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Abstract
Long-Tailed Semi-Supervised Learning (LTSSL) aims to learn from class-imbalanced 
data where only a few samples are annotated. Existing solutions typically require substan-
tial cost to solve complex optimization problems, or class-balanced undersampling which 
can result in information loss. In this paper, we present the TRAS (TRAnsfer and Share) 
to effectively utilize long-tailed semi-supervised data. TRAS transforms the imbalanced 
pseudo-label distribution of a traditional SSL model via a delicate function to enhance the 
supervisory signals for minority classes. It then transfers the distribution to a target model 
such that the minority class will receive significant attention. Interestingly, TRAS shows 
that more balanced pseudo-label distribution can substantially benefit minority-class train-
ing, instead of seeking to generate accurate pseudo-labels as in previous works. To sim-
plify the approach, TRAS merges the training of the traditional SSL model and the target 
model into a single procedure by sharing the feature extractor, where both classifiers help 
improve the representation learning. According to extensive experiments, TRAS delivers 
much higher accuracy than state-of-the-art methods in the entire set of classes as well as 
minority classes. Code for TRAS is available at https:// github. com/ Stoma ch- ache/ TRAS.

Keywords Long-tailed learning · Semi-supervised learning · Pseudo-label distribution · 
Logit transformation

Editors: Yu-Feng Li and Prateek Jain.

Tong Wei and Qian-Yu Liu have contributed equally to this work.

 * Tong Wei 
 weit@seu.edu.cn

 * Lan-Zhe Guo 
 guolz@lamda.nju.edu.cn

Extended author information available on the last page of the article

https://github.com/Stomach-ache/TRAS
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06247-z&domain=pdf


1726 Machine Learning (2024) 113:1725–1742

1 3

1 Introduction

Deep Neural Networks (DNNs) have been successfully used in many real-world appli-
cations (Amodei et  al., 2016; He et  al., 2016). However, the training of DNNs relies on 
large-scale & high-quality datasets, which has become the core problem in practice. First, 
large-scale data annotation is highly expensive and only a small amount of labels can be 
accessed (Li et al., 2019; van Engelen & Hoos, 2020). Second, collected data usually fol-
lows long-tailed distribution (He & Garcia, 2009; Liu et al., 2019; Wei & Li, 2019; Wei 
et al., 2021b, 2022), where only some classes (the majority class) have sufficient training 
samples while other classes (the minority class) own a few samples as shown in Fig. 1a.

To utilize unlabeled data, Semi-Supervised Learning (SSL) emerges as an interesting 
solution (Miyato et  al., 2018; Tarvainen & Valpola, 2017; Berthelot et  al., 2019b; Sohn 
et  al., 2020; Berthelot et  al., 2019a; Zhou et  al., 2021; Guo et  al., 2020). It carries out 
model assumptions on the data distribution to build a learner to utilize unlabeled sam-
ples through selecting confident pseudo-labels. However, it is demonstrated that existing 
SSL methods tend to produce biased pseudo-labels towards the majority class (Kim et al., 
2020), leading to undesirable performance.

Recently, Long-Tailed Semi-Supervised Learning (LTSSL) is proposed to improve the 
performance of SSL models on long-tailed data. The main ideas of existing LTSSL meth-
ods (Kim et al., 2020; Wei et al., 2021a; Lee et al., 2021) are two-fold. One is to improve 
the quality of pseudo-labels from the perspective of SSL. The other one is to employ class-
balanced sampling or post-hoc classifier adjustment to alleviate class imbalance from the 
long tail perspective. These methods can improve the performance of conventional SSL 
models. However, the improvements are achieved with the cost of high computational 
overhead or losing information due to the undersampling of data.

How all data can be efficiently and effectively utilized is the core challenge of LTSSL 
and the focus of this paper. To this end, we propose a new method called TRAS (TRAnsfer 
and Share) which has two key ingredients. Figure 1b showcases the effectiveness of TRAS 
in the minority class.

First, we compensate for the minority-class training by generating a more balanced 
pseudo-label distribution. Under the guidance of pseudo-label distribution, DNNs can 
mine the interaction information between classes to obtain richer information for minority 

Fig. 1  a Long-tailed distribution of the training set under the main setting of CIFAR-10-LT. b Performance 
of minority-class accuracy(%) on CIFAR-10-LT dataset under class imbalance ratio 50, 100, and 150 with 
20% of labels available. The proposed TRAS heavily improves the minority-class accuracy
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classes. The idea of learning from label distribution has been explored in previous liter-
ature, such as label distribution learning (Geng, 2016; Gao et  al., 2017; Wang & Geng, 
2019) and knowledge distillation (Xiang et al., 2020; He et al., 2021; Iscen et al., 2021), 
which however is still underexplored in LTSSL. To generate label distribution, knowledge 
distillation is a common approach via well-trained teacher models. Such a teacher model is 
not always available for SSL models because of limited long-tailed labeled data and high 
computation overhead. Alternatively, we employ a conventional SSL model with normally 
low accuracy on the minority class. This conventional SSL model is able to teach the learn-
ing of the student model after applying our proposed logit transformation. This transfor-
mation is particularly designed to enhance the minority-class supervisory signals without 
introducing extra computational cost. Subsequently, through training the student model 
by imitating the enhanced supervisory signals, the minority class will receive significant 
attention.

Second, we propose to merge the training of teacher and student models as a single 
procedure to reduce the computational cost. To this end, we use a double-branch neural 
network with a shared feature extractor and two classifiers for producing the predictions 
of the teacher and student. The neural network is then trained in an end-to-end way by 
a joint objective of these two classifiers. In addition to reduce training cost and simplify 
the approach, we empirically find that both classifiers can help improve the representation 
learning and learn clear classification boundaries between classes.

Our main contributions are summarized as follows: 

1. A new LTSSL method TRAS is proposed, which significantly improves the minority-
class training without introducing extra training cost.

2. TRAS transfers pseudo-label distribution from a vanilla SSL network (teacher) to 
another network (student) via a new logit transformation, instead of trying hard to 
construct a sophisticated LTSSL teacher model.

3. TRAS reveals the importance of the balancedness of pseudo-label distribution in transfer 
for LTSSL.

4. TRAS merges the training of teacher and student models by sharing the feature extractor, 
which simplifies the training procedure and benefits the representation learning.

5. TRAS achieves state-of-the-art performance in various experiments. Particularly, it 
improves minority-class performance by about 7% in accuracy.

2  Related work

2.1  Semi‑supervised learning

Existing SSL methods aim to use unlabeled data to improve the generalization. For this 
purpose, consistency regularization and entropy minimization have become the most fre-
quently used techniques and demonstrate considerable performance improvements. Spe-
cifically, Mean-Teacher (Tarvainen & Valpola, 2017) imposes consistency regularization 
between the prediction of the current model and the self-ensembled model obtained using 
exponential moving average. Virtual Adversarial Training (VAT) (Miyato et  al., 2018) 
encourages the model to minimize the discrepancy of model predictions for unlabeled 
data before and after applying adversarial perturbation. MixMatch (Berthelot et al., 2019b) 
minimizes the entropy of model predictions by sharpening the pseudo-label distribution. 
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ReMixMatch (Berthelot et  al., 2019a) improves MixMatch by imposing another distri-
bution alignment regularizer and augmentation anchoring. FixMatch (Sohn et  al., 2020) 
merges consistency regularization and entropy minimization by regularizing the prediction 
for weakly augmented and strongly augmented unlabeled data. However, the above-men-
tioned methods assume both labeled and unlabeled data is both class-balanced, leading to 
poor performance on the minority class when working on long-tailed datasets.

2.2  Long‑tailed semi‑supervised learning

To deal with long-tailed datasets, several LTSSL methods have been proposed. In a nut-
shell, exiting methods aim to select not only confident but also more class-balanced 
pseudo-labels to improve the generalization for minority classes. For instance, DARP (Kim 
et al., 2020) proposes to estimate the underlying class distribution of unlabeled data, which 
is used to regularize the distribution of pseudo-labels. To this end, a convex optimization 
problem is solved. Additionally, CReST (Wei et  al., 2021a) proposes to use class-aware 
confidence thresholds for selecting more pseudo-labels for the minority class. Recently, 
ABC (Lee et al., 2021) proposes to use an auxiliary balanced classifier built upon a con-
ventional SSL model by class-balanced undersampling. However, these approaches either 
suffer from high computational cost or loss of supervisory information. In this work, we 
propose a new algorithm TRAS, which can fully utilize not only supervised data but also 
unsupervised data through efficient pseudo-label distribution transfer, and greatly improves 
the performance of the minority class.

3  Method: TRAS

We now introduce the problem setting in Sect.  3.1 and develop our proposed method 
TRAS, which consists of two key ingredients described in Sects.  3.2 and 3.3. Figure  2 
shows the framework of the proposed TRAS.

3.1  Problem setting

Let X = {(xi, yi)}
N
i=1

 be a labeled dataset, where xi ∈ ℝ
d is a training example and yi ∈ ℝ is 

the corresponding label. We introduce an unlabeled dataset U = {u
i
}M
i=1

 where ui ∈ ℝ
d is 

the unlabeled data point. Following ABC (Lee et al., 2021), we assume that the class distri-
butions of X  and U are identical. We denote the number of labeled data points of class l as 
Nl (notice that 

∑L

l=1
Nl = N ), assuming that all classes are sorted by cardinality in descend-

ing order N1 N2 ⋯ NL . In LTSSL, we set the fraction of labeled data as � =
N

N+M
 and the 

class imbalance ratio as � =
N1

NL

 . Usually, we divide the class space into the majority class 
and the minority class according to their frequencies in the training data. Our goal is to 
learn a model which generalizes well on both the majority class and the minority class.

Our proposed method, TRAS, consists of a shared feature extractor and two classifiers, 
providing predictions for the teacher model PT (y ∣ x) and student model PS(y ∣ x) . There 
are two key ingredients to TRAS: (1) Learn through imitation, in which the student model 
imitates the adjusted output of the teacher model, and (2) transfer via sharing weights. In 
the following, we present technical details of these two ingredients.
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3.2  Ingredient #1: learn through imitation

Given labeled data, a typical approach is to train a classifier f by optimizing the softmax 
cross-entropy:

In LTSSL, however, the distribution of labeled data is heavily class-imbalanced, such that 
the learned classifier would be biased towards the majority class. To improve the training 
of the minority class, we propose to use the distribution-aware cross-entropy loss:

where �y is the estimate of class prior ℙ(y) and 𝜏 > 0 is a scaling parameter. By minimizing 
�DA-CE , it encourages large margins between the true label and other negative labels. Using 
distribution-aware cross-entropy is not a new idea in the literature of long-tailed learning, 
such as Logit Adjustment (Menon et al., 2020) and Balanced Softmax (Ren et al., 2020). 
Interestingly, existing methods show that the scaling parameter � plays an important role in 
model training, but it is usually used as a constant, e.g., � = 1 . In the following, we show a 
new instance-dependent logit scaling method.

In addition to labeled data, we can access to a large amount of unlabeled data to 
help improve the generalization. In LTSSL, the underlying distribution of unlabeled 
data is also long-tailed, and conventional SSL methods have shown impaired perfor-
mance on the minority class. This paper proposes to train the model using pseudo-label 

(1)�CE(y, f (x)) = − log
efy(x)

∑

y�∈[L] e
fy� (x)

.

(2)𝓁DA-CE(y, f (x)) = − log
efy(x)+�⋅log�y

∑

y�∈[L] e
fy� (x)+�⋅log�y�

,

Fig. 2  The TRAS method in diagrammatic form
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distribution, rather than biased one-hot pseudo-labels. Intuitively, label distribution 
offers more supervisory signals and can benefit the minority-class training. We generate 
pseudo-label distribution by first training a vanilla SSL model as the teacher, and then 
training a student model by imitating the output distribution of teacher model. We opt 
for minimizing their Kullback-Leibler (KL) divergence:

where ỹT and ỹS are output probabilities of the teacher and student model respectively, 
which illustrate the implicit information of label distribution.

Note that the teacher model is trained via a conventional SSL algorithm and the pro-
duced pseudo-label distribution is still biased towards the majority class. To further 
enhance supervisory signals for the minority class, we present a new logit transforma-
tion to adjust the output of the teacher model. Specifically, for sample x , we transform 
its pseudo-label distribution as follows:

where zT is the output logits and ŷ is the pseudo-label of x . In this way, the pseudo-label 
distribution of unlabeled data is more balanced. We demonstrate the generated label distri-
bution in Fig. 3.

Notably, different from previous works that treat � as a constant to scale the output 
logits, we use � as a function of pseudo-labels. Concretely, given the pseudo-label ŷ , we 
define 𝜏(ŷ) = A ⋅ 𝛼ŷ + B , where � = softmax(− log�) is a ŷ-dependent function, A and B 
are constants. This is because adjusting pseudo-label distribution to over-compensate 
the minority class can be harmful to the majority class. By employing the ŷ-dependent 
logit transformation function, we can alleviate this problem by flattening the label dis-
tribution of predicted minority-class samples more aggressively than other samples. In 
experiments, we simply set A = B = 2 . Applying the proposed logit transformation gen-
erates a more balanced pseudo-label distribution to improve the training of the minority 
class as in Fig. 3.

Putting together the objectives for labeled and unlabeled data, we minimize the loss 
function for TRAS as follows:

(3)�KL

(

ỹ
T , ỹS

)

=

L
∑

l=1

ỹT
l
log

ỹT
l

ỹS
l

,

(4)ỹ
T = softmax

(

𝜙
(

z
T
))

= softmax
(

z
T − 𝜏(ŷ) ⋅ log�

)

,

Fig. 3  Comparison of ground-
truth label distribution and our 
generated pseudo-label distribu-
tion on CIFAR-100-LT dataset 
under class imbalance ratio 20 
with 40% of labels available
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Here, �(⋅) represents the indicator function, t denotes the confidence threshold and we adopt 
the common setup t = 0.95 for confident pseudo-labels from the student.

In this way, pseudo-label distribution can naturally describe the implicit informa-
tion between labels. By applying the logit transformation, the distribution encodes more 
informative supervisory signals for the minority class, thus  the student can alleviate 
data scarcity for minority classes.

3.3  Ingredient #2: transfer via sharing weights

Learning through imitating the teacher model can significantly compensate for the train-
ing of the minority class, however, it requires to train two separate DNNs sequentially, 
which is computational expensive in SSL.

To reduce the time consumption and simplify the approach, we propose to merge the 
training of teacher and student models into a single training procedure. In other words, 
the teacher and student share the feature extractor network. We further partition the 
parameter space into three disjoint subsets; (1) Let �(x) be a feature extractor for x . (2) 
Let f T (�(x)) denote a teacher classifier and its prediction ỹT . (3) Similarly, let f S(�(x)) 
denote a student classifier and its prediction ỹS . Subsequently, let us define:

which is the output logits of the teacher model except that its gradient will not be calcu-
lated to update the teacher model’s classifier weights. Recall that function �(⋅) acts as a 
logit transformer of zT , we then consider:

as the joint objective. Note that the teacher and student share a single feature extractor, it 
only adds a linear classifier to the conventional SSL model, which incurs negligible train-
ing cost.

Let LSSL denote the loss for a conventional SSL method, the total loss function that 
TRAS optimizes is:

Particularly, if FixMatch is employed as the teacher model, LSSL consists of a cross-entropy 
loss on labeled data and a consistency regularization on unlabeled data. Specifically, we 
have:

(5)
LTRAS =

N
∑

i=1

�DA-CE

(

yi, z
S
i

)

���������������������
supervised loss

+

M
∑

j=1

�

(

max
(

ỹ
S
j

)

≥ t
)

�KL

(

ỹ
T
j
, ỹS

j

)

�������������������������������������������������
unsupervised loss

.

(6)z
T = stop_gradient

(

f T (�(x))
)

,

(7)
LTRAS =

N
∑

i=1

�DA-CE

(

yi, z
S
i

)

���������������������
supervised loss

+

M
∑

j=1

�

(

max
(

ỹ
S
j

)

≥ t
)

�KL

(

softmax
(

𝜙
(

z
T
j

))

, ỹS
j

)

�����������������������������������������������������������������������������
unsupervised loss

,

(8)LTotal = LTRAS + LSSL.
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where z
T and z̃

T are the output logits for weak and strong data augmentation, 
ŷ = argmaxl z

T
l
 represents the pseudo-label for unlabeled data. In inference, we use the stu-

dent classifier f S to predict the label.

3.4  Connection to previous work

One may note that the basic idea of our TRAS can transfer knowledge distribution from 
a vanilla teacher model to a student model that has good generalization for the minority 
class. The technique is related to knowledge distillation which has been explored in some 
recent long-tailed learning works. For instance, LFME (Xiang et  al., 2020) proposes to 
train the student model via distilling multiple teachers trained on less imbalanced datasets. 
DiVE (He et al., 2021) shows that flattening the output distribution of the teacher model 
using a constant temperature parameter can help the learning of minority classes. CBD 
(Iscen et al., 2021) distills features from the teacher to the student and shows that it can 
improve the learned representation of the minority class. Last but not least, xERM (Zhu 
et al., 2022) obtains an unbiased model by properly adjusting the weights between empiri-
cal loss and knowledge distillation loss.

In contrast to previous works that aim to solve supervised long-tailed learning, this 
paper studies semi-supervised long-tailed learning, where the amount of labeled data is 
much more limited. Moreover, previous works need to train teacher models via well-estab-
lished long-tailed learning methods. However, our method TRAS only needs a vanilla SSL 
model as a teacher. Additionally, these methods have multiple-stage training procedures, 
but our method is simpler and can be trained in an end-to-end way.

4  Experiments

We conduct experiments on long-tailed version of CIFAR-10, CIFAR-100, and SVHN, in 
comparison with state-of-the-art LTSSL methods. We then perform hyper-parameter sensi-
tivity studies and ablation studies to better understand our proposed TRAS.

4.1  Experimental setup

4.1.1  Datasets

We conduct experiments on common datasets long-tailed CIFAR-10 (CIFAR-10-LT), 
long-tailed CIFAR-100 (CIFAR-100-LT) and long-tailed SVHN (SVHN-LT) to evaluate 
our method. Without loss of generality, for imbalanced SSL settings, we randomly resam-
ple the datasets to meet the assumption that the distribution of labeled and unlabeled sam-
ples is consistent. We set the ratio of the class imbalance as � ( � =

N1

NL

 ) and the number of 

(9)
LSSL =

N
∑

i=1

�CE

(

yi, z
T
i

)

���������������
supervised loss

+

M
∑

j=1

�

(

max
(

z
T
j

)

≥ t
)

�CE

(

ŷj, z̃
T
j

)

�����������������������������������������������
unsupervised loss

,
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labeled data points of class l as Nl , where Nl = N1 ∗ �−
l−1

L−1 and Ml for the unlabeled. Specif-
ically, we set N1 +M1 = 5000 , L = 10 for CIFAR-10-LT and SVHN-LT, N1 +M1 = 500 , 
L = 100 for CIFAR-100-LT respectively.

Following the previous work (Lee et  al., 2021), we evaluate the classification perfor-
mance with imbalance ratio � = 100 and 150 for CIFAR-10-LT and SVHN-LT and � = 20 
and 30 for CIFAR-100-LT. The ratio of labeled data � is 10%, 20% and 30% for CIFAR-
10-LT and SVHN-LT, 20%, 40% and 50% for CIFAR-100-LT. Since the test set remains 
balanced, overall accuracy, minority-class accuracy, and Geometric Mean scores (GM) 
(Branco et al., 2016) with class-wise sensitivity are three main metrics to validate the pro-
posed method.

4.1.2  Setup

We implement our method with FixMatch over the backbone of Wide ResNet-28-2 
(Zagoruyko & Komodakis, 2016). Our method is compared with the supervised baseline, 
long-tailed supervised learning methods, and long-tailed semi-supervised learning meth-
ods, denoted by (a) Vanilla; (b) VAT (Miyato et al., 2018) and FixMatch (Sohn et al., 2020; 
c) BALMS (Ren et al., 2020), classifier Re-Training (cRT) (Kang et al., 2020; d) DARP 
(Kim et al., 2020), CReST (Wei et al., 2021a), ABC (Lee et al., 2021). We set the hyper-
parameters by following FixMatch and train the neural networks for 500 epochs with 500 
mini-batches in each epoch, with the batch size of 64, using Adam optimizer (Kingma & 
Ba, 2015). The learning rate is 0.002 with a decay rate of 0.999. We start optimizing TRAS 
after training FixMatch for 10 epochs. For all experiments, we report the mean and stand-
ard deviation of test accuracy over multiple runs.

4.2  Experimental results

First, the performance of the algorithms compared under the main setting is in Table 1. 
Results of related methods are borrowed from ABC (Lee et  al., 2021). It can been see 
that our method achieves the best performance, and the improvement on the minority class 
is impressive. It is known that normal SSL methods such as VAT and FixMatch perform 

Table 1  Overall accuracy(%)/minority-class accuracy(%) under the main setting

The best results are indicated in bold

CIFAR-10-LT SVHN-LT CIFAR-100-LT
Algorithm � = 100, � = 20% � = 100, � = 20% � = 20, � = 40%

Vanilla 55.3±1.30/33.9±1.88 77.0±0.67/63.3±1.25 40.1±1.15/25.2±0.95
VAT 55.3±0.88/28.2±1.55 81.3±0.47/68.2±0.88 40.4±0.34/24.8±0.38
BALMS 70.7±0.59/69.8±1.03 87.6±0.53/85.0±0.67 50.2±0.54/42.9±1.03
FixMatch 72.3±0.33/53.8±0.63 88.0±0.30/79.4±0.54 51.0±0.20/32.8±0.41
w/ CReST+PDA 76.6±0.46/61.4±0.85 89.1±0.69/81.7±1.18 51.6±0.29/36.4±0.46
w/ DARP 73.7±0.98/57.0±2.12 88.6±0.19/80.5±0.54 51.4±0.37/33.9±0.77
w/ DARP+cRT 78.1±0.89/66.6±1.55 89.9±0.44/83.5±0.61 54.7±0.46/41.2±0.42
w/ ABC 81.1±0.82/72.0±1.77 92.0±0.38/87.9±0.73 56.3±0.19/43.4±0.42
w/ TRAS(ours) 84.3±0.25/82.2±0.44 93.4±0.51/92.5±0.26 58.5±0.17/50.3±0.22
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unsatisfactorily on the minority class because pseudo-labels of unlabeled data are affected 
by the biased model thus hindering the learning of minority classes. Our method signifi-
cantly improves the performance on the minority class by exploiting knowledge transfer 
to generate balanced label distribution, which conveys more implicit information than the 
one-hot pseudo-labels used in most previous LTSSL works. Moreover, our standard devia-
tion is lower than other LTSSL methods, showing the superior stability of TRAS.

Table 2  Overall accuracy(%)/minority-class accuracy(%) for CIFAR-10-LT. Two imbalance ratios � and 
three labeled data ratios � are evaluated

The best results are indicated in bold

CIFAR-10-LT

Algorithm � = 100, � = 10% � = 100, � = 30% � = 150, � = 20%

FixMatch 70.0±0.59/48.9±1.04 74.9±0.63/58.2±1.28 68.5±0.60/45.8±1.15
w/ CReST+PDA 73.9±0.40/58.9±1.14 77.6±0.73/64.0±1.39 70.0±0.82/49.4±1.52
w/ DARP+cRT 74.6±0.98/59.2±2.12 79.0±0.25/67.7±0.95 73.2±0.85/57.1±1.13
w/ ABC 77.2±1.60/65.7±2.85 81.5±0.29/72.9±0.96 77.1±0.46/64.4±0.92
w/ TRAS(ours) 82.1±0.41/78.6±0.51 85.0±0.46/83.0±0.85 81.7±0.44/77.2±0.92

Table 3  Overall accuracy(%)/minority-class accuracy(%) on SVHN-LT. Two imbalance ratios � and three 
labeled data ratios � are evaluated

The best results are indicated in bold

SVHN-LT

Algorithm � = 100, � = 10% � = 100, � = 30% � = 150, � = 20%

FixMatch 88.5±0.25/80.3±0.42 88.7±0.36/80.7±0.65 85.6±0.17/74.6±0.43
w/ CReST+PDA 89.2±0.43/81.7±0.95 89.9±0.36/83.0±0.37 86.7±0.89/76.7±1.70
w/ DARP+cRT 89.3±0.33/83.9±0.47 90.7±0.28/84.8±0.37 88.0±0.74/80.1±1.88
w/ ABC 92.3±0.38/88.7±0.92 92.3±0.34/88.3±0.49 91.2±0.15/86.2±0.15
w/ TRAS(ours) 93.2±0.22/92.5±0.10 93.9±0.20/93.4±0.33 92.1±0.36/91.1±0.86

Table 4  Overall accuracy(%)/minority-class accuracy(%) on CIFAR-100-LT. Two imbalance ratios � and 
three labeled data ratios � are evaluated

The best results are indicated in bold

CIFAR-100-LT

Algorithm � = 20, � = 20% � = 20, � = 50% � = 30, � = 40%

FixMatch 46.1±0.23/26.6±0.34 52.3±0.54/34.7±0.80 47.6±0.09/27.6±0.21
w/ CReST+PDA 46.7±0.49/29.3±0.54 52.7±0.06/37.4±0.37 48.5±0.06/30.0±0.04
w/ DARP+cRT 48.9±0.11/33.5±0.17 55.9±0.43/43.5±1.28 51.3±0.29/36.4±0.50
w/ ABC 49.7±0.40/34.6±0.76 58.3±0.74/46.7±1.12 53.6±0.35/38.8±0.69
w/ TRAS(ours) 51.6±0.30/41.8±0.61 60.3±0.75/53.5±0.91 55.5±0.63/46.5±0.62
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To further validate the effectiveness of our method, we report the performance on vari-
ous settings. The results on CIFAR-10-LT, SVHN-LT and CIFAR-100-LT are reported 
in Tables 2, 3 and 4. TRAS outperforms other methods in all cases with respect to both 
overall accuracy and minority-class accuracy. Particularly, TRAS achieves about 10%, 5%, 
7% improvements in the minority class on three datasets. Moreover, TRAS is more robust 
to class imbalance. As the imbalance ratio increases, existing methods severely deteriorate 
their performance, while the accuracy of our method drops slightly.  

To evaluate whether our method TRAS performs balanced prediction for all classes, 
we measure its performance using Geometric Mean scores (GM) of class-wise accuracy. 
The results in Table 5 demonstrate that the proposed algorithm yields the best and most 
balanced performance in all classes. Additionally, TRAS achieves more significant perfor-
mance improvement on the large dataset (CIFAR-100-LT).

Additionally, we also evaluate TRAS on the more practical and challenging Ima-
geNet127 dataset. ImageNet127 was crafted by CReST (Wei et al., 2021a) for LTSSL. It 
is a naturally imbalanced dataset with imbalance ratio 286 by grouping the 1000 classes 
of ImageNet into 127 classes based on the WordNet hierarchy. Due to limited resources, 
we are not able to conduct experiments on ImageNet127 with the full resolution.1 Instead, 
we follow CoSSL (Fan et  al., 2022) which down-samples the original images from 

Table 5  Results of GM(%) under the main setting

The best results are indicated in bold

CIFAR-10-LT SVHN-LT CIFAR-100-LT
Algorithm � = 100, � = 20% � = 100, � = 20% � = 20, � = 40%

FixMatch 62.0 87.3 38.5
w/ CReST+PDA 74.4 88.6 42.3
w/ DARP 71.5 87.6 40.4
w/ DARP+cRT 76.7 89.8 47.0
w/ ABC 80.5 91.8 49.0
w/ TRAS(ours) 81.9 93.4 54.0

Table 6  Averaged class recall 
(%) on ImageNet-127

The best results are indicated in bold

ImageNet-127 32 × 32 ImageNet-127 
64 × 64

FixMatch 29.7 42.3
w/ DARP 30.5 42.5
w/ DARP + cRT 39.7 51.0
w/ CReST+ 32.5 44.7
w/ CoSSL 43.7 53.8
w/ TRAS(ours) 46.2 54.1

1 One run of vanilla FixMatch on ImageNet127 on a single NVIDIA Tesla V100 takes 10676.5 h which is 
about 444 days.
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ImageNet127 to smaller images of 32 × 32 or 64 × 64 pixels using the box method from 
Pillow library. We also randomly select 10% training samples as the labeled data. Since 
the test set is imbalanced as well, averaged class recall is applied as a balanced metric. We 
compare our method with the recent state-of-the-art approach CoSSL (Fan et al., 2022). 
From Table 6, we can see that TRAS achieves the best performance for both image size 32 
and 64.

4.3  How does pseudo‑label distribution impact the performance?

Recall that we use hyper-parameters A and B to control the distribution of pseudo-labels 
by 𝜏(ŷ) = A ⋅ �ŷ + B , we now analyze their influence on the performance. The results are 
reported in Fig. 4. We find that B impacts the performance much larger than A, which 
coincides with our intuition because �ŷ < 1 . It achieves comparable results by setting 
A ∈ {1, 2, 3} . But unlike A, B = 2 yields better performance than other values in our 

Fig. 4  The impact of values of A and B on CIFAR-10-LT under class imbalance ratio 100 with 20% of 
labels available. a Overall accuracy(%) of TRAS; b Top-1 accuracy(%) of pseudo-labels of the teacher after 
transformation; c Top-5 accuracy(%) of pseudo-labels of the teacher after transformation

Fig. 5  Comparison of pseudo-label precision by varying the values of A and B on CIFAR-10-LT under 
class imbalance ratio 100 with 20% of labels available. The x-axis is the number of epochs, and the y-axis is 
the precision. Classes are divided into head ({0, 1, 2}), torso ({3, 4, 5, 6}) and tail ({7, 8, 9})
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experiments. When setting A > 3 and B > 3 , test accuracy severely deteriorates because 
of the heavy bias towards minority classes in the pseudo-label distribution.

Interestingly, we find the balancedness of pseudo-label distribution matters much 
more than the accuracy of pseudo-labels in transfer. As B increases, the top-5 accuracy 
of pseudo-labels is impaired while the overall accuracy remains competitive. This indi-
cates that class imbalance hurts the performance more than inaccurate pseudo-labels in 
our approach.

To better understand this phenomenon, we investigate the impact of logit scaling 
parameters A and B on the quality of pseudo-labels for head, torso, and tail classes sepa-
rately. As illustrated in Fig. 5, A = 0,B = 0 reveals superb performance with high preci-
sion. However, in Fig. 6, it shows the worst recall in the tail class. Since A = 0,B = 0 
means that pseudo-labels are from the conventional SSL model which is biased to the 
head class, transferring their distribution to a target model does not help the training of 
tail classes, as shown in Fig. 7.

Instead, by setting A = 2,B = 2 , it achieves the best performance in overall and tail-
class accuracy as reported in Figs. 4a and 7. Notably, it produces high recall yet low pre-
cision for tail classes in Figs.  6 and 5. This observation confirms our suspicion that the 
balancedness of pseudo-label distribution requires more attention than the accuracy of 
pseudo-labels in knowledge transfer.

Fig. 6  Comparison of pseudo-label recall by varying the value of A and B on CIFAR-10-LT under class 
imbalance ratio 100 with 20% of labels. The x-axis is the number of epochs, and the y-axis is the recall

Fig. 7  Comparison of test accuracy by varying the values of A and B on CIFAR-10-LT under class imbal-
ance ratio 100 with 20% of labels. The x-axis is the number of epochs, and the y-axis is the test accuracy
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4.4  Better understanding of TRAS

We analyze TRAS from representation and classification perspectives on CIFAR-10-LT 
under the main setting. First, we compare the learned representations by ABC and our 
TRAS via t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten & Hinton, 
2008) in Fig. 8. It can be seen that TRAS has more clear classification boundaries than 
ABC, which demonstrates that TRAS can distinguish the difference between classes with 
better representation learning.

Further, to analyze the classification results, we compare the confusion matrices of the 
prediction on the test set in Fig. 9. Each row represents the ground-truth label and each 
column represents the prediction by ABC or our TRAS. The value in the i-th row and j-
th column is the percentage of samples from the i-th class and predicted as the j-th class. 
From the results, we can see that our TRAS performs better than ABC in the minority 
class. Moreover, it is observed that TRAS might misclassify some majority-class samples 
as the minority-class ones.

Ablation studies. We conduct ablation studies on important parts of our approach under 
the main setting.

First, this paper applies logit transformation with A = 0,B = 1 to the teacher model’s 
prediction on unlabeled data for better performance of the teacher model. By removing 
logit transformation, the overall accuracy and minority-class accuracy under the main set-
ting turn out to be 83.66% (−0.64%) and 77.54% (−4.66%) on CIFAR-10-LT, respectively.

Second, we modify the distribution-aware cross-entropy for the labeled data to the com-
mon cross-entropy loss, leading to 83.41% (−0.89%) and 80.28% (−1.92%) of the overall 
accuracy and minority-class accuracy. The marginal decline of the performance verifies the 
effectiveness of the learning through imitation approach.

Finally, we remove the sample mask on unlabeled data of the student model, which 
means all unlabeled data is used to imitate the teacher. The experiment shows that remov-
ing the sample mask decreases the performance slightly, i.e., 83.33% (-0.97%) and 79.60% 
(-2.59%) for overall and minority-class accuracy respectively. This demonstrates the advan-
tage of selecting more accurate pseudo-labels for the student model.

Fig. 8  Results of t-SNE for ABC (Lee et al., 2021) and our TRAS 
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4.5  Comparison with two‑stage training

We further compare TRAS with two-stage training under the main setting in Table 7. In the 
two-stage training, we first train a FixMatch model as the teacher and then guide a student 
model by the teacher with our TRAS. We find that not only can our TRAS save training 
cost, but it is also better trained than the two-stage approach. This agrees with our expecta-
tion that, in two-stage training, the student lays more emphasis on the minority class, while 
fitting the pseudo-label distribution does not necessarily improve feature learning. Fortu-
nately, two branches in TRAS share the feature learning backbone, which can improve the 
backbone and classifiers simultaneously.

To further show that double branches of TRAS can both improve feature learning, we 
stop propagating the gradients of the student branch from affecting the feature learning 
backbone. In this way, only the teacher model trains the feature extractor network, which is 
similar to the two-stage training. From the result, we see TRAS performs better, showing 
that the student can further enhance the feature learning by sharing the backbone with the 
teacher model.

Fig. 9  Confusion matrices of the prediction on the test set of CIFAR-10-LT

Table 7  Performance comparison 
of overall accuracy(%)/minority-
class accuracy(%) with two-stage 
training and TRAS-

The best results are indicated in bold
1The student does not propagate its gradients to update the feature 
extractor

CIFAR-10-LT SVHN-LT CIFAR-100-LT
Method � = 100, � = 20% � = 100, � = 20% � = 20, � = 40%

Two-stage 80.6/75.0 91.6/89.6 57.1/47.6
TRAS-1 83.2/80.8 92.6/92.1 57.8/50.3
TRAS 84.3/82.2 93.4/92.5 58.5/50.3
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5  Conclusion

We introduce TRAS, a new method for LTSSL. TRAS (1) learns from a more class-bal-
anced label distribution to improve the minority-class generalization and (2) partitions 
the parameter space, enabling transfer via weight sharing of the transformed knowledge 
learned by the conventional SSL model. Extensive experiments on CIFAR-10-LT, SVHN-
LT, and CIFAR-100-LT datasets show that TRAS outperforms state-of-the-art methods on 
the minority class by a large margin. In the sequel, it would be interesting to extend TRAS 
to more established SSL methods.
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