
Vol.:(0123456789)

Machine Learning (2023) 112:2653–2684
https://doi.org/10.1007/s10994-023-06304-1

1 3

Pruning during training by network efficacy modeling

Mohit Rajpal1  · Yehong Zhang2 · Bryan Kian Hsiang Low1

Received: 15 December 2021 / Revised: 16 November 2022 / Accepted: 19 January 2023 /
Published online: 14 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
Deep neural networks (DNNs) are costly to train. Pruning, an approach to alleviate model
complexity by zeroing out or pruning DNN elements, has shown promise in reducing train-
ing costs for DNNs with little to no efficacy at a given task. This paper presents a novel
method to perform early pruning of DNN elements (e.g., neurons or convolutional filters)
during the training process while minimizing losses to model performance. To achieve
this, we model the efficacy of DNN elements in a Bayesian manner conditioned upon
efficacy data collected during the training and prune DNN elements with low predictive
efficacy after training completion. Empirical evaluations show that the proposed Bayesian
early pruning improves the computational efficiency of DNN training while better preserv-
ing model performance compared to other tested pruning approaches.

Keywords  Early pruning · Network efficacy modeling · Network saliency · Multi-output
Gaussian process · Foresight pruning

1  Introduction

Deep neural networks (DNNs) are known to be overparameterized (Allen-Zhu et al., 2019)
as they usually have more learnable parameters than needed for a given learning task. So, a
trained DNN contains many ineffectual parameters that can be safely pruned or zeroed out
with little/no effect on its performance.

Editors: Krzysztof Dembczynski and Emilie Devijver.

 *	 Mohit Rajpal
	 mohitr@comp.nus.edu.sg

	 Yehong Zhang
	 zhangyh02@pcl.ac.cn

	 Bryan Kian Hsiang Low
	 lowkh@comp.nus.edu.sg

1	 Department of Computer Science, National University of Singapore, Singapore,
Republic of Singapore

2	 Peng Cheng Laboratory, Shenzhen, People’s Republic of China

http://orcid.org/0000-0002-8928-6302
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06304-1&domain=pdf

2654	 Machine Learning (2023) 112:2653–2684

1 3

Pruning (LeCun et al., 1989) is an approach to alleviate overparameterization of a DNN
by identifying and removing its ineffectual parameters while preserving its predictive accu-
racy on the validation/test dataset. Pruning is typically applied to the DNN after training to
speed up testing-time evaluation and/or deploy the trained model on resource constrained
devices (e.g., mobile phone, camera, etc.). For standard image classification tasks with
MNIST, CIFAR-10, and ImageNet datasets, it can reduce the number of learnable parame-
ters by up to 50% or more while maintaining model performance (Han et al., 2015; Li et al.,
2017; Molchanov et al., 2017; Lin et al., 2019).

In particular, the overparameterization of a DNN also leads to considerable training cost
being wasted on those DNN elements (e.g., connection weights, neurons, or convolutional
filters) which are eventually ineffectual after training and can thus be safely pruned early.
This problem is further compounded by the development of larger network architectures
which are very expensive to train. These observations motivate the need of early pruning.

The objective of early pruning is to perform pruning during training for reducing train-
ing cost while minimizing losses to test time model accuracy given a fixed final network
sparsity (e.g., determined by the resource constraints of the deployed devices). This neces-
sitates consideration for both the test time model accuracy and training cost as both metrics
are highly desirable to users. Related works in pruning during training (Lym et al., 2019)
as well as prune and regrow (Bellec et al., 2018; Dettmers & Zettlemoyer, 2019; Mostafa
& Wang, 2019) approaches do not jointly consider both competing metrics while offering
a fixed final network sparsity. Similarly, pruning at initialization (de Jorge et al., 2021; Lee
et al., 2019; Tanaka et al., 2020; Wang et al., 2020a) offers a method of reducing training
cost, which however, overly sacrifices test time model accuracy by pruning at initializa-
tion when test time network element efficacy is not well known. Therefore, previous work
does not offer a mechanism to trade-off between training cost and test time model accuracy
according to user-defined sparsity objectives. See Sect. 2 for detailed literature review.

To offer a mechanism to trade-off between training cost and test time model accuracy,
several problems must be addressed. Firstly, early pruning requires minimizing losses
to test time accuracy, but pruning during training when the test time element efficacy is
unknown. Thus, pruning decisions need to base on the inferred test time network element
efficacy. How to infer test time network element efficacy for making accurate early pruning
decisions is an important question that has not been addressed by related work. Secondly,
building an inference model requires collecting network efficacy observations during train-
ing. A more accurate model requires collecting more observations during training, which
increases the DNN training cost. Meanwhile, pruning with few observations incurs a low
DNN training cost but sacrifices DNN model performance due to the inaccurate efficacy
inference. Given this trade-off, when should a predicted poorly performing element be
pruned? Finally, as both training cost and test time accuracy are important metrics to end
users, how should these metrics be balanced while addressing the above challenges? These
important questions have not been addressed by related works and are the focus of this
work.

To answer these questions, this work considers to model the network element efficacy
during training and do early pruning based on the predictive element efficacy and its pre-
dictive confidence upon convergence. A network element is pruned when a sufficiently
high degree of confidence is reached regarding its poor performance. To naturally trade off
between training cost and test time performance, we formulate the early pruning as a con-
strained optimization problem and propose an efficient algorithm for solving it. The trade-
off is achieved by modulating the degree of confidence necessary before a poorly perform-
ing element is pruned. Pruning with a high degree of confidence makes fewer mistakes, yet

2655Machine Learning (2023) 112:2653–2684	

1 3

requires collecting more observations which increases the training cost. Conversely, prun-
ing with a low degree of confidence makes more mistakes, yet requires fewer observations,
and thus less training cost. The specific contributions of this work include:

•	 We pose early pruning as a constrained optimization problem to minimize losses to test
time model accuracy while pruning during training under a fixed final network sparsity
(Sect. 4.1);

•	 Proposing to infer the efficacy of DNN elements using multi-output Gaussian process
(MOGP) which models the belief of element efficacy conditioned upon efficacy meas-
urements collected during training. This approach not only identifies poorly performing
elements, but provides a measure of confidence by assigning a probabilistic belief to its
prediction (Sect. 4.2);

•	 Designing a Bayesian early pruning (BEP) algorithm to allow trading off between
training cost and test time performance (Sect. 4.3). To the best of our knowledge, this
is the first algorithm that can naturally satisfy a fixed final network sparsity while can
dynamically achieve the training time versus performance trade-off. Existing works
either require fixed scheduled pruning strategy or cannot achieve the fixed final network
sparsity without tuning parameters.

•	 Demonstrating strong performance improvements of our BEP algorithm when a large
percentage of the network is pruned. This improvement is significant as DNNs continue
to grow in size and may require significant pruning to allow training in a short time
frame (Sect. 5).

Pruning typically relies on a measure of network element efficacy, termed saliency (LeCun
et al., 1989). The development of saliency functions is an active area of research with no
clear optimal choice. To accommodate this, our algorithm is agnostic, and therefore flex-
ible, to changes in saliency function. We use BEP to prune neurons and convolutional fil-
ters and demonstrate its ability to capture the training cost versus performance trade-off.1

2 � Related work

2.1 � Pruning and related techniques

Initial works in DNN pruning center around saliency based pruning after training includ-
ing Skeletonization (Mozer & Smolensky, 1988), Optimal Brain Damage and followup
work (Hassibi & Stork, 1992; LeCun et al., 1989) as well as sensitivity based prun-
ing (Karnin, 1990). In recent years, saliency functions been adapted to pruning neurons
or convolutional filters. Li et al. (2017) define a saliency function on convolutional filters
by using the L1 norm. Molchanov et al. (2017) propose using a first-order Taylor-series
approximation on the objective function as a saliency measure. Dong et al. (2017) propose
layer wise pruning of weight parameters using a Hessian based saliency measure. Several
variants of pruning after training exist. Han et al. (2015) propose iterative pruning where
pruning is performed in stages alternating with fine tune training. Guo et al. (2016) suggest

1  We didn’t consider pruning network connections since it cannot be easily capitalized upon with perfor-
mance improvements due to the difficulty of accelerating sparse matrix operations with existing deep learn-
ing libraries (Buluç & Gilbert, 2008; Yang et al., 2018).

2656	 Machine Learning (2023) 112:2653–2684

1 3

dynamic network surgery, where pruning is performed on-the-fly during evaluation time.
The works of Li et al. (2017) and He et al. (2018) propose reinforcement learning for prun-
ing decisions. A comprehensive overview may be found in Gale et al. (2019).

Knowledge distillation (Hinton et al., 2015; Lu et al., 2017; Tung & Mori, 2019; Yim
et al., 2017) aim to transfer the capabilities of a trained network into a smaller network.
Weight sharing (Nowlan & Hinton, 1992; Ullrich et al., 2017) and low rank matrix fac-
torization (Denton et al., 2014; Jaderberg et al., 2014) aim to compress the parameteri-
zation of neural networks. Network quantization (Courbariaux et al., 2015; Hubara et al.,
2017; Micikevicius et al., 2018) use lower fidelity representation of network elements (e.g.
16-bit) to speed up training and evaluation. Our work is orthogonal to network quantization
as we reduce overall training FLOPs.

2.2 � Initialization time or training time pruning

Pruning at initialization builds on the work of Frankle and Carbin (2019). This work
shows that a randomly initialized DNN contains a small subnetwork which if trained by
itself, yields equivalent performance to the original network. SNIP (Lee et al., 2019) and
GraSP (Wang et al., 2020a) propose pruning connection weights prior to the training pro-
cess through a first order and second order saliency function respectively. This technique
is improved upon with IterSnip (de Jorge et al., 2021) and SynFlow (Tanaka et al., 2020).
PruneFromScratch (Wang et al., 2020b) considers pruning at initialization in order to order
training cost reduction. In comparison to our approach, above works in initialization time
pruning do not offer a mechanism to trade-off between network training time and test time
accuracy.

Dynamic sparse reparameterization considers pruning and regrowing parameter weights
during the training process (Bellec et al., 2018; Dettmers & Zettlemoyer, 2019; Liu et al.,
2020; Mostafa & Wang, 2019). Sparse evolutionary training (Mocanu et al., 2018) pro-
poses initializing networks with sparse topology prior to training. Dai et al. (2019) pro-
pose a grow and prune approach to learning network architecture and connection layout.
Other works (Louizos et al., 2018; Narang et al., 2017) propose pruning using heuristics
such as L0 regularization for DNNs and recurrent neural networks. However all the above-
mentioned works prune connection weights, their approach cannot be utilized to deliver
training time improvements and do not offer a principled approach to capture the training
cost versus performance trade-off.

PruneTrain (Lym et al., 2019) also proposes pruning filters during training to achieve
training cost reduction while minimizing degradation to performance. In contrast to our
approach, PruneTrain does not allow specification of the desired network size after train-
ing. A specified network size is important when training for resource constrained devices
such as mobile phones or edge devices which require networks to conform to user specified
size limits. It is unclear how to solve the early pruning problem using PruneTrain. We com-
pare with PruneTrain under the early pruning problem definition in Sect. 5.2. Other works
also propose model compression during training as a constrained optimization problem
as part of a general framework encompassing pruning, quantization and low-rank decom-
position (Idelbayev et al., 2021a; Idelbayev & Carreira-Perpiñán, 2021b). We differ from
these works as our focus is on minimizing losses to test time model accuracy while reduc-
ing training cost through pruning during training. We also offer a mechanism to trade-off
between the desirable metrics of test time model accuracy and training cost.

2657Machine Learning (2023) 112:2653–2684	

1 3

3 � Preliminaries of pruning

Consider a dataset of D training examples X = {x1,… , xD},Y = {y1,… , yD} and a neu-
ral network Nvt

 parameterized by a vector of M pruneable network elements (e.g. weight
parameters, neurons, or convolutional filters) vt ≜ [va

t
]a=1,…,M , where vt represent the net-

work elements after t iterations of stochastic gradient descent (SGD) for t = 1,… , T  .
Let L(X,Y;Nvt

) be the loss function for the neural network Nvt
 . Pruning aims at refining

the network elements vt given some user specified sparsity budget B and preserving the
accuracy of the neural network after convergence (i.e., NvT

 ), which can be stated as a con-
strained optimization problem (Molchanov et al., 2017):

where ⊙ is the Hadamard product and m is a pruning mask. Note that we abuse the Had-
amard product for notation simplicity: For a = 1, ..,M , ma × va

T
 corresponds to pruning va

T

if ma = 0 , and keeping va
T
 otherwise. Pruning a network element refers to zeroing the net-

work element or the weight parameters which compute it. Any weight parameters which
reference the output of the pruned network element are also zeroed since the element out-
puts a constant 0.

The above optimization problem is difficult due to the NP-hardness of combinatorial
optimization. This leads to the approach of using saliency function s which measures effi-
cacy of network elements at minimizing the loss function. A network element with small
saliency can be pruned since it’s not salient/important in minimizing the loss function.
Consequently, pruning can be done by maximizing the saliency of the network elements
given the user specified sparsity budget B:

where s(a;X,Y,NvT
,L) measures the saliency of va

T
 at minimizing L after convergence

through T iterations of SGD. The above optimization problem can be efficiently solved by
selecting the B most salient network elements in vT.

The construction of the saliency function has been discussed in many existing works:
Some approaches derived the saliency function from first-order (LeCun et al., 1989; Mol-
chanov et al., 2017) and second-order (Hassibi & Stork, 1992; Wang et al., 2020a) Taylor
series approximations of L . Other common saliency functions include L1 (Li et al., 2017)
or L2 (Wen et al., 2016) norm of the network element weights, as well as mean activa-
tion (Polyak & Wolf, 2015). In this work, we use a first-order Taylor series approximation
saliency function defined for neurons and convolutional filters2 (Molchanov et al., 2017).
Due to the first-order (i.e., gradient based) approximation, this saliency function has mini-
mal memory and computational overhead during DNN training. However, our approach
remains flexible to arbitrary choice of saliency function on a plug-n-play basis.

For ease of reference, we summarize notations that will be used frequently in the
remaining sections of this paper in Table 1.

(1)min
m∈{0,1}M

|L(X,Y;Nm⊙vT
) − L(X,Y;NvT

)| s.t. ||m||0 ≤ B

(2)max
m∈{0,1}M

M∑

a=1

mas(a;X,Y,NvT
,L) s.t. ||m||0 ≤ B

2  Implementation details of this saliency function can be found in “Appendix 1”.

2658	 Machine Learning (2023) 112:2653–2684

1 3

4 � Bayesian early pruning

4.1 � Problem statement

As has been mentioned before, existing pruning works based on the saliency function are typi-
cally done after the training convergence (i.e., (2)) to speed up the test-time evaluation on
the resource constrained devices, which wastes considerable time on training these network
elements that will eventually be pruned. To resolve this issue, we extend the pruning problem
definition (2) along the temporal dimension, allowing network elements to be pruned during
the training process consisting of T iterations of SGD.

Let sa
t
≜ s(a;X,Y,Nvt

,L) be a random variable which denotes the saliency of network ele-
ment va

t
 after t iterations of SGD, st ≜ [sa

t
]a=1,…,M for t = 1,… , T , and s�1∶�2 ≜ [st]t=�1,…,�2

 be
a matrix of saliency of all the network elements between iterations �1 and �2 . Our early pruning
algorithm is designed with the goal of maximizing the saliency of the unpruned elements after
iteration T, yet allowing for pruning at each iteration t given some computational budget Bt,c
for t = 1,… , T :

(3a)�T (mT−1,BT ,c,Bs) ≜ max
mT

mT ⋅ sT

(3b)s.t.||mT ||0 ≤ Bs

(3c)mT ≤̇mT−1

(3d)BT ,c ≥ 0

(4a)𝜌t(mt−1,Bt,c,Bs) ≜ max
mt

�p(st+1∣s̃1∶t)

[
𝜌t+1(mt,Bt,c − ||mt||0,Bs)

]

(4b)s.t. mt≤̇mt−1

Table 1   Summary of important notations

Notation Description

M Total number of network elements in a neural network
T Total number of SGD iterations in the training procedure
sa
t

Random variable representing saliency of the a-th element at iteration t
st A vector of saliency [sa

t
]M
a=1

 for all the network elements at iteration t
s�1∶�2 A matrix of saliency [st]

�2
t=�1

 between iteration �1 and �2
s̃1∶t The realization of random variable s1∶t
mt A vector of pruning mask at iteration t
Bs Network sparsity budget after training specified by the user
Bt,c Computational budget at iteration t
�a
t�|1∶t Predictive mean of the saliency sa

t′
 given realized saliency s̃1∶t

�aa�

t�|1∶t Predictive covariance of saliency sa
t′
 and sa′

t′
 given realized saliency s̃1∶t

2659Machine Learning (2023) 112:2653–2684	

1 3

 where Bs is the user specified sparsity budget of the trained network, s̃1∶t is a matrix of
observed values for s1∶t , m0 is an M-dimensional 1’s vector, and mt ≤̇ mt−1 represents an
element-wise comparison between mt and mt−1 : ma

t
≤ ma

t−1
 for a = 1,… ,M . At each itera-

tion t, the saliency st is observed and mt ∈ {0, 1}M in (4a) represents a pruning decision
performed to maximize the expectation of �t+1 over the predictive belief of st+1 conditioned
upon saliency measurements s̃1∶t collected up to and including iteration t. This recursive
structure terminates with base case �T where the saliency of the unpruned elements is max-
imized after T iterations of training.

In the above early pruning formulation, constraints (3c) and (4b) ensure that pruning
is performed in a practical manner whereby once a network element is pruned, it can no
longer be recovered in a later training iteration. We define a sparsity budget Bs (3b), which
specifies the desired network size after training completion. This constraint is impor-
tant as often training is performed on GPUs for resource constrained devices (e.g., edge
devices, or mobile phones) which can only support networks of limited size. We also con-
strain a total computational effort budget during iteration from iteration t to T, Bt,c , which
is reduced per training iteration by the number of unpruned network elements ||mt||0 . We
constrain BT ,c ≥ 0 (3d) to ensure training completion within the specified computational
budget. Here, we assume that a more sparse pruning mask mt corresponds to lower compu-
tational effort during training iteration t due to updating fewer network elements. Finally,
(3a) maximizes the saliency with a pruning mask mT constrained by a sparsity budget Bs
(3b). Our early pruning formulation balances the saliency of network elements after con-
vergence against the total computational effort to train such network (i.e., mT ⋅ sT versus ∑T

t=1
��mt��0 ). This appropriately captures the balancing act of training-time early pruning

whereby the computational effort is saved by early pruning network elements while pre-
serving the saliency of the remaining network elements after convergence.

4.2 � Modeling the saliency with multi‑output Gaussian process

To solve the above early pruning problem, we need to model the belief p(s1∶T) of the sali-
ency for computing the predictive belief p(st+1∶T ∣ s̃1∶t) of the future saliency in (4a). At the
first glance, one may consider to decompose the belief: p(s1∶T) ≜

∏M

a=1
p(sa

1∶T
) and model

the saliency sa
1∶T

≜ [sa
t
]t=1,…,T of each network element independently. Such independ-

ent models, however, ignore the co-adaptation and co-evolution of the network elements
which have been shown to be a common occurrence in DNN (Hinton et al., 2012; Srivas-
tava et al., 2014; Wang et al., 2020a). Also, modeling the correlations between the saliency
of different network elements explicitly is non-trivial since considerable feature engineer-
ing is needed for representing diverse network elements such as neurons, connections, or
convolutional filters.

To resolve such issues, we use multi-output Gaussian process (MOGP) to jointly model
the belief p(s1∶T) of all saliency measurements. To be specific, we assume that the saliency
sa
t
 of the ath network element at iteration t is a linear mixture3 of Q independent latent func-

tions {uq(t)}
Q

q=1
 : sa

t
≜
∑Q

q=1
�a
q
uq(t). If each uq(t) is an independent GP with prior zero mean

and covariance kq(t, t�) , then the resulting distribution over p(s1∶T) is a multivariate Gauss-
ian distribution with prior zero mean and covariance determined by the mixing covariance:

3  Among the various types of MOGPs [see (Álvarez & Lawrence, 2011) for a detailed review.], we choose
this linear model such that the correlations between sa

t
 and sa′

t′
 can be computed analytically.

2660	 Machine Learning (2023) 112:2653–2684

1 3

cov[sa
t
, sa

�

t�
] =

∑Q

q=1
�a
q
�a

�

q
kq(t, t

�). This explicit covariance between sa
t
 and sa′

t′
 helps to exploit

the co-evolution and co-adaptation of network elements within the neural networks.
To capture the horizontal asymptote trend of sa

1
,… , sa

T
 as visualized in Fig. 1, we turn to

a kernel used for modeling decaying exponential curves known as the “exponential ker-
nel” (Swersky et al., 2014) and set kq(t, t�) ≜

�q
�q

(t+t�+�q)
�q

 where �q and �q are hyperparameters
of MOGP and can be learned via maximum likelihood estimation (Álvarez & Lawrence,
2011).

Let the prior covariance matrix be K�1∶�2
≜ [cov[sa

t
, sa

�

t�
]]a,a

�=1,…,M

t,t�=�1,…,�2
 for any

1 ≤ �1 ≤ �2 ≤ T  . Then, given a matrix of observed saliency s̃1∶t , the MOGP regression
model can provide a Gaussian predictive distribution p(st� |s̃1∶t) = N(�t�|1∶t,Kt�|1∶t) for any
future saliency st′ with the following posterior mean vector and covariance matrix:

where K[t�t] ≜ [cov[sa
t�
, sa

�

�
]]a,a

�=1,…,M

�=1,…,t
 . Then, the ath element �a

t�|1∶t of �t�|1∶t is the predictive
mean of the saliency sa

t′
 . And the [a, a�] th element of Kt�|1∶t denoted as �aa�

t�|1∶t is the predic-
tive (co)variance between the saliency sa

t′
 and sa′

t′
.

4.2.1 � On the choice of the “exponential kernel"

We justify our choice of the exponential kernel as a modeling mechanism by presenting
visualizations of saliency measurements collected during training, and comparing these to
samples drawn from the exponential kernel kq(t, t�) ≜

��

(t+t�+�)�
 , as shown in Fig. 1. Both the

saliency of various convolutional filters and the function samples exhibit exponentially
decaying behavior, which makes the exponential kernel a strong fit for modeling saliency
evolution over time.

Furthermore, we note that the exponential kernel was used to great effect in Swersky
et al. (2014) with respect to modeling loss curves as a function of epochs. Similar to the
saliency measurement curves, loss curves also exhibit asymptotic behavior, which provides
evidence for the exponential kernel being an apt fit for our saliency modeling task.

�t�|1∶t ≜ K[t�t]K
−1
1∶t
s̃1∶t, Kt�|1∶t ≜ Kt�∶t� − K[t�t]K

−1
1∶t
K

⊤

[t�t]

Fig. 1   Above: Saliency of different convolutional filters over 150 epochs of SGD for a convolutional neural
network trained on CIFAR-10 dataset. Below: Function samples drawn from GP with the exponential ker-
nel. Both processes follow an exponentially decaying and asymptotic behavior

2661Machine Learning (2023) 112:2653–2684	

1 3

4.3 � Bayesian early pruning (BEP) algorithm

Solving the above optimizing problem (3) and (4) is difficult due to the interplay between
[mt�]t�=t,…,T , [Bt�,c]t�=t,…,T , and mT ⋅ sT . To overcome this difficulty, we instead analyze a
lower bound of �t(⋅):

We prove this lower bound in “Appendix 2”. Substituting this lower bound4 we define 𝜌̂(⋅):

This approach allows us to lift (3d) from (3), to which we add a Lagrange multiplier and
achieve:

for t = 1,… , T − 1 and 𝜌̂T is defined as �T without constraint (3d). Consequently, such a
𝜌̂T can be solved in a greedy manner as in (2). Afterwards, we will omit Bt,c as a parameter
of 𝜌̂T as it no longer constrains the solution of 𝜌̂T . Note that the presence of an additive
penalty in a maximization problem is due to the constraint BT ,c ≥ 0 ⇔ −BT ,c ≤ 0 which is
typically expected prior to Lagrangian reformulation.

To proceed with the analysis, we show the above optimization problem is submodular in
mt . In (7), the problem of choosing m from {0, 1}M can be considered as selecting a subset
A of indexes from {1,… ,M} such that ma

t
= 1 for a ∈ A , and ma

t
= 0 otherwise. Therefore,

P(m) ≜ �p(sT ∣s̃1∶t)
[𝜌̂T (m,Bs)] can be considered as a set function which we will show to be

submodular. To keep notation consistency, we will remain using P(m) instead of represent-
ing it as a function of the index subset A.

Lemma 1  Let m�, m�� ∈ {0, 1}M , and e(a) be arbitrary M-dimensional one hot vec-
tor with 1 ≤ a ≤ M and P(m) ≜ �p(sT ∣s̃1∶t)

[𝜌̂T (m,Bs)] . We have P(m� ∨ e
(a)) − P(m�)

≥ P(m�� ∨ e
(a)) − P(m��) for any m′ ≤̇ m′′ , m� ∧ e(a) = 0M , and m�� ∧ e(a) = 0M.

Here, ‘ ∨ ’ and ‘ ∧ ’ represent bitwise OR and AND operations, respectively. The bit-
wise OR operation is used to denote the inclusion of e(a) in mt . The proof for Lemma 1 is
presented in “Appendix 3”. Greedy approximations for submodular optimization have a
running time of O(||mt−1||20) , which remains far too slow due to the large number of net-
work elements in DNNs. To overcome this, we exploit the strong tail decay of multivariate
Gaussian density p(sT ∣ s̃1∶t) to deliver an efficient approximation procedure. Our approach
relies on the following lemma (its proof is in “Appendix 4”):

Lemma 2  Let e(i) be a M-dimensional one-hot vectors with the ith element be 1.
∀ 1 ≤ a, b ≤ M,m ∈ {0, 1}M s.t.m ∧ (e(a) ∨ e(b)) = 0M . Given a matrix of observed sali-
ency s̃1∶t , if �a

T∣1∶t
≥ �b

T∣1∶t
 and �a

T∣1∶t
≥ 0 , then

(5)
𝜌t(mt−1,Bt,c,Bs) = max

mt

�p(st+1∣s̃1∶t)

[
𝜌t+1(mt,Bt,c − ||mt||0,Bs)

]

≥ max
mt

�p(sT ∣s̃1∶t)
[𝜌T (mt,Bt,c − (T − t)||mt||0,Bs)].

(6)𝜌̂t(mt−1,Bt,c,Bs) ≜ max
mt

�p(sT ∣s̃1∶t)
[𝜌T (mt,Bt,c − (T − t)||mt||0,Bs)] .

(7)𝜌̂t(mt−1,Bt,c,Bs) ≜ max
mt

�p(sT ∣s̃1∶t)

[
𝜌̂T (mt,Bs)

]
+ 𝜆t

(
Bt,c − (T − t)||mt||0

)

4  We omit (4b) as it is automatically satisfied due to our lower bound.

2662	 Machine Learning (2023) 112:2653–2684

1 3

where � ≜
√

�aa
T∣1∶t

+ �bb
T∣1∶t

− 2�ab
T∣1∶t

 , � ≜ �b
T∣1∶t

− �a
T∣1∶t

 , and Φ and � are standard normal
CDF and PDF, respectively.

Due to the strong tail decay5 of � and Φ , Lemma 2 indicates that, with high proba-
bility, opting for mt = m ∨ e(a) is not a much worse choice than mt = m ∨ e(b) given
�a
T∣1∶t

≥ �b
T∣1∶t

 . This admits the following approach to optimize 𝜌̂t : Starting with mt = 0M ,
we consider the inclusion of network elements in mt by the descending order of {�a

T∣1∶t
}M
a=1

which can be computed analytically using MOGP. A network element denoted by e(a) is
included in mt if it improves the objective in (6). The algorithm terminates once the highest
not-yet-included element does not improve the objective function as a consequence of the
penalty term outweighing the improvement in �p(sT ∣s̃1∶t)

[𝜌̂T] . The remaining excluded ele-
ments are then pruned.

Following the algorithm sketch above, we define the utility of network element va
t

with respect to candidate pruning mask mt≤̇mt−1 which measures the improvement in
�p(sT ∣s̃1∶t)

[𝜌̂T] as a consequence of inclusion of e(a) in mt:

In computing Δ(⋅) , we take the expectation over the distribution p(sT ∣ s̃1∶t) , which utilizes
both the predictive mean and variance of the network element. Thus, the confidence of
the MOGP prediction is considered prior to pruning as mentioned in Sect. 1. We can now
take a Lagrangian approach to make pruning decisions during iteration t by balancing the
utility of network element va

t
 against the change of the penalty (i.e., �t(T − t) ), as shown in

Algorithm 1. Due to the relatively expensive cost of performing early pruning, we chose to
early prune every Tstep iterations of SGD. Typically Tstep was chosen to correspond to 10-20
epochs of training. To compute Δ(⋅) we sampled from p(sT ∣ s̃1∶t) and used a greedy selec-
tion algorithm per sample as in (2). During implementation, we also enforced an additional
hard constraint ||mt||0 ≥ Bs which we believe is desirable for practicality reasons. We used
a fixed value of B1,c = ||m0||0T0 + Bs(T − T0) in all our experiments.

Finally, we show how �t offers a probabilistic guarantee in the poor performance of a
pruned network element. Using standard Markov inequality, we show the following:

Lemma 3  Let e(∗) represent a pruned element at time t with the highest predictive mean
�∗
T∣1∶t

≥ 0 . Given an arbitrary pruned element e(a) at time t, then for all � ∈ (0, 1) the fol-
lowing holds:

where � ≜
[
�a
T∣1∶t

Φ(�∕�) + � �(�∕�)
]
∕�t with � ≜

√
�∗∗
T∣1∶t

+ �aa
T∣1∶t

− 2�∗a
T∣1∶t

 , and
� ≜ �a

T∣1∶t
− �∗

T∣1∶t
.

�p(sT ∣s̃1∶t)
[𝜌̂T (m ∨ e

(b))] − �p(sT ∣s̃1∶t)
[𝜌̂T (m ∨ e

(a))] ≤ 𝜇b
T∣1∶t

Φ(𝜈∕𝜃) + 𝜃 𝜙(𝜈∕𝜃)

(8)Δ(a,mt, s̃1∶t,Bs) ≜ �p(sT ∣s̃1∶t)
[𝜌̂T (e

(a) ∨mt,Bs) − 𝜌̂T (mt,Bs)].

p

(
𝜌̂T (e

(a) ∨mt,Bs) − 𝜌̂T (mt,Bs) <
𝜆t

𝛿
(T − t + 𝜖)

)
> 1 − 𝛿

5  Note as �a

T∣1∶t
≥ �b

T∣1∶t
 , Φ(⋅) ≤ 0.5 and experiences tail decay proportional to �a

T∣1∶t
− �b

T∣1∶t
.

2663Machine Learning (2023) 112:2653–2684	

1 3

The proof is in “Appendix 5”. The above lemma shows that �t acts as a probabilistic
guarantee of the poor performance of a pruned network element. A smaller �t offers a
higher probability in the poor performance of an element prior to pruning. Consequently,
�t is inversely correlated with training time where a lower �t requires more training time as
fewer network elements are pruned. This offers a trade-off between training time and per-
formance using the penalty parameter �t.

Algorithm 1 Bayesian Early Pruning

Require: N , v1, T , B1,c, Bs, λ, (LITE, B0)� DNN N , Lagrangian penalties λ
1: if LITE then � See Section 4.4.
2: s0 ← evaluate(Nv1) � Evaluate saliency at initialization.
3: m0 ← argmaxm0∈{0,1}M

∑M
a=1 m0 · s0 s.t. ||m0||0 ≤ B0

4: prune(v1,m0)
5: end if
6: s̃1:T0 ← train(Nv1 , T0) � Train for T0 iterations to create seed dataset.
7: BT0,c ← B1,c − T0 dim(v1) � Track computational effort expenditure.
8: for k ← 0, . . . , T−T0

Tstep
; t ← T0 + kTstep do

9: µT |1:t, σT |1:t ← MOGP (s̃1:t) � Train and perform inference.
10: sT ← argsort(−µT |1:t) � Sort descending.
11: mt ← 0dim(vt) � Initial pruning mask.
12: for a ← s1T , . . . , s

dim(vt)
T do � Consider each network element.

13: if Bt,c − (T − t)||mt||0 > 0 then
14: mt = mt ∨ e(a)

15: else if ∆(a,mt, s̃1:t, Bs) ≥ λt(T − t) then � Utility vs. penalty.
16: mt = mt ∨ e(a)

17: else
18: break
19: end if
20: end for
21: prune(vt,mt) � dim(vt) is reduced here.
22: Bt+Tstep,c ← Bt,c − Tstep||mt||0
23: s̃t+1:t+Tstep ← train(Nvt , Tstep) � Continue training.
24: end for
25: return N

4.4 � BEP‑LITE

We may further reduce the training cost of BEP by combining with pruning at initializa-
tion. This combination is motivated by noticing that initialization pruning techniques (Lee
et al., 2019; Wang et al., 2020a) implicitly utilize the following predictive model of
saliency:

(9)p(sT) ≜ �(s0)

2664	 Machine Learning (2023) 112:2653–2684

1 3

where � represents the Dirac delta function. We observe in validation that this predictive
model is effective to identify the poorest performing elements.6 Thus, we may prune at ini-
tialization by solving the following optimization problem:

where B0 ≥ Bs and is chosen to yield 10–20% training cost overhead over pruning at ini-
tialization. Consequently, pruning at initialization is used as a permissive heuristic to deter-
mine m0 , with the remainder of the pruning decisions made using BEP as in Algorithm 1.
This fusion of techniques, termed BEP-LITE, significantly reduces training cost without
adversely affecting test performance (Sect. 5) as BEP is utilized to make difficult pruning
decisions by appropriately balancing training cost versus performance.

4.5 � Dynamic penalty scaling

In BEP, each optimization problem 𝜌̂t(⋅) requires a corresponding Lagrange multiplier �t .
This necessitates several hyperparameters, one for each pruning iteration. Tuning these
hyperparameters is costly, and thus undesirable. Due to this, we propose determining �t
dynamically using a feedback loop utilizing a singular Lagrange multiplier �.

A proportional feedback loop can be defined as follows:7

where Kp ≥ 0 is a proportional constant which modulates �t according to a signed meas-
ure of error e(⋅) at time t. Note that �t ≥ � as e(t) ≥ 0 , and the opposite occurs if e(t) ≤ 0 ,
which allows the error to serve as feedback to determine �t . Implicitly, �t asserts some con-
trol over e(t + 1) , and thus closing the feedback loop.

Traditional approaches to determine Kp do not work in our case as � may vary over sev-
eral orders of magnitude. Consequently, a natural choice for Kp is � itself which preserves
the same order of magnitude between Kp and �:

Here we make two decisions to adapt the above to our task. First, as � is likely to be
extremely small, we use exponentiation, as opposed to multiplication. Secondly as � ≤ 1 in
practice, we use 1 − e(t) as an exponent:

The above derivation is complete with our definition of e(t):

The above determines error by the discrepancy between the anticipated compute required
to complete training (T − t)||mt||0 , versus the remaining budget Bt,c with e(t) = 0 if the two

(10)max
m0∈{0,1}

M

M∑

a=1

m0 ⋅ s0 s.t. ||m0||0 ≤ B0

(11)�t ≜ � + Kp × e(t)

(12)�t = � + � × e(t) = �(1 + e(t)).

(13)�t = �∧[1 − e(t)] = �
[
(1∕�)∧e(t)

]
.

(14)e(t) ≜ (T − t)||mt||0∕Bt,c − 1.

6  See Sect. 5.1.3 for verification.
7  This approach is inspired from Proportional-Integral-Derivative (PID) controllers (Bellman, 2015), see
Åström et al. (1993) for an introductory survey.

2665Machine Learning (2023) 112:2653–2684	

1 3

are equal. This is a natural measure of feedback for � as we expect the two to be equal if �
is serving well to early prune the network.

5 � Experiments

This section empirically validates the efficacy of our proposed methods. In particular, we
will demonstrate: (a) The effectiveness of our MOGP modelling approach at inferring
future saliency measurements; (b) The early pruning performance of BEP compared to
related works and the training time versus performance trade-off; and (c) The robustness of
the BEP performance in its hyperparameter tuning.

To avoid the huge cost in validating the above contributions in various settings, we first
evaluate our saliency modeling approach as well as our BEP and BEP-LITE algorithms
using a small-scale network: a CNN model8 trained on the CIFAR-10, and CIFAR-100
dataset. The model architecture is presented in Fig. 2 and consists of 4 convolutional layers
followed by a fully connected layer. MaxPooling and Dropout is also utilized in the archi-
tecture, similar to VGG-16 (Simonyan & Zisserman, 2015).

The proposed BEP algorithm is compared with several pruning methods applied
at initialization stage: (a) Random: Random pruning; (b) SNIP (Lee et al., 2019; (c)
GraSP (Wang et al., 2020a; (d) PFS: PruneFromScratch (Wang et al., 2020b); and (e)
EagleEye (Li et al., 2020): A pruning-after-training approach which is applied to the ini-
tialization stage for comparison.

Then, we apply BEP and BEP-LITE to prune ResNet-50 on the ImageNet dataset and
compare against related works. For our ResNet-50 we compare against (a) IterSnip (de
Jorge et al., 2021); and (b): SynFlow (Tanaka et al., 2020) as well as previously mentioned
related works. Our ResNet-50 validation shows that BEP is able to train networks with
higher accuracy when compared to related work. Furthermore, utilizing the BEP-LITE
heuristic, these networks can be trained with only a small amount of training cost overhead
when compared to pruning at initialization.

In this work, we use training FLOPs to measure training cost. Due to the continued
growth in training cost of DNNs, we focus on the task of pruning a large percentage of
the DNN. Due to the cubic time complexity of MOGPs, we used a variational approxima-
tion (Hensman et al., 2015). In all of our models, we used 60 variational inducing points
per latent function. The GPflow library (Matthews et al., 2017) is used to build our MOGP
models.

8  Code is available at https://​github.​com/​mohit​rajpa​l1/​keras_​examp​le/​blob/​main/​keras_​netwo​rk.​py.

Conv2D (32) Conv2D (32) MaxPool2D Conv2D (64) Conv2D (64)

MaxPool2D Dense (512) Dense (10)

Dropout

Dropout Dropout

Fig. 2   Small scale model neural network architecture for CIFAR-10. Parentheticals indicate the number of
convolutional filters, or neurons in a layer. The receptive field size for convolution is (3, 3), Max Pooling is
done with receptive field size (2, 2)

https://github.com/mohitrajpal1/keras_example/blob/main/keras_network.py

2666	 Machine Learning (2023) 112:2653–2684

1 3

5.1 � Small‑scale experiments

5.1.1 � Saliency modeling evaluation

A key assertion in our approach is the importance of capturing co-adaptation and co-
evolution effects in network elements. To verify that our MOGP approach captures these
effects, we compare MOGP versus GP belief modeling with GP assumes independence
in saliency measurements across network elements (i.e., p(s1∶T) ≜

∏M

a=1
p(sa

1∶T
) ). To vali-

date this assertion, we collect saliency measurements of convolutional filters and neurons
(network elements) by instrumenting the training process of our Small scale CNN model
on the CIFAR-10/CIFAR-100 dataset. During early pruning, the MOGP infers the future
saliency of network elements given a dataset of saliency measurements up to the present.
Pruning decisions are then made on the inferred saliency of network elements. To verify
the robustness of our inferring approach we validate the MOGP approach on inferring the
future saliency given past saliency measurements.9

We train the belief models with small ( t = [0, 26] epochs), medium ( t = [0, 40] epochs),
and large ( t = [0, 75] epochs) training dataset of saliency measurements. For GPs, a sepa-
rate model was trained per network element (convolutional filter, or neuron). For MOGP,
all network elements in a single layer shared one MOGP model. We measure these mod-
els’ ability in inferring the future (unobserved) saliency measurements using log likeli-
hood and present the results in Table 2 for CIFAR-10 and CIFAR-100. As can be seen,
our MOGP approach better captures the saliency of network elements than a GP approach.
The log likelihood of MOGP trained using large dataset is much smaller than that trained
using small dataset, which implies the necessity of collecting more saliency measurements
before performing pruning during training and shows evidence of the trade-off between
training cost versus performance.

We visualize the qualitative differences between GP and MOGP prediction in Fig. 3. We
observe that MOGP is able to capture the long term trend of saliency curves with signifi-
cantly less data than GP. In many cases, GP is unable to predict the long term trends of the
data due to irregular element saliency observations. However, MOGP is able to overcome
data irregularities by utilizing correlations between saliency of the network elements.

5.1.2 � Dynamic penalty scaling

We applied the early pruning algorithm on the aforementioned architecture, and training
regimen. We investigated the behavior of the penalty parameter, � . We compare dynamic
penalty scaling, and penalty without scaling in Fig. 4 using T0 = 20 epochs, Tstep = 10
epochs for two pruning tasks. Dynamic penalty scaling encourages gradual pruning across
a wide variety of settings of � . We use dynamic penalty scaling in the remainder of our
validation.

5.1.3 � BEP‑LITE heuristic

For BEP-LITE we utilize the following predictive model of saliency

9  Complete experimental setups are in “Appendix 6.1”.

2667Machine Learning (2023) 112:2653–2684	

1 3

Ta
bl

e 
2  

C
om

pa
rin

g
lo

g
lik

el
ih

oo
d

(s
ta

nd
ar

d
er

ro
r)

 o
f t

es
t d

at
a

fo
r i

nd
ep

en
de

nt
 G

Ps
 (G

P)
 v

er
su

s
M

O
G

P
w

ith
 n

 la
te

nt
 fu

nc
tio

ns
 (n

-M
O

G
P)

 o
n

di
ffe

re
nt

 s
iz

e
of

 c
ol

le
ct

ed
 s

al
i-

en
cy

 m
ea

su
re

m
en

ts
 fr

om
 C

IF
A

R-
10

 a
nd

 C
IF

A
R-

10
0

tra
in

in
g

B
es

t p
er

fo
rm

in
g

co
nfi

gu
ra

tio
n

is
 in

di
ca

te
d

in
 b

ol
d

Th
e

lo
g

lik
el

ih
oo

d
ar

e
gi

ve
n

as
 a

 m
ul

tip
le

 o
f −

1
0
4
 (

lo
w

er
 is

 b
et

te
r)

. M
O

G
P

ou
tp

er
fo

rm
s

G
P,

 p
ar

tic
ul

ar
ly

 o
n

th
e

sm
al

l d
at

as
et

. U
si

ng
 a

dd
iti

on
al

 la
te

nt
 f

un
ct

io
ns

 im
pr

ov
es

M

O
G

P
m

od
el

in
g

w
ith

 d
im

in
is

hi
ng

 re
tu

rn
s.

Th
e

la
rg

e
da

ta
se

t i
s e

as
ie

r t
o

m
od

el
du

e
to

 a
n

ov
er

ab
un

da
nc

e
of

 d
at

a,
 th

us
 M

O
G

P
m

ay
 sh

ow
 li

m
ite

d
im

pr
ov

em
en

t d
ue

 to
 ta

sk
 si

m
-

pl
ic

ity
 (e

.g
.,

se
e

La
ye

r (
Ly

r)
 3

, L
ar

ge
 d

at
as

et
).

Re
su

lts
 a

re
 a

ve
ra

ge
d

ov
er

 2
0

ru
ns

. E
xt

re
m

el
y

la
rg

e
va

lu
es

 a
re

 d
ue

 to
 th

e
G

P
m

od
el

 b
ei

ng
 u

na
bl

e
to

 fi
t t

he
 d

at
a

Sm
al

l d
at

as
et

M
ed

iu
m

 d
at

as
et

La
rg

e
da

ta
se

t

Ly
r 1

Ly
r 2

Ly
r 3

Ly
r 1

Ly
r 2

Ly
r 3

Ly
r 1

Ly
r 2

Ly
r 3

C
IF

AR
-1

0
G

P
1
.1
9
(0
.5
)

1
.0
8
(0
.0
6
)

1.
07

 (1
.0

7)
e5

0
.9
6
(0
.0
4
)

0
.9
3
(0
.0
3
)

2
.4
7
(0
.0
4
)

0
.4
9
(0
.0
1
)

0
.4
8
(0
.0
1
)

1
.3
3
(0
.0
2
)

4-
M

O
G

P
1
.1
5
(0
.0
5
)

0
.8
9
(0
.0
6
)

2
.4
4
(0
.0
5
)

0
.9
1
(0
.0
2
)

0
.8
0
(0
.0
3
)

2
.2
0
(0
.0
3
)

0
.3
8
(0
.0
2
)

0
.3
9
(0
.0
2
)

1
.2
5
(0
.0
2
)

8-
M

O
G

P
1
.0
9
(0
.0
4
)

0
.8
6
(0
.0
5
)

2
.3
8
(0
.0
4
)

0
.8
4
(0
.0
3
)

0
.7
8
(0
.0
3
)

2
.1
6
(0
.0
3
)

0
.3
2
(0
.0
1
)

0
.3
5
(0
.0
2
)

1
.2
0
(0
.0
2
)

18
-M

O
G

P
0
.9
7
(0
.0
4
)

�
.�
�
(0
.0
5
)

2
.3
3
(0
.0
4
)

0
.8
9
(0
.0
3
)

0
.7
6
(0
.0
3
)

2
.1
3
(0
.0
3
)

0
.3
1
(0
.0
1
)

0
.3
5
(0
.0
2
)

1
.2
0
(0
.0
2
)

32
-M

O
G

P
�
.�
�
(0
.0
6
)

0
.8
1
(0
.0
6
)

�
.�
�
(0
.0
4
)

�
.�
�
(0
.0
3
)

�
.�
�
(0
.0
3
)

�
.�
�
(0
.0
3
)

�
.�
�
(0
.0
1
)

�
.�
�
(0
.0
2
)

�
.�
�
(0
.0
2
)

C
IF

AR
-1

00
G

P
0
.7
5
(0
.0
6
)

5.
7

(5
.7

)e
4

5.
6

(5
.6

)e
4

0
.6
4
(0
.0
4
)

0
.7
0
(0
.0
4
)

�
.�
�
(�
.�
�
)

3.
4

(3
.4

)e
3

0
.3
1
(0
.0
2
)

1
.0
6
(0
.0
2
)

4-
M

O
G

P
0
.7
9
(0
.0
5
)

0
.9
8
(0
.1
2
)

3
.1
3
(0
.1
0
)

0
.4
4
(0
.0
4
)

0
.6
0
(0
.1
0
)

2
.2
9
(0
.0
6
)

0
.1
2
(0
.0
1
)

0
.2
4
(0
.0
3
)

1
.0
7
(0
.0
3
)

8-
M

O
G

P
0
.6
5
(0
.0
5
)

0
.8
9
(0
.1
1
)

3
.0
0
(0
.0
9
)

0
.3
8
(0
.0
4
)

0
.6
0
(0
.1
0
)

2
.2
0
(0
.0
6
)

0
.1
0
(0
.0
1
)

0
.1
8
(0
.0
1
)

1
.0
2
(0
.0
3
)

18
-M

O
G

P
�
.�
�
(0
.0
5
)

�
.�
�
(0
.1
1
)

2
.9
3
(0
.1
0
)

0.
36

 (0
.0

3)
�
.�
�
(0
.1
0
)

2
.2
2
(0
.0
7
)

0
.0
9
(0
.0
1
)

0
.1
8
(0
.0
1
)

1
.0
1
(0
.0
3
)

32
-M

O
G

P
0
.6
5
(0
.0
5
)

0
.8
5
(0
.0
9
)

�
.�
�
(0
.1
0
)

�
.�
�
(0
.0
3
)

0
.5
9
(0
.1
0
)

2
.1
6
(0
.0
6
)

�
.�
�
(0
.0
2
)

�
.�
�
(0
.0
1
)

�
.�
�
(0
.0
3
)

2668	 Machine Learning (2023) 112:2653–2684

1 3

where � represents the Dirac delta function. To verify the effectiveness of this model as a
permissive heuristic for BEP, we plot the relation between saliency at initialization, and
after training.

Using the same experimental setup as Sect. 5.1.1, we plot the saliency measurement
collected at initialization, and after training completion. This is presented in Fig. 5.

As can be seen, saliency at initialization well correlates with saliency after training,
hence demonstrating the validity of our heuristic. Following this observation, we utilize
the above predictive model as a permissive heuristic applied at initialization to speed up
the BEP algorithm. Due to the relatively better performance offered by GraSP (Wang
et al., 2020a), we use it as the saliency measurement at initialization.

(15)p(sT) ≜ �(s0)

Fig. 3   Visualization of qualitative differences between GP and MOGP prediction. Top: GP. Bottom:
18-MOGP. Dataset is separated into training (green) set of observations and future saliency forms the vali-
dation (blue) set. Posterior belief of the saliency is visualized as predictive mean (red line), and 95% confi-
dence interval (error bar).In many cases (e.g., top left graph), GP is unable to predict the long term trends
of the data due to irregular element saliency observations. However, MOGP is able to overcome data irreg-
ularities by utilizing correlations between saliency of the network elements

Fig. 4   Comparing dynamic penalty scaling versus static on pruning tasks on CIFAR-100 CNN training.
Dynamic penalty scaling encourages gradual pruning across a wide variety of settings of �

2669Machine Learning (2023) 112:2653–2684	

1 3

10  We do pruning per layer instead of across the whole network since the saliency measurement has been
known to not work well in comparing network element efficacy across layers [see Appendix A.1 and A.2
of Molchanov et al. (2017) and Section 3 of Wang et al. (2020a)]. Developing novel saliency functions
which overcome this shortcoming is outside the scope of this work.

5.1.4 � BEP on CIFAR‑10/CIFAR‑100 dataset

We apply the tested algorithms to prune a portion of filters/neurons of each layer10 and
evaluate their performance with various degrees of pruning percentage.

As shown in Table 3, our approach better preserves performance at equivalent pruning
percentage. A lower penalty � yields higher performing results but larger training FLOPs,
which shows that � in BEP serves well at balancing performance versus computational
cost. A clearer superiority of BEP in validation accuracy can be observed when the prun-
ing percentage is large (i.e., right column of Table 3). Although PruneFromScratch (Wang
et al., 2020b) demonstrates comparable performance to BEP in some cases, we show in
more complex experiments (Sect. 5.2) a significant performance gap emerges. Although
BEP incurs larger training FLOPs than other tested algorithms, we can further reduce the
training cost via BEP-LITE as will be shown in Sect. 5.2. EagleEye achieves much lower
validation accuracy than other tested algorithms, which implies that an after training prun-
ing technique typically doesn’t work well when applied to the initialization stage for reduc-
ing training cost.

To verify the robustness of our approach, we repeat this experiment on the VGG-16
architecture comparing against the most competetive baselines (SNIP and GraSP). This is
presented in Table 4.

5.1.5 � Ablation study

The objective of BEP is to reduce the cost for DNN training. As such, hyperparameter tun-
ing of BEP on a per DNN architecture basis is not feasible due to its expensiveness. Thus,
we check the robustness of BEP and MOGP hyperparameters in this section, which dem-
onstrates that tuning is not necessary on a per DNN basis.

We vary the number of MOGP variational inducing points, MOGP latent functions as
well as Tstep , and test the performance of BEP 1e−4 on CIFAR-10/CIFAR-100 at 95K, 24K,
and 6K inference FLOPs as shown in Table 5 with our small scale CNN model. We observe

Fig. 5   Correlation between saliency of network elements at initialization, and saliency of network elements
after training. Top: CIFAR-10, Bottom: CIFAR-100. Left-to-right: Layers 1 through 5 of the convolutional
neural network

2670	 Machine Learning (2023) 112:2653–2684

1 3

Ta
bl

e 
3  

P
er

fo
rm

an
ce

 (s
ta

nd
ar

d
er

ro
r)

 o
f t

he
 te

ste
d

al
go

rit
hm

s w
ith

 v
ar

yi
ng

 in
fe

re
nc

e
FL

O
Ps

 (p
er

ce
nt

ag
e

of
 p

ru
ne

d
FL

O
Ps

) f
or

 C
IF

A
R-

10
 a

nd
 C

IF
A

R-
10

0
on

 th
e

sm
al

l s
ca

le

C
N

N
 m

od
el

A
lg

or
ith

m
 a

nd
 c

on
fig

ur
at

io
n

w
ith

 h
ig

he
st

ac
cu

ra
cy

 is
 in

di
ca

te
d

in
 b

ol
d

Th
e

B
EP

 is
 te

ste
d

w
ith

 v
ar

yi
ng

 p
en

al
ty

: �
=

 1
e−

2
 , 1

e−
4
 , a

nd
 1

e −
7
 . U

np
ru

ne
d

ba
se

lin
e

tra
in

 a
nd

 in
fe

re
nc

e
FL

O
Ps

 a
re

 1.
9
e
1
3
 a

nd
 2

.5
M

, r
es

pe
ct

iv
el

y

C
IF

A
R-

10
 (s

m
al

l s
ca

le
 C

N
N

 m
od

el
)

22
3K

 In
fe

re
nc

e
FL

O
Ps

 ( 9
1
%

)
95

K
 In

fe
re

nc
e

FL
O

Ps
 ( 9

6
.2
%

)
24

K
 In

fe
re

nc
e

FL
O

Ps
 ( 9

9
.0
%

)
6K

 In
fe

re
nc

e
FL

O
Ps

 ( 9
9
.8
%

)

Va
l A

cc
Tr

ai
n

FL
O

Ps
Va

l A
cc

Tr
ai

n
FL

O
Ps

Va
l A

cc
Tr

ai
n

FL
O

Ps
Va

l A
cc

Tr
ai

n
FL

O
Ps

R
an

do
m

7
2
.3
(0
.6
)%

1
.7
e
1
2

6
6
.5
(0
.7
)%

7
.1
e
1
1

4
1
.4
(7
.9
)%

1
.8
e
1
1

1
4
.5
(4
.5
)%

4
.6
e
1
0

SN
IP

7
5
.4
(4
.7
)%

1
.7
e
1
2

6
7
.7
(0
.7
)%

7
.1
e
1
1

5
0
.8
(0
.8
)%

1
.8
e
1
1

2
9
.4
(4
.9
)%

4
.6
e
1
0

G
ra

SP
7
4
.6
(0
.6
)%

1
.7
e
1
2

6
6
.5
(0
.9
)%

7
.1
e
1
1

5
0
.7
(0
.6
)%

1
.8
e
1
1

3
2
.9
(1
.0
)%

4
.6
e
1
0

PF
S

7
1
.3
(2
.0
)%

1
.7
e
1
2

5
9
.9
(5
.8
)%

7
.1
e
1
1

4
3
.3
(2
.5
)%

1
.8
e
1
1

3
1
.7
(1
.7
)%

4
.6
e
1
0

Ea
gl

eE
ye

6
0
.9
(7
.5
)%

1
.7
e
1
2

4
4
.6
(1
1
.3
)%

7
.1
e
1
1

4
7
.8
(7
.8
)%

1
.8
e
1
1

2
8
.7
(4
.5
)%

4
.6
e
1
0

B
EP

 1
e−

2
7
5
.9
(0
.3
)%

4
.0
e
1
2
(9
.5
e
1
0
)

6
9
.7
(0
.4
)%

3
.1
e
1
2
(2
.1
e
9
)

5
4
.8
(1
.0
)%

2
.6
e
1
2
(4
.1
e
9
)

1
8
.9
(5
.4
)%

2.
5e
12

(2
.2
e1
0)

B
EP

 1
e−

4
7
5
.4
(1
.7
)%

4
.3
e
1
2
(3
.7
e
1
0
)

7
0
.5
(3
.2
)%

3
.3
e
1
2
(3
.3
e
1
0
)

5
5
.7
(0
.9
)%

2
.6
e
1
2
(8
.4
e
9
)

�
�
.�
(�
.�
)%

2
.5
e
1
2
(2
.0
e
9
)

B
EP

 1
e−

7
�
�
.�
(�
.�
)%

4
.5
e
1
2
(1
.4
e
1
1
)

�
�
.�
(�
.�
)%

3
.4
e
1
2
(6
.6
e
1
0
)

�
�
.�
(�
.�
)%

2
.7
e
1
2
(1
.4
e
1
0
)

3
0
.4
(5
.1
)%

2
.5
e
1
2
(2
.2
e
9
)

C
IF

A
R-

10
0

(s
m

al
l s

ca
le

 C
N

N
 M

od
el

)

25
1K

 In
fe

re
nc

e
FL

O
Ps

 (
8
9
.4
%

)
11

3K
 In

fe
re

nc
e

FL
O

Ps
 (
9
5
.7
%

)
33

K
 In

fe
re

nc
e

FL
O

Ps
 (
9
8
.8
%

)
10

K
 In

fe
re

nc
e

FL
O

Ps
 (
9
9
.6
%

)

Va
l A

cc
Tr

ai
n

FL
O

Ps
Va

l A
cc

Tr
ai

n
FL

O
Ps

Va
l A

cc
Tr

ai
n

FL
O

Ps
Va

l A
cc

Tr
ai

n
FL

O
Ps

R
an

do
m

2
7
.8
(6
.7
)%

1
.9
e
1
2

2
7
.1
(0
.7
)%

8
.5
e
1
2

3
.7
(2
.7
)%

2
.5
e
1
1

1
.0
(0
.0
)%

8
.0
e
1
0

SN
IP

2
2
.9
(9
.0
)%

1
.9
e
1
2

1
5
.7
(6
.1
)%

8
.5
e
1
2

9
.0
(3
.7
)%

2
.5
e
1
1

2
.2
(1
.2
)%

8
.0
e
1
0

G
ra

SP
2
8
.4
(7
.0
)%

1
.9
e
1
2

2
2
.6
(5
.4
)%

8
.5
e
1
2

1
3
.9
(3
.2
)%

2
.5
e
1
1

1
.0
(0
.0
)%

8
.0
e
1
0

PF
S

3
7
.3
(0
.9
)%

1
.9
e
1
2

2
6
.9
(4
.0
)%

8
.5
e
1
2

1
9
.3
(2
.4
)%

2
.5
e
1
1

8
.5
(0
.7
)%

8
.0
e
1
0

Ea
gl

eE
ye

1
9
.8
(1
2
.0
)%

1
.9
e
1
2

2
0
.2
(7
.1
)%

8
.5
e
1
2

1
2
.6
(2
.6
)%

2
.5
e
1
1

4
.7
(2
.2
)%

8
.0
e
1
0

B
EP

 1
e−

2
4
0
.6
(0
.2
)%

4
.2
e
1
2
(4
.8
e
9
)

3
2
.2
(0
.6
)%

3
.3
e
1
2
(2
.2
e
9
)

1
9
.1
(0
.5
)%

2
.8
e
1
2
(4
.3
e
8
)

7
.1
(1
.6
)%

2
.7
e
1
2
(1
.3
e
9
)

B
EP

 1
e−

4
�
�
.�
(�
.�
)%

4
.6
e
1
2
(3
.7
e
1
0
)

�
�
.�
(�
.�
)%

3
.5
e
1
2
(2
.3
e
1
0
)

�
�
.�
(�
.�
)%

2
.9
e
1
2
(6
.5
e
1
0
)

�
.�
(�
.�
)%

2.
7e
12

(4
.7
e1
0)

B
EP

 1
e−

7
4
0
.6
(0
.2
)%

4
.8
e
1
2
(1
.0
e
1
1
)

3
3
.0
(0
.5
)%

3
.5
e
1
2
(5
.9
e
1
0
)

1
9
.5
(0
.5
)%

2
.9
e
1
2
(1
.2
e
1
0
)

6
.6
(1
.5
)%

2
.7
e
1
2
(5
.2
e
9
)

2671Machine Learning (2023) 112:2653–2684	

1 3

Ta
bl

e 
4  

P
er

fo
rm

an
ce

 (s
ta

nd
ar

d
er

ro
r)

 o
f t

he
 te

ste
d

al
go

rit
hm

s
w

ith
 v

ar
yi

ng
 in

fe
re

nc
e

FL
O

Ps
 (p

er
ce

nt
ag

e
of

 p
ru

ne
d

FL
O

Ps
) f

or
 C

IF
A

R-
10

 a
nd

 C
IF

A
R-

10
0

on
 th

e
V

G
G

-1
6

m
od

el

A
lg

or
ith

m
 a

nd
 c

on
fig

ur
at

io
n

w
ith

 h
ig

he
st

ac
cu

ra
cy

 is
 in

di
ca

te
d

in
 b

ol
d

U
np

ru
ne

d
ba

se
lin

e
tra

in
 a

nd
 in

fe
re

nc
e

FL
O

Ps
 a

re
 8
.2
e
1
5
 a

nd
 6
.6
e
8
 , r

es
pe

ct
iv

el
y

C
IF

A
R-

10
 (V

G
G

-1
6)

26
.5

M
 In

fe
re

nc
e

FL
O

Ps
 ( 9

6
.0
%

)
6.

68
M

 In
fe

re
nc

e
FL

O
Ps

 ( 9
8
.9
%

)
1.

72
M

 In
fe

re
nc

e
FL

O
Ps

 ( 9
9
.7
%

)
41

4K
 In

fe
re

nc
e

FL
O

Ps
 ( 9

9
.9
%

)

Va
l A

cc
Tr

ai
n

FL
O

Ps
Va

l A
cc

Tr
ai

n
FL

O
Ps

Va
l A

cc
Tr

ai
n

FL
O

Ps
Va

l A
cc

Tr
ai

n
FL

O
Ps

R
an

do
m

8
2
.3
(0
.7
)%

3
.3
e
1
4

7
1
.8
(0
.5
)%

8
.2
e
1
3

4
9
.2
(3
.5
)%

2
.1
e
1
3

2
6
.5
(1
.8
)%

5
.1
e
1
2

SN
IP

8
2
.8
(0
.8
)%

3
.3
e
1
4

7
0
.2
(0
.7
)%

8
.2
e
1
3

4
9
.9
(1
.2
)%

2
.1
e
1
3

2
6
.4
(1
.5
)%

5
.1
e
1
2

G
ra

SP
8
2
.7
(0
.4
)%

3
.3
e
1
4

7
1
.6
(0
.1
)%

8
.2
e
1
3

4
6
.2
(2
.1
)%

2
.1
e
1
3

1
9
.4
(3
.9
)%

5
.1
e
1
2

B
EP

 1
e−

2
8
3
.1
(0
.3
)%

1
.1
e
1
5
(1
.9
e
1
1
)

6
9
.9
(1
.0
)%

9
.3
e
1
4
(4
.6
e
1
0
)

5
1
.9
(1
.1
)%

8
.7
e
1
4
(1
.2
e
1
0
)

2
9
.5
(0
.5
)%

8
.6
e
1
4
(1
.2
e
1
0
)

B
EP

 1
e−

4
�
�
.�
(�
.�
)%

1
.2
e
1
5
(3
.2
e
1
1
)

�
�
.�
(�
.�
)%

9
.4
e
1
4
(4
.1
e
1
0
)

5
0
.1
(0
.9
)%

8
.8
e
1
4
(2
.0
e
1
0
)

�
�
.�
(�
.�
)%

8
.6
e
1
4
(9
.6
e
9
)

B
EP

 1
e−

7
8
3
.7
(0
.2
)%

1
.3
e
1
5
(3
.4
e
1
1
)

7
0
.7
(0
.7
)%

9
.5
e
1
4
(1
.7
e
1
2
)

�
�
.�
(�
.�
)%

8
.8
e
1
4
(2
.8
e
1
1
)

2
7
.9
(2
.2
)%

8
.6
e
1
4
(8
.8
e
1
0
)

C
IF

A
R-

10
0

(V
G

G
-1

6)

60
.2

M
 In

fe
re

nc
e

FL
O

Ps
 (
9
0
.9
%

)
26

.6
M

 In
fe

re
nc

e
FL

O
Ps

 (
9
5
.9
%

)
6.

76
M

 In
fe

re
nc

e
FL

O
Ps

 (
9
8
.9
%

)
1.

76
M

 In
fe

re
nc

e
FL

O
Ps

 (
9
9
.7
%

)

Va
l A

cc
Tr

ai
n

FL
O

Ps
Va

l A
cc

Tr
ai

n
FL

O
Ps

Va
l A

cc
Tr

ai
n

FL
O

Ps
Va

l A
cc

Tr
ai

n
FL

O
Ps

R
an

do
m

5
5
.9
(0
.2
)%

7
.4
e
1
4

4
7
.3
(0
.7
)%

3
.4
e
1
4

2
5
.7
(1
.4
)%

8
.3
e
1
3

7
.8
(0
.5
)%

2
.2
e
1
3

SN
IP

5
4
.9
(0
.4
)%

7
.4
e
1
4

4
5
.7
(1
.2
)%

3
.4
e
1
4

2
2
.1
(0
.6
)%

8
.3
e
1
3

6
.2
(0
.4
)%

2
.2
e
1
3

G
ra

SP
5
4
.1
(0
.6
)%

7
.4
e
1
4

4
6
.7
(0
.0
1
)%

3
.4
e
1
4

2
3
.3
(0
.6
)%

8
.3
e
1
3

6
.9
(0
.7
)%

2
.2
e
1
3

B
EP

 1
e−

2
5
5
.2
(0
.5
)%

1
.5
e
1
5
(1
.3
e
1
1
)

4
6
.2
(0
.1
)%

1
.1
e
1
5
(2
.6
e
1
1
)

2
6
.3
(1
.1
)%

9
.3
e
1
4
(7
.0
e
1
0
)

8
.6
(0
.4
)%

8
.7
e
1
4
(1
.2
e
1
0
)

B
EP

 1
e−

4
5
5
.2
(0
.6
)%

1
.7
e
1
5
(1
.4
e
1
3
)

4
6
.4
(0
.6
)%

1
.2
e
1
5
(3
.7
e
1
2
)

2
8
.0
(0
.2
)%

9
.4
e
1
4
(4
.6
e
1
1
)

1
1
.4
(0
.6
)%

8
.8
e
1
4
(2
.1
e
1
1
)

B
EP

 1
e−

7
�
�
.�
(�
.�
)%

1
.8
e
1
5
(1
.8
e
1
2
)

�
�
.�
(�
.�
)%

1
.3
e
1
5
(2
.4
e
1
2
)

�
�
.�
(�
.�
)%

9
.6
e
1
4
(6
.9
e
1
1
)

�
�
.�
(�
.�
)%

8
.8
e
1
4
(2
.9
e
1
1
)

2672	 Machine Learning (2023) 112:2653–2684

1 3

that in general, the validation accuracy of the pruned DNN is robust to the changes of all
hyperparameters. Degradation is observed in extremal hyperparameter settings. Reducing the
inducing points, and latent functions has a strong effect on the effectiveness of the algorithm
in the extremal setting (e.g., 6K Inf. FLOPS and minimal inducing points or latent functions).
However, this can be easily avoided in practice. Pruning with a large Tstep offers improved
performance, however this correspondingly increases computational cost. The hyperparame-
ter robustness in our approach demonstrates the feasibility of applying BEP to “never-before-
seen" network architectures and datasets without additional hyperparameter tuning.

5.2 � ResNet early pruning

We train ResNet-50 with BEP and other tested algorithm for 100 epochs on 4× Nvidia Geforce
GTX 1080Ti GPUs. More experimental details can be found in “Appendix 6.1”. We used � =
1e−4 as it showed strong performance in our smaller scale experiments. As can be observed

Table 5   Ablation study showing validation accuracy (standard error) with varying early pruning hyperpa-
rameters: MOGP variational inducing points (Ind. pnts.), MOGP latent functions (Lat. func.), and Tstep

Algorithm and configuration with highest accuracy is indicated in bold
Default setting for hyperparameters are 60, 1.0× , and 10 respectively. Outside of the highest sparsity setting
(6K Inf. FLOPs), the validation accuracy of DNN is robust to changes of all hyperparameters, with mild
degradation observed in the extremal settings

CIFAR-10 CIFAR-100

95K Inf. 24K Inf. 6K Inf. 95K Inf. 24K Inf. 6K Inf.

Ind. pnts. 1 70.2 (0.3)% 55.6 (0.3)% 32.1 (0.5)% 31.7 (0.6)% 19.1 (0.2)% 6.6 (1.2)%

2 70.4 (0.2)% 55.8 (0.3)% 35.4 (0.2)% 33.3 (0.4)% 18.8 (0.2)% 8.0 (0.2)%

5 70.5 (0.2)% 56.3 (0.2)% 35.9 (0.2)% 32.9 (0.2)% 19.3 (0.3)% 4.7 (1.3)%

10 70.4 (0.5)% 56.1 (0.4)% 30.6 (4.7)% 32.6 (0.4)% 19.1 (0.6)% 7.4 (1.5)%

26 69.6 (0.4)% 56.8 (0.2)% 29.7 (4.9)% 31.7 (0.6)% 19.2 (0.5)% 8.3 (0.7)%

40 70.9 (0.1)% 55.6 (0.6)% 30.5 (5.1)% 32.3 (0.7)% 19.6 (0.3)% 6.6 (1.4)%

60 70.5 (3.2)% 55.7 (0.9)% 36.1 (1.1)% 32.4 (0.3)% 19.7 (0.8)% 8.5 (0.8)%

90 70.4 (0.3)% 55.1 (0.7)% 35.5 (1.9)% 32.6 (0.4)% 18.5 (0.6)% 8.7 (0.3)%

Lat. func. 0.10× 70.1 (0.3)% 55.3 (0.7)% 30.9 (4.7)% 31.8 (0.4)% 20.2 (0.2)% 5.9 (1.8)%

0.15× 70.6 (0.2)% 55.1 (0.4)% 25.9 (5.8)% 32.1 (0.3)% 20.2 (0.2)% 6.5 (1.3)%

0.20× 69.8 (0.1)% 56.0 (0.3)% 20.4 (5.7)% 33.3 (0.2)% 19.3 (0.5)% 4.7 (1.3)%

0.25× 70.4 (0.4)% 55.6 (0.8)% 35.8 (0.2)% 32.6 (0.3)% 16.3 (3.8)% 7.4 (1.8)%

0.50× 70.0 (0.2)% 56.9 (0.4)% 34.5 (0.6)% 32.1 (0.5)% 18.9 (0.7)% 7.0 (1.5)%

1.0× 70.5 (3.2)% 55.7 (0.9)% 36.1 (1.1)% 32.4 (0.3)% 19.7 (0.8)% 8.5 (0.8)%

2.0× 69.8 (0.3)% 55.7 (0.7)% 34.8 (0.5)% 32.0 (0.4)% 20.8 (0.2)% 7.7 (0.4)%

Tstep 2 69.2 (0.5)% 54.7 (0.6)% 29.4 (5.0)% 32.1 (0.2)% 20.0 (0.3)% 4.3 (1.5)%

5 70.3 (0.2)% 55.6 (0.5)% 31.6 (5.4)% 32.7 (0.4)% 19.4 (0.4)% 5.2 (1.8)%

10 70.5 (3.2)% 55.7 (0.9)% 36.1 (1.1)% 32.4 (0.3)% 19.7 (0.4)% 8.5 (0.8)%

20 70.3 (0.2)% 56.2 (0.1)% 29.8 (5.0)% 32.8 (0.5)% 19.6 (0.4)% 6.8 (1.5)%

40 70.8 (0.3)% 55.5 (0.6)% 34.6 (0.5)% 32.8 (0.2)% 18.9 (0.4)% 8.3 (0.5)%

80 72.0 (0.3)% 58.4 (1.8)% 39.2 (6.6)% 33.9 (0.5)% 22.3 (0.7)% 9.5 (0.8)%

100 74.3 (0.4)% 62.4 (0.6)% 36.7 (6.4)% 37.1 (0.2)% 24.6 (0.4)% 9.4 (2.0)%

2673Machine Learning (2023) 112:2653–2684	

1 3

Ta
bl

e 
6  

B
EP

 a
nd

 B
EP

-L
IT

E
ve

rs
us

 re
la

te
d

w
or

k
fo

r R
es

N
et

-5
0

on
 Im

ag
eN

et
 d

at
as

et

A
lg

or
ith

m
 a

nd
 c

on
fig

ur
at

io
n

w
ith

 h
ig

he
st

ac
cu

ra
cy

 is
 in

di
ca

te
d

in
 b

ol
d

W
e

va
ry

 th
e

in
fe

re
nc

e
FL

O
Ps

 (
pe

rc
en

ta
ge

 o
f

pr
un

ed
 F

LO
Ps

)
of

 th
e

m
od

el
 a

fte
r

tra
in

in
g.

 ‘
M

od
el

’
re

fe
rs

 to
 a

ll
in

cl
us

iv
e

ov
er

he
ad

 o
f

th
e

pr
un

in
g

al
go

rit
hm

. P
FS

 a
lg

or
ith

m

fa
ile

d
to

 p
ru

ne
 to

 th
e

de
si

re
d

sp
ar

si
ty

 in
 th

e
un

lis
te

d
sc

en
ar

io
s.

U
np

ru
ne

d
ba

se
lin

e
tra

in
 a

nd
 in

fe
re

nc
e

FL
O

Ps
 a

re
 9
.3
e
1
7
 a

nd
 7
.3
e
9
 , r

es
pe

ct
iv

el
y

Re
sN

et
-5

0

9
.7
e
8
 In

f.
FL

O
Ps

 ( 8
6
.7
%

)
4
.4
e
8
 In

f.
FL

O
Ps

 ( 9
4
.0
%

)
4
.2
e
8
 In

f.
FL

O
Ps

 ( 9
4
.3
%

)
1
.7
e
8
 In

f.
FL

O
Ps

 ( 9
7
.7
%

)

A
cc

Tr
ai

n
FL

O
Ps

M
od

el
A

cc
Tr

ai
n

FL
O

Ps
M

od
el

A
cc

Tr
ai

n
FL

O
Ps

M
od

el
A

cc
Tr

ai
n

FL
O

Ps
M

od
el

R
an

do
m

6
9
.2
%

1
.2
e
1
7

0.
0

h
5
1
.6
%

5
.7
e
1
6

0.
0

h
3
5
.7
%

5
.4
e
1
6

0.
0

h
3
4
.3
%

2
.3
e
1
6

0.
0

h
SN

IP
6
9
.3
%

1
.2
e
1
7

0.
7

h
5
0
.9
%

5
.7
e
1
6

0.
7

h
3
5
.1
%

5
.4
e
1
6

0.
7

h
3
1
.8
%

2
.3
e
1
6

0.
7

h
G

ra
SP

6
9
.3
%

1
.2
e
1
7

2.
7

h
5
2
.2
%

5
.7
e
1
6

2.
7

h
3
6
.7
%

5
.4
e
1
6

2.
7

h
3
4
.1
%

2
.3
e
1
6

2.
7

h
Ite

rS
N

IP
0
.4
%

1
.2
e
1
7

1.
4

h
0
.4
%

5
.7
e
1
6

1.
4

h
0
.5
%

5
.4
e
1
6

1.
4

h
0
.4
%

2
.3
e
1
6

1.
4

h
Sy

nF
lo

w
3
2
.3
%

1
.2
e
1
7

1.
2

h
0
.3
%

5
.7
e
1
6

1.
2

h
0
.1
%

5
.4
e
1
6

1.
2

h
0
.1
%

2
.3
e
1
6

1.
2

h
PF

S
6
0
.3
%

1
.2
e
1
7

1.
6

h
–

–
–

–
–

–
–

–
–

Ea
gl

eE
ye

2
6
.1
%

1
.2
e
1
7

18
 h

3
6
.6
%

5
.7
e
1
6

18
 h

2
4
.1
%

5
.4
e
1
6

18
 h

2
6
.6
%

2
.3
e
1
6

18
 h

B
EP

-
LI

TE

1e
−

4

6
9
.7
%

1
.4
e
1
7

2.
6

h
�
�
.�
%

6
.6
e
1
6

2.
9

h
3
9
.5
%

6
.2
e
1
6

2.
8

h
�
�
.�
%

2
.6
e
1
6

2.
4

h

B
EP

1e

−
4

�
�
.�
%

2
.2
e
1
7

1.
9

h
5
3
.5
%

1
.7
e
1
7

2.
4

h
�
�
.�
%

1
.6
e
1
7

2.
3

h
3
6
.1
%

1
.3
e
1
7

1.
6

h

Re
sN

et
-5

0
(C

om
pa

re
 w

ith
 P

ru
ne

Tr
ai

n)

1
.4
e
9
 In

f.
FL

O
Ps

 ( 8
0
.7
%

)
5
.4
e
8
 In

f.
FL

O
Ps

 ( 9
2
.6
%

)
1
.3
e
8
 In

f.
FL

O
Ps

 ( 9
8
.2
%

)
3
.0
e
7
 In

f.
FL

O
Ps

 ( 9
9
.6
%

)

Pr
un

-
eT

ra
in

6
9
.2
%

2
.9
e
1
7

0.
0

h
6
0
.6
%

2
.0
e
1
7

0.
0

h
4
0
.6
%

7
.2
e
1
6

0.
0

h
8
.3
%

5
.8
e
1
6

0.
0

h

B
EP

-
LI

TE

1e
−

4

7
1
.4
%

1
.4
e
1
7

2.
4

h
6
6
.3
%

6
.6
e
1
6

2.
9

h
�
�
.�
%

6
.2
e
1
6

2.
6

h
�
�
.�
%

2
.6
e
1
6

1.
9

h

B
EP

1e

−
4

�
�
.�
%

2
.4
e
1
7

2.
8

h
�
�
.�
%

1
.7
e
1
7

3.
0

h
5
3
.6
%

1
.6
e
1
7

1.
9

h
2
0
.6
%

1
.3
e
1
7

1.
7

h

2674	 Machine Learning (2023) 112:2653–2684

1 3

in Table 6, the proposed methods achieve higher validation accuracy than other tested algo-
rithms, with BEP-LITE showing only a modest 15% increase in training FLOPs over pruning
at initialization. BEP-LITE achieves a 85% training cost reduction over BEP for 1.7e8 infer-
ence FLOPs while achieving superior validation accuracy. The modeling and pruning over-
head of our algorithm is not larger than other tested algorithms. PruneFromScratch (Wang
et al., 2020b) shows severe degradation when compared to BEP in the 86.7% pruned FLOPs
experiment, and fails to prune altogether in higher sparsity settings. IterSnip (de Jorge et al.,
2021) and SynFlow (Tanaka et al., 2020) are unable to prune effectively at high pruning ratios,
with severe degradation observed in all tested scenarios. EagleEye continues showing poor
performance, which demonstrates the inability of pruning-after-training techniques to be
applied to the early pruning problem. In particular, the validation performance of the trained
network outshines the competing approaches at larger pruning ratios. This improvement is
crucial as DNNs continue to grow in size and require considerable pruning to allow training
and inference on commodity hardware. We note that PruneTrain does not provide a mecha-
nism to constrain the trained network size (See constraint (3b)). To compare with PruneTrain,
we train ResNet-50 under a varying pruning settings offered by PruneTrain. After training is
completed for these networks, we train equivalent inference cost networks using BEP.

5.3 � Training‑time improvements and discussion

Our approach delivers training time improvements in Wall-clock time. In Table 7 we show
the GPU, wall-clock, overhead, and model time for BEP and BEP-LITE on the ResNet-50
pruning tasks. GPU training time speedup is correlated with the size of the model after train-
ing completion. BEP-LITE delivers improved performance in wall-clock and GPU time. This
improvement is delivered with no significant loss of performance after training when com-
pared to BEP.

The measured wall-clock time is significantly higher than GPU time due to the disk I/O
and image decoding overhead of training. The GPU time reduction is well correlated with
the amount of pruning, with higher pruning yielding shorter GPU time. However, due to
the constant training overhead, these improvements do not perfectly translate to wall-clock
time improvements. Despite this, BEP and BEP-LITE are able to deliver significant improve-
ments in wall-clock training time compared to the unpruned baseline of 47h. In particular,
with 86.7% pruned flops, BEP-LITE shows a 40% improvement in wall-clock time with only a
5.5% drop in accuracy.

The training overhead can be significantly reduced in many ways to deliver further wall-
clock time improvements. Disk I/O can be reduced by utilizing faster disks, or disk arrays for
higher throughput. Image decoding overhead can be alleviated by storing predecoded files in
bitmap form. These approaches can further reduce the wall-clock time of the training process.
Thus our approach delivers significant, practical improvements in GPU time reduction and
wall-clock time reduction. The wall-clock time reduction can be further improved with mini-
mal effort.

6 � Conclusion

This paper presents a novel efficient algorithm to perform pruning of DNN elements such
as neurons, or convolutional layers during the training process. To achieve early prun-
ing before the training converges while preserving the performance of the DNN upon

2675Machine Learning (2023) 112:2653–2684	

1 3

Ta
bl

e 
7  

T
im

in
g

ev
al

ua
tio

n

O
ve

rh
ea

d
tim

e
co

ns
ist

s o
f d

is
k

I/O
, a

nd
 im

ag
e

de
co

di
ng

. U
np

ru
ne

d
ba

se
lin

e
is

 4
7h

 w
al

l-c
lo

ck
 a

nd
 3

1h
 G

PU
 ti

m
e

Re
sN

et
-5

0
(ti

m
in

g)

8
6
.7
%

9
4
.0
%

9
4
.3
%

9
7
.7
%

8
6
.7
%

9
4
.0
%

9
4
.3
%

9
7
.7
%

B
EP

-L
IT

E
G

PU
12

.2
 h

6.
9

h
6.

4
h

3.
8

h
B

EP
G

PU
14

.6
 h

9.
2

h
9.

2
h

7.
1

h
W

al
l-c

lo
ck

27
.8

 h
22

.6
 h

22
.4

 h
19

.4
 h

W
al

l-c
lo

ck
30

.2
 h

25
.2

 h
24

.9
 h

22
.7

O
ve

rh
ea

d
15

.6
 h

16
.0

 h
15

.8
 h

15
.6

 h
O

ve
rh

ea
d

15
.6

 h
15

.9
 h

15
.8

 h
15

.6
 h

M
od

el
2.

6
h

2.
9

h
2.

8
h

2.
4

h
M

od
el

1.
9

h
2.

4
h

2.
3

h
1.

6
h

2676	 Machine Learning (2023) 112:2653–2684

1 3

convergence, a Bayesian model (i.e., MOGP) is used to predict the saliency of DNN ele-
ments in the future (unseen) training iterations by exploiting the exponentially decaying
behavior of the saliency and the correlations between saliency of different network ele-
ments. Then, we exploit a property (Lemma 2) of the objective function and propose an
efficient Bayesian early pruning algorithm. Empirical evaluations on benchmark datasets
show that our algorithm performs favorably to related works for pruning convolutional fil-
ters and neurons. In particular, BEP shows strong improvement in inference performance
with minimal cost overhead when a significant portion of the DNN is pruned. Moreover,
the proposed BEP is robust to changes in hyperparameters (see Table 5), which demon-
strates its applicability to “never-before-seen" network architectures and datasets without
further hyperparameter tuning. Our approach also remains flexible to changes in saliency
function, and appropriately balances the training cost versus performance trade-off in
DNN pruning.

Appendix 1: Saliency function

In this work, we use a first order Taylor-series saliency function proposed by Molchanov
et al. (2017). Our design (Sect. 4) remains flexible to allow usage of arbitrary saliency
functions in a plug-n-play basis. We partition a DNN of L layers, where each layer � con-
tains C� convolutional filters, into a sequence of convolutional filters [z�,c]

c=1,…,C�

�=1,…,L
 . Each

filter z�,c ∶ ℝ
C�−1×W�−1×H�−1 → ℝ

W�×H� can be considered as one network element in vT
and z�,c(��−1) ≜ R(��,c ∗ ��−1 + b�,c) where ��,c ∈ ℝ

C�×O�×O
�
� , b�,c are kernel weights

and bias. With receptive field O� × O�
�
 , ‘ ∗ ’ represents the convolution operation, R is the

activation function, ��−1 represents the output of z�−1 ≜ [z�−1,c�]c�=1,…,C�−1
 with �0 cor-

responding to an input xd ∈ X  , and W� , H� are width and height dimensions of layer �
for � = 1,… , L . Let Nz𝓁∶z𝓁�

≜ z𝓁�◦,… , ◦z𝓁 denote a partial neural network of layers
[�,… ,��]1≤�≤��≤L . The Taylor-series saliency function on the convolutional filter z�,c
denoted as s([�, c]) is defined11:

where �(xd)
�

 is the output of the partial neural network Nz1∶z�
 with xd as the input and

[P
xd

�,c,j
]j=1,…,W�×H�

 interprets the output of the cth filter in vectorized form. This function
uses the first-order Taylor-series approximation of L to approximate the change in loss if
z�,c was changed to a constant 0 function. Using the above saliency definition, pruning fil-
ter z�,c corresponds to collectively zeroing ��,c , b�,c as well as weight parameters12
[��+1,c�,{∶,∶,c}]c�=1,…,C�+1

 of z�+1 which utilize the output of zl,c . This definition can be
extended to elements (e.g. neurons) which output scalars by setting W� = H� = 1.

(16)s([�, c]) ≜
1

D

D∑

d=1

||||||

1

W� × H�

W�×H�∑

j=1

�L(�
(xd)

�
, yd;Nz�+1∶zL

)

�P
(xd)

�,c,j

P
(xd)

�,c,j

||||||
.

11  For brevity, we omit parameters X  , Y , Nz1∶zL
 , L.

12  Here we use {} to distinguish indexing into a tensor from indexing into the sequence of tensors [��+1,c�].

2677Machine Learning (2023) 112:2653–2684	

1 3

Appendix 2: Proof of pruning lower bound

We state Lemma 4 asserting the lower bound in (5).

Lemma 4  Let mt ∈ {0, 1}M then the following holds true:

Proof  To prove the above, we show a solution to the latter that can be transformed into an
equivalent feasible solution to the former. Let

Accordingly, we define a feasible solution for the former optimization problem:

Let the above serve as solutions to �t+1, �t+2,… , �T satisfies the constraint of �t in the for-
mer optimization problem:

which completes the proof as the maximization of the former optimization can only be
greater or equal to a feasible solution. 	� ◻

Appendix 3: Proof of Lemma 1

We restate Lemma 1 for clarity.

Lemma 1  Let m�, m�� ∈ {0, 1}M , and e(a) be arbitrary M-dimensional
one hot vector with 1 ≤ a ≤ M and P(m) ≜ �p(sT ∣s̃1∶t)

[𝜌̂T (m,Bs)] . We have
P(m� ∨ e(a)) − P(m�) ≥ P(m�� ∨ e(a)) − P(m��) for any m′ ≤̇ m′′ , m� ∧ e(a) = 0M , and
m�� ∧ e(a) = 0M.

Proof  According to (3),

Let 𝛼(m) ≜ argmaxmT

[
mT ⋅ s̃T , s.t. ||mT ||0 ≤ Bs,mT ≤̇m

]
 return the optimized mask mT

given any m , Λm ≜ min(𝛼(m)⊙ sT ) be the minimal saliency of the network elements
selected at iteration T for P(m) . Then, we have

(17)
max
mt

�p(st+1∣s̃1∶t)

[
𝜌t+1(mt,Bt,c − ||mt||0,Bs)

]

≥ max
mt

�p(sT ∣s̃1∶t)
[𝜌T (mt,Bt,c − (T − t)||mt||0,Bs)].

m
∗
t
≜ max

mt

�p(sT ∣s̃1∶t)
[𝜌T (mt,Bt,c − (T − t)||mt||0,Bs)].

m
∗
t+1

= m
∗
t+2

= … = m
∗
T
= m

∗
t
.

�t(m
∗
t
,Bt,c − ||m∗

t
||0,Bs)

= �t+1(m
∗
t
,Bt,c − 2||m∗

t
||0,Bs)

⋮

= �T (m
∗
t
,Bt,c − (T − t)||m∗

t
||0,Bs)

�p(sT ∣s̃1∶t)
[𝜌̂T (m,Bs)] = �p(sT ∣s̃1∶t)

[
max
mT

[
mT ⋅ s̃T , s.t. ||mT ||0 ≤ Bs,mT ≤̇ m

]]

2678	 Machine Learning (2023) 112:2653–2684

1 3

The second equality is due to the fact that the network element va
T
 would only replace the

lowest included element in mT in order to maximize the objective. Then,

Given m′ ≤̇ m′′ , we have Λm� ≤ Λm�� since mT ≤̇ m in �(m�) is a tighter constraint than that
in �(m��) . Consequently, we can get sa

t
− Λm� ≥ sa

t
− Λm�� , and thus

 	� ◻

Appendix 4: Proof of Lemma 2

We restate Lemma 2 for clarity.

Lemma 2  Let e(i) be a M-dimensional one-hot vectors with the ith element be 1.
∀ 1 ≤ a, b ≤ M,m ∈ {0, 1}M s.t.m ∧ (e(a) ∨ e(b)) = 0M . Given a matrix of observed sali-
ency s̃1∶t , if �a

T∣1∶t
≥ �b

T∣1∶t
 and �a

T∣1∶t
≥ 0 , then

where � ≜
√

�aa
T∣1∶t

+ �bb
T∣1∶t

− 2�ab
T∣1∶t

 , � ≜ �b
T∣1∶t

− �a
T∣1∶t

 , and Φ and � are standard normal
CDF and PDF, respectively.

To prove this Lemma, we prove the following first:

Lemma 5 �p(sT |s̃1∶t)
[
𝜌̂T (m ∨ e(b))

]
− �p(sT |s̃1∶t)

[
𝜌̂T (m ∨ e(a))

]
≤ �[max(sb

T
− sa

T
, 0)].

Proof  Due to (18), we have

P(m ∨ e(a)) = �p(sT ∣s̃1∶t)

[
𝜌̂T (m ∨ e(a),Bs)

]

= �p(sT ∣s̃1∶t)

[
𝜌̂T (m,Bs) − Λm +max(sa

T
,Λm)

]

(18)

P(m ∨ e(a)) − P(m)

= �p(sT ∣s̃1∶t)

[
𝜌̂T (m,Bs) − Λm +max(sa

T
,Λm)

]
− �p(sT ∣s̃1∶t)

[
𝜌̂T (m,Bs)

]

= �p(sT ∣s̃1∶t)

[
−Λm +max(sa

T
,Λm)

]

= �p(sT ∣s̃1∶t)

[
max(sa

T
− Λm, 0)

]

[P(m� ∨ e(a)) − P(m�)] ≥ [P(m�� ∨ e(a)) − P(m��)] .

�p(sT ∣s̃1∶t)
[𝜌̂T (m ∨ e

(b))] − �p(sT ∣s̃1∶t)
[𝜌̂T (m ∨ e

(a))] ≤ 𝜇b
T∣1∶t

Φ(𝜈∕𝜃) + 𝜃 𝜙(𝜈∕𝜃)

(19)

�p(sT |s̃1∶t)
[
𝜌̂T (m ∨ e

(b))
]
− �p(sT |s̃1∶t)

[
𝜌̂T (m ∨ e

(a))
]

= P(m ∨ e(b)) − P(m) − (P(m ∨ e(a)) − P(m))

= �p(sT ∣s̃1∶t)

[
max(sb

T
− Λm, 0)

]
− �p(sT ∣s̃1∶t)

[
max(sa

T
− Λm, 0)

]

= �p(sT |s̃1∶t)
[
max(sb

T
− Λm, 0) −max(sa

T
− Λm, 0)

]

(20)= �p(sT |s̃1∶t)
[
max(sb

T
− sa

T
,Λm − sa

T
) −max(0,Λm − sa

T
)
]

2679Machine Learning (2023) 112:2653–2684	

1 3

The equality (20) is achieved by adding Λm − sa
T
 in each term of the two max functions in

(19). The inequality (21) can be proved by considering the following two cases:
If Λm − sa

T
≥ 0 , then

If Λm − sa
T
< 0 , then

 	� ◻

Next we utilize a well known bound regarding the maximum of two Gaussian random
variables (Nadarajah & Kotz, 2008), which we restate:

Lemma 6  Let sa, sb be Gaussian random variables with means �a,�b and stand-
ard deviations �a, �b , then �[max(sa, sb)] ≤ �aΦ

(
�b−�a

�

)
+ �bΦ

(
�b−�a

�

)
+ ��

(
�b−�a

�

)

where � ≜
√
[�b]2 + [�a]2 − 2cov(sb, sa) and Φ , � are standard normal CDF and PDF

respectively.

Then,

The first inequality follows from Lemma 6. The second inequality is due to
Φ
(�b

T|1∶t−�
a
T|1∶t

�

)
≤ 1 and �a

T|1∶t ≥ 0.

Appendix 5: Proof of Lemma 3

We restate Lemma 3 for clarity.

(21)≤ �p(sT |s̃1∶t)
[
max(sb

T
− sa

T
, 0)

]

max(sb
T
− sa

T
,Λm − sa

T
) −max(0,Λm − sa

T
)

= max(sb
T
− sa

T
,Λm − sa

T
) − (Λm − sa

T
)

= max(sb
T
− sa

T
− (Λm − sa

T
), 0)

≤ max(sb
T
− sa

T
, 0) .

max(sb
T
− sa

T
,Λm − sa

T
) −max(0,Λm − sa

T
)

= max(sb
T
− sa

T
,Λm − sa

T
)

≤ max(sb
T
− sa

T
, 0) .

�p(sT |s̃1∶t)[max(sb
T
− sa

T
, 0)]

= �p(sT |s̃1∶t)[max(sb
T
, sa

T
)] − �p(sT |s̃1∶t)[s

a
T
]

≤ (𝜇b
T|1∶t + 𝜇a

T|1∶t)Φ
(𝜇b

T|1∶t − 𝜇a
T|1∶t

𝜃

)
+ 𝜃𝜙

(𝜇b
T|1∶t𝜇

a
T|1∶t

𝜃

)
− 𝜇a

T|1∶t

= 𝜇b
T|1∶tΦ

(𝜇b
T|1∶t − 𝜇a

T|1∶t

𝜃

)
+ 𝜃𝜙

(𝜇b
T|1∶t𝜇

a
T|1∶t

𝜃

)
+ 𝜇a

T|1∶t

(
Φ

(
𝜇b
T|1∶t − 𝜇a

T|1∶t

𝜃

)
− 1

)

≤ 𝜇b
T|1∶tΦ

(𝜇b
T|1∶t − 𝜇a

T|1∶t

𝜃

)
+ 𝜃𝜙

(𝜇b
T|1∶t − 𝜇a

T|1∶t

𝜃

)

2680	 Machine Learning (2023) 112:2653–2684

1 3

Lemma 3  Let e(∗) represent a pruned element at time t with the highest predictive mean
�∗
T∣1∶t

≥ 0 . Given an arbitrary pruned element e(a) at time t, then for all � ∈ (0, 1) the fol-
lowing holds:

where � ≜
[
�a
T∣1∶t

Φ(�∕�) + � �(�∕�)
]
∕�t with � ≜

√
�∗∗
T∣1∶t

+ �aa
T∣1∶t

− 2�∗a
T∣1∶t

 , and
� ≜ �a

T∣1∶t
− �∗

T∣1∶t
.

Proof  The proof follows as a consequence of Lemma 2 and Markov inequality. By defini-
tion of e(∗) being a pruned element with the highest �∗

T∣1∶t
 according to Algorithm 1 Line

15:

By substituting the definition of Δ:

Consequently, as �∗
T∣1∶t

≥ �a
T∣1∶t

 , we can apply Lemma 2 and achieve:

where the inequality is due to (22) and Lemma 2. The proof is complete by applying Mark-
ov’s inequality:

Observing the negation of the above yields the desired result. 	� ◻

Appendix 6: Experimental details

Experimental details

To train our CIFAR-10 and CIFAR-100 models we used an Adam optimizer (Kingma &
Ba, 2015) with an initial learning rate of 0.001. The learning rate used an exponential decay
of k = 0.985 , and a batch size of 32 was used. Training was paused three times evenly
spaced per epoch. During this pause, we collected saliency measurements using 40% of the
training dataset. This instrumentation subset was randomly select from the training dataset

p

(
𝜌̂T (e

(a) ∨mt,Bs) − 𝜌̂T (mt,Bs) <
𝜆t

𝛿
(T − t + 𝜖)

)
> 1 − 𝛿

Δ(∗,mt, s̃1∶t,Bs) ≤ 𝜆t(T − t).

(22)�p(sT ∣s̃1∶t)
[𝜌̂T (mt ∨ e

(∗)) − 𝜌̂T (mt)] ≤ 𝜆t(T − t).

�[𝜌̂T (mt ∨ e
(a)) − 𝜌̂T (mt)]

= �[𝜌̂T (mt ∨ e
(∗))] − �[𝜌̂T (mt)] + �[𝜌̂T (mt ∨ e

(a))] − �[𝜌̂T (mt ∨ e
(∗))]

= �[𝜌̂T (mt ∨ e
(∗)) − 𝜌̂T (mt)] + �[𝜌̂T (mt ∨ e

(a))] − �[𝜌̂T (mt ∨ e
(∗))]

≤ 𝜆t(T − t) + 𝜆t𝜖

= 𝜆t(T − t + 𝜖)

p

(
𝜌̂T (mt ∨ e

(a)) − 𝜌̂T (mt) ≥
𝜆t

𝛿
(T − t + 𝜖)

)

≤
�[𝜌̂T (mt ∨ e(a)) − 𝜌̂T (mt)]

𝜆t(T − t + 𝜖)∕𝛿
≤

𝜆t(T − t + 𝜖)

𝜆t(T − t + 𝜖)∕𝛿
= 𝛿 .

2681Machine Learning (2023) 112:2653–2684	

1 3

13  Generally, saliency evaluations are relatively small ( ≤ 0.01 ), which leads to poor fitting models or posi-
tive log-likelihood. Precise details of our data preprocessing is in “Appendix 6.3”.

at initialization, and remained constant throughout the training procedure. We performed
data preprocessing of saliency evaluations into a standardized [0, 10] range.13 We used (16)
to measure saliency of neurons/convolutional filters. For the convolutional layers we used
12 latent MOGP functions. For the dense layer we used 4 latent MOGP functions.

For our ResNet-50 model we used an SGD with Momentum optimizer with an initial
learning rate of 0.1. The learning rate was divided by ten at t = [30, 60, 80] epochs. We
collected saliency data every 5 iterations of SGD, and averaged them into buckets cor-
responding to 625 iterations of SGD to form our dataset. We used a minimum of 10 latent
functions per MOGP, however this was dynamically increased if the model couldn’t fit the
data up to a maximum of 15. We used these hyperparameter settings for the VGG-16 archi-
tecture for CIFAR-10 and CIFAR-100 experiments. In our VGG-16 experiments, we also
used BatchNormalization to reduce overfitting.

We sampled 10K points from our MOGP model to estimate Δ(⋅) for CIFAR-10/CIFAR-
100. For ResNet we sampled 15K points. We repeated experiments 5 times for reporting
accuracy on CIFAR-10/CIFAR-100.

Pruning on ResNet

ResNet architecture is composed of a sequence of residual units: Z� ≜ F(��−1) + ��−1 ,
where ��−1 is the output of the previous residual unit Z�−1 and ‘ + ’ denotes elementwise
addition. Internally, F is typically implemented as three stacked convolutional layers:
F(�𝓁−1) ≜

[
z𝓁3

◦z𝓁2
◦z𝓁1

]
(�𝓁−1) where z�1

 , z�2
 , z�3

 are convolutional layers. Within this set-
ting we consider convolutional filter pruning. Although z�1

, z�2
 may be pruned using the

procedure described earlier. Pruning z�3
 requires a different procedure. Due to the direct

addition of ��−1 to F(��−1) , the output dimensions of Z�−1 and z�3
 must match exactly. Thus

a ResNet architecture consists of sequences of residual units of length B with matching
input/output dimensions: � ≜ [Z�]�=1,…,B , s.t. dim(�1) = dim(�2) = … = dim(�B) . We pro-
pose group pruning of layers [z�3

]�=1,…,B where filters are removed from all z�3
 in a residual

unit sequence in tandem. We define s([� , c]) ≜
∑B

�=1
s([�3, c]) , where s(⋅) is defined for

convolutional layers as in (A1). To prune the channel c from � , we prune it from each layer
in [z�3

]�=1,…,B . Typically we pruned sequence channels less aggressively than convolutional
filters as these channels feed into several convolutional layers.

We group pruned less aggressively as residual unit channels feed into a large number of
residual units, thus making aggressive pruning likely to degrade performance.

Data preprocessing

Our chief goal in this work is to speed up training of large-scale DNNs such as ResNet (He
et al., 2016a, b) on the ImageNet dataset. Pruning ResNet requires a careful definition of
network element saliency to allow pruning of all layers. ResNet contains long sequences
of residual units with matching number of input/output channels. The inputs of residual
units are connected with shortcut connections (i.e., through addition) to the output of the
residual unit. Due to shortcut connections, this structure requires that within a sequence
of residual units, the number of inputs/output channels of all residual units must match

2682	 Machine Learning (2023) 112:2653–2684

1 3

exactly. This requires group pruning of residual unit channels for a sequence of residual
units, where group pruning an output channel of a residual unit sequence requires pruning
it from the inputs/outputs of all residual units within the sequence.

We followed the same data preprocessing procedure for both our small scale and Ima-
geNet experiments. To standardize the saliency measurements for a training dataset s̃1∶t
in our modeling experiments we clip them between 0 and an upper bound computed as
follows: ub ≜ percentile(s̃1∶t, 95) × 1.3 . This procedure removes outliers. We used 1.3 as
a multiplier, as this upper bound is used to transform test dataset as well, which may have
higher saliency evaluations.

After clipping the training data, we perform a trend check for each element va by fit-
ting a Linear Regression model to the data s̃a

1∶t
 . For s̃a

1∶t
 with an increasing trend (i.e., the

linear regression model has positive slope) we perform the transformation s̃a
1∶t

= ub − s̃a
1∶t

 .
The reasoning behind this is that the exponential kernel strongly prefers decaying curves.
After this preprocessing, we scale up the saliency measurements to a [0, 10] range:
s̃1∶t = s̃1∶t × 10 . We found that without scaling to larger values, log-likelihood of our mod-
els demonstrated extremely high positive values due to small values of unscaled saliency
measurements.

We transform the test data in our modeling experiments s̃t+1∶T with the same procedure
using the same ub and per-element va regression models as computed by the training data.
We measure log-likelihood after this transformation for both the test dataset in our small
scale experiments.

During the BEP Algorithm, the same steps are followed, however we inverse the trend
check transformation ( ̃sa

1∶t
= ub − s̃a

1∶t
 ) on the predicted MOGP distribution of sT prior to

sampling for estimation of Δ(⋅).

Funding  This research is part of the programme DesCartes and is supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological
Enterprise (CREATE) program. This research is also supported by the Major Key Project of PCL, China.

Availability of data and materials  All datasets for this work are publicly available.

Code availability  The authors will open source the BEP code upon publication.

Declarations 

Conflict of interest  Not Applicable.

Ethics approval  Not Applicable.

Consent to participate  Not Applicable.

Consent for publication  Not Applicable.

References

Allen-Zhu, Z., Li, Y., & Liang, Y. (2019). Learning and generalization in overparameterized neural net-
works, going beyond two layers. In Proceedings of the NeurIPS (pp. 6155–6166).

Álvarez, M. A., & Lawrence, N. D. (2011). Computationally efficient convolved multiple output Gaussian
processes. JMLR, 12(1), 1459–1500.

2683Machine Learning (2023) 112:2653–2684	

1 3

Åström, K. J., Hägglund, T., Hang, C. C., & Ho, W. K. (1993). Automatic tuning and adaptation for PID
controllers: A survey. Control Engineering Practice, 1(4), 699–714.

Bellec, G., Kappel, D., Maass, W., & Legenstein, R. A. (2018). Deep rewiring: Training very sparse deep net-
works. In Proceedings of the ICLR.

Bellman, R. E. (2015). Adaptive control processes: A guided tour. Princeton University Press.
Buluç, A. , & Gilbert, J. R. (2008). Challenges and advances in parallel sparse matrix-matrix multiplication. In

Proceedings of the ICCP (pp. 503–510).
Courbariaux, M., Bengio, Y., & David, J. (2015). BinaryConnect: Training deep neural networks with binary

weights during propagations. arXiv:​1511.​00363.
Dai, X., Yin, H., & Jha, N. K. (2019). Nest: A neural network synthesis tool based on a grow-and-prune para-

digm. IEEE Transactions on Computers, 68(10), 1487–1497.
de Jorge, P., Sanyal, A., Behl, H. S., Torr, P. H. S., Rogez, G., & Dokania, P. K. (2021). Progressive skeletoniza-

tion: Trimming more fat from a network at initialization. In Proceedings of the ICLR.
Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R. (2014). Exploiting linear structure within convolu-

tional networks for efficient evaluation. In Proceedings of the NeurIPS (pp. 1269–1277).
Dettmers, T., & Zettlemoyer, L. (2019). Sparse networks from scratch: Faster training without losing perfor-

mance. arXiv:​1907.​04840.
Dong, X., Chen, S., & Pan, S. J. (2017). Learning to prune deep neural networks via layer-wise optimal brain

surgeon. In Proceedings of the NeurIPS (pp. 4857–4867).
Frankle, J., & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable neural networks. In

Proceedings of the ICLR.
Gale, T., Elsen, E., & Hooker, S. (2019). The state of sparsity in deep neural networks. arXiv:​1902.​09574.
Guo, Y., Yao, A., & Chen, Y. (2016). Dynamic network surgery for efficient DNNs. In Proceedings of the Neu-

rIPS (pp. 1379–1387).
Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient neural net-

works. In Proceedings of the NeurIPS (pp. 1135–1143).
Hassibi, B., & Stork, D. G. (1992). Second order derivatives for network pruning: Optimal brain surgeon. In

Proceedings of the NeurIPS (pp. 164–171).
He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In Proceedings of

the CVPR (pp. 770–778).
He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep residual networks. In Proceedings of

the ECCV (pp. 4432–4440).
He, Y., Lin, J., Liu, Z., Wang, H., Li, L., & Han, S. (2018). AMC: AutoML for model compression and accel-

eration on mobile devices. In Proceedings of the ECCV (pp. 784–800).
Hensman, J., Matthews, A., & Ghahramani, Z. (2015). Scalable variational Gaussian process classification. In

Proceedings of the AISTATS (pp. 351–360).
Hinton, G. E. , Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural

networks by preventing co-adaptation of feature detectors. arXiv:​1207.​0580.
Hinton, G. E., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv:​1503.​02531.
Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2017). Quantized neural networks: Train-

ing neural networks with low precision weights and activations. JMLR, 18(1), 6869–6898.
Idelbayev, Y., & Carreira-Perpiñán, M. Á. (2021a). LC: A flexible, extensible open-source toolkit for model

compression. In Proceedings of the CIKM (pp. 4504–4514).
Idelbayev, Y., & Carreira-Perpiñán, M. Á. (2021b). More general and effective model compression via an addi-

tive combination of compressions. In Proceedings of the ECML PKDD research track (Vol. 12977, pp.
233–248). Springer.

Jaderberg, M., Vedaldi, A., & Zisserman, A. (2014). Speeding up convolutional neural networks with low rank
expansions. Proceedings of the BMVC.

Karnin, E. D. (1990). A simple procedure for pruning back-propagation trained neural networks. IEEE Transac-
tions on Neural Networks, 1(2), 239–242.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the ICLR.
LeCun, Y., Denker, J. S., & Solla, S. A. (1989). Optimal brain damage. In Proceedings of the NeurIPS (pp.

598–605).
Lee, N., Ajanthan, T., & Torr, P. H. S. (2019). SNIP: Single-shot network pruning based on connection sensitiv-

ity. In Proceedings of the ICLR.
Li, B., Wu, B., Su, J., & Wang, G. (2020). EagleEye: Fast sub-net evaluation for efficient neural network prun-

ing. In Proceedings of the ECCV (pp. 639–654).
Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2017). Pruning filters for efficient convnets. In Pro-

ceedings of the ICLR.

http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1907.04840
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1503.02531

2684	 Machine Learning (2023) 112:2653–2684

1 3

Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., & Doermann, D. (2019). Towards optimal struc-
tured cnn pruning via generative adversarial learning. In Proceedings of the CVPR (pp. 2790–2799).

Liu, J., Xu, Z., Shi, R., Cheung, R. C. C., & So, H. K. (2020). Dynamic sparse training: Find efficient sparse
network from scratch with trainable masked layers. In Proceedings of the ICLR.

Louizos, C., Welling, M., & Kingma, D. P. (2018). Learning sparse neural networks through l_0 regularization.
In Proceedings of the ICLR.

Lu, L., Guo, M., & Renals, S. (2017). Knowledge distillation for small-footprint highway networks. In Proceed-
ings of the ICASSP (pp. 4820–4824).

Lym, S., Choukse, E., Zangeneh, S., Wen, W., Sanghavi, S., & Erez, M. (2019). PruneTrain: Fast neural net-
work training by dynamic sparse model reconfiguration. In Proceedings of the SC (pp. 1–13).

Matthews, A., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-Villagrá, P., Ghahramani, Z., &
Hensman, J. (2017). GPflow: A Gaussian process library using tensorflow. JMLR, 18(1), 1–6.

Micikevicius, P., Narang, S., Alben, J., Diamos, G. F., Elsen, E., García, D., Ginsburg, B., Houston, M.,
Kuchaiev, O., Venkatesh, G., & Wu, H. (2018). Mixed precision training. In Proceedings of the ICLR.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., & Liotta, A. (2018). Scalable training of
artificial neural networks with adaptive sparse connectivity inspired by network science. Nature, 9(1),
1–12.

Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2017). Pruning convolutional neural networks for
resource efficient inference. In Proceedings of the ICLR.

Mostafa, H., & Wang, X. (2019). Parameter efficient training of deep convolutional neural networks by dynamic
sparse reparameterization. In Proceedings of the ICML (pp. 4646–4655).

Mozer, M., & Smolensky, P. (1988). Skeletonization: A technique for trimming the fat from a network via rel-
evance assessment. In Proc. NeurIPS (pp. 107–115).

Nadarajah, S., & Kotz, S. (2008). Exact distribution of the max/min of two Gaussian random variables. Trans-
actions on VLSI, 16(2), 210–212.

Narang, S., Diamos, G., Sengupta, S., & Elsen, E. (2017). Exploring sparsity in recurrent neural networks. In
Proceedings of the ICLR.

Nowlan, S. J., & Hinton, G. E. (1992). Simplifying neural networks by soft weight-sharing. Neural Computa-
tion, 4(4), 473–493.

Polyak, A., & Wolf, L. (2015). Channel-level acceleration of deep face representations. IEEE Access, 3,
2163–2175.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In
Proceedings of the ICLR.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overfitting. JMLR, 15(1), 1929–1958.

Swersky, K., Snoek, J., & Adams, R. P. (2014). Freeze-thaw Bayesian optimization. arXiv:​1406.​3896.
Tanaka, H., Kunin, D., Yamins, D. L., & Ganguli, S. (2020). Pruning neural networks without any data by itera-

tively conserving synaptic flow. In Proceedings of the NeurIPS.
Tung, F., & Mori, G. (2019). Similarity-preserving knowledge distillation. In Proceedings of the ICCV (pp.

1365–1374).
Ullrich, K., Meeds, E., & Welling, M. (2017). Soft weight-sharing for neural network compression. In Proceed-

ings of the ICLR.
Wang, C., Zhang, G., & Grosse, R. B. (2020a). Picking winning tickets before training by preserving gradient

flow. In Proceedings of the ICLR.
Wang, Y., Zhang, X., Xie, L., Zhou, J., Su, H., Zhang, B., & Hu, X. (2020b). Pruning from scratch. In Proceed-

ings of the AAAI (pp. 12273–12280).
Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. (2016). Learning structured sparsity in deep neural networks. In

Proceedings of the NeurIPS (pp. 2074–2082).
Yang, C., Buluç, A., & Owens, J. D. (2018). Design principles for sparse matrix multiplication on the GPU. In

Proceedings of the Euro-Par (pp. 672–687).
Yim, J., Joo, D., Bae, J., & Kim, J. (2017). A gift from knowledge distillation: Fast optimization, network mini-

mization and transfer learning. In Proc. CVPR (pp. 7130–7138).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://arxiv.org/abs/1406.3896

	Pruning during training by network efficacy modeling
	Abstract
	1 Introduction
	2 Related work
	2.1 Pruning and related techniques
	2.2 Initialization time or training time pruning

	3 Preliminaries of pruning
	4 Bayesian early pruning
	4.1 Problem statement
	4.2 Modeling the saliency with multi-output Gaussian process
	4.2.1 On the choice of the “exponential kernel"

	4.3 Bayesian early pruning (BEP) algorithm
	4.4 BEP-LITE
	4.5 Dynamic penalty scaling

	5 Experiments
	5.1 Small-scale experiments
	5.1.1 Saliency modeling evaluation
	5.1.2 Dynamic penalty scaling
	5.1.3 BEP-LITE heuristic
	5.1.4 BEP on CIFAR-10CIFAR-100 dataset
	5.1.5 Ablation study

	5.2 ResNet early pruning
	5.3 Training-time improvements and discussion

	6 Conclusion
	Appendix 1: Saliency function
	Appendix 2: Proof of pruning lower bound
	Appendix 3: Proof of Lemma 1
	Appendix 4: Proof of Lemma 2
	Appendix 5: Proof of Lemma 3
	Appendix 6: Experimental details
	Experimental details
	Pruning on ResNet
	Data preprocessing

	References

