study also needs a more in-depth exploration of 
how the data features influence the ensemble effect.

6 � Conclusion

We developed a hybrid ensemble approach incorporating negative correlation learning, 
considering model diversity in the sub-model training and combination stages. NCL acts as 
a penalty term for the objective function to be optimized, assisting in the model selection 
process to find subsets with diversity. Experiments on twenty publicly available regression 
datasets confirm the effectiveness of this approach.

First, the proposed method is user-friendly and easy to understand. Practitioners no 
longer need to evaluate the effectiveness of individual models using various accuracy 
indexes to select the best one, nor do they need to blindly weight the candidate models, 
since the hybrid ensemble with the addition of NCL can fully demonstrate prediction 
accuracy that approximates or exceeds that of the best sub-model with appropriate penalty 
strength. Additionally, the predictions from any model can be added to the model pool as 
an element for the calculation. Even if the model does not work well, this method will dis-
card it automatically. Therefore, our proposed method has practical implications.
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