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Abstract
This paper proposes Parametric non-parallel support vector machines for binary pattern 
classification. Through an intelligent redesigning of the Support vector machine optimisa-
tion, not only do we bring noise resilience into the model, but also retain its sparsity. Our 
model exhibits properties similar to Support vector machines, hence many SVM related 
learning algorithms can be extended to make it scalable for large scale problems. Experi-
mental results on several benchmark UCI datasets validate our claims.

Keywords  Support vector machines · Twin support vector machines · Pinball loss · Noise 
insensitivity · Sparsity

1  Introduction

Support vector machines (SVM) is a celebrated binary classifier built upon the direct prac-
tical application of the Statistical Learning Theory. The practicality and strong theoretical 
backing of SVMs have enabled them to be successfully adapted in a diverse variety of 
real-world applications ranging from bioinformatics (Yin et al., 2015), scene classification 
(Subasi, 2013), to power applications (Hao & Lewin, 2010). SVM has also attracted many 
researchers and inspired the development of new classifiers, like Generalised eigenvalue 
proximal support vector machines (GEPSVM) (Mangasarian & Wild, 2005), Twin Support 
vector machines (TSVM) (Khemchandani & Chandra, 2007). Each of them gave rise to an 
entirely new plethora of research.

TSVM showed that a two hyperplane rule is better adept at dealing with XOR(cross-
planes) dataset, without the use of kernel methods. Also, leveraging the divide and 
conquer rule to solve individual quadratic programming problems (QPPs) for each 
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class, reduced the constraints by half and hence were around four times faster than 
the conventional SVMs. Moreover, TSVM was able to output comparable performance 
with SVMs.

Nevertheless, TSVM also has its own set of limitations like matrix inversion, spar-
sity and sensitivity to outliers due to L 2-norm. Each of these problems has captivated 
researchers’ attention resulting in a new set of research.

TSVM adopts two hyperplane rule to classify samples which results in better accu-
racy than the SVM. However, the inconsistency between the training and prediction 
processes leads to sub-optimal results in certain cases. Authors in Shao et al. (2014), 
inculcated the two hyperplane prediction rule into their optimisation to address this 
issue. Similar to the TSVM their model minimises the respective class variances 
simultaneously maximising the projection difference between the classes.

Authors in Tian et  al. (2013) presented an interesting extension to TSVM, that 
avoids matrix inversion, is sparse, and shows uniformity with the linear kernel and 
non-linear classifier. The first two sets of constraints in their optimisation enforce the 
respective class patterns to lie in the �-bands. Their formulation shows correspond-
ence with L 1-norm if � tends to zero. The last set of constraints models the hinge loss 
to allow optimal separation from the opposite class patterns. Since the data points are 
implicitly modelled in the optimisation objective, it avoids matrix inversion. While on 
the other hand, explicit modulation of the data points in the constraints bestows the 
model properties such as sparsity as well as uniformity. Further to speed up the train-
ing process, fast SVM solvers can be adopted with little modification for their model.

All the aforementioned models in a way implement the hinge loss function which 
is unstable in the presence of noise. Traditionally, this problem has been dealt with 
by replacing the hinge loss with the pinball loss function. The pinball loss function 
focuses on maximising the quantile distance between the classes in contrast to hinge 
loss which focuses on the maximising closest set of points in the convex hull of the 
two classes. Alternatively, pinball loss grants noise resilience by penalising the cor-
rectly classified samples by a small amount and hence minimising the scatter as much 
as permissible. However, pinball loss trades noise resilience in exchange for the spar-
sity of the classifier. To attain back the sparsity, several pinball loss variants have 
been proposed, the most popular of them being the �-pinball loss, truncated pinball 
loss etc. They do succeed in equipping the classifier with noise resilience and sparsity 
by increasing the number of variables, constraints and parameters of the model. The 
explicit impact is a more complicated optimisation having enormous time complexity.

In this research, we focus on some set of problems in SVM which are critical and a 
solution to them can help make SVM better applicable to real-world applications such 
as being noise resilience simultaneously maintaining sparsity and being time-efficient 
than the current state of the art pinball loss models.

Taking inspiration from the TSVM’s proximal classification rule and through intel-
ligent redesigning of the SVM optimisation, we achieve the solution to the problems 
above and our model stands in comparison with pinball loss models.

The present work is described in the following sections. Related work is reviewed in 
Sect. 2. Our proposed model PN-SVM is introduced in Sect. 3 and subsequently talks 
about the motivation behind the proposed model and its connection with the existing 
approaches. The experimental results are reported in Sect. 4, and finally, Sect. 5 con-
cludes the paper.
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2 � Related work

In this paper, we denote class A as the set of samples having positive label and class B 
as the set of samples having negative label, i.e A = {(xi, yi = 1)}, and B = {(xi, yi = −1)} , 
i = 1, 2,… ,m1 + m2 , D = [A;B] , where xi ∈ X ⊂ RN . Labels of the samples are yi = +1 
for i = 1, 2,… ,m1 , yi = −1 for i = m1 + 1,m1 + 2,… , n = m1 + m2 . For simplicity we 
write Y = diag(y1,… , ym1

, ym1+1
,… , ym1+m2

) . Here note that number of samples in class 
A, class B are denoted as m1 , m2 respectively.

2.1 � Support vector machines

State of the art binary classification algorithm, SVM is backed by statistical learning 
theory’s (Vapnik, 1999) structural risk minimization principle. For a binary classifica-
tion dataset D, SVM tends to find a hyperplane from a family of separating hyperplanes 
such that the width of the separation between the two classes is maximised. Consider 
the optimal hyperplane as: J(w, b) = wTx + b = 0 , where b ∈ R is the bias term, w ∈ RN 
is the normal vector of J(w, b). The optimal hyperplane J can be obtained by solving the 
following optimisation problem:

here the minimization of first term (or the L 2-norm regularisation) ensures maximising 
margin or separation between the classes. e is the vector of ones of appropriate dimension. 
The second term is the sum of errors(q) of incorrectly positioned samples in the dead-zone 
or are incorrectly classified. The parameter c controls the importance of the two terms in 
the objective function. The first set of constraints dictates the data points projections to 
hyperplane, be at least unit distance away. However, if this is violated, then the error vari-
able takes minimum value to satisfy the constraint and hence results in soft-margin hyper-
plane. For more details we advise the reader to refer to the original SVM paper (Cortes & 
Vapnik, 1995).

The dual solution, is generally sparse, implying that the SVM need only a fraction 
of the total data points to determine the optimal hyperplane. This property is called 
sparsity. There are several research works that tend to identify these data points from 
the training set. Since the classifier model is dependent on these points only, the train-
ing set can be reduced thereby making the model faster (Jung & Kim, 2013; Nalepa & 
Kawulok, 2019)

2.2 � Support vector machines with pinball loss function

Authors in Huang et  al. (2014) proposed Support vector machines with Pinball loss (Pin-
SVM) taking into consideration the problems with SVMs namely: sensitivity towards noise 
and instability with respect to resampling. Their idea was to penalise the correctly classified 
samples by introducing a parameter 1

�
 , so as to keep the correctly classified samples close to 

(1)

min
w,b,q

1

2
‖w‖2

2
+ ceTq,

s.t. Y(Dw + eb) + q ≥ e,

q ≥ 0.
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the separating hyperplane at the same time maximising the margin as in SVMs. The Pin-SVM 
formulation is as follows:

Here c and � are model parameters. As it is eminent from the above set of equations, Pin-
SVM loses sparsity in exchange for noise insensitivity and resampling robustness. The 
issue of sparsity is handled by introducing a � zone which is mentioned in the subsequent 
subsection.

2.3 � Modified support vector machine with pinball loss

Authors in Rastogi et al. (2018) motivated by the properties of � Pin-SVM, built a data-driven, 
asymmetric � zone Pin-SVM termed as (�1, �2) Modified Pin Support Vector Machine (Mod-
Pin-SVM). Please note that here we take into consideration the version 2 mentioned in their 
paper, we advise the reader to Rastogi et al. (2018) for more details.

Here c1 , c2 �1 , �2 and �1 being the model parameters. This model optimisation enforces the 
data points to lie in the respective � zones, wherein they have zero value for the error vari-
able q. Thus the obtained solution is naturally sparse. From the results reported, it is evi-
dent that their model achieves sparsity, also retaining the noise sensitivity and robustness 
to resampling properties. The downside is many model parameters, and increased training 
time due to the increased number of constraints and variables.

2.4 � Twin support vector machines

Twin support vector machines (TSVM) find a pair of hyperplanes such that each hyperplane 
is proximal to the patterns of its own class and opposite class patterns are atleast unit distance 
away. It solves the following two sets of quadratic problems:

(2)

min
w,b,q

‖w‖2
2

2
+ ceTq,

s.t. Y(Dw + eb) + q ≥ e,

Y(Dw + eb) −
q

�
≤ e.

(3)

min
w,b,q,�2

‖w‖2
2

2
+ c1�2 + c2e

Tq,

s.t. Y(Dw + eb) +

�
q + �1

�1

�
≥ e,

Y(Dw + eb) −

�
q + �2

�2

�
≤ e,

q ≥ 0, �2 ≥ 0.

(4)

min
w1,b1,q1

1

2
‖‖Aw1 + e1b1

‖‖
2

2
+ c1e

T
2
q1,

s.t. − (Bw1 + e2b1) + q1 ≥ e2,

q1 ≥ 0.
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For brevity, we avoid writing the equation for the second hyperplane. Here q1 is the error 
vector, and c1 parameter controls the effectiveness between the L 2-norm square and the 
sum of errors. TSVM deals with only half of the constraints in each QPP, hence are four 
times faster than conventional SVM (Khemchandani & Chandra, 2007).

TSVM loses sparsity because of the two-loss functions (L2 loss, hinge loss) used on the 
classes. Moreover, for large datasets, matrix inversion might be problematic. To overcome 
this, an appropriate small value �I (i.e. ( HTH + �I )) is added to make the matrices invertible. 
Once the class proximal hyperplanes J1(x) = wT

1
x + b1 and J2(x) = wT

2
x + b2 are found, 

the test data can be annotated according to the rule:

To overcome the matrix inversion step in the dual, many alternatives have been put for-
ward by the researchers (Chen et al., 2020; Shao et al., 2011). One solution to avoid matrix 
inversion is replacing L 2-norm with L 1-norm. Another reason for using L 1-norm in the pri-
mal objective of TSVM, rather than using L 2-norm is that the latter is highly influenced by 
outliers and noise in comparison to the former. Also L 1-norm is more robust than L 2-norm 
from experimental and statistical point of view (Li et al., 2016; Kwak, 2008).

Moreover, the use of L 1-norm can make the twin solution sparse. Note that a technique to 
solve L 1-norm has been applied in Twin Support Vector Clustering (Wang et al., 2015). It has 
been shown to converge to the optimal solution, but it would require more number iterations to 
converge, in a way increasing the complexity of the model.

2.5 � L
1
‑norm twin support vector machines

Authors in Peng et al. (2016) motivated by the problems due to the L 2-norm, introduced L 1
-norm based TSVM (L1TSVM). The optimisation is as follows:

Hyperplane 1 ( J1):

This formulation avoids the matrix inversion step and the solution obtained is partly sparse. 
From the empirical observations reported in their paper (Peng et al., 2016), it is evident 
their model becomes less sensitive to outliers with the introduction of L 1-norm. The prob-
lem with L 1-norm TSVM is that it is highly dependent on the parameters. Looking at the 
constraints, it has n constraints in both optimisation Eqs. (6) and (7). So they lose the time 
efficacy of original TSVM, in-fact it requires almost twice the training time as compared 
to conventional SVM. Overall, they do succeed in introducing partial sparsity in TSVM, 
simultaneously avoiding the matrix inversion step.

(5)y = sign(abs(J2(x)) − abs(J1(x))).

(6)

min
w1,b1,q

+

1
,q−

1
,q2

1

2
(‖‖w1

‖‖
2

2
+ b2

1
) + c1e

T
1
(q+

1
+ q−

1
) + c2e

T
2
q2,

s.t. Aw1 + e1b1 = (q+
1
− q−

1
),

− (Bw1 + e2b1) + q2 ≥ e2,

q±
1
≥ 0 , q2 ≥ 0.
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2.6 � Twin parametric margin support vector machine

Authors in Peng (2011) inspired from TSVM framework introduced Twin parametric 
margin support vector machines (TPMSVM). The main optimisation of their model is as 
follows:

Here v1, c1 being the model parameters. For the sake of brevity, we avoid writing the set of 
equations for the second hyperplane. The constraints dictate the Class A samples to lie on 
the positive half-space. Due to the minimisation of the second term in the objective func-
tion, class B samples will lie on the negative half-space keeping them as far as possible 
from the hyperplane. Notice that in this formulation the class A is kept in constraint and 
class B is kept in objective while calculating the hyperplane for class A. TPMSVM obtains 
marginal hyperplanes but TSVM obtains Proximal hyperplanes. A good advantage of this 
formulation is that it doesn’t require any matrix inversion, simultaneously enjoying similar 
time complexity as TSVM. This model mainly finds applicability in scenarios where het-
eroscedastic noise is prevalent.

2.7 � Twin‑support vector machines with pinball loss

Authors in Xu et al. (2016) introduced pinball loss in Twin support vector machines (Pin-
TSVM) to make it less sensitive to noise. They take Twin Parametric Margin Support Vec-
tor Machine (TPMSVM) as the building block of their research and model it to inculcate 
the pinball loss function. In their paper they have shown how Pin-TSVM is an extension to 
TPMSVM, we advise the reader to reference (Peng, 2011; Xu et al., 2016) for more details. 
The optimisation of Pin-TSVM is as follows:

For the sake of brevity, we avoid writing the set of equations for the second hyperplane. 
Among the pinball loss models, Pin-TSVM does seem to be faster in terms of training time 
if there is no data imbalance, but it does not have a sparse solution.

3 � Proposed model

3.1 � Motivation

Conventional SVM has proved to be effective in many practical applications owing to its 
SRM principle which avoids overfitting.

(7)

min
w1,b1,q1

1

2
‖‖w1

‖‖
2

2
+

v1

m2

eT
2
(Bw1 + e2b1) +

c1

m1

eT
2
q1,

s.t. (Aw1 + e1b1) + q1 ≥ 0,

q1 ≥ 0.

(8)

min
w,b,q

1

2
‖w‖2

2
+

v1

m2

(Bw + e2b) +
c1

m1

(eT
1
q),

s.t. (Aw + e1b) + q ≥ e1 ∗ 0,

(Aw + e1b) − (
q

�1
) ≤ e1 ∗ 0.
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SVM has cubic complexity which means it requires humongous training time for large 
datasets. TSVM is around 4 times faster than SVM due to the reduction in the number of 
constraints. TSVM still needs to solve two QPPs, as their decision rule dictates, to clas-
sify samples. Moreover, it is sensitive to outliers and needs to invert matrices due to the 
usage of squared loss on the proximal class. The L 1-norm TSVM addresses these prob-
lems by replacing L 2-norm by L 1-norm. However, it manages to be only partly sparse. This 
model served as the primal point of our research i.e. to further improve upon sparsity in the 
TSVM framework. Surprisingly, the design of PN-SVM turned out to be very similar to 
the Pinball loss models instead. Also, our proposed model is approximately four times (or 
more) faster than the Pin-SVM (and its generations). To sum up, not only does PN-SVM 
manages to address the noise instability problem in the SVM framework, but is also sparse, 
faster, and less complicated than Pin-SVM based models.

3.2 � Formulation

3.2.1 � Linear model

The mathematical formulation of our proposed model is as follows:
Hyperplane 1 ( J1):

Hyperplane 2 ( J2):

Consider the equation for Hyperplane 1 (Eq. 9), the second term in the optimisation forces 
the hyperplane to be close to class A so that the mean of class A projections is minimised. 
The first constraint dictates the hyperplane to keep class A projections to be above the 
hyperplane, if not, q1 (the slack vector) takes the minimum value to satisfy the constraint. 
Similarly, class B projections need to be at least � unit away from the hyperplane. q2 is the 
slack vector for class B samples. The minimisation of the first term in optimisation along 
with the third term adds the SRM principle to the model to avoid overfitting. Notice that the 
Eq. (9), without considering the second term is simply the bounding hyperplane equation 
for the SVM for class A. The minimisation of the mean of class A projections, in the objec-
tive, dictates the hyperplane to keep close to class A. Note that the nature of the hyperplane 
is still bounding if the sum of training errors is emphasised more than the mean of the pro-
jections i.e. c1 > v1 . Please note that if c1 >> v1 , or if the effectiveness of the second term 
in the objective is very small the hyperplanes (i.e. Eqs.  9 and 10) becomes parallel and 

(9)

min
w1,b1,q1,q2

1

2
‖‖w1

‖‖
2

2
+

v1

m1

eT
1
(Aw1 + e1b1) +

c1

m1 + m2

(eT
1
q1 + eT

2
q2),

s.t.(Aw1 + e1b1) + q1 ≥ 0 ∗ e1,

− (Bw1 + e2b1) + q2 ≥ � ∗ e2,

q1 ≥ 0, q2 ≥ 0.

(10)

min
w2,b2,q

�

1
,q

�

2

1

2
‖‖w2

‖‖
2

2
+

v1

m2

eT
2
(Bw2 + e2b2) +

c1

m1 + m2

(eT
1
q
�

1
+ eT

2
q

�

2
),

s.t. (Bw2 + e2b2) + q
�

1
≥ 0 ∗ e2,

− (Aw2 + e1b2) + q
�

2
≥ � ∗ e1,

q
�

1
≥ 0, q

�

2
≥ 0.
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hence converge to the conventional SVM. The minimisation of the mean allows the bound-
ing hyperplanes to minimise the scatter of the classes individually. Since this is similar to 
penalising the correctly classified samples by some amount, it points towards an analogy 
with the pinball loss popularly used to equip SVMs with noise robustness.

For class A, the points which lie on the opposite side of the class A respective hyperplanes 
and the class B points which lie in the �-margin of the hyperplane, contribute towards the 
training error and hence only few points contribute to the model building for class A, allowing 
sparsity. Similarly for class B.

The Eq. (9) can be simplified to as follows:

here q = [q1 ; q2] , e = [e1 ; e2] , D1 = [A;B] , p1 = [0 ∗ e1 ; � ∗ e2]

For calculating the dual of Eq. (11), we write the Lagrangian L1 as follows:

Here �1 and �1 are the Lagrangian multipliers. The Karush-Kuhn-Tucker(KKT) necessary 
and sufficient conditions of Eq. (11) are given by:

Substituting Eqs. (13)– (17) in Eq. (12), we get the dual of primal problem Eq. (11) which 
is as follows:

(11)

min
w1,b1,q

1

2
‖‖w1

‖‖
2

2
+

v1

m1

eT
1
(Aw1 + e1b1) +

c1

m1 + m2

eTq,

s.t. Y ∗ (D1w1 + eb1) + q ≥ p1,

q ≥ 0 .

(12)
L1(w1, b1, q) =

1

2
‖‖w1

‖‖
2

2
+

v1

m1

eT
1
(Aw1 + e1b1) +

c1

m1 + m2

eTq

− �T
1
(Y ∗ (D1w1 + eb1) + q − p1) − �T

1
q = 0.

(13)
�L1

�w1

=
v1

m1

ATe1 + w1 − (Y ∗ D1)
T�1 ⇒ w1 = (Y ∗ D1)

T�1 −
v1

m1

ATe1,

(14)
�L1

�b1
=

v1

m1

eT
1
e1 − (Y ∗ e)T�1 = 0 ⇒ �T

1
Y = v1,

(15)
�L1

�q
=

c1

m1 + m2

e − �1 − �1 ⇒
c1

m1 + m2

e = �1 + �1,

(16)�T
1
(Y ∗ (D1w1 + eb1) + q − p1) = 0, �1 ≥ 0,

(17)�T
1
q = 0, �1 ≥ 0.
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Here Q1 = (Y ∗ D1)(Y ∗ D1)
T and F1 = −(

v1

m1

(Y ∗ D1)A
Te1 + p1).

Once the optimal �1 is obtained, w1 can be obtained from Eq.  (13) and b1 for the 
required hyperplane can be obtained by substituting w1 in Eq. (16) as:

Note that the diag() function column vectorizes the diagonal elements of the square matrix. 
Hence the required hyperplane is: J1(w1, b1) = wT

1
x + b1=0.

Similarly, the hyperplane for class B can be calculated.

Here Q2 = (Ȳ ∗ D2)(Ȳ ∗ D2)
T and F2 = −(

v1

m2

(Ȳ ∗ D2)B
Te2 + p2).

p2 = [0 ∗ e2;� ∗ e1] , Ȳ = −Y  , and we redefine D2 = [B;A].

Hence the required hyperplane for class B is: J2(w2, b2) = wT
2
x + b2 . The test data sample, 

x can be annotated according to the rule as in Eq. (5).

3.2.2 � Nonlinear model

In this section we extend the linear model to the nonlinear case. Here we directly use 
kernel matrices to deal with the non-linear data. The nonlinear model optimizes the fol-
lowing optimization problem:

(18)

min
�1

�T
1
Q1�1

2
+ FT

1
�1,

s.t. 0 ≤ �1 ≤
c1

m1 + m2

e,

�T
1
Y = v1.

(19)b1 =
1

m1 + m2

eT (diag(Y ∗ p1) − D1w1).

(20)

min
𝛼2

𝛼T
2
Q2𝛼2

2
+ (F2)

T𝛼2,

s.t. 0 ≤ 𝛼2 ≤
c1

m1 + m2

e,

𝛼T
2
Ȳ = v1.

(21)
w2 = (Ȳ ∗ D2)

T𝛼2 −
v1

m2

BTe2,

b2 =
1

m1 + m2

eT (diag(Ȳ ∗ p2) − D2w2).

(22)

min
w1,b1,q

1

2
‖‖w1

‖‖
2

2
+

v1

m1

eT
1
(K(A,D1)w1 + e1b1) +

c1

m1 + m2

eTq,

s.t. Y ∗ (K(D1,D1)w1 + eb1) + q ≥ p1,

q ≥ 0 .
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Here note that we have used the rectangular kernel technique, here it indicates that the lin-
ear kernel model and nonlinear formulations are non-uniform.

Similar to the linear case we can obtain the dual of the primal problem Eq.  (22) 
which is as follows:

Here Q̂1 = (Y ∗ D̂1)(Y ∗ D̂1)
T , F̂ = −(

v1

m1

(Y ∗ D̂1))K(A,D1)
Te1 + p1) and D̂1 = K(D1,D1).

Solving we get the above Eq. (24):

Similarly we can obtain the dual of the primal problem Eq. (23) which is as follows:

Here Q̂2 = (Ȳ ∗ D̂2)(Ȳ ∗ D̂2)
T , F̂2 = −( v1

m1
(Ȳ ∗ D̂2))K(B,D2)Te2 + p2) and D̂2 = K(D2,D2).

Solving the above Eq. (26) we get:

The test data sample, x can be annotated according to the kernelized version of rule Eq. (5), 
which is as follows:

3.3 � Algorithm

The algorithm for the proposed model is as follows:

(23)

min
w2,b2,q

�

1

2
‖‖w2

‖‖
2

2
+

v1

m1

eT
2
(K(B,D2)w2 + e2b2) +

c1

m1 + m2

eTq�,

s.t. Ȳ ∗ (K(D2,D2)w2 + eb2) + q� ≥ p2,

q� ≥ 0.

(24)

min
𝛼1

𝛼T
1
Q̂1𝛼1

2
+ F̂T𝛼1,

s.t. 0 ≤ 𝛼1 ≤
c1

m1 + m2

e,

𝛼T
1
Y = v1.

(25)
w1 = 𝛼1(Y ∗ D̂1)

T −
v1

m1

e1K(A,D1)
T
,

b1 =
1

m1 + m2

eT (Y . ∗ p1 − D̂1w1).

(26)

min
𝛼2

𝛼T
2
Q̂2𝛼2

2
+ F̂2

T
𝛼2,

s.t. 0 ≤ 𝛼2 ≤
c1

m1 + m2

e,

𝛼T
2
Ȳ = v1.

(27)
w2 = 𝛼2(Ȳ ∗ D̂2)

T −
v1

m1

e1K(B,D2)
T
,

b2 =
1

m1 + m2

eT (Ȳ . ∗ p2 − D̂2w2).

(28)y = sign(abs(K(x,D) ∗ w2 + b2) − abs(K(x,D) ∗ w1 + b1)).
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Algorithm 1 Linear PN-SVM
1. Input Training Data A, B, D1, D2, Class labels Y , and model parameter v1, c1.
2. Define: Q1 = (Y ∗D1)(Y ∗D1)T , Q2 = (Ȳ ∗D2)(Ȳ ∗D2)T ,

F1 = −( v1
m1

(Y ∗D1)AT e1 + p1), F2 = −( v1
m2

(Ȳ ∗D2)BT e2 + p2).
3. Solve eq. (18), eq. (20) to get α1, α2
4. Obtain w1,w2 and b1, b2 as:

w1 = (Y ∗D1)Tα1 − v1
m1

AT e1,
w2 = (Ȳ ∗D2)Tα2 − v1

m2
BT e2,

b1 = 1
m1+m2

eT (Y. ∗ p1 −D1w1),
b2 = 1

m1+m2
eT (Ȳ . ∗ p2 −D2w2).

5. For any test sample x, annotate it by rule eq. (5).

Algorithm 2 Non-Linear PN-SVM
1. Input Training Data A, B, D1, D2, Suitable kernel function K, Class labels Y , and model parameter v1,

c1.
D̂1 = K(D1, D1), D̂2 = K(D2, D2).

2. Define: Q̂1 = (Y ∗ D̂1)(Y ∗ D̂1)T , Q̂2 = (Ȳ ∗ D̂2)(Ȳ ∗ D̂2)T ,
F̂1 = −( v1

m1
(Y ∗ D̂1))K(A,D1)T e1 + p1), F̂2 = −( v1

m1
(Ȳ ∗ D̂2))K(B,D2)T e2 + p2),

3. Solve eq. (24), eq. (26) to get α1, α2
4. Obtain w1,w2 and b1, b2 as:

w1 = α1(Y ∗ D̂1)T − v1
m1

e1K(A,D1)T ,
w2 = α2(Ȳ ∗ D̂2)T − v1

m1
e1K(B,D2)T ,

b1 = 1
m1 +m2

eT (Y. ∗ p1 − D̂1w1),
b2 = 1

m1 +m2
eT (Ȳ . ∗ p2 − D̂2w2).

5. For any test sample x, annotate it by rule eq. (28).

3.4 � Connection with existing approaches

In this section, we briefly describe how our proposed model shares its connection with the 
existing approaches.

3.4.1 � L
1
‑norm TSVM versus PN‑SVM

In L 1-norm TSVM, the first set of constraints has an equality sign (Eq. 7) so as to develop 
a class A centric hyperplane. In our case, we don’t keep the hyperplane centric to class A 
but instead, keep it close to the boundary of class A simultaneously minimising class A 
projections. This modification not only makes our model sparse but also allows it to act as 
a marginal/bounding or even a proximal hyperplane.

3.4.2 � SVM versus PN‑SVM

Our proposed model seems to have a similar formulation as SVM but the difference is the 
margin and the introduction of the second term in the optimisation Eq. (9). It is simply the 
bounding hyperplane equation for class A in SVM, if the mean of class A is ignored. It is 
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evident that the onset of this change in optimisation makes SVM capture optimal variance 
of the respective class, hence the name PN-SVM.

3.4.3 � Pin‑SVM versus PN‑SVM

The introduction of pinball loss pull-down sparsity in SVMs. To bring back sparsity � 
zone-based Pin-SVM models (Rastogi et al., 2018) are developed. This in turn makes pin-
ball loss models complicated. The addition of class A projections into the objective explic-
itly makes this process much simpler and time-efficient. Along similar lines, our model can 
be regarded as an improved version of Pin-TSVM on the advent of sparsity.

3.4.4 � MCM versus PN‑SVM

Minimal Complexity Machines (MCM) (Jayadeva,, 2015) also share homology with Pin-
SVM models. Our model can be extended as a two hyperplane version of MCM, as it mini-
mises the scatter of two classes separately. However, it does not have the time efficacy 
relationship as TSVM has compared with SVM. This can be a subject of further research.

3.4.5 � TPMSVM versus PN‑SVM

TPMSVM extends the idea of Parametric Margin-SVM (Hao, 2010) by solving two inde-
pendent QPPs. Their model does not implement the SRM principle, thus resulting in sub-
optimal results in certain cases. On the other hand, similar to TPMSVM, PN-SVM also 
tries to model marginal hyperplanes but is not limited to it, i.e. it can also model proximal 
hyperplanes on a suitable choice of parameters. Moreover, PN-SVM gives regard to the 
variance of the respective classes, simultaneously implementing the SRM principle and 
maintaining sparsity. In TPMSVM, the mean of the opposite class is used in the objec-
tive to model separation from the opposite class patterns. However, in PN-SVM mean 
of the respective class is used to model proximity to its own class patterns. On the basis 
of the aforementioned points, PN-SVM can be also regarded as an improved version of 
TPMSVM analogously. For more details on the TSVM based models we advise the reader 
to refer to a recently published survey paper (Tanveer et al., 2022).

3.5 � Computation complexity

In this section, we compare the computational cost of our proposed PN-SVM with other 
related algorithms. During the training phase, similar to conventional SVM, the proposed 
model needs to find coefficients of n constraints for solving the dual QPP. Hence the com-
putation of the proposed model is twice that of SVM is 2 O(n3) . As for the TSVM it needs 
to optimise a pair of smaller QPPs with approximately n/2 constraints, it has the computa-
tional complexity 2 O(

n3

8
) , which is four times faster than the SVM. It should be pointed out 

that TSVM has some extra computational cost since it needs to invert a pair of matrices. 
For TPMSVM it only needs to solve two QPPs hence it has the computational complexity 
2 O(

n3

8
) . As for the pinball loss models it has 2n constraints so it should have computation 

of order O((2n)3) except for Pin-TSVM which has a computation of approximately 2O(n3) 
only if the datasets are balanced (i.e. m1 = m2 ). Here note that the PN-SVM is theoreti-
cally four times faster than Pin-SVM.
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During the testing phase, since the PN-SVM and SVM both are sparse, hence their com-
putational cost depends only on the non-zero coefficients (or support vectors, sv) that is 
O(sv) Generally sv << n , hence due to the sparsity these models are faster in the testing 
phase. For the other models, TSVM and other non-sparse models testing complexity is 
simply O(n).

4 � Experiments

The experiments are performed on well known diverse datasets using ten-fold cross-val-
idation in MATLAB (Matlab, 2012) version 9.4 under Microsoft Windows environment 
on a machine with 3.40 GHz i7 CPU and 16 GB RAM. The optimal value of user-defined 
parameters in different models is obtained by fine-tuning a validation set generated using 
ten percent of training data. After the model parameters are known the validation set is sent 
back to training data for retraining. All datasets are normalised in the range [1,−1] . All 
comparing models are implemented in Matlab. Quadprog() function is used for all models 
to provide uniformity for comparison. For all two hyperplane models, parameters for both 
hyperplanes are kept the same. For measuring the sparsity of sparse models, we use Gini 
index. In Hurley and Rickard (2009) authors show that Gini index is well suited for evalu-
ating sparsity for sparse models. Note that the lower the Gini index, the better the sparsity 
of the model. Note that TSVM, TPMSVM, Pin-TSVM and Pin-SVM are non-sparse mod-
els hence the Gini index for such non-sparse models is explicitly reported as 1 without 
any calculation. For measuring the time (seconds) of the algorithms we use tic-toc (Mat-
lab). Note that we measure only the time taken by quadprog function by each algorithm for 
uniformity’s sake. The training time taken is reported in seconds. The best testing accu-
racy and Gini index are highlighted in bold, and training accuracy is reported to check for 
overfitting. We use gaussian kernel ( K(x1, x2) = e−�‖x1−x2‖

2

 ) for all kernelised models, � is 
tuned in range [0.1 : 0.1 : 1].

For our proposed model the setting of model parameters is very important. We tune 
v1 , c1 in range [0.1 : 0.1 : 0.9] and [1 : 1 : 10] respectively. For brevity, we select the same 
value for the second hyperplane. However, the parameters for both hyperplanes can be 
tuned separately for better accuracy. Note that c1 should be sufficiently larger that v1 (i.e. 
c1 > v1).

For all our experiments we fix � = 0.1 just to avoid trivial solution for the optimisation.

4.1 � Illustration on toy dataset

To show how our proposed model works, we show its plot on a synthetic two-dimensional 
dataset. The synthetic data is generated using mvnrnd function Matlab. We take the mean 
of class A as [0.1,−1.8]T and the mean of class B as [−0.1, 1.8]T . Covariance matrices are 
[0.3, 0.2; 0.2, 0.3] and [0.3,−0.2; − 0.2, 0.3] for the two classes respectively. The size of 
the two classes is taken to be 200 each. Refer to Fig. 1, it is easy to observe the differences 
among the various two hyperplane classifiers. Our proposed model does not run through 
the centre of the respective classes but it runs along the margin of the class such that the 
sum of projections of the respective class is minimised. Most of the samples lie on one 
side of the hyperplane but the trade-off between the second and third term in Eq. (9) forces 
some noisy samples to lie on the opposite side of the hyperplane (note that we have kept 
the parameter for the third term to be higher than that of the second term).
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The separation can be made better by significantly increasing the value of c1 . Doing 
so will allow the hyperplane to focus on more separation between the classes. In fact, 
if c1 >> v1 then it can be seen that the hyperplanes become parallel and the PN-SVM 
effectively behaves as conventional-SVM.

Look at Fig. 2, notice how increasing the value of c1 changes the hyperplanes and 
the results for PN-SVM. So it’s very important to select the parameters correctly.

4.2 � Illustration on noise‑corrupted datasets

The Fig. 3 shows the effect of noise on the classification accuracy of the two compar-
ing models, namely PN-SVM and Pin-SVM. For a more accurate representation for 
comparison, natural log of testing accuracy is reported. Datasets are corrupted by add-
ing noise using the mvrnd function Matlab. Dataset mean and covariance are used as 
input to the mvrnd function. Finally, some percentage of samples are corrupted by this 
generated noise. From the plots shown, it is evident that PN-SVM behaves approxi-
mately as Pin-SVM in the presence of noise. However, a comparison between their 
optimisations points toward functional analogy.

Fig. 1   Figures starting from top left to bottom right, are TSVM, TPMSVM, Pin-TSVM, and PN-SVM
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v1 = 0.5, c1 = 2 v1 = 0.5, c1 = 10
Training acc = 100.0 ± 0.0 Training acc = 100.0 ±0.0
Testing acc = 100.0 ± 0.0 Testing acc = 100.0 ±0.0

v1 = 0.5, c1 = 25 v1 = 0.5, c1 = 50
Training acc = 100.0 ± 0.0 Training acc = 100.0 ±0.0
Testing acc = 100.0 ± 0.0 Testing acc = 100.0 ±0.0

v1 = 0.5, c1 = 100 v1 = 0.5, c1 = 1000
Training acc = 100.0 ± 0.0 Training acc = 100.0 ±0.0
Testing acc = 100.0 ± 0.0 Testing acc = 100.0 ±0.0

Fig. 2   Plots showing the effect of c1 on PN-SVM
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4.3 � Datasets

The datasets are selected keeping into consideration the diversity of sizes. The characteris-
tics of the datasets (Instances × features) used are described alongside the results. Datasets 
used are obtained from UCI machine learning repository (Asuncion & Newman, 2007) and 
Gunnar Rätsch’s repository (Diethe, 2015).

4.4 � Results for linear models

The Table 1 show the linear results for our proposed models PN-SVM against the compar-
ing models. In comparison with TSVM and SVM, PN-SVM needs more training time. On 
the other hand, PN-SVM has comparable performance with these two and in many cases, 
it outputs greater Accuracy. Compared with TSVM and PN-SVM, the latter introduces 
sparsity into its framework which is comparable to the sparsity of SVM. In many cases, it 
exhibits superiority in this regard.

In comparison with pinball loss models, i.e. Pin-SVM, Pin-TSVM and Mod-Pin-SVM, 
the time efficacy of PN-SVM is clearly visible. Since pinball loss adds another set of con-
straints, it makes these models slower. Please note that our model is not the first attempt 
to introduce sparsity into the Pinball loss based models. However, it can be regarded as a 

Fig. 3   Figures show the comparison between PN-SVM and Pin-SVM on varying percentage of noise on 
datasets
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better, simpler model, in terms of training time, accuracy and sparsity as compared with 
Pinball loss based models. Our model has superior sparsity in comparison with Mod-Pin-
SVM. Our model adopts the sparsity due to the SVM framework and noise resilience is 
granted by the minimisation of the mean of respective class projections.

4.5 � Results for NDC datasets

To clearly demonstrate the effect of dataset size on the training time of the linear clas-
sifiers we conduct experiments on NDC datasets (Musicant, 1998). The characteristic of 
these datasets is described in the Table 2 as samples × dimension × Imbalance. Imbalance 
is defined as the ratio of number of positive labelled samples to the number of negative 
labelled samples in the dataset. The Table 2 show the linear results for our proposed mod-
els namely PN-SVM against the comparing models. The dimension of the NDC datasets is 
fixed (i.e. 32) while the sample size is varied. For all the datasets the model parameters are 
fixed to study the change of time with increasing data size. It can be seen that as the imbal-
ance ratio increases, the pin-TSVM model becomes more time-consuming. In fact from 
the Fig. 4, it can be seen that its curve grows the fastest among all the other models. Also, 
it is clear that the pinball loss models are very heavy on training time compared to our 
proposed model PN-SVM. Among these three, TSVM is the fastest, followed by SVM and 
PN-SVM. So it is important to improve upon the time requirement of the pinball models.

4.6 � Results for non‑linear models

The Table 3 show the kernelised results for our proposed models namely PN-SVM against 
the comparing models. Due to the higher computational requirement of Pinball models, 
we experiment on medium-sized datasets. Our proposed model PN-SVM is able to output 
comparable results and achieves superior sparsity. Similar to the observations in the linear 

Fig. 4   Time comparison on NDC datasets
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case, the time requirement of our model, here is higher than SVM and TSVM, but still 
lesser in comparison to Pinball models.

4.7 � Statistical analysis

We use ranking criteria to evaluate better the results obtained from the algorithms. The 
ranks are allotted to each algorithm according to the order in which they perform w.r.t to a 

Table 4   Ranks with linear classifiers for datasets

The best results are highlighted in bold

Datasets TSVM TPMSVM PN-SVM  Pin-TSVM SVM Mod-Pin-SVM Pin-SVM

Thyroid 5 4 1 2 3 7 6
Heart-statlog 5 2 2 6 1 4 7
Breast cancer 4 1 2 7 5 6 3
Ionosphere 7 6 2 5 1 2 4
House votes 3 6 1 7 5 4 2
Isolet 1 6 2 7 5 2 2
Australian 7 1 2 2 2 2 2
Pimadiabetes 3 6 5 7 4 2 1
German 5 4 1 6 3 1 7
Flare-solar 6 5 1 7 1 1 1
CMC 2 6 1 7 3 4 5
Image 5 7 3 6 2 1 4
Krvskp 4 7 3 5 1 1 6
Splice 6 7 1 5 3 2 4
Waveform 7 3 2 4 6 1 5
Statlog 3 7 1 6 5 2 3
Twonorm 3 7 4 5 2 1 6
Avg rank 4.47 5.00 2.00 5.53 3.06 2.53 4.00

Table 5   Ranks with non-linear classifiers for datasets

The best results are highlighted in bold

Datasets TSVM TPMSVM PN-SVM Pin-TSVM SVM Mod-Pin-SVM Pin-SVM

 Thyroid 1 2 4 3 4 4 7
Heart-statlog 5 4 2 6 2 1 7
Breast cancer 6 2 1 7 3 5 4
Ionosphere 4 2 1 7 6 4 3
House votes 1 6 2 7 4 5 3
Isolet 1 5 2 7 2 2 5
Australian 2 1 2 7 4 4 4
Pimadiabetes 2 6 1 7 5 3 4
German 6 5 1 7 3 2 4
Flare-solar 6 4 5 7 1 1 1
Avg rank 3.4 3.7 2.1 6.5 3.4 3.1 4.2
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metric, i.e. if a model has the best results, it is ranked 1; if it has a second-best result, it is 
given rank 2 on a particular dataset. If two algorithms have the same results, they are given 
the same rank. Mean rank obtained via averaging ranks for all datasets w.r.t to a metric is 
reported in Tables 4 and 5. It can be seen that the proposed algorithm PN-SVM achieves 
the best rank amongst the comparing algorithms for linear as well as non-linear classifiers.

5 � Conclusions

In this paper, we have proposed the PN-SVM model to handle binary classification, 
wherein we effectively address the problem of sparsity and noise resilience through refor-
mulation of the SVM optimisation framework by minimising average projections of the 
respective classes. The results on benchmark datasets prove the efficacy of the proposed 
model against the comparing approaches. Further, our proposed model presents a faster 
and much simpler model than the Pinball loss models. PN-SVM exhibits homology to 
SVM. Hence the fast SVM type approaches can be modified to adapt to our model. Further, 
it would be interesting to develop its extension for multiclass classification.
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