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Abstract
Scientists form hypotheses and experimentally test them. If a hypothesis fails (is refuted), 
scientists try to explain the failure to eliminate other hypotheses. The more precise the 
failure analysis the more hypotheses can be eliminated. Thus inspired, we introduce failure 
explanation techniques for inductive logic programming. Given a hypothesis represented 
as a logic program, we test it on examples. If a hypothesis fails, we explain the failure in 
terms of failing sub-programs. In case a positive example fails, we identify failing sub-
programs at the granularity of literals. We introduce a failure explanation algorithm based 
on analysing branches of SLD-trees. We integrate a meta-interpreter based implementation 
of this algorithm with the test-stage of the Popper ILP system. We show that fine-grained 
failure analysis allows for learning fine-grained constraints on the hypothesis space. Our 
experimental results show that explaining failures can drastically reduce hypothesis space 
exploration and learning times.

Keywords  Relational learning · Inductive logic programming · Failure explanation

1  Introduction

Explanations are ubiquitous in our cognitive lives (Keil & Wilson, 2000). They are cru-
cial to the process of forming hypotheses, testing them on data, analysing the results, and 
forming new hypotheses, that is to say, to science (Popper, 1963). For instance, imagine 
Alice is a chemist trying to synthesise a vial of a compound from two substances (e.g. sy
nth(thaum,slood,octiron)). Alice can perform actions, such as fill a vial with a substance 
(fill(Vial,Sub)) or mix two vials (mix(V1,V2,V3)), and sequence them to form a hypothesis, 
e.g.:
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This hypothesis says that to synthesise a vial of compound C, fill vial V1 with substance A, 
fill vial V1 with substance B, and mix vial V1 with itself to form C.

When Alice experimentally tests this hypothesis she finds that it fails. From this fail-
ure Alice concludes (C1) that hypotheses which add further actions (i.e.  literals) will 
also fail. However, as Alice observed that the second action caused the failure, she can 
explain the failure as “vial V1 cannot be filled a second time”. This allows her to con-
clude (C2) that any hypothesis that includes fill(V1,A) and fill(V1,B) will fail. Clearly, 
conclusion C2 allows Alice to eliminate more hypotheses than C1. That is, by explain-
ing failures Alice can better form new hypotheses.

We formalise this mode of reasoning for explaining failures of logical theories. We 
do so in the context of inductive program synthesis, where the goal is to machine learn 
computer programs from data (Ehud, 1983). Existing inductive logic programming 
(ILP) approaches fail to generalise from observed failures. Many ILP systems (Ahlgren 
& Yuen, 2013; Cropper & Morel, 2021; Law, 2018) only learn from the failure of an 
entire hypothesis—as Alice does when she concludes C1—and cannot explain why a 
hypothesis fails, e.g. cannot reason like Alice does to conclude C2. Some systems can 
identify parts of a program that cause a failure, but cannot learn from this informa-
tion. For instance, (Cropper & Muggleton, 2016) will repeatedly retry failing program 
fragments.

We address these limitations by automatically explaining program failures, taking inspi-
ration from algorithmic debugging (Caballero et al., 2017). The idea is to analyse the fail-
ure of a hypothesis to identify sub-programs that also fail. To illustrate, consider hypoth-
esis H1:

If droplast([1,2],[1]) is a positive example, then H1 does not cover this example. From this 
failure we can learn that H1 ’s sub-program { droplast(A,B) ← empty(A) } also does not 
cover this example. We show that by identifying failing sub-programs and accumulating 
constraints generated from them, we can eliminate more hypotheses (e.g. any single clause 
program that expands the above sub-program). When the overhead of failure explanation is 
low, our approach reduces learning times.

Most logic program debugging systems (Köhler et  al., 2012; Thompson & Sullivan, 
2020) and some synthesis systems (Ehud, 1983; Raghothaman, 2020) can identify a subset 
of clauses as being the cause of a failure. We additionally identify literals within clauses 
responsible for failure [without the requirement of trace-complete examples needed by 
theory revision systems such as FORTE Richards and Mooney (1995)]. We show that this 
fine-grained failure analysis allows for learning finer-grained constraints on the hypothesis 
space.

Our contributions are:

•	 We relate logic programs that fail on examples to their failing sub-programs. For wrong 
answers we identify clauses. For missing answers we additionally identify literals 
within clauses.

•	 We show that hypotheses that are specialisations and generalisations of failing sub-
programs can be eliminated, and prove that hypothesis space pruning based on sub-
programs is more effective than pruning without them.

synth(A,B,C) ← fill(V1,A), fill(V1,B),mix(V1,V1,C)

{
droplast(A,B) ← empty(A), tail(A,B)

}



3919Machine Learning (2023) 112:3917–3943	

1 3

•	 We introduce Hempel, an ILP system extending the Popper ILP system, which analyses 
SLD-trees to automatically explain failures in terms of sub-programs.

•	 We experimentally show that failure explanation can drastically reduce (i) hypothesis 
space exploration and (ii) learning times.

2 � Related work

Program synthesis Inductive program synthesis systems automatically generate computer 
programs from specifications, typically input/output examples (Ehud, 1983). This topic 
interests researchers from many areas of machine learning, including Bayesian inference 
(Silver et al., 2020) and neural networks (Ellis et al., 2018). We focus on ILP techniques, 
which induce logic programs (Muggleton, 1991).

Recursion Both classical ILP systems (Blockeel & Raedt, 1998; Muggleton, 1995; Srin-
ivasan, 2001) as well as many modern ones, e.g. (Ahlgren & Yuen, 2013), struggle to learn 
recursive programs, or cannot learn them at all, e.g. (Schüller & Benz, 2018) and  Fast-
LAS Law et  al. (2020). By contrast, our system, Hempel, can learn recursive programs 
and thus programs that generalise to input sizes it was not trained on. Compared to many 
modern ILP systems (Evans & Grefenstette, 2018; Evans et  al., 2021; Kaminski et  al., 
2019), Hempel supports large and infinite domains, which is important when reasoning 
about complex data structures, such as lists. In addition, unlike many state-of-the-art sys-
tems (Cropper & Muggleton, 2016; Evans & Grefenstette, 2018; Hocquette & Muggleton, 
2020; Kaminski et al., 2019), Hempel does not require metarules (i.e. program templates) 
to restrict the hypothesis space.

Algorithmic debugging Algorithmic debugging (Caballero et al., 2017) explains failures 
in terms of sub-programs. Alongside his seminal work on logic program synthesis, Shapiro 
(Ehud, 1983) introduced the notion of debugging trees for semi-automated identification of 
failing clauses. Only being able to return clauses responsible for entailing an atom is still 
the standard for logic programming debugging (Köhler et al., 2012; Thompson & Sullivan, 
2020). Unlike these systems, we automatically identify literals within clauses which cause 
an atom to not be entailed, and integrate the failure explanation process in a program syn-
thesis system.

Theory revision and repair Shapiro’s Model Inference System (MIS) (Ehud, 1983) is a 
theory revision system which, through interaction with a user, is capable of synthesising 
programs. MIS uses SLD-trees to determine which clauses of a program are responsible for 
entailing a negative example, at which point the user needs to say which of these clauses 
is wrong. To cover a non-covered positive example, additional clauses get added, possibly 
involving user-interaction, without regard for why the current clauses do not entail this 
example. By contrast, Hempel does not require an oracle and can automatically identify 
clauses and literals within clauses as being responsible for not entailing a positive example.

There are theory revision systems (Wrobel, 1996) able to identify literals as revi-
sion points within theories, though often with limitations. Some require user-interaction 
(Pazzani & Brunk, 1991; Raedt & Bruynooghe, 1992). FORTE (Richards & Mooney, 
1995) uses hill-climbing to gradually revise a theory, heuristically following revisions 
that improve training accuracy. Unlike FORTE, Hempel is guaranteed to find an optimal 
solution if one exists. FORTE can automatically identify responsible literals of a sub-
program, given that the examples are trace-complete, i.e. all necessary recursive calls of 
the target predicate are included as positive examples. Our failure explanation algorithm 
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automatically identifies responsible clauses and literals which cause a program to not entail 
an atom, without any condition on the examples.

In general, theory revision and theory repair (Bundy & Mitrovic, 2016) are concerned 
with updating a current hypothesis by applying generalisation and specialisation operators 
to the identified revision points. Whereas these systems refine a single program at a time, 
Hempel uses the failure of a (sub-)program to refine the hypothesis space, each time prun-
ing away a large class of programs.

Failure explanation Some modern ILP systems can be said to have a degree of failure 
explanation.

Metagol (Cropper & Muggleton, 2016) is a meta-interpreter which uses examples to 
drive the search, gradually building up a program whilst partially evaluating it on an exam-
ple. When a failure occurs, Metagol knows it is due to the last literal that was added, which 
causes it to backtrack. However, due to its iterative deepening strategy, Metagol will 
reconsider these program fragments many times, and has no way to learn from failures. By 
contrast, Hempel learns constraints which ensure that failing program fragments are never 
reconsidered.

ILASP3 (Law, 2018) learns recursive ASP programs, with partial interpretations serv-
ing as examples. It starts by enumerating the space of candidate rules, assigning each an 
id. Next a select-test-constrain loop selects a hypothesis, a subset of the candidate clauses, 
based solely on constraints over the ids. When a model of a selected hypothesis does not 
correctly extend the given partial interpretations, the hypothesis fails with the model being 
its violating reason. Constraints can be derived from a violating reason by checking which 
combinations of candidate rules also have it as a model, which is an expensive operation. 
Hempel’s learning of constraints by identifying sub-programs is more efficient and, by 
defining its hypothesis selection problem over literals, it is not restricted to identifying just 
clauses as causing a failure.

Like ILASP3, ProSynth (Raghothaman, 2020) precomputes every possible clause and 
employs a select-test-constrain loop over clause ids. ProSynth uses the notion of query 
provenance (Cheney et al., 2009) for identifying which clauses of a hypothesis are respon-
sible for (not) entailing an example, encoding identified subsets as constraints. ProSynth 
learns Datalog programs, which is just a fragment of the definite programs which can be 
learned by Hempel. Additionally, Hempel’s failure explanation is finer grained as it also 
identifies which literals cause failure.

Learning from failures Our system builds on popper (Cropper & Morel, 2021), see 
Sect. 5. popper learns first-order constraints by a process that is similar to conflict-driven 
clause learning (João, 2009). The constraints that Popper learns are always based on entire 
hypotheses (i.e. it only reasons as Alice does for conclusion C1 in the introduction). Hemp-
el’s failure explanation can hence be viewed as allowing popper to detect smaller, finer-
grained conflicts, yielding smaller and more general constraints which prune more effec-
tively (which brings the reasoning about failures up to the level of conclusion C2).

3 � Problem setting

In this section, we (i) describe our problem setting; (ii) relate specialisations and generali-
sations to missing and incorrect answers; (iii) define failing sub-programs; and (iv) show 
that sub-programs lead to better pruning.
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Preliminaries. We assume standard logic programming definitions (Lloyd, 2012). We 
define �-subsumption (Midelfart, 1999; Plotkin, 1971). A clause C1 subsumes a clause C2 
iff there exists a substitution � such that C1𝜃 ⊆ C2 . A clausal theory T1 subsumes a clausal 
theory T2 iff ∀C2 ∈ T2,∃C1 ∈ T1 such that C1 subsumes C2 . Subsumption implies entail-
ment, i.e. if T1 subsumes T2 then T1 ⊧ T2.

3.1 � Learning from failures

We adopt the learning from failures (LFF) approach to ILP (Cropper & Morel, 2021). Let 
H be a set of hypotheses, where each hypothesis is a definite program (a set of definite 
clauses). Hypothesis space pruning is made explicit in LFF by means of hypothesis con-
straints. For our purposes, it suffices to see a hypothesis constraint as a set of programs, 
typically related by their syntax, where the purpose of this set is to prune, i.e.  rule out, 
these hypotheses. For example, given a program P, a hypothesis constraint could prune 
any program Q ∈ H such that P ⊆ Q , i.e. any program that adds clauses to P. Given a set 
of hypothesis constraints C = {C1,… ,Cn} , HC = H⧵(C1 ∪… ∪ Cn) denotes the set of all 
hypotheses not pruned by the individual constraints.

We define LFF’s input1 and introduce our running example:

Definition 1  (LFF input) A LFF input is a tuple (E+,E−,H,B,C) where E+ and E− are 
sets of ground atoms denoting positive and negative examples respectively; H is a set of 
hypotheses; B is a definite program denoting background knowledge2; and C is a set of 
hypothesis constraints.

Example 1  To illustrate LFF, consider an input for learning a droplast/2 program. Sup-
pose our hypotheses H are definite programs with droplast/2 in the head of each clause 
and droplast/2, empty/1, head/2, tail/2 and cons/3 occurring in bodies. Our back-
ground knowledge B consists of definitions for these predicates, except for droplast/2. 
E+ = {droplast([1, 2, 3], [1, 2]), droplast([1, 2], [1])} and E− = {droplast([1, 2], [])} are our 
positive and negative examples. Our set of hypothesis constraints C is initially empty.

We define a LFF solution:

Definition 2  (LFF solution) Given an input tuple (E+,E−,H,B,C) , a hypothesis H ∈ HC is 
a solution when H is complete ( ∀e ∈ E+, B ∪ H ⊧ e ) and consistent ( ∀e ∈ E−, B ∪ H ̸⊧ e).

If a hypothesis is not a solution then it is a failing hypothesis. A hypothesis H 
is incomplete when ∃e+ ∈ E+, H ∪ B ̸⊧ e+ . A hypothesis H is inconsistent when 
∃e− ∈ E−, H ∪ B ⊧ e− . A hypothesis H1 is a specialisation of hypothesis H2 when H2 sub-
sumes H1 . Symmetrically, a hypothesis H1 is a generalisation of hypothesis H2 when H1 
subsumes H2.

Key to LFF is the ability to learn hypothesis constraints from failed hypotheses. Given 
an incomplete hypothesis H, a specialisation constraint prunes specialisations of H. 

1  We work with a more abstract LFF input than its original definition: our hypothesis spaces and its con-
straints are just sets rather than sets being represented by formulae in a constraint satisfaction language.
2  The background knowledge program can make use of functional symbols.
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Similarly, given an inconsistent hypothesis H′ , a generalisation constraint prunes generali-
sations of H′ . These constraints are sound, that is, they do not prune solutions.

3.2 � Missing and incorrect answers

Given background knowledge B, the failure of a hypothesis H is due to at least one 
example. We adopt the following terminology from the algorithmic debugging commu-
nity (Caballero et  al., 2017; Ehud, 1983). A positive example e+ is a missing answer 
when B ∪ H ̸⊧ e+ . Similarly, a negative example e− is an incorrect answer when 
B ∪ H ⊧ e− . We relate missing and incorrect answers to specialisations and generalisa-
tions. If H has a missing answer e+ , then, as a specialisation H′ of H entails at most 
as much as H, e+ is a missing answer of H′ as well. Hence all specialisations of H are 
incomplete and can be eliminated. Similarly, as generalisations of H entail at least as 
much as H, if e− is an incorrect answer of H, all generalisations of H are inconsistent 
and can be pruned.

Example 2  (Missing answers and specialisations) Given the LFF input from Example 1, 
consider the following droplast hypothesis:

Both droplast([1, 2, 3], [1, 2]) and droplast([1, 2], [1]) are missing answers of H1 , so H1 
is incomplete and we can prune its specialisations, e.g. programs that add literals to the 
clause.

Example 3  (Incorrect answers and generalisations) Consider hypothesis H2:

In addition to being incomplete, H2 is inconsistent because of the incorrect answer 
droplast([1, 2], []) , so along with specialisations we can prune the generalisations of H2 , 
e.g. programs with additional clauses.

3.3 � Failing sub‑programs

We now consider explaining failures in terms of failing sub-programs. The idea is to 
identify sub-programs that cause the failure. Consider the following two examples:

Example 4  (Explain missing answer) Consider previously defined H1 and positive example 
e+ = droplast([1, 2], [1]) . An explanation for why H1 does not entail e+ is that empty([1, 2]) 
fails. It follows that e+ is a missing answer of H�

1
=
{
droplast(A,B) ← empty(A)

}
 . As H′

1
 

is incomplete we can prune all of its specialisations.

H1 =
{
droplast(A,B) ← empty(A), tail(A,B)

}

H2 =

{
droplast(A,B) ← tail(A,C), tail(C,B)

droplast(A,B) ← tail(A,B)

}
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Example 5  (Explain incorrect answer) Consider negative example 
e− = droplast([1, 2], []) and H2 . The first clause of H2 always entails e− irrespective of 
other clauses being part of the hypothesis. It follows that e− is an incorrect answer of 
H�

2
=
{
droplast(A,B) ← tail(A,C), tail(C,B)

}
 . As H′

2
 is inconsistent we can prune all of 

its generalisations.

Note that when a system like popper observes that H2 fails, it is not able to prune 
based on H′

2
 . Whilst costly, an ILP system like ProSynth could learn that H′

2
 fails. Given 

H1 and its failure, popper, ILASP3 and ProSynth are unable to determine it is possible to 
prune based on H′

1
.

We now define a sub-program:

Definition 3  (Sub-program) A definite program P is a sub-program of a definite program 
Q if and only if either:

•	 P is the empty set
•	 there exists clauses Cp ∈ P and Cq ∈ Q such that Cp ⊆ Cq and P⧵{Cp} is a sub-program 

of Q ⧵ {Cq}

In this definition, arguments of literals must be syntactically the same3 for the clause 
subset check to succeed. In functional program synthesis, sub-programs are typically 
defined by leaving out nodes in the parse tree of the original program [e.g., (Feng, 2018)]. 
Our definition generalises this idea by allowing for arbitrary ordering of clauses and 
literals.

In the above examples, H′
1
 is a sub-program of H1 and so is H′

2
 of H2 . Note that clauses 

and literals can be dropped at the same time, e.g. 
{
droplast(A,B) ← tail(A,C)

}
 is another 

sub-program of H2.
We define the failing sub-programs problem:

Definition 4  (Failing sub-programs) Given definite program P and sets of examples E+ 
and E− , the failing sub-programs problem is to find all sub-programs of P that do not entail 
an example of E+ or do entail an example of E−.

By definition, a failing sub-program has a missing answer and/or an incorrect answer. 
Hence we can always prune specialisations and/or generalisations of a failing sub-program. 
We show that sub-programs are effective at pruning:

Theorem 1  (Better pruning) Let H be a definite program that fails and P ( ≠ H ) be a sub-
program of H that fails. Let C(H) and C(P) be the specialisation and/or generalisation 
constraints derivable for H and P, respectively. If neither of (i) P is a specialisation of H, 
H is incomplete and P is not inconsistent, or (ii) P is a generalisation of H, H is inconsist-
ent and P is not incomplete, apply, then HC(H)∪C(P) ⊂ HC(H) , i.e. constraints derived for P 
prune programs not pruned by constraints derived for H.

3  Our definition hence insists on variable names in literals of a sub-program Q being the same as variable 
names in the corresponding literals of program P.
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Proof  By case distinction on how P and H are related by subsumption. Note that because 
P ≠ H , either P and H are not related by subsumption, or P subsumes H, or H subsumes P.

Suppose H subsumes P, i.e. P is a specialisation of H. If H is incomplete, then all of 
H’s specialisations can be pruned, which includes P and its specialisations. Hence if P is 
only incomplete then no additional pruning can be achieved, which is exception (i). If P is 
(additionally) inconsistent, then P’s generalisations can be pruned. In addition to H being 
among P’s generalisations, there are also programs incomparable with H among P’s gener-
alisations, so more pruning can be achieved.

Now suppose P subsumes H, i.e. P is a generalisation of H. If H is inconsistent, then all 
of H’s generalisations can be pruned, which includes P and its generalisations. Hence if 
P is only inconsistent then no additional pruning can be achieved, which is exception (ii). 
If P is (additionally) incomplete, then P’s specialisations can be pruned. In addition to H 
being among P’s specialisations, there are also programs incomparable with H among P’s 
specialisations, so more pruning can be achieved.

In the remaining case, where H and P are not related by subsumption, it is immediate 
that the specialisation/generalisation constraints derived for P prune a distinct part of the 
hypothesis space, e.g. H’s constraints do not prune P. 	�  ◻

4 � Failure explanation algorithm

We now present a method for identifying failing sub-programs. The approach is based on 
the observation that branches of an SLD-tree correspond to sub-programs. Our algorithm 
identifies clauses responsible for entailing a negative example. It is when a program fails 
to prove entailment that our approach distinguishes itself. Namely, we also identify literals 
within clauses which cause a positive example to not be entailed. As the presented method 
relies on SLD-resolution, from this point on we assume left-to-right evaluation of literals 
within clauses.

4.1 � SLD‑trees

In algorithmic debugging, missing and incorrect answers help characterise which parts of 
a debugging tree are wrong (Caballero et al., 2017). Debugging trees can be seen as gener-
alising SLD-trees, with the latter representing the search for a refutation (Nienhuys-Cheng 
& de Wolf, 1997). We address the failing sub-programs problem by analysing SLD-trees, 
only identifying a subset of them. A branch in a SLD-tree is a path from the root goal to 
a leaf. Each goal on a branch has a selected atom, on which resolution is performed to 
derive child goals. A branch that ends in an empty leaf is called successful, as such a path 
represents a refutation. Otherwise a branch is failing. Note that selected atoms on a branch 
identify a subset of the literals of a program.
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4.2 � Identifying sub‑programs

Let B be a definite program, H be a hypothesis, and e be a atom.4 The SLD-tree T for 
B ∪ H ∪ {¬e} , with ¬e as the root, proves B ∪ H ⊧ e iff T contains a successful branch. 
Given a branch � of T, we define the �-sub-program of H. A literal L of H occurs in �
-sub-program H′ if and only if L occurs as a selected atom5 in � or L was used to produce a 
resolvent that occurs in � . The former case is for literals in the body of clauses and the lat-
ter for head literals. Now consider the SLD-tree T ′ for B ∪ H� ∪ {¬e} with ¬e as root. As all 
literals necessary for � occur in B ∪ H� , the branch � must occur in T ′ as well.

Suppose e− is an incorrect answer for hypothesis H. Then the SLD-tree for 
B ∪ H ∪ {¬e−} has a successful branch � . The literals of H necessary for this branch 
are also present in �-sub-program H′ , hence e− is also an incorrect answer of H′ . Now 
suppose e+ is a missing answer of H. Let T be the SLD-tree for B ∪ H ∪ {¬e+} and �′ be 
any failing branch of T. The literals of H in �′ are also present in �′-sub-program H′′ . 
While �′ must be a failing branch present in the SLD-tree of B ∪ H�� ∪ {¬e+} , this is, in 
general, insufficient for concluding that this SLD-tree has no successful branch. Hence 
whether e+ is indeed a missing answer of H′′ needs to be verified.

Figure 1 shows the corresponding procedures for deriving failing sub-programs, in the 
case of a negative example and a positive example, respectively. Note that hypothesis H can 
refer to library B but B is not allowed to refer to H. Hence whilst resolving a selected literal 
of H defined by B with clauses of B we cannot encounter literals of H. Therefore, for failure 
explanation purposes, we need not inspect the part of the SLD-tree for B ∪ H ∪ {¬e} that 
deals with determining whether a literal defined by B holds or not. This is equivalent to 
viewing B as a (possibly infinite) set of facts, i.e. resolving a selected literal defined by B 
always returns directly. This is how we will treat resolving literals of B from this point on.

The following example illustrates identifying sub-programs from the SLD-trees of a 
recursive program.

Example 6  Let H be the following recursive droplast/2 hypothesis, where the name 
droplast has been shortened to dl:

c1 ∶ ��(�, �) ∶ −����(�, �), �����(�).

c2 ∶ ��(�, �) ∶ −����(�, �), ��(�, �).

Fig. 1   Identify failing sub-programs from branches in SLD-trees

4  While in our application to synthesis we only use ground atoms e, the failure explanation algorithm pre-
sented in this section also works when e is non-ground.
5  Note that resolution might have unified arguments of L to produce the selected atom.
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Suppose B includes the usual definitions for tail/2 and empty/1. Testing 
whether B ∪ H ⊧ ��([�, �], [�]) holds is done by SLD-resolution. The SLD-tree for 
B ∪ H ∪ {¬��([�, �], [�])} is:

Each node is a goal and has its selected literal underlined. The SLD-tree has four 
branches, each of them failing. The branch marked ‘1:’ identifies the sub-program P1 = 
{ dl(A,B):- tail(A,B). } as only clause c1 is used and only its head and first body 
literal are evaluated. The branches marked ‘2:’ and ‘3:’ identify the sub-program P2 = { 
dl(A,B):- tail(A,B).    dl(A,B):- tail(A,C),dl(C,B). } as both clauses 
are used though the second literal of c1 is never selected while all of the literals of c2 are. 
The branch marked ‘4:’ never uses clause c1 and hence identifies sub-program P3 = {c2} . 
Retesting dl([1,2],[1]) on these sub-programs confirms that they fail.

Now consider testing for B ∪ H ⊧ ��([�, �], []) . The SLD-tree for 
B ∪ H ∪ {¬��([�, �], [])} has failing branches but also a successful one: ← 
dl([1,2],[]) c2— ← tail([1,2],C),dl(C,[]) — ← dl([2],[]) c1— 
← tail([2],[]),empty([]) — ← empty([]) — ◻ . As this branch used 
all clauses, it identifies H itself as responsible. On the other hand, the SLD-tree for 
B ∪ H ⊧ ��([�], []) has a successful branch only using c1 : ← dl([1],[]) c1— ← 
tail([1],[]),empty([]) — ← empty([]) — ◻ . Hence it identifies P4 = {c1} as 
the responsible sub-program.

5 � Implementation

Before introducing our ILP system, Hempel, we discuss our implementation of the failure 
explanation algorithm.

5.1 � Meta‑Interpreter for failure explanation

We implement our failure explanation algorithm by a meta-interpreter, mi tr , where this 
meta-interpreter is best understood as instrumenting the program such that executing it 
keeps track of which parts of the program actually got executed.
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Given a background knowledge program B and an atom G, mi tr keeps track of which 
literals of a definite program P have been encountered along each branch of the SLD-tree 
of B ∪ P ∪ {¬G} . For each literal of the hypothesis P being evaluated we keep track of one 
bit of information: whether this literal6 has been seen along the current branch or not. mi 
tr maintains a bitset, which we refer to as a trace, containing a unique bit for each literal of 
the hypothesis.

The meta-interpreter assumes a program transformation X(⋅) has been applied to the 
program (where, for notational convenience, clauses are represented by disjunctions):

Before defining X(⋅, ⋅, ⋅) , we specify how bitsets are derived. Cidx and Lidx correspond to 
the index of clause C within P and the index of L within C, respectively. The function bit-
set(⋅, ⋅) converts a clause index and literal index within that clause to a bitset with a unique 
bit set for these inputs. X(L,Cidx, Lidx) := mi(L, bitset(Cidx, Lidx)) , if the predicate of L is 
defined by P. Otherwise X(L,Cidx, Lidx) := call(L, bitset(Cidx, Lidx)) , i.e. in the case the 
predicate of L is defined by the background knowledge.

Figure 2 lists the code for meta-interpreter mi tr . Given an atom G and program X(P), we 
can evaluate G as a goal using the meta-interpreter by invoking mi tr(mi(G,0),0,Trace), 
where 0 denotes the empty bitset. When this call succeeds, Trace will have become uni-
fied with a bitset identifying all literals that occurred on the first successful branch in the 
SLD-tree of B ∪ P ∪ {¬G} . If evaluation of mi tr(mi(G,0),0,Trace) fails then there is 
no successful branch in the SLD-tree of B ∪ P ∪ {¬G} . In this case mi tr will have asserted 
traces for each unsuccessful branch, via a non-logical predicate assert_failed_
trace7. Upon mi tr(mi(G,0),0,Trace) having failed, all these asserted traces can be 
inspected to obtain the corresponding sub-programs.

Note that mi tr only does a constant number of additional (bitset unioning / logical or) 
operations at every node of the SLD-tree of B ∪ P ∪ {¬G} involving literals of H (that is, 
resolving literals defined B is relegated to the normal interpreter). Hence the SLD-tree of 
B ∪ X(P) ∪ {¬ mi tr(mi(G, �), �, �����)} is only a constant factor bigger than the original. 
It follows that the overhead mi tr incurs from identifying sub-programs is directly propor-
tional to the size of the SLD-tree generated during normal execution, i.e.  the algorithm 
for identifying sub-programs has linear complexity (and leaves the part of the SLD-tree 
which is resolving literals of B with clauses of B untouched, incurring no overhead). This 
approach does not address non-termination issues of (recursive) programs, i.e. if executing 
the original program led to an infinite branch in the SLD-tree then executing the meta-
interpreter instead will also yield an infinite branch. For sub-programs identified on miss-
ing answers, we still need to re-evaluate the sub-programs. If P = {C1,… ,Cn} , then there 
are 

∏
1≤i≤n #literals(Ci) distinct sub-programs of P, i.e. the possible combinations of pre-

fixes of P’s clauses, that could be identified for retesting.

X(P) = {X(C,Cidx) � C ∈ P}

= {
⋁

�
¬X(A,Cidx, Lidx) if L = ¬A

X(L,Cidx, Lidx) otherwise
� L ∈ C ∧ C ∈ P}

6  Note that the meta-interpreter only keeps track of seen literals of the hypothesis, not of any literals occur-
ring in the background knowledge.
7  Asserting a trace can be done in constant time, e.g. by putting the trace in a hashmap or prepending the 
trace to the front of a list of failed traces.
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5.2 � Hempel

We now introduce Hempel, an ILP system based on popper (Cropper & Morel, 2021), 
which supports failure explanation. Hempel tackles the LFF problem (Definition 1) using 
a generate, test, and constrain loop. Hempel maintains a logical formula (expressed as an 
answer set program) whose models correspond to the viable hypotheses, i.e. each model 
represents a unique Prolog program.

The generate stage is identical to that of popper and searches for a model of the for-
mula which it converts to a program. In the test stage, a thus generated hypothesis H is 
tested on positive and negative examples. Hempel incorporates Algorithm  1, running it 
for each tested example. Meta-interpreter mi tr is used to determine clauses and literals 
that occur along branches responsible for a failure. From this information Hempel recon-
structs the corresponding sub-programs. If sub-program H′ is derived from a branch for a 
missing answer, H′ gets retested, this time using standard SLD-resolution. The test stage 
tells the constrain stage the number of missing and incorrect answers of a (sub-)program. 
This determines whether its specialisations8 and/or generalisations should be pruned. For 
each failed hypothesis and each of its failing sub-programs, new hypothesis constraints 
are added to the formula, eliminating models, thereby pruning the hypothesis space. As in 
general failing sub-programs need not be specialisations/generalisations of H, pruning for 
sub-programs is in addition to the pruning which the constrain stage already does for H in 
popper. Finally, Hempel loops back to the generate stage.

Smaller programs prune more effectively, which is partly why popper and Hempel search 
for hypotheses by increasing size9 (in terms of number of literals). Yet there are many small 
programs that popper does not consider well-formed that lead to significant pruning. Con-
sider the sub-program H�

1
= { droplast(A,B) ← empty(A) } from Example 4. popper does 

not generate H′
1
 as it does not consider it a well-formed hypothesis (as the head variable B 

Fig. 2   Meta-interpreter mi
tr
 . mi

tr
 keeps track of a trace of literal indices encountered along each SLD-

branch. The ∨ operator takes two bitsets and produces their union (like taking the logical or of two inte-
gers). call(G) just interpreters (complex) term G as an atom and evaluates it. The semantics of G *-> 
Then; Else are that if G ever succeeds the entire construct acts as if it were G,Then, otherwise it acts 
as if it just were Else. clause(Head,Body) unifies with any definite clause the Prolog interpreter 
knows about. Body is a cons-list of atoms which terminates in true 

8  popper and Hempel generate elimination constraints when a hypothesis entails none of the positive exam-
ples (Cropper & Morel, 2021).
9  The other reason is to find optimal solutions, i.e. those with the minimal number of literals.



3929Machine Learning (2023) 112:3917–3943	

1 3

does not occur in the body). Yet precisely because this sub-program has so few body liter-
als is why it is so effective at pruning specialisations.

The following example demonstrates the loop used by Hempel and popper, and how fail-
ure explanation can lead to fewer loop iterations.

Example 7  We illustrate Hempel, and how it differs from Popper, by running its loop 
on LFF input (E+,E−,H,B,C) from Example 1. For demonstration purposes we 
use the simplified hypothesis space H1 ⊆ HC of Fig.  3. Our positive examples are 
e+
1
= droplast([1, 2, 3], [1, 2]) and e+

2
= droplast([1, 2], [1]) , and our negative example is 

e−
1
= droplast([1, 2], []).
First we induce a program by a generate-test-and-constrain loop without failure explana-

tion. This first sequence is representative of popper’s execution: 

1.	 popper starts by generating h1 . B ∪ �1 fails to entail e+
1
 and e+

2
 and correctly does not 

entail e−
1
 . Hence only specialisations of h1 are pruned, namely h4.

2.	 popper subsequently generates h2 . B ∪ �2 fails to entail e+
1
 and e+

2
 and is correct on e−

1
 . 

Hence specialisations of h2 are pruned, of which there are none in H1.
3.	 popper next generates h3 . B ∪ �3 does not entail the positive examples, but does entail 

negative example e−
1
 . Hence specialisations and generalisations of h3 are pruned, mean-

ing only generalisation h7.
4.	 popper generates h5 . B ∪ �5 is correct on none of the examples. Hence specialisations 

and generalisations of h5 are pruned, of which there are none in H1.
5.	 popper generates h6 . B ∪ �6 is correct on all the examples and hence h6 is returned.

Now we consider learning by a generate-test-and-constrain loop with failure explanation. 
The following execution sequence is representative of Hempel: 

1.	 Hempel starts by generating h1 . B ∪ �1 fails to entail e+
1
 and e+

2
 and correctly does not entail 

e−
1
 . Failure explanation identifies sub-program ��

1
= {��������(�, �) ∶ −�����(�).} . h′

1
 

fails in the same way as h1 . Hence specialisations of both h1 and h′
1
 get pruned, namely 

h2 and h4.
2.	 Hempel subsequently generates h3 . B ∪ �3 does not entail the positive examples, 

but does entail negative example e−
1
 . Failure explanation identifies sub-program 

Fig. 3   LFF hypothesis space considered in Example 7
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��
3
= {��������(�, �) ∶ −����(�, �), ����(�, �).} . B ∪ ��

3
 fails in the same way as h3 . 

Hence specialisations and generalisations of h3 and h′
3
 get pruned, meaning h5 and h7.

3.	 Hempel next generates h6 . B ∪ �6 is correct on all the examples and hence h6 is returned.

The difference in these two execution sequences is illustrative of how failure explanation, 
by way of sub-programs, can help prune away significant parts of the hypothesis space.

6 � Experiments

We claim that failure explanation can improve learning performance. Our experiments 
therefore aim to answer the questions: 

Q1	� Can failure explanation prune more programs?
Q2	� Can failure explanation reduce learning times?

Note that an affirmative answer to Q1 does not imply that Q2 is the case, as potentially 
the overhead of failure explanation exceeds the benefits of the pruning it achieves.

To answer Q1 and Q2, we compare Hempel against popper. The addition of failure 
explanation is the only difference between the systems. In each of the experiments, the set-
tings for Hempel and popper are identical. Though control over a system’s failure explana-
tion capabilities is required to help answer Q1 and Q2, we nevertheless include a compari-
son against state-of-the-art ILP system (Cropper & Muggleton, 2016) and the classical ILP 
system (Srinivasan, 2001).

We run the experiments on a 10-core server (at 2.2GHz) with 30 gigabytes of memory 
(note that all the systems only run on a single CPU). When testing individual examples, we 
use an evaluation timeout of 2 milliseconds. In the tables reporting results, we highlight the 
entry with the best result per row by making it bold.

6.1 � Experiment 1: robot route planning

We first evaluate the potential performance improvement of failure explanation as a func-
tion of target program size. We select a contrived setting where failure explanation ought 
to be very effective: a basic route planning problem. A robot resides in a grid world and 
can move in four directions. The robot starts in the lower left corner and needs to move to a 
position to its right. Unbeknownst to the robot, it has been restricted to a corridor (dimen-
sions 14 × 1 ). In this experiment, failure explanation should determine that any strategy 
that moves up, down, or starts by moving left can never succeed.

Settings. An example is an atom f (s1, s2) , with start ( s1 ) and end ( s2 ) states. A state is 
a pair of discrete coordinates (x, y). We provide four dyadic relations as BK: move_right , 
move_left , move_up , and move_down , which change the state, e.g. move_right((2, 2), (3, 2)) . 
We ensure that our hypotheses are forward-chained (Kaminski et  al., 2019), meaning 
body literals modify the state one after another. We supply Metagol with the following 
metarules: P(A,B) ← Q(A,B) and P(A,B) ← Q(A,C),R(C,B) and P(A,B) ← Q(B,A).

Systems. In comparing systems, we try to ensure that hypothesis spaces are as simi-
lar as possible. For Hempel, popper and Aleph we allow one clause with up to 13 body 
literals and 14 variables. Metagol is the only system that uses predicate invention, 
i.e. learns clauses with invented predicate symbols. As reusing invented predicates leads 
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to exponentially shorter programs for this problem, we use both Metagol and a version 
of Metagol where reuse of invented predicates is disabled: 

.
Method. The start state is (0, 0) and the end state is (n, 0), for n in 1, 2, 3,… , 13 . Each 

trial has only one (positive) example: f((0, 0), (n, 0)). We measure learning times and, 
for Popper and Hempel, the number of generated programs. We enforce a timeout of 60 s 
per task. We repeat each experiment 10 times and plot the mean and standard error.

Results. Fig.  4a shows that Hempel substantially outperforms Popper in terms of 
learning time. The reason for the improved learning time is that Hempel generates far 
fewer programs, see Fig.  4b. For example, upon Hempel generating one program that 
starts by moving left, failure explanation determines any program whose first move is to 
the left is going to fail and hence all these programs get pruned.

Figure 4a also shows that Hempel outperforms

. Because 

 is example-driven it is effective in pruning programs that try to move out of the cor-
ridor. Yet, as explained in Sect. 2, at bigger program sizes its reconsidering of already seen 
programs is very costly.

Aleph and normal Metagol always find the solution, even at size 13, witin 1.5 s. For 
Metagol, this is due to reusing invented predicates. For example, the size 12 solution that 
Metagol finds has only eight body literals, versus the 12 that Hempel needs. For Aleph, 
the bottom-clause construction is very effective in only considering moves that are actually 
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Fig. 4   Results of robot planning experiment.The x-axes denote the number of body literals in the solution, 
i.e. the number of moves required. Standard error is plotted but is always negligible for Hempel 
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allowed. However, the performance of these systems does not have bearing on whether 
failure explanation is effective or not.

The results from this simple experiment strongly suggest that the answer to questions 
Q1 and Q2 is yes.

6.2 � Experiment 2: programming puzzles

This experiment evaluates whether failure explanation can improve performance when 
learning programs for recursive list problems, which other state-of-the-art ILP systems 
(Law, 2018; Evans & Grefenstette, 2018; Kaminski et al., 2019) struggle to solve. We show 
that Hempel can drastically outperform Popper, Metagol and Aleph on the same 10 prob-
lems used to evaluate Popper (Cropper & Morel, 2021), plus three additional ones: reverse, 
odd1even2, sumlist.

Settings. We provide as BK the monadic relations empty, zero, one, even, odd, the 
dyadic relations element, head, tail, increment, decrement, geq, and the triadic relations 
cons, snoc, sum. With a single fixed hypothesis space for these problems, Popper exhib-
its significant variance between learning times across problems (ranging from sub-second 
times for at least four problems to many minutes on others). To control for this variance, 
we select hypothesis space settings on a per problem basis, such that Popper has to do non-
trivial search but can still find solutions for each problem within the timeout. See Appendix 
1 for the exact settings.

Systems. For Hempel and Popper, we provide simple types and mark arguments of predi-
cates as either input or output. For Metagol, we use the same metarules used to evaluate 
it against Popper (Cropper & Morel, 2021), listed in Appendix 1. Because Metagol uses 
metarules and invented predicates, its hypothesis space is similar but not identical to that 
of Hempel and Popper. For Aleph we provide mode declarations and determinations which 
encode the exact same information made available to Hempel. We use the same Aleph set-
tings used to compare it against Popper (Cropper & Morel, 2021): we set the maximum 
variable depth and clause length to six and the number of search nodes is limited to 30000.

Method. We generate 10 positive and 10 negative examples per problem. Each example 
is randomly generated from lists up to length 50, whose integer elements are sampled from 
1 to 100. We test on 100 positive and 100 negative randomly sampled examples, giving a 
default accuracy of 50%. We measure learning time, number of programs generated and 
predictive accuracy. We also measure the time spent in the three distinct stages of Popper 
and Hempel. We repeat each experiment 20 times and record the mean and standard error. 
We enforce a 60 s timeout.

Results. 
Hempel’s accuracy is at least 98% on all problems, see Table 1. Both Hempel and Popper 

always terminate before the timeout and score 100% on the same ten problems.
Table 1 shows the learning times in relation to the number of programs generated. Cru-

cially, it includes the ratio of the mean of Hempel over the mean of Popper. On these 13 
problems, Hempel always considers fewer hypotheses than Popper. On seven problems less 
than 50% of the original number of programs is considered while only on three problems 
over 80% is still needed.

To illustrate why failure explanation is effective, we consider the dropk problem. In a 
particular run, Popper generates 471 single-clause programs which have f(A,B,C):-
tail(A,C) as a sub-program. On the same examples, Hempel identifies this as a failing 
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sub-program of the first hypothesis it generates and hence immediately prunes all these 
specialisations. In total, Popper considers 851 programs with f(A,B,C):-tail(A,C) 
as a sub-program, whilst Hempel considers just 48.

Failure explanation need not always be effective at pruning. Consider an arbitrary run 
of the evens problem: Hempel takes 354 programs before it identifies a sub-program that 
is not a program it has seen before. In total Hempel prunes based on just 19 sub-programs. 
This can be ascribed to evens(A) being a monadic predicate: most of the sub-programs 
that Hempel finds are properly formed Popper programs that Hempel (and Popper) has 
already seen and learnt constraints from. On a particular run of reverse, Hempel identifies 
135 not-before-seen sub-programs. The first sub-program (of the 5th hypothesis) prunes 
112 of Popper’s programs, the second sub-program only 26, the third 15, and from the 5th 
newly identified sub-program on, which already has four literals, only about three addi-
tional programs are pruned versus Popper. By contrast, the 10th dropk sub-program, of size 
three, still prunes 59 programs relative to Popper. The effectiveness of failure-explanation-
based pruning appears to be strongly dependent on whether many small sub-programs can 
be identified.

As seen from the ratio columns of Table 1, the number of generated programs corre-
lates strongly with the learning time (0.96 correlation coefficient). Only on one problem is 
Hempel slower than Popper. Hence outfitting Popper with failure explanation can occasion-
ally affect it negatively, but this result demonstrates that at other times the speed-up can be 
considerable.

Figure 5 shows the relative time spent in each stage of Hempel and popper. We can infer 
the overhead of failure explanation by analysing SLD-trees from this figure. All problems 
from odd1even2 to evens have Hempel spend more time on testing than popper. On find-
dup, reverse and evens, Hempel incurs considerable testing overhead. While for finddup 

Table 1   Results for Hempel and Popper for Experiment 2. Left, the average number of programs generated 
by each system.

Middle, the (corresponding) average time to find a solution. Right, the average accuracy of solutions. The 
error is standard error. We round values over one to the nearest integer. Values under one we round to the 
most significant digit

Number of programs Learning time (sec) Accuracy

Problem Popper Hempel Ratio Popper Hempel Ratio Popper Hempel

Dropk 2585 ± 184 121 ± 57 0.05 35 ± 6 4 ± 2 0.11 99 ± 3 99 ± 3
Sumlist 2619 ± 23 127 ± 17 0.05 47 ± 3 3 ± 0.7 0.07 100 ± 0 100 ± 0
Len 2826 ± 19 172 ± 18 0.06 50 ± 3 3 ± 0.4 0.06 100 ± 0 100 ± 0
Last 477 ± 91 63 ± 25 0.13 13 ± 4 2 ± 0.6 0.15 100 ± 0 100 ± 0
Droplast 1718 ± 117 242 ± 75 0.14 41 ± 8 7 ± 2 0.18 100 ± 0 100 ± 0
Odd1even2 1324 ± 272 289 ± 98 0.22 17 ± 5 4 ± 2 0.26 100 ± 0 100 ± 0
Member 173 ± 36 64 ± 13 0.37 31 ± 10 17 ± 6 0.54 100 ± 0 100 ± 0
Threesame 136 ± 44 72 ± 41 0.53 10 ± 6 5 ± 4 0.50 100 ± 0 100 ± 0
Finddup 1167 ± 82 653 ± 51 0.56 10 ± 1 7 ± 0.6 0.66 99 ± 1 99 ± 1
Addhead 71 ± 24 41 ± 16 0.57 5 ± 2 5 ± 2 0.98 100 ± 0 100 ± 0
Sorted 861 ± 221 712 ± 148 0.83 32 ± 12 28 ± 8 0.87 99 ± 4 98 ± 5
Reverse 1227 ± 424 1025 ± 435 0.84 29 ± 8 28 ± 10 0.97 100 ± 0 100 ± 0
Evens 786 ± 7 754 ± 9 0.96 14 ± 0.9 16 ± 0.9 1.14 100 ± 0 100 ± 0
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this effort translates into more effective pruning constraints, for sorted and evens this is 
not the case. Abstracting away from the implementation of failure explanation, we see that 
Popper outfitted with zero-overhead failing sub-program identification would have been 
strictly faster.

There is considerable variance in the number of generated programs and learning times 
on three problems. This is in large part due to the solver that is used, (Gebser et al., 2014), 
yielding models, i.e. hypotheses, non-deterministically. That is, there is no fixed order in 
which we see hypotheses, so, by chance, Hempel and Popper can come across a solution 
considerably sooner in one trial than in another. As a remedy for this variance, we re-run 
these three problems with their hypothesis spaces restricted to programs that are strictly 
smaller than solutions. In this setup, Hempel and Popper always terminate precisely at the 
point when they have shown that none of these hypotheses can be a solution. The results, 
which indeed have less variance, are in Table 2.

Table  3 shows the mean accuracy and learning times of Metagol and Aleph versus 
Hempel. Accuracy is below 67% for Aleph on all problems, which can be ascribed to Aleph 
struggling to learn recursive programs. Metagol cannot find solutions for problems which 
require arity-three predicates (unless given hand-crafted metarules), which is why ‘Not 
Applicable’ is listed for five problems. On another four problems, Metagol returns low 
accuracy hypotheses. Only on two problems does Metagol outperform Hempel. In general, 
Hempel is the more flexible system and outperforms Metagol and Aleph.

Overall, these results strongly suggest that the answer to questions Q1 and Q2 is yes.

6.3 � Experiment 3: IGGP and Michalski trains

For the next experiment, we evaluate Hempel on problems where solutions are larger, 
either because they require many clauses or many literals in a clause. We consider two set-
tings: classification in the form of Michalski train problems (Larson & Michalski, 1977) 
and inductive general game playing (Cropper et al., 2020). The problems in these two set-
tings are sufficiently hard that solutions cannot always be found in a reasonable timeframe, 
hence we rely on Hempel’s anytime capabilities to return the best scoring hypothesis it was 
able to find upon a timeout.

Michalski train problems concern classifying a train as either eastbound or westbound. 
The features available for classifying a train’s heading are its cars and their features: if a 
car is long or short, how many wheels the car has, how many loads and which loads it is 
carrying, and, finally, whether the car’s roof is open, closed or flat. The target predicate, 
westbound/1, acts as our classifier and BK predicates allow for inspecting features of 

Table 2   Selection of 
programming puzzles for which 
there was high variance in 
Table 1

Hypotheses spaces for these problems have been pre-pruned of all pro-
grams whose size is at least as large as that of the smallest solution. 
Total time measures the time, in seconds, required to show there is no 
solution in these hypothesis spaces

Number of programs Total time (sec)

Problem Popper Hempel Ratio Popper Hempel Ratio
addhead* 42 ± 0.0 25 ± 0.8 0.58 5 ± 0.1 4 ± 0.2 0.87
reverse* 770 ± 2 539 ± 7 0.70 20 ± 0.9 17 ± 0.9 0.83
sorted* 599 ± 15 477 ± 9 0.80 21 ± 2 18 ± 1 0.85
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the trains to be classified. We consider the same 4 instances considered by Cropper Crop-
per (2022). An example of one of the higher quality hypotheses for the trains4 problem is:
1 westbound(A):-has_car(A,C),roof_open(C),has_

load(C,B),hexagon(B),three_load(B).
2 westbound(A):-has_car(A,B),has_load(B,D),diamond(D),has_load(B,C),rectangle(C).
Inductive General Game Playing concerns learning the rules of games from observa-

tions of these games being played. The goal is to synthesize a set of rules which are con-
sistent with the traces generated by a game from the General Game Playing competition 
(Genesereth & Thielscher, 2014). The four games we consider are: minimal-decay, rock, 
paper, scissors (rps), buttons and coins. In each case we learn the predicate next.

Table 3   Results for Hempel, Aleph and Metagol for Experiment 2. On the left the average time to find a 
solution

On the right the average accuracy of solutions. The error is standard error. We round values over one to the 
nearest integer. Values under one we round to the most significant digit

Problem Learning time(sec) Accuracy

Hempel Aleph Metagol Hempel Aleph Metagol

Dropk 4 ± 2 7 ± 18 N/A 99 ± 2 50 ± 2 N/A
Sumlist 3 ± 0.7 60 ± 0.0 N/A 100 ± 0 50 ± 0 N/A
Len 3 ± 0.4 60 ± 0.1 60 ± 0.1 100 ± 0 50 ± 0 50 ± 0
Last 2 ± 0.6 1 ± 0.1 0.7 ± 0.7 100 ± 0 50 ± 0 100 ± 0
Droplast 7 ± 2 60 ± 0.0 N/A 100 ± 0 50 ± 0 N/A
Odd1even2 4 ± 2 56 ± 9 25 ± 25 100 ± 0 57 ± 17 85 ± 22
Member 17 ± 6 60 ± 0.1 0.3 ± 0.0 100 ± 0 50 ± 0 99 ± 0
Threesame 5 ± 4 55 ± 11 5 ± 12 100 ± 0 60 ± 20 100 ± 0
Finddup 7 ± 0.6 1 ± 0.5 2 ± 2 99 ± 1 50 ± 1 100 ± 0
Sorted 28 ± 8 0.7 ± 0.1 60 ± 0.1 98 ± 5 65 ± 6 50 ± 0
Addhead 5 ± 2 58 ± 12 N/A 100 ± 0 52 ± 10 N/A
Reverse 28 ± 10 36 ± 24 N/A 100 ± 0 50 ± 0 N/A
Evens 16 ± 0.9 60 ± 0.1 60 ± 0.1 100 ± 0 50 ± 0 50 ± 0

Fig. 5   Relative time spent in three stages of Popper, hatched and on the left, and Hempel, on the right. From 
bottom to top: testing, generating hypotheses, and imposing constraints. Mean times are shown and scaled 
by the total learning time of Popper. Bars are standard error
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Settings & Systems For the trains problems, we provide two dyadic predicates, has_
car and has_load, and 17 monadic predicates which encode features of cars and 
loads. We provide the types of arguments as well as whether they are inputs or outputs 
to Hempel, Popper and Aleph. We allow up to four clauses, and within each clause six 
variables and up to six body literals. No recursion is allowed. For Metagol we provide 
the same metarules as in the previous experiment. For Aleph we limit the search nodes 
to 30000.

For the IGGP problems we provide the monadic, dyadic and triadic predicates that 
encode the actions and information available to advance the game to the next state. For 
example, for rps we look for a definition of next_score/3 given predicates true_
score/3, succ/2, does/3, wins/2, beats/2, different/2.

Method We use the same instances of the problems considered by Cropper (2022). The 
four trains problems represent progressively harder instances, with trains1 having a one 
clause six-literal solution and trains4 needing 26 lals over four clauses for an optimal solu-
tion. Each trains problem has a 1000 examples available, though the distribution between 
positive and negative varies between tasks. We follow Cropper in that “we randomly 
sample the examples and split them into 80/20 train/test partitions.” The four games are 
selected as representative instances of the larger IGGP dataset.

We measure learning time and predictive accuracy. We repeat each experiment 10 times 
and record the mean and standard error. We enforce a 300 s timeout.

Results Table 4 includes the results for Hempel and Popper. For the IGGP problems, we 
have that Hempel times out on coins and buttons, while Popper additionally times out on 
minimal-decay. On rps and minimal-decay, Hempel is able to find a solution with 100% 
accuracy. Note how Hempel only required around 250 programs for finding a solution for 
rps while Popper required over 10.000 programs. For minimal-decay Hempel needs to con-
sider almost 2000 programs before coming across a solution while Popper cannot find one 
within the time limit.

In Table 5 we see the performance of Metagol and Aleph versus Hempel on the IGGP 
problems. As Metagol’s metarules do not support arity-three predicates, we have that it is 
unable to find programs for rps and coins. On the other two problems, Metagol timeouts 
and hence achieves the default accuracy for these problems. On coins, both Hempel and 
Aleph achieve the default accuracy. On rps, Aleph does better than Hempel by virtue of its 
learning time, though Hempel still beats Metagol. On the three other games, Hempel does 
better than both Aleph and Metagol.

Referring back to Table 4, we see that Hempel outperforms Popper on the three more dif-
ficult trains problems. On trains1 we see clearly the overhead of failure explanation. Even 
though Hempel requires less programs than Popper, testing 800 examples incurs 800 times 
the linear overhead of failure explanation (with regards to SLD-tree size) plus the cost of 
retesting failing sub-programs, of which there are more when we are dealing with bigger 
hypotheses. On the other three problems, the cost of failure explanation is outweighed 
by the pruning it achieves, with Hempel finding more accurate solutions. Not shown in 
Table 4, for the timeouts, Hempel spends a greater proportional of time in the test-stage 
than Popper, e.g. about two-thirds of the time on trains4 versus just one-third of the time, 
respectively. This is likely attributable to the cost of retesting many sub-programs on the 
high number of examples.

From Table 5 we can see that Aleph’s bottom clause construction-based learning proce-
dure is quite effective, outperforming Hempel on all four trains problems. In turn, Hempel 
outperforms Metagol on all trains problems.
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Also for this experiment, the results indicate that the answer to questions Q1 and Q2 is 
yes, though with the note that larger hypotheses do appear to impact the effectiveness.

6.4 � Experiment 4: string transformations

We now explore whether failure explanation can improve learning performance on real-
world string transformation tasks. We hence restrict ourselves to comparing Hempel ver-
sus Popper. We use a standard dataset (Lin et  al., 2014; Cropper, 2019) formed of 312 
tasks, each with 10 input–output pair examples. For example, task 81 has the following two 
input–output pairs:

Table 4   Results for Hempel and Popper for Experiment 3. Left, the average number of programs generated 
by each system

Middle, the (corresponding) average time to find a solution. Right, the average accuracy of solutions. The 
error is standard error. We round values over one to the nearest integer. Values under one we round to the 
most significant digit

Problem Number of programs Learning time (sec) Accuracy

Popper Hempel Ratio Popper Hempel Ratio Popper Hempel

Rps 10648 ± 38 250 ± 13 0.02 96 ± 2 25 ± 1 0.26 100 ± 0 100 ± 0
Minimal-decay 23171 ± 1538 1904 ± 76 0.08 300 ± 0.0 41 ± 2 0.14 94 ± 0 100 ± 0
Buttons 8022 ± 2265 1073 ± 144 0.13 300 ± 0.2 300 ± 0.0 1.00 90 ± 0 90 ± 0
Coins 9458 ± 934 535 ± 151 0.06 300 ± 0.0 300 ± 0.0 1.00 88 ± 3 85 ± 1
Trains1 28 ± 0.0 20 ± 0.3 0.72 1.0 ± 0.0 3 ± 0.0 2.99 100 ± 0 100 ± 0
Trains2 9410 ± 6144 306 ± 188 0.03 210 ± 137 15 ± 9 0.07 91 ± 5 98 ± 2
Trains4 11223 ± 377 1176 ± 25 0.10 300 ± 0.0 300 ± 0.0 1.00 78 ± 2 89 ± 1
Trains3 11278 ± 594 1315 ± 23 0.12 300 ± 0.0 300 ± 0.0 1.00 91 ± 2 96 ± 1

Table 5   Results for Hempel, Aleph and Metagol for Experiment 3. On the left the average time to find a 
solution

On the right the average accuracy of solutions. The error is standard error. We round values over one to the 
nearest integer. Values under one we round to the most significant digit

Problem Learning time (sec) Accuracy

Hempel Aleph Metagol Hempel Aleph Metagol

Rps 25 ± 1 4 ± 0.1 N/A 100 ± 0 100 ± 0 N/A
Minimal-decay 41 ± 2 4 ± 0.1 300 ± 0 100 ± 0 94 ± 0 88 ± 0
Buttons 300 ± 0 137 ± 4 300 ± 0 90 ± 0 87 ± 0 80 ± 0
Coins 300 ± 0 300 ± 0.0 N/A 85 ± 1 82 ± 0 N/A
Trains1 3 ± 0.0 2 ± 0.3 162 ± 38 100 ± 0 100 ± 0 100 ± 0
Trains2 15 ± 9 1 ± 0.1 218 ± 126 98 ± 2 100 ± 0 85 ± 6
Trains4 300 ± 0 215 ± 4 300 ± 0 89 ± 1 100 ± 0 67 ± 0
Trains3 300 ± 0 18 ± 0.9 300 ± 0 96 ± 1 100 ± 0 20 ± 0
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Input Output

“Alex”,“M”,41,74,170 M
“Carly”,“F”,32,70,155 F

Settings. As background knowledge, we give each system the monadic predicates is_
uppercase, is_empty, is_space, is_letter, is_number and dyadic predicates mk_uppercase, 
mk_lowercase, skip1, copyskip1, copy1. For each monadic predicate we also provide a 
predicate that is its negation. We allow up to 3 clauses, with each clauses having a maxi-
mum of 4 body literals and up to 5 variables. We extend the test stage with a check whether 
the generated program is functional or not and prune for any non-functional program.

Method. The dataset has 10 positive examples for each problem. We perform cross vali-
dation by selecting 10 distinct subsets of 5 examples for each problem, using the other 5 to 
test. We measure learning times and number of programs generated. We enforce a timeout 
of 60 s per task. We repeat each experiment 10 times, once for each distinct subset, and 
record means and standard errors.

Results. In 132 problems both Hempel and Popper return programs which have non-zero 
accuracy on the test set. On 64 tasks Hempel scores better than Popper versus Popper scor-
ing better on 20 tasks. For 54 problems at least one of Popper and Hempel finds solutions 
with over 90% mean accuracy. Hempel finds solutions10 with 100% accuracy on 37 tasks, 3 
more than Popper.

Figure 6 plots ratios of generated programs and learning times. Each of the 54 points 
represents a single problem where either Hempel or Popper scored over 90% mean accu-
racy. The x-axis is the ratio of number of programs that Hempel generates versus the num-
ber of programs that Popper generates. The y-value is the ratio of learning time of Hempel 
versus Popper. These ratios are acquired by dividing means, the mean of Hempel over that 
of Popper.

Looking at x-axis values, of the 54 problems plotted all require fewer programs when 
run with Hempel. Looking at the y-axis, the learning times of 51 problems are faster for 
Hempel.

Overall, these results show that, compared to Popper, Hempel typically needs fewer pro-
grams and less time to learn programs. This suggests that the answer to questions Q1 and 
Q2 is yes.

7 � Conclusions

We introduced a method for using fine-grained failure explanation to derive fine-
grained hypothesis space constraints. We illustrated this general method by a new 
SLD-based algorithm to identify failing sub-programs at the granularity of literals. We 
introduced an ILP system with failure explanation, Hempel, and experimentally showed 
that enabling failure explanation can drastically reduce hypothesis space exploration 
and learning times.

10  Note that these problems are very difficult with many of them not having solutions given only our primi-
tive BK and with the learned program restricted to defining a single predicate. Therefore, absolute perfor-
mance should be ignored. The important result is the relative performance of the two systems.
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7.1 � Limitations and future work

Application of sub-program based failure explanation is not restricted to fully automated 
program synthesis. For example, our SLD-based algorithm could be used for explain-
able AI purposes, e.g. in interactive environments such as tutor systems which help teach 
Prolog.

While not documented here, our approach works without modification in combination 
with an extension of popper which supports predicate invention (Cropper & Morel, 2021). 
In an orthogonal direction, ILP noise handling methods could leverage failure explanation, 
e.g. by learning that the training error of a failing sub-program is as bad as the original 
program.

There are interesting theoretical questions to be worked out. As seen in Experiment 2, it 
appears that many smaller sub-programs are key to effective pruning. It should be possible 
to quantify the (theoretical) effectiveness of sub-program based pruning, e.g. with respect 
to the size of a sub-program and hypothesis space parameters such as the number of predi-
cates. In general, future work should try to determine characteristics of problems that allow 
or preclude effective pruning based on failure explanation.

We require retesting of a sub-program derived from a hypothesis failing on a posi-
tive example to determine if this sub-program fails on the same example. This retesting 
is especially costly if there are many sub-programs, as is more likely to happen for bigger 
programs. Theoretical work is needed to identify cases where it follows from the original 
SLD-tree only having failing branches that the SLD-tree for the sub-program has no suc-
cessful branch either. This would allow for eliding some of the expensive retesting that 
Hempel does.

Another major avenue for future work is leveraging fine-grained failure explanation for 
learning programs from logic fragments extending beyond definite programs. It should be 
possible to support negation-as-failure to a degree, e.g. by saying that clauses defining a 
predicate that occurred negated in a hypothesis are also responsible for a failure. Work on 
justifications for Answer Set Programming (Fandinno & Schulz, 2019) could be used for 
fine-grained pruning whilst learning ASP programs.

Fig. 6   String transformation 
results. The ratio of number of 
programs that Hempel needs 
versus Popper is plotted against 
the ratio of learning time needed 
on that problem
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Although we have shown that failure explanation can drastically reduce learning times, 
there is still much scope for improvement. For instance, Experiment 2 had the following 
failing sub-program occur:

Straightforward reasoning tells us literal head(A,D) is not relevant to the failure of this sub-
program. Furthermore, we should be able to lay the blame on just the last two literals.

Appendix

A Experiment 2: Metagol Settings

The following metarules were used for running Metagol in the programming puzzles 
experiment.

B Experiment 2: Hypothesis Space Settings

The following hypothesis space settings were used in the programming puzzles experiment: 

{f (A,B) ← element(A,C), head(A,D), odd(C), even(C)}
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