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Abstract
Reliably predicting potential failure risks of machine learning (ML) systems when 
deployed with production data is a crucial aspect of trustworthy AI. This paper introduces 
the Risk Advisor, a novel post-hoc meta-learner for estimating failure risks and predic-
tive uncertainties of any already-trained black-box classification model. In addition to pro-
viding a risk score, the Risk Advisor decomposes the uncertainty estimates into aleatoric 
and epistemic uncertainty components, thus giving informative insights into the sources 
of uncertainty inducing the failures. Consequently, Risk Advisor can distinguish between 
failures caused by data variability, data shifts and model limitations and provide useful 
guidance on appropriate risk mitigation actions (e.g., collecting more data to counter data 
shift). Extensive experiments on various families of black-box classification models and 
on real-world and synthetic datasets covering common ML failure scenarios show that the 
Risk Advisor reliably predicts deployment-time failure risks in all the scenarios, and out-
performs strong baselines.
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1  Introduction

1.1 � Motivation and problem

Machine learning (ML) systems have found wide adoption in mission-critical applica-
tions. Their success crucially hinges on the amount and quality of training data, and 
also on the assumption that the data distribution for the deployed system stays the same 
and is well covered by the training samples. However, this cannot be taken for granted. 
Saria and Subbaswamy (2019) categorize limitations and failures of ML systems into 
several regimes, including data shifts (between training-time and deployment-time dis-
tributions), high data variability (such as overlapping class labels) and model limita-
tions (such as log-linear decision boundaries vs. neural ML). Trustworthy ML needs 
models and tools for detecting such failure risks and analyzing the underlying sources 
of uncertainty (Bhatt et  al. 2021). Unfortunately, systems often fail silently without 
any warning, despite showing high confidence in their predictions (Nguyen et al. 2015; 
Jiang et al. 2018; Goodfellow et al. 2015).

This paper addresses the challenge of predicting, analyzing and mitigating failure 
risks for classifier systems. The goal is to provide the system with uncertainty scores 
for its predictions, so as to (a) reliably predict test-time inputs for which the system 
is likely to fail, and (b) detect the type of uncertainty that induces the risk, so that (c) 
appropriate mitigation actions can be pursued. Equipped with different kinds of uncer-
tainty scores, a deployed system could improve its robustness by taking appropriate 
mitigation actions at deployment time, so as to smoothly handle new data points that 
pose difficult situations. There are three types of mitigation action that we identify and 
address in this paper: 

	 (i)	 Abstention When deployment-time data points are close to the trained model’s deci-
sion boundary and there is inherent noise in the data distribution near that boundary, 
it would be wise to abstain from a classification and rather defer the decision to a 
human expert.

	 (ii)	 More training data When deployment-time data points fall into regions that were 
very sparsely populated among the training points, we face a distributional shift or 
“out-of-distribution” (OOD) situation. In this case, the best measure is to obtain 
more training points for the underpopulated regions. However, this requires under-
standing where the problematic regions are in the data space.

	 (iii)	 More expressive model Another limitation can be the learned model itself, if it has 
limited expressiveness in dealing with complex data distributions. Then the best 
measure is to replace the learner with a richer method, for example, enhancing a 
linear classifier with an expressive kernel or replacing it with a neural network, or 
increasing the number of parameters of the model within the same family.

The challenge is to determine which action is advised under which conditions. This 
is the problem addressed in this paper: determine the type and amount of uncertainty 
in deployment-time inputs, so as to decide if and which kind of mitigation is needed. 
We will present three types of uncertainty scores that provide guidance, each indicat-
ing the need for one of the above three actions (aleatoric uncertainty for (i), epistemic 
uncertainty for (ii), model uncertainty for (iii)).



941Machine Learning (2023) 112:939–970	

1 3

1.2 � State of the art and its limitations

The standard approach for deciding whether an ML system’s predictions are trustwor-
thy is based on confidence scores computed over predictive probabilities, such as max 
class probability (MCP) in neural ML (Hendrycks and Gimpel 2017) or distance from 
the decision boundary for SVM. However, predictive probabilities are not reliable esti-
mates of a model’s uncertainty (Gal and Ghahramani 2016; Jiang et al. 2018; Nguyen 
et  al. 2015; Goodfellow et  al. 2015). Figure 1a, b shows two examples where a CNN 
model misclassifies handwritten digits (from the MNIST benchmark) while giving high 
scores for its (self-) confidence. Even if the confidence scores are calibrated , they may 
still not be trustworthy as the ordering of the confidence scores can itself be unreliable. 
This is because most calibration techniques (e.g., Platt et al. 1999; Guo et al. 2017), are 
concerned with scaling of the scores, i.e., they perform monotonic transformations with 
respect to prediction scores, which do not alter the ranking of confident vs. uncertain 
example. Figure 1c, d shows two examples where a CNN model gives higher score to a 
misclassified sample than to a correct one.

More importantly, confidence scores do not reflect what the model does not know. 
In Fig. 1c, d, the Fashion MNIST dataset has many positive training examples of shirts 
similar to (c) while hardly any examples that resemble (d)–a case where the training 
distribution does not sufficiently reflect the test-time data. Yet, the CNN model makes a 
prediction with high confidence of 0.94 (see Fig. 1d). This limitation holds even for the 
state-of-the-art model Trust Score (Jiang et al. 2018), which serves as a major baseline 
for this paper.

Moreover and most critically, confidence scores are “one-dimensional” and do not 
provide any insight on which type of uncertainty is the problematic issue. Thus, confi-
dence scores from prior works are limited in their support for identifying different types 
of appropriate risk mitigation actions.

A common line of work for uncertainty estimation builds on Bayesian methods 
(Denker and LeCun 1990; Barber and Bishop 1998), or making specialized changes to 
the learning algorithm (e.g.,Gal and Ghahramani 2016; Depeweg et  al. 2018; Laksh-
minarayanan et al. 2017; Shaker and Hüllermeier 2020; Malinin et al. 2021). However, 
these are tightly coupled to the choice of the underlying classification model and thus 
involve making specialized modifications to the ML pipeline. Therefore, such tech-
niques are unsuitable for dealing with a broad variety of black-box ML systems.

(a) (b) (c) (d)

Fig. 1   Examples of ground-truth (target) and predicted labels where (a, b) a CNN fails despite high confi-
dence (MNIST dataset (LeCun et al. 2010)), and c, d a CNN assigns higher confidence to a misclassified 
sample than to a correct one (Fashion MNIST dataset Xiao et al. (2017))



942	 Machine Learning (2023) 112:939–970

1 3

1.3 � Proposed approach

This paper presents Risk Advisor, a generic and versatile framework for reliably estimating 
failure risks of any already-trained black-box classification model. The Risk Advisor con-
sists of a post-hoc meta-learner for uncertainty estimation that is separate from the under-
lying ML system, and can be incorporated without any code changes in the underlying ML 
pipeline. The meta-learner is model-agnostic: it can be applied to any family of black-box 
classifiers (e.g., deep neural networks, decision-trees, etc). Figure 2 gives a schematic over-
view of our framework.

In addition to providing a risk score that is more reliable than those of prior works, the 
Risk Advisor provides a refined analysis of the underlying types of uncertainty inducing the 
risks. To this end, we make use of the information-theoretic notions of model uncertainty, 
aleatoric uncertainty and epistemic uncertainty (Hora 1996; Der Kiureghian and Ditlevsen 
2009; Senge et al. 2014). These concepts are fairly old, but to the best of our knowledge, 
have not been considered for risk analysis of black-box ML systems. Our Risk Advisor 
quantifies each of the three risk types and thus enables judicious advise on risk mitigation 
action, depending on the type of uncertainty inducing the risks:

•	 Aleatoric uncertainty reflects the variability of data points and the resulting noise 
around the classifier’s decision boundary. A high value indicates that it is inherently 
difficult to distinguish the output classes, and an appropriate mitigation then is to equip 
the deployed system with the option to abstain rather than forcing an output label. Fig-
ure 1a, b is a case of high aleotoric uncertainty.

•	 Epistemic uncertainty captures systematic gaps in the training samples, like regions 
where training samples are sparse but have a substantial population of test points after 
deployment. This situation can only be countered by obtaining more training data for 
the underrepresented critical regions. The unusual example of a shirt in Fig.  1d is a 
case of high epistemic uncertainty.

•	 Model uncertainty captures the uncertainty in model’s parameters, and is an indicator 
that the black-box ML system uses incorrect model class. In this situation, the proper 
action is to re-train the ML system with a more expressive learning model (e.g., a deep 
neural network instead of a log-linear model) or increase the model capacity.

The proposed meta-learner for estimating the different types of uncertainty in the Risk Advi-
sor framework is implemented as an ensemble of M stochastic gradient-boosted decision trees 
(E-SGBT). Each stochastic gradient boosted tree (SGBT) operates on the input-output pairs 
of training samples and an indicator variable stating whether the trained black-box ML sys-
tem misclassified the training point. The Risk Advisor’s analysis of uncertainty is based on 
the ensemble’s ability to compute aleatoric and epistemic uncertainty. All of the uncertainty 

Fig. 2   Schematic overview of the Risk Advisor framework



943Machine Learning (2023) 112:939–970	

1 3

scores are computed on the training data, and also at deployment time for test data alone to 
identify slowly evolving risks.

1.4 � Contributions

This paper’s novel contributions are as follows:

•	 We introduce the Risk Advisor framework, the first model-agnostic method to detect and 
mitigate deployment-time failure risks of any already trained black-box ML classifier, 
given access only to the base-classifier’s training data and its predictions on the training 
data, and coping with any kind of underlying base-classifier including deep neural models.

•	 The Risk Advisor is the first method that can give insights into the underlying sources of 
failure risks by distinguishing between ML model failures caused by distribution shifts 
between training data and deployment data, inherent data variability, and model limita-
tions by leveraging the information-theoretic notions of aleatoric and epistemic uncer-
tainty.

•	 Extensive experiments with synthetic and real-world datasets show that our approach suc-
cessfully detects uncertainty and failure risks for many families of ML classifiers, includ-
ing deep neural models, and does so better than prior baselines including the trust score 
method by Jiang et al. (2018).

•	 We demonstrate the Risk Advisor’s practical utility by three kinds of risk mitigation appli-
cations: (i) selectively abstaining from making predictions under uncertainty (ii) detecting 
out-of-distribution test-examples (iii) countering risks due to data shift by collecting more 
training samples in a judicious way.

A preliminary publication on this work has appeared as a short paper in the ICDM 2021 con-
ference (Lahoti et  al. 2021). This paper substantially extends our approach by performing 
further analysis to evaluate the Risk Advisor’s ability to detect the underlying uncertainties 
inducing the failures (see Sect. 4.3), as well as presenting how the Risk Advisor can effectively 
guide different kinds of post-deployment risk mitigation actions (see Sect.  5). We address 
three types of actions:

•	 Abstaining and deferring to human: Section 5.1 presents the applicability of uncertainty 
scores to selectively identify deployment-time data points on which the model should 
abstain.

•	 Detecting out-of-distribution cases: Section 5.2 presents the applicability of uncertainty 
scores to identify deployment-time data points in regions that are not sufficiently covered 
at training time (calling for more training data).

•	 Addressing a model’s blind spots: Section 5.3 discusses how uncertainty scores can be 
leveraged to guide the judicious collection of additional samples for re-training the model, 
with informed focus on the underrepresented regions.
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2 � Related work

2.1 � Model‑specific approaches

Most prior works addressed the task of assessing uncertainty and confidence in a model-
specific manner, within the scope of a particular family of learners. These methods do not 
generalize to arbitrary learners and do not live up to the challenge of broad applicability.

The standard approach for predicting failure risks of ML systems is to rely on the sys-
tem’s native (self-) confidence scores. An implicit assumption is that that most uncertain 
data points lie near the decision boundary, and confidence increases when moving away 
from the boundary. While this is reasonable to capture aleatoric uncertainty, this kind of 
confidence score fails to capture epistemic and model uncertainty  (Gal and Ghahramani 
2016).

A related line of work is techniques for confidence calibration such as platt scaling 
(Platt et al. 1999), as well as modern neural network calibration approaches such as tem-
perature scaling (Guo et  al. 2017). However, calibration approaches are concerned with 
rescaling the confidence scores to produce calibrated proper scores. Hence, they cannot 
capture model uncertainty arising due to the model’s own inductive bias. Further, like all 
single-dimensional notions of confidence, this is insufficient to distinguish different types 
of uncertainty and resulting risks. In particular, there is no awareness of epistemic uncer-
tainty due to data shifts (Snoek et al. 2019).

Bayesian methods are a common approach to capture uncertainty in ML (Denker and 
LeCun 1990; Barber and Bishop 1998). Recently, a number of non-Bayesian specialized 
learning algorithms were proposed to approximate Bayesian methods. For instance, vari-
ational learning  (Honkela and Valpola 2004; Kendall and Gal 2017), drop-out  (Gal and 
Ghahramani 2016), and ensembles of deep neural networks  (Lakshminarayanan et  al. 
2017). However, these models tend to be computationally expensive (by increasing net-
work size and model parameters), and are not always practically viable. Moreover, they 
require specialized changes to the architecture and code of the underlying ML system.

The concepts of aleatoric and epistemic uncertainty are rooted in statistics and infor-
mation theory  (Hora 1996; Der Kiureghian and Ditlevsen 2009) (Hüllermeier and Wae-
geman (2021) is a recent overview). Senge et al. (2014) has incorporated these measures 
into a Bayesian classifier with fuzzy preference modeling. Shaker and Hüllermeier (2020) 
integrated the distinction between aleatoric and epistemic uncertainty into random-forest 
classifiers to enhance its robustness. Both of these works are focused on one specific ML 
model and do not work outside these design points, whereas Risk Advisor is model-agnos-
tic and as such universally applicable. Shaker and Hüllermeier (2020) is included in the 
baselines for our experimental comparisons.

2.2 � Model‑agnostic approaches

Only few works addressed the task of assessing uncertainty and deployment risks in a 
model-agnostic manner, dealing with all kinds of learners in a unified way. The major limi-
tation of these works is that they provide only a single measure of uncertainty. Thus, the 
open challenge is to go beyond just predicting risks, by drilling down into different types of 
risks and providing informed guidance towards specific mitigation actions.
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Several post-hoc approaches were proposed for estimating reliability scores and predict-
ing test-time failures of already trained classifiers. Schulam and Saria (2019) proposed a 
post-hoc auditor to learn pointwise reliability scores. However, it is not fully model-agnos-
tic as it relies on using gradients and the Hessian of the underlying ML model. Further, it 
does not differentiate between different types of uncertainty. Schelter et al. (2020) proposed 
a model-agnostic validation approach to detect data-related errors at serving time. How-
ever, this work focuses on errors arising from data-processing issues, such as missing val-
ues or incorrectly entered values, and relies on programmatic specification of typical data 
errors. Singla et al. (2021) propose visualization methods for feature extraction from robust 
representations to explain failures.

The closest approach to ours is trust score (Jiang et al. 2018), a model-agnostic method 
that can be applied post-hoc to any ML system. Trust score measures the agreement 
between a classifier’s predictions and the predictions of a modified nearest-neighbour clas-
sifier which accounts for density distribution. More precisely, the trust score for a new test-
time data point is defined as the ratio between (a) the distance from the test sample to its 
nearest �-high density set with a different class and (b) the distance from the test sample 
to its nearest �-high density set with the same class. A major limitation of the approach, 
as stated in Jiang et  al. (2018) and observed in that work’s experiments, is the handling 
of high-dimensional data starting with 1000-dimensional inputs. In these cases, the trust 
score mostly coincides with the model confidence of the underlying classifier and does 
not give any valued-added insight. This issue is related to the method’s approach of using 
point-wise distances which often degrade for high-dimensional data, and it can be tricky 
to choose an appropriate metric distance. Another aspect where our method improves 
over trust score is in providing different types of uncertainty scores that reveal additional 
insights and can guide different kinds of mitigation actions, whereas trust score bundles all 
aspects into single values.

In a broader context, classification with reject option (Bartlett and Wegkamp 2008) and 
selective abstention (El-Yaniv et  al. 2010) are related problems, wherein classifications 
algorithms are extended to provide an opt-out from making a prediction in cases where 
the model has low confidence. However, these methods still rely on their own confidence 
scores to determine when to abstain, and thus share the limitations and pitfalls of a sin-
gle-dimensional self-confidence. Similarly, the problem of detecting data shifts has been 
widely studied e.g., for detecting and countering covariate and label shift (Schneider et al. 
2020), for anomaly detection (Ben-Gal 2010; Steinwart et  al. 2005), and for algorithmic 
recourse (Rawal et al. 2020). These methods address data shifts, but they do not consider 
failure risks arising from aleatoric and model uncertainty.

3 � Risk advisor model

Next, we dive into the precise problem formulation and our proposed modeling approach.

3.1 � Basic concepts

3.1.1 � Black‑box classifier’s task

 We are given a training dataset D = {(xi, yi),⋯ , (xn, yn)} ⊂ X × Y , drawn from an 
unknown data generating distribution P ∼ X × Y . The goal of the black-box classifier is to 
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learn a hypothesis h that minimizes the empirical risk over observed training distribution 
D.

where 𝓁(⋅) is classification loss function (e.g., cross-entropy between predicted and ground-
truth labels), and ŷ = h(x) is the corresponding predicted class label.

3.1.2 � Black‑box classifier’s uncertainty

 The degree of uncertainty in a prediction can be measured by the Shannon entropy over 
the predicted class probabilities for any given test point. Higher entropy corresponds to 
higher uncertainty. For instance, for a binary classification task P(y = 1|x) = 0.5 gives the 
highest entropy of H[y|x] = 1.

The overall uncertainty corresponding to the predictive task denoted as H[Y|X] encom-
passes uncertainty due to aleatoric, epistemic and model uncertainty (Hora 1996; Der Kiu-
reghian and Ditlevsen 2009; Senge et al. 2014).

3.2 � Mapping failure scenarios to uncertainties

Next, we give a brief introduction to the types of uncertainties – aleatoric, epistemic and 
model uncertainty–in a predictive task, and draw a connection between predictive uncer-
tainties and common sources of failures in ML system.

Example: These different kinds of uncertainty are illustrated via a synthetic example in 
Fig. 3. We will use this as running example to motivate the proposed approach. Consider 
the classification task dataset in Fig. 3. The position on x-axis and y-axis represents input 
features. The markers (black triangles and white circles) represent binary class labels. A 
linear SVM classifier, for example, would learn a decision boundary that best discriminates 
the two classes as shown in Fig. 3b. The test-time errors made by the model are highlighted 
in red. The model’s errors can be mapped to different types of uncercetainties as follows:

(1)h∗ = argmin
h

�(x,y)∈D�(h(x), y) ,

(2)H[Y|X] = −
∑

y∈Y

P(y|x,D) log2 P(y|x,D) .

(a) (b)

Fig. 3   Example: (a) Training data for classification task (b) learned decision boundary of an SVM classifier 
and different types of test-time errors, e.g., due to (1) data variability and noise (2) data shift, and (3) model 
limitations



947Machine Learning (2023) 112:939–970	

1 3

Firstly, in many predictive tasks Y can rarely be estimated deterministically from X due 
to inherent stochasticity in the dataset, a.k.a aleatoric uncertainty. For instance, errors aris-
ing due to inherent data variability and noise, marked as Region 1 in Fig. 3b). Such errors 
are inherently irreducible (unless additional features are collected). Additionally, there is 
uncertainty arising due to “lack of knowledge” about the true data generating process. For 
instance, consider the test errors caused by shifts in the data distribution, marked as Region 
2. Such errors due to epistemic uncertainty can in principle be mitigated by collecting addi-
tional training data and retraining the model. Further, ML models have additional uncer-
tainty in estimating the true model parameters given limited training data. For instance, 
consider systematic errors arising due to fitting a linear model to non-linear data, marked as 
Region 3. Errors due to model uncertainty can in principle be addressed (e.g., by training a 
model from a different model class).

3.3 � Design rationale

We draw inspiration from Fano’s Inequality (Fano 1961; Cover 1999), a classic informa-
tion-theoretic inequality which when viewed from a ML perspective draws a connection 
between predictive uncertainty H[Y|X] , uncertainty in error prediction H[Z|X] , and prob-
ability of error P(Z|X) of a Bayes optimal classifier, where Z is a random variable indicat-
ing prediction error Z ∶= �(Y ≠ Ŷ).

Fano’s Inequality (Fano 1961; Cover 1999): Consider random variables X and Y, where 
Y is related to X by the joint distribution P(x, y). Let Ŷ = h(X) be an estimate of Y, with the 
random variable Z representing an occurrence of error, i.e., Z ∶= �(Y ≠ Ŷ) . Fano’s ine-
quality states that 

where |Y| is the number of classes, H is Shannon entropy, and P(Z|X) is probability of 
error.

Key Idea: The conditional entropy H[Z|X] and the error probability P(Z|X) in Eq.  3 
are not known, but we can approximate them by computing empirical estimates of condi-
tional entropy Hf [Z|X] and error probability Pf (Z|X) of a separate meta-learner f ∶ X → Z 
whose goal is to predict errors Z made by the underlying black-box classifier h with respect 
to the original classification task.

Given such a meta-learner f, we argue that a black-box model’s classification errors on 
unseen data, which relate to the uncertainty H[Y|X] , can be estimated by combining f’s 
predicted probability of error Pf (Z|X) and f’s own uncertainty corresponding to predicting 
errors Hf [Z|X].

Example Let us revisit the synthetic example of Fig. 3, looking at it from a meta-learn-
er’s perspective. Figure 4 shows different perspectives on this setting. As earlier, red data 
points in each figure depict the misclassifications made by the underlying base-classifier 
(in this example: linear SVM). The background color in Fig. 4b–e depicts the estimated 
uncertainty scores of the proposed Risk Advisor. Regions of the input space colored in red 
depict high predicted failure risk, and regions in blue depict low predicted failure risk.

Figure 4a visualizes the input to the meta-learner, which consists of training datapoints 
X and the black-box model’s training errors Z (highlighted in red). Observe that errors 
due to model limitations (top right red points) appear as systematic errors in the input 
space, and are predictable. We argue that by training a meta-learner to predict black-box 

(3)H[Y|X] ≤ H[Z|X] + P(Z|X) ⋅ log2(|Y| − 1)
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classification model’s errors, we can capture these systematic errors due to model limita-
tions with meta-learner’s predicted error probabilities Pf (Z|X) , as shown in Fig. 4c.

Further, recall that both aleatoric and epistemic uncertainties are related to the underly-
ing training data. We posit that the meta-learner, which is trained on the same data samples 
as the black-box classifier, inherits these data-induced uncertainties, and this is reflected in 
the meta-learner’s aleatoric and epistemic uncertainties, as shown in 4d, e.

The intuition is as follows. Consider the region near the decision boundary in Fig. 4a. 
As the meta-learner sees both failure and success cases of the black-box classifier in this 
region, the meta-learner, too, has aleatoric uncertainty in this region of inherent noise. 
Similarly, consider the test points situated far away from the training data. The meta-
learner would also have significant epistemic uncertainty in its error prediction, as it has 
not seen any training data in this region. Thus, by estimating the meta-learner’s own aleato-
ric and epistemic uncertainty, we can indirectly capture the black-box classifier’s aleatoric 
and epistemic uncertainty, as shown in Fig. 4d, e, respectively. In our experiments, we will 
present empirical evidence of these insights.

Putting these three insights together, we propose the combined notion of risk score, 
which can capture these different types of failure risks in a unified manner, as shown in 
Fig. 4b. The regions with high estimated risk score (background color red) overlap with the 
regions of actual test-time errors made by the base-classifier.

In the following, Sect. 3.4 formalizes the meta-learner’s task, and presents our proposed 
meta-learner ensemble for the Risk Advisor. Section 3.5 discusses how to refine the overall 

(a) (b)

(c) (d) (e)

Fig. 4   Meta-learner: a Training input to meta-learner; b meta-learner’s estimated overall risk score ; c, d, 
e decomposition of the overall risk score into its various constituting components, i.e., model, aleatoric and 
epistemic uncertainties, that capture errors due to c model limitations, d data variability and noise, and e 
data shift, respectively
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uncertainty into informative components for different kinds of uncertainty, and compute 
overall risk score.

3.4 � Meta‑learner ensemble

3.4.1 � Meta‑learner’s task

 Given input training samples x ∈ X , predicted class labels ŷ ∶= h(x) of a fully trained black-
box classifier h, and a random variable Z ∶= �(Y ≠ Ŷ) indicating errors of the black-box clas-
sifier h with respect to the original classification task. Our goal is to learn an meta-learner 
f ∶ X → Z trained to predict errors of the black-box classifier with respect to the original task 
given by

where z is a random variable indicating errors of the base-classifier predictor given by 
z = �(y ≠ ŷ) , � is a classification loss function. Given a newly seen test point x∗ , the meta-
learner’s predicted probability of error is given by P(z|f , x∗).

However, the probability of error P(z|f , x∗) estimated by a single meta-learner f can be 
biased due to its own uncertainty in the model parameters P(f |D) . Next, we show how we can 
obtain a reliable estimate of the black-box model’s error probability by training an ensemble 
of M independent stochastic gradient boosted trees F = {P(z|x∗, f m)}M

m=1
 , and computing their 

expectation.

3.4.2 � Ensemble of Stochastic gradient boosted trees (E‑SGBT)

 We consider an ensemble of M independent models F = {f m}M
m=1

 such that each of the indi-
vidual models f m is a stochastic gradient boosted tree (SGBT; Friedman 2002). Note that the 
proposed E-SGBT is an ensemble of ensembles, i.e., each of the M SGBT’s in the ensemble is 
itself an ensemble of T weak learners trained iteratively via bootstrap aggregation. To ensure 
minimum correlation between the M individual models in our ensemble, we introduce rand-
omization in two ways. First, each of the SGBTs in the ensemble is initialized with a different 
random seed. Second, each of the individual SGBTs is itself an ensemble of T weak learn-
ers trained iteratively via bootstrap aggregation. Specifically, for each SGBT in the E-SGBT 
ensemble, at each iteration, a subsample of training data of size Ñ < N is drawn at random, 
without replacement, from the full training dataset. The fraction Ñ

N
 is called the sample rate. 

The smaller the sample rate, the higher the difference between successive iterations of the 
weak learners, thereby introducing randomness into the learning process.

Given M error probability estimates {P(z|x, f m)}M
m=1

 by each of the models in the ensemble, 
an estimate of the probability of error P(z|x,D) can be computed by taking the expectation 
over all the models in the ensemble:

The total uncertainty in the error prediction H[P(z|x,D)] can be computed as the Shannon 
entropy corresponding to the estimated probability of error

(4)f = argmin
f∈F

�(x,z)∈D�(f (x), z)

(5)P(z|x,D) ∶= �f∈F[P(z|x, f ,D)] ≈
1

M

M∑

m=1

P(z|x, f m,D)
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3.5 � Identifying sources of uncertainty

To distinguish between different sources of uncertainty – data variariability/noise vs. data 
shifts between training and deployment data – we compute estimates of the aleatoric and 
epistemic uncertainty given an ensemble of M independent stochastic gradient boosted 
trees F = {f m}M

m=1
 . This approach was originally developed in the context of neural net-

works (Depeweg et al. 2018), but the idea is more general and has recently been applied 
to estimate uncertainties of stochastic gradient boosted trees and random forests (Malinin 
et al. 2021; Shaker and Hüllermeier 2020).

3.5.1 � Decomposing aleatoric and epistemic uncertainty

 The main idea is that in the case of data points with epistemic uncertainty (e.g., out-of-
distribution points), the M independent models in the ensemble given F ∶= {f m}M

m=1
 are 

likely to yield a diverse set of predictions (i.e., different output labels) for similar inputs. 
In contrast, for data points with low epistemic uncertainty (e.g., in-distribution points in 
dense regions), they are likely to agree in their predictions. Hence, by fixing f, the epis-
temic uncertainty can be removed, and the aleatoric uncertainty can be computed by taking 
the expectation over all models f ∈ F .

3.5.2 � Aleatoric uncertainty

 Given M predicted probability estimates {P(z|x, f m)}M
m=1

 for each of the models in the 
ensemble, an estimate of aleatoric uncertainty in Eq. 7 can be empirically approximated by 
averaging over individual models f m ∈ F  in our E-SGBT ensemble.

3.5.3 � Epistemic uncertainty

 Finally, epistemic uncertainty can be computed as the difference between total uncertainty 
and aleatoric uncertainty.

where total uncertainty is the entropy corresponding to the estimated probability of error 
P(z|x,D) given in Eq. 6.

(6)H[P(z|x,D)] = −
∑

z∈Z

P(z|x,D) log2 P(z|x,D)

(7)�p(f |D)H[P(z|x, f )] = ∫
F

P(f |D) ⋅ H[P(z|f , x)]df

(8)�f∈F[H[P(z|x, f )]] ≈ 1

M

M∑

m=1

H[P(z|x, f m)]

(9)
I[z, f |x,D]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Epistemic Uncertainty

= H[P(z|x,D)]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Total Uncertainty

−�f∈F[H[P(z|x, f )]]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Aleatoric Uncertainty
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3.5.4 � Risk score

 Putting it all together, our proposed risk score, which captures the overall failure risks of 
the uncerlying black-box classifier, can be computed as the sum of (i) predicted probability 
of error assigned by the meta-learner, i.e., model uncertainty, (ii) epistemic uncertainty and 
(iii) aleatoric uncertainty.

Note that this risk score is neither a probability nor an entropy measure, but it proves to be 
a very useful indicator for failure risks in our experiments. One could consider a weighted 
sum of each of the components to account for associated risk costs for each type of error. 
For instance, if a system designer had expert knowledge that errors due to distribution shift 
(i.e., epistemic uncertainty) are more harmful, she could assign more weight to the epis-
temic uncertainty component. In our experiments we assign equal weights.

3.5.5 � Inference

 The meta-learner is trained on the underlying base-classifier’s training data. Given a newly 
seen data point x∗ at deployment-time, the Risk Advisor computes predicted error prob-
abilities for each of the M models in the E-SGBT ensemble {P(z|x∗, f m)}M

m=1
 . These values 

are fed into the Risk Advisor’s estimated error probability in Eq. 5, aleatoric uncertainty 
in Eq. 8, epistemic uncertainty in Eq. 9 and risk score in Eq. 10. Note that at deployment-
time we only expect the newly seen data point x∗ , and the trained meta-learner.

4 � Experiments

In this section, we evaluate the performance of Risk Advisor by performing extensive 
experiments on real-world and synthetic datasets, and on 6 families of black-box classifi-
cation models. In Subsection 4.2, we evaluate the Risk Advisor’s ability to predict failure 
risks at deployment time. In Subsection 4.3, we evaluate the Risk Advisor’s ability to detect 
the sources of uncertainty inducing the failure risk.

4.1 � Experimental setup

4.1.1 � Datasets

 We evaluate the performance on the following small and large benchmark classification 
datasets covering a variety of common ML failure scenarios:

High-dimensional Image Datasets:

(10)

Risk Score ∶= P(z|x,D)
⏟⏞⏟⏞⏟

Error probability

+ H[P(z|x)]
⏟⏞⏞⏟⏞⏞⏟

Total uncertainty

= P(z|x,D)
⏟⏞⏟⏞⏟

Model Uncertainty

+ I[z, f |x,D]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Epistemic uncertainty

+�f [H[P(z|x, f )]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Aleatoric uncertainty
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•	 CIFAR 10: The CIFAR-10 dataset (Krizhevsky 2009) consists of 60K color images in 
10 classes, including blurred and noisy images, which are specially prone to model fail-
ures.

•	 MNIST: The MNIST dataset (LeCun et al. 2010) consists of 60K grayscale images of 
handwritten digits in 10 classes. Due to the variability in writing style, certain images 
are prone to misclassification.

•	 Fashion MNIST: The fashion MNIST dataset (Xiao et al. 2017) consists of 60K images 
of clothing and accessories in 10 classes, including images with rare and unusual prod-
uct designs, which can be prone to errors.

Mission-critical Fairness Datasets:

•	 Census Income: Recent work in ML fairness has shown that models often make more 
errors for underrepresented groups in training data. To simulate this setting, we con-
sider the Adult dataset (Dua and Graff 2017), a benchmark dataset in fairness literature, 
consisting of 49K user records. The dataset contains underrepresented groups (e.g., 
Female).

•	 Law School: Similarly, we use the LSAC dataset (Wightman 1998) consisting of 28K 
law school admission records. The classification task is to predict whether a candidate 
would pass the bar exam. The dataset contains underrepresented groups (e.g., “Black”).

Distribution shift, unseen demographics/regions/domain:

•	 Census Income (Male → Male, Female): To simulate distribution shift, we take the 
aforementioned Census Income dataset and exclude female points from the training set. 
Our test set consists of both Male and Female points.

•	 Law School (White → White, Black): Similarly, we take the aforementioned Law School 
dataset and exclude user records from the Black group from the training set. The test set 
consists of both White and Black points.

•	 Heart Disease: A common ML failure scenario is when a ML model is applied to a 
new geographic region. To simulate this scenario we combine four different heart dis-
ease datasets available in the UCI repository (Dua and Graff 2017) by using a subset of 
features overlapping between them. We use the US Cleveland heart disease dataset as 
our training dataset, and use it to predict heart disease on a UK statlog dataset, Hungar-
ian (HU) and Switzerland (CH) heart disease dataset.

•	 Wine Quality: Another failure scenario is when a trained model is applied to an applica-
tion domain for which it has inadequate or bad training data. To simulate this scenario, 
we train models on white wine, and apply it to predict quality of red wine in UCI wine 
dataset (Dua and Graff 2017). The classification task is to predict if the wine quality is 
≥ 6.

4.1.2 � Black‑box classification models

 To demonstrate the versatility of Risk Advisor, we evaluate it on classifiers from 6 different 
families, including deep neural models such as ResNet50 and CNN for the high dimen-
sional image dataset, and classic ML algorithms such as SVM, Random Forests, Multi-
layer Perceptron, and logistic regression for tabular datasets. Following are the implemen-
tation details:
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•	 ResNet 50: The 50-layer deep residual network architecture  (He et  al. 2016) trained 
with batch size of 128 for 100 epochs.

•	 CNN: A convolutional neural net with 2 convolutional layers with 32, 64 hidden units, 
max pooling, and ReLu activations, trained with batch size 128 for 10 epochs.

•	 MLP: Multi-layer perceptron with 2 hidden layers with 32, 16 hidden units, batch 
size 64, and ReLu activations.

•	 SVM: support vector machines with RBF kernel and Platt scaling (Platt et al. 1999) 
to produce probability estimates.

•	 RF: a random forest with 1000 decision trees, bootstrap sampling, and max-features 
set to “sqrt”.

•	 LR: logistic regression with L2 regularization.

4.1.3 � State‑of‑the‑art baselines

 Our baseline comparison includes the underlying black-box classification model’s own 
(self-) confidence scores. Specifically, for all deep neural models, i.e., ResNET50, MLP, 
and CNN, we rely on the confidence score given by max class probability (DNN-MCP), 
as proposed by (Hendrycks and Gimpel 2017), which is a well established strong base-
line. For RF’s, we rely on the uncertainty score, computed as per the state-of-the-art 
method for random forest (RF-uncertainty), as proposed by (Shaker and Hüllermeier 
2020). For SVM, we rely on the standard approach of computing confidence scores over 
prediction probabilities from decision values after Platt scaling (SVM-Platt) (Platt et al. 
1999). For LR, the confidence score is given by the distance from the decision boundary 
(LR-Confidence).

Our main comparison is with the state-of-the-art method trust score (Jiang et  al. 
2018). Similar to Risk Advisor, the trust score method is a model-agnostic post-hoc 
approach, which takes as input a black-box classifier’s predictions, and training data to 
produce point-wise trust score for newly seen test points.

While calibrating a classifier’s scores is a popular technique for producing calibrated 
confidence values, such techniques are rank-preserving. As all our evaluation metrics, 
i.e., AUROC, AUPR, and PRR (introduced later) are based on seeing different relative 
rankings of the scores rather than absolute values, there is no point in comparing against 
rank-preserving calibration techniques.

4.1.4 � Implementation

 The Risk Advisor’s E-SGBT model is implemented as an ensemble of 10 SGBT classi-
fiers, wherein each of the SGBT’s in the ensemble is initialized with a different random 
seed. For structured tabular datasets we used the Python implementation in scikit-learn. 
For high-dimensional image datasets we used the catboost  implementation of gradi-
ent boosted decision trees (https://​github.​com/​catbo​ost/​catbo​ost). Best hyper-parameters 
are chosen via grid-search. For Risk Advisor’s E-SGBT model, we tune max-depth in 
{4, 5, 6} , sample-rate in {0.25, 0.5, 0.75} and num-estimators in {100, 1000} . For trust 
score, we use the code shared by (Jiang et al. 2018) and perform grid search over the 
parameter space reported in the paper. Each dataset is separated into 70:30 stratified 
training and test splits. All numerical features in the datasets are standardized to unit 
variance and and all categorical features are transformed via one-hot encoding. On 
the training split, we perform 5-fold cross-validation to find the best hyper-parameters 

https://github.com/catboost/catboost
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via grid search. Once hyper-parameters are tuned, we refit the model using best hyper-
parameters and report results on the independent test set.

4.2 � Predicting test‑time failure risks

In this experiment, we evaluate the ability of the Risk Advisor to successfully flag the 
test points that are likely to be misclassified by the underlying ML classfication system.

4.2.1 � Metrics

 As we are interested in predicting failure risks, the performance on this task can be 
assessed via the Risk Advisor’s ability to detect suspicious or untrustworthy (Jiang et al. 
2018)] examples, i.e., the test examples that are incorrectly classified by the base-clas-
sifier. We can formulate this task as a binary classification task, and measure the qual-
ity of failure prediction using standard metrics used in the literature  (Hendrycks and 
Gimpel 2017): area under ROC curve (AUROC) and area under precision recall curve 
(AUPR), where the base-classifier’s misclassifications are chosen as the positive class. 
We choose AUROC as it has intuitive interpretation: the probability that a misclassified 
example has a higher risk score value than a correctly classified example. Additionally, 
we choose AUPR for the evaluation as it is more informative than AUROC in the sce-
narios where the number of examples in the positive class (i.e., misclassified examples) 
is very small. The results on AUPR are related to the metric on detecting suspicious 
examples by Jiang et al. (2018), where the authors plot precision for varying percentiles 
of (negative) trust score. In contrast, the PR curve plots precision for varying thresholds 
of recall, and can be summarized by AUPR which measures average precision over vari-
ous thresholds of recall between 0 and 1.

4.2.2 � Results

 Tables  1 and 2 shows a comparison between the black-box models’ own confidence 
scores (Hendrycks and Gimpel 2017; Platt et al. 1999; Shaker and Hüllermeier 2020), 
trust score (Jiang et al. 2018) and the Risk Advisor’s estimated risk score, for all combi-
nations of datasets and black-box models. Table 1 reports AUROC for detecting test-set 
errors of the underlying black-box classifiers. Best values are marked in bold. We make 
the following observations.

First, we observe that AUROC values for all the methods are higher than a random 
baseline (AUROC of 0.5), indicating that all the approaches are informative in detecting 
test errors. Second, the proposed risk score consistently outperforms black-box models’ 
own confidence scores (barring a few exceptions). This holds true for all families of 
black-box classifiers including deep neural models and Random Forests, which build on 
DNN-MCP (Hendrycks and Gimpel 2017) and RF-uncertainty (Shaker and Hüllermeier 
2020). Finally, we observe that our Risk Advisor’s risk scores consistently outperform 
trust scores by a significant margin, for all the datasets and all families of black-box 
classifiers. Similar trends hold for the AUPR metric as shown in Table 2.

Figures 5 and 6 show the ROC curve and the Precision-Recall curve on the two larg-
est datasets for neural base-classifiers: CIFAR 10 with base-classifer ResNet50 and 
Fashion MNIST with base-classifier CNN. Consistent with the summary AUROC and 
AUPR metrics in Tables 1 and 2, we observe that all methods are better than a random 
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baseline. The proposed risk score is the most informative, followed by the base-classifi-
ers’ native confidence scores(DNN-MCP) and trust score being last.

4.3 � Detecting sources of uncertainty

In this experiment, we evaluate how well the Risk Advisor can successfully detect the 
underlying sources of uncertainty inducing the failure risk. However, for real-world data-
sets and complex black-box models it is difficult to collect ground truth (for evaluation) on 
which errors are due to inherent data complexity or model limitations. Hence, in this sec-
tion we only focus on systematically generated synthetic data.

To this end, we generate synthetic datasets covering a variety of ML failure scenarios 
including errors due (i) distribution shift between training and test data (ii) inherent data 
variability and reflecting noise in class labels (iii) black-box classifier’s model limitations 
(e.g., applying a linear model to non-linear decision boundary). We then evaluate if the 
Risk Advisor’s estimates for epistemic, aleatoric and model uncertainty can correctly cap-
ture the corresponding test-time errors made by the black-box classification model.

4.3.1 � Errors due to distribution shift

 In order to simulate a distribution shift scenario, we draw points from a mixture of two 
Gaussians. For the training points we set the mixture coefficient for one of the Gaussians to 
zero; for the test points both mixture components are active. This way, we are able to con-
struct a dataset containing out-of-distribution test points as shown in Fig. 7. Figure 7a visu-
alizes the training data and the decision boundary learned by a 2-layer feed-forward neural 
network (NN). Figure 7b visualizes the test data. Test errors of the NN are highlighted in 
red. Observe that the NN misclassifies out-of-distribution test points while (incorrectly) 
reporting high confidence. The contour plot in Fig. 7c visualizes Risk Advisor’s estimated 
epistemic uncertainty.

Ideally, we would like to see that the epistemic uncertainty increases as we move 
towards the sparse regions of the training data, and that it is high for out-of-distribution 
regions. Despite some noise, we clearly see this trend: regions of low epistemic uncer-
tainty (i.e., dark-blue regions) coincide with the dense in-distribution test points. Epistemic 
uncertainty increases as we move towards sparse regions, and the values are especially 
high for out-of-distribution regions. This can be seen in the right half of Fig. 7c where the 
estimated epistemic uncertainty is between 0.4 and 0.6 in comparison to the entire left half 
of the heatmap, which has estimated uncertainty between 0.0 and 0.2. The estimated scores 
are not perfect, as there are little to no training points in the upper and lower right regions, 
but the epistemic uncertainty values are useful for identifying out-of-distribution regions.

4.3.2 � Errors due to data variability and noise

 To simulate a dataset with inherent noise, we draw points from the classic two-moons 
dataset (Pedregosa et al. 2011), and add Gaussian noise with standard deviation 0.5 to the 
dataset as shown in Fig. 8. Figure 8a visualizes the training data and the decision boundary 
learned by a 2-layer feed-forward neural network (NN). Figure 8b visualizes the test data. 
Test-errors are highlighted in red.

The contour plot in Fig. 8c visualizes estimated aleatoric uncertainty. Ideally, we would 
expect that aleatoric uncertainty is high for the regions with data variability i.e., regions 
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with large class overlap. We clearly see this trend: the estimated aleatoric uncertainty is 
high for the test points near the decision boundary, with high class overlap. The regions of 
high aleatoric uncertainty (i.e., dark-red regions) coincide with the test-errors due to data-
variability and noise.

4.3.3 � Errors due to black‑box classifier’s model limitations

 In order to simulate this scenario, we construct a classification dataset with a non-linear 
decision boundary, i.e., two concentric circles (Pedregosa et al. 2011). We then fit a mis-
specified classification model to the task, i.e., a logistic regression classifier with a (log-)
linear decision boundary as shown in Fig.  9. The contour plot in Fig.  9a visualizes the 
training data and the learned decision boundary. Figure 9b visualizes the test data. Test-set 
errors made by the black-box model are highlighted in red.

(a) (b)

Fig. 5   Predicting Failure Risks: Comparison of a ROC curves and b Precision Recall curves on CIFAR 10 
dataset for base-classifier ResNet50

(a) (b)

Fig. 6   Predicting Failure Risks: Comparison of a ROC curves and b Precision Recall curves on Fashion 
MNIST dataset for base-classifier CNN
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The contour plot in Fig.  9c visualizes the Risk Advisor’s predicted Error probabil-
ity ( P(ẑ|x) ). Ideally, we would expect the Risk Advisor to assign a higher error score for 
regions of the input space where the black-box classifier makes errors due to its model lim-
itations. We clearly see this trend: the Risk Advisor correctly identifies the regions where 
the black-box classifier is likely to make systemayic errors due to its incorrect model class, 
i.e., linear decision boundary. This is especially remarkable given that the Risk Advisor has 

(a) (b) (c)

Fig. 7   Errors from distribution shift: Risk-Advisor’s epistemic uncertainty correctly identifies test points far 
away from training distribution

(a) (b) (c)

Fig. 8   Errors from data variability and noise: Risk Advisor’s aleatoric uncertainty correctly identifies test 
points in the regions with class overlap

(a) (b) (c)

Fig. 9   Errors from model limitations: Risk Advisor’s estimated error probability P(z|x) correctly identifies 
errors due to model limitation
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no knowledge of the model family of the underlying black-box model (e.g., whether it is 
log-linear model or a neural network). In spite of having no information about the under-
lying model (other than its predictions), the Risk Advisor is able to correctly capture the 
model uncertainty.

4.4 � Efficiency and Scalability

This section discusses the efficiency and scalability of the proposed Risk Advisor model. 
Recall that the learning of the Risk Advisor is by an ensemble of M independent stochastic 
gradient boosted classifiers (SGBT), each operating on a randomly sampled subset of data 
points. The M classifiers can be trained in parallel. Each SGBT training, on the other hand, 
is a sequential computation. However, the training time can be tuned by controlling the 
number of training iterations, the depth of the decision trees, and the sampling rate.

All our experiments were performed with an ensemble of 10 SGBT’s, each trained for 
100 or 1000 iterations, maximum depth of 4, 5 or 6, and a sampling rate of 0.25, 0.5 or 
0.75. For structured tabular datasets we used the Python implementation in scikit-learn. 
For high-dimensional image datasets we used the catboost  implementation of gradient 
boosted decision trees (https://​github.​com/​catbo​ost/​catbo​ost).

Empirically, the training time for the risk score estimator was one or two orders of 
magnitude lower than the training of the underlying base-classifier. For the largest data-
set (CIFAR 10), the training time of the base-classifier (ResNet50) was a couple of hours, 
whereas the training of the Risk Advisor took only a few minutes. For the largest tabular 
dataset (Census Income), the training time of the base-classifier was in the order of min-
utes, whereas the training of the Risk Advisor was in the order of seconds.

5 � Applications to risk mitigation

Next, we investigate the Risk Advisor’s applicability to a variety of applications for risk 
mitigation, including (i) selectively abstaining under uncertainty (Subsection  5.1) (ii) 
detecting out-of-distribution test examples (Subsection  5.2) and (iii) mitigating risk by 
judiciously collecting additional samples for re-training the system (Subsection 5.3).

5.1 � Risk mitigation by selective abstention

A benefit of predicting failure risks at deployment time is that we can take meaningful risk 
mitigation actions. For instance, if we expect that a ML system is likely to misclassify cer-
tain deployment/test-points, we can ask the ML system to abstain from making predictions 
and instead forward these data points to a fall-back system or human expert. In this experi-
ment, we simulate the latter scenario as follows.

5.1.1 � Setup and metric

 We generate a ranking of all the test points by ordering them according to the scores 
assigned by each approach, i.e., black-box model’s confidence score (ascending order), 
trust score (ascending order), and Risk Advisor’s risk score (descending order), respec-
tively. We then use these rankings to choose test points to defer to an oracle, in which case 

https://github.com/catboost/catboost
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the ML systems predictions are replaced with the oracle’s labels. This setup allows us to 
compute an Accuracy-Rejection curve (AR curve) (Malinin 2019; Bartlett and Wegkamp 
2008; El-Yaniv et  al. 2010). An oracle would rank all misclassification points first, thus 
leading to an optimal curve (Oracle). A random ranking would yield a linearly decreasing 
AR curve from base-error-rate to 0.0 (Random). An AR curve produced by informative 
estimates of failure risks would lie between the Random and Oracle curves.

The AR curve can be summarized with a metric prediction rejection ratio (PRR) 
(Malinin 2019). It measures the degree to which the uncertainty scores are informative 
by the ratio of the area between the uncertainty estimator and random curves, to the area 
between oracle and random curves. The PRR value lies between 0.0 and 1.0, where 1.0 
indicates perfect ordering and 0.0 indicates uniformly random ordering.

5.1.2 � Results

 Table 3 shows a comparison between the black-box models’ own confidence score (Hend-
rycks and Gimpel 2017; Platt et al. 1999; Shaker and Hüllermeier 2020), trust score (Jiang 
et al. 2018) and the proposed risk scores. Values in the table are PRR values for all combi-
nations of datasets and models. Best results are highlighted in bold. We make the following 
observations:

First, all methods under comparison have a PRR > 0 , indicating that all the approaches 
are informative and better than a random baseline (with random abstention). Second, risk 
scores consistently yield the best PRR across all datasets and classification models (barring 
a few exceptions). There is no clear winner between trust score and each of the black-box 
classifiers’ native confidence score.

Figure  10 shows the Accuracy-Rejection (AR) curves for the largest two datasets: 
CIFAR 10 and Fashion MNIST with base-classifiers ResNet50 and CNN, respectively. The 
values on the x-axis are the percentage of datapoints deferred to the oracle, and the y-axis 

PRR =
AUuncertainty − AUrandom

AUoracle − AUrandom

(a) (b)

Fig. 10   Selective Abstention: Comparison of Accuracy-Rejection curves on a CIFAR 10 dataset for base-
classifier ResNet50 and b Fashion MNIST dataset for base-classifier CNN
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shows the error rate of the base-classifier. Consistently with our observations on the PRR 
metric in Table 3, we observe that all approaches are better than a random baseline (i.e., 
with random abstention). The proposed risk score is the most informative, followed by the 
base-classifiers’ native confidence scores and trust score being last.

5.2 � Detecting data shift at deployment time

In this experiment, we evaluate how well the Risk Advisor’s estimate of epistemic uncer-
tainty can be used can successfully detect data shift at deployment time, i.e., detect test 
points coming from a different distribution than the one which the model was trained on.

5.2.1 � Setup and metric

 To this end, we narrow our focus on the four datasets on out-of-distribution (OOD) test 
points for which we have ground truth labels shown in Table  4. Given a combined test 
dataset consisting of both in-distribution and out-of-distribution test points, the question 
at hand is to what extent the Risk Advisor’s estimated epistemic uncertainty can effectively 
separate in-distribution and out-of-distribution test points. As we have ground truth for out-
of-distribution test points and we have ensured that there are equal numbers of in/out dis-
tribution test points, we can use the area-under-the-ROC-curve metric (AUROC) to evalu-
ate the ability of each of the scores to separate OOD points from in-distribution points. 
Intuitively, AUROC measures the degree to which each of the confidence scores ranks a 
randomly chosen OOD data point higher than a randomly chosen non-OOD point.

5.2.2 � Results

 Table 4 shows a comparison between the black-box model’s own confidence score, trust 
score, and the Risk Advisor’s estimated epistemic uncertainty. Unlike baseline methods for 
DNN, SVM, and LR, the baseline for computing uncertainty of RF by (Shaker and Hül-
lermeier 2020) can decompose the overall uncertainty into aleatoric and epistemic compo-
nents. Thus, for RF, we rely on the epistemic uncertainty estimates. We make the following 
observations.

First, observe that epistemic uncertainty consistently outperforms both the black-box 
model’s own confidence score and trust score across all datasets and classification meth-
ods, with a significant margin. Further Risk Advisor’s epistemic uncertainty is competitive 
with RF-epistemic uncertainty, which is model-specific and has full access to the RF clas-
sifier. This supports our argument that a post-hoc meta-learner trained to compute uncer-
tainties, is a viable alternative to replacing the underlying black-box ML classifier, which 
may not be feasible in production practice. Second, observe that for the Wine and Census 
Income datasets, the DNN-MCP (Hendrycks and Gimpel 2017) and LR confidence score 
has AUROC substantially lower than 0.5, that is, significantly worse than the random base-
line, implying that black-box models incorrectly assign higher confidence scores for OOD 
points than for in-distribution points. In contrast, the AUROC values for the epistemic 
uncertainty is significantly above 0.5 in most cases. An exception is the Census Income 
dataset where it is only slightly above 0.5 and still performs much better than all baselines. 
Our hypothesis is that this dataset poses difficulties by its sophisticated feature distribution, 
which makes it harder to identify that the withheld female population represents an OOD 
case.
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Overall, this shows that the Risk Advisor mostly assigns higher epistemic uncertainty 
for OOD test points than for in-distribution test points. This is an important property, as 
it indicates that a ranked ordering of test points by epistemic uncertainty can be used in a 
deployed application to detect out-of-distribution test points (given an application-specific 
threshold). For these critical data points, the system could resort to a human expert (or 
other fall-back option), and thus enhance trustworthiness of the ML system.

5.3 � Risk mitigation by judicious sampling and retraining

Being able to identify black-box classifier’s epistemic uncertainty enables another type 
of mitigation action: to mitigate risks due to evolving data by judiciously collecting more 
training examples and re-training the ML system.

We acknowledge the large body of literature on active sampling and domain adaptation 
in this context. In our experiment the goal is not to compare with these existing techniques, 
but rather to demonstrate an application of the Risk Advisor’s epistemic uncertainty, which 
can be achieved without making any changes to the underlying black-box classification 
system.

5.3.1 � Setup and metric

 In this experiment, we fix the black-box classifier to logistic regression, and we assume 
that we have access to an untouched held-out set of labeled samples (different from training 
and test set). Our goal is to evaluate if the performance of the underlying black-box classi-
fier can be improved for out-of-distribution test points by additional sampling and re-train-
ing the ML system on (a subset of) these held-out points. To evaluate the performance, we 
use the black-box classifier’s improvement in accuracy for out-of-distribution test points.
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We compare different sampling strategies by selecting data points from the with-held 
set in different orders based on three criteria: the LR-Confidence, trust score, and the Risk 
Advisor’s epistemic uncertainty. For each approach, we first compute point-wise scores for 
all the points in the held-out set (different from training and test set, kept aside for sampling 
experiment). We then order the points in the held-out set according to these scores, i.e., LR-
confidence (ascending order), trust score (ascending order), and Risk Advisor’s epistemic 
uncertainty (descending order), respectively. Next, at each round of an iterative sampling, 
we select k% points from the held-out set (with replacement), and re-train the ML system. 
Algorithm 1 shows pseudo-code for the iterative sampling and retraining procedure.

5.3.2 � Results

 Figure 11 shows results averaged over 5 independent runs. The x-axis shows the per-
centage of additional points sampled from the held-out set for re-training, and the y-axis 
shows the corresponding improved accuracy for the OOD group (e.g., accuracy on red 
wine for the Wine dataset). Ideally, we would expect the accuracy to rise higher with as 
few additional training points as possible. We make the following observations.

First, as we sample and retrain on additional points from the held-out data, the accu-
racy for OOD test-points increases for all the approaches on all datasets. However, the 

(b)(a)

(d)(c)

Fig. 11   Addressing distribution shift: Comparison of various sampling strategies to selectively sample data 
points and retrain the black-box classification model. Curves that grow higher and faster from left to right 
are better
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percentage of additional samples required to achieve similar performance differs across 
approaches. Not surprisingly, random sampling is the slowest improving approach for 
3 out of 4 datasets, followed by trust score and confidence score. The Risk Advisor’s 
sampling by epistemic uncertainty consistently outperforms on all datasets, by a large 
margin. For instance, on the Heart Disease dataset epistemic uncertainty achieves 30 
percentage points (pp) improvement in accuracy (from 0.6 to 0.9) for an additional 20% 
samples from the held-out set. In contrast, all the other approaches stagnate around 0.7 
even for an additional 40% samples. Similarly, on the Wine Quality dataset we see an 
improvement of 10 pp for an additional 10% samples, while other approaches do not 
reach this improvement even for additional 40% of samples. We observe similar trends 
across approaches for Law School and Census Income datasets, albeit with smaller 
gains.

6 � Conclusion

This paper presented the Risk Advisor model for detecting and analyzing sources of 
uncertainty and failure risks when a trained classifier is deployed for production usage. 
The Risk Advisor treats the base-classifier as a black-box model, and this model-agnos-
tic approach makes it a highly versatile and easy-to-deploy tool. In contrast to the prior 
state-of-the-art (including the main baseline trust score (Jiang et  al. 2018)), the Risk 
Advisor goes beyond providing a single measure of uncertainty, by computing refined 
scores that indicate failure risks due to data variability and noise, data shifts between 
training and deployment, and model limitations. Extensive experiments on various fam-
ilies of black-box classifiers and on real-world datasets covering common ML failure 
scenarios show that the Risk Advisor reliably predicts deployment-time failure risks in 
all the scenarios, and outperforms strong baselines. Thereby, we believe the Risk advi-
sor, with its ability to audit and identify potential regions of failure risks would be a 
useful asset for the responsible ML toolbox.
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