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Abstract
Feature selection reduces the complexity of high-dimensional datasets and helps to gain 
insights into systematic variation in the data. These aspects are essential in domains that 
rely on model interpretability, such as life sciences. We propose a (U)ser-Guided (Bay)
esian Framework for (F)eature (S)election, UBayFS, an ensemble feature selection tech-
nique embedded in a Bayesian statistical framework. Our generic approach considers two 
sources of information: data and domain knowledge. From data, we build an ensemble of 
feature selectors, described by a multinomial likelihood model. Using domain knowledge, 
the user guides UBayFS by weighting features and penalizing feature blocks or combina-
tions, implemented via a Dirichlet-type prior distribution. Hence, the framework combines 
three main aspects: ensemble feature selection, expert knowledge, and side constraints. Our 
experiments demonstrate that UBayFS (a) allows for a balanced trade-off between user 
knowledge and data observations and (b) achieves accurate and robust results.
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1  Introduction

Feature selection pursues two major goals: to improve the performance of predictive 
algorithms like classification, regression, or clustering models as well as to improve data 
understanding and interpretability. Both aspects are of significant interest in the field of life 
science, such as healthcare, where major decisions may be based on data analysis. Here, 
two sources of information are often available: large-scale collections of data from mul-
tiple sources and profound knowledge from domain experts. Previous works tend to han-
dle these sources as opposites, see Cheng et al. (2006), or neglect expert knowledge com-
pletely, see Pozzoli (2020). However, a combination of both can be valuable to compensate 
for underdetermined problem setups from high-dimensional datasets, which are prevalent 
in healthcare data analysis. Moreover, meta-information on the feature set may leverage 
interpretability. Works such as Liu and Zhang (2015) consider constraints between sam-
ples but neglect constraints between features. The extension of L1 regularization to the 
so-called Group Lasso (Yuan & Lin , 2006) and its variants (Ida et al. , 2019) account for 
block structure but cannot handle more complex constraint types. Elementary approaches 
to integrating user knowledge and feature selection include Guan Guan et al. (2009), who 
suggest manually adding user-defined features to the feature selection output of algorithms. 
A more advanced model by Brahim and Limam (2014) embeds prior knowledge into three 
particular feature selection algorithms. Though, their work neither allows a direct generali-
zation to other feature selectors nor the integration of more general types of prior knowl-
edge, such as side constraints. Hence, there is a lack of general and sophisticated frame-
works for feature selection that combine data-driven methods with user knowledge and 
deliver transparent results.

Apart from measuring predictive model performance, properties like stability and 
reproducibility of the feature selector are essential for transparency. A model-independent 
approach for improving feature selection stability is to deploy ensembles of elementary 
feature selectors. Recent research by Bose (2021), and Jenul (2021) pursued this idea by 
utilizing sub-sampling strategies to generate model ensembles as such provide feature sta-
bility measures aside from good predictive performance. Seijo-Pardo et al. (2017) conclude 
that meta-models composed of elementary feature selectors improve the performance and 
robustness of the selected feature set in many cases. However, to the best of our knowledge, 
probabilistic approaches that exploit both — a sound statistical framework and individual 
model benefits of using an ensemble elementary feature selectors — are not yet available.

A prominent framework with the capability to combine data and expert knowledge 
is Bayesian statistics, which has been applied for feature selection in linear models, see 
O’Hara and Sillanpää (2009). Intentions behind the usage of Bayesian methodology vary 
significantly between authors and do not necessarily involve expert knowledge. Examples 
include Dalton (2013), who investigates sparsity priors, and Goldstein et al. (2020), who 
suggest a Bayesian framework to quantify the level of uncertainty in the underlying feature 
selection model. Other Bayesian approaches for feature selection include Saon and Pad-
manabhan (2001), and Lyle et al. (2020), but these works do not investigate the usage of 
expert knowledge as prior. Although the availability of expert knowledge plays a role in life 
sciences, none of these approaches strongly emphasizes domain knowledge about features, 
nor do they involve specific prior constraints defined by the user.

In this work, we propose a novel Bayesian approach to feature selection that incorpo-
rates expert knowledge and maintains considerable model generality. We aim to fill the 
gap between data-driven feature selection on one side and purely expert-focused feature 
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selection on the other side. Our presented probabilistic approach, UBayFS, combines a 
generic ensemble feature selection framework with the exploitation of domain knowledge. 
Hence, it supports interpretability and improves the stability of the results. For this pur-
pose, feature importance votes from independent elementary feature selectors are merged 
with constraints and feature weights specified by the expert. Constraints may be of a gen-
eral type, such as selecting a maximum number of features or blocks of features. Both 
inputs, likelihood and prior, are aggregated in a sound statistical framework, producing a 
posterior probability distribution over all possible feature sets. We use a Genetic Algorithm 
for discrete optimization to efficiently optimize the posterior feature set in high-dimen-
sional datasets. In an extensive experimental evaluation, we analyze UBayFS in a variety 
of model setups involving prior knowledge and constraints. Results on open-source data-
sets are benchmarked against state-of-the-art feature selectors in terms of predictive perfor-
mance and stability, underlining the potential of UBayFS.

Notations  We will denote vectors by bold, uncapitalized, and matrices by bold, capital-
ized letters. Non-bold, uncapitalized letters indicate scalars or functions, and non-bold, 
capitalized letters indicate sets or constants. ‖.‖1 denotes the L1-norm. [N] is an abbrevia-
tion of the set of indices 1,… ,N . The N-dimensional vector of ones will be written as 1N . 
Furthermore, we refer to sets of features by their feature indices, such as S ⊆ [N] , or by a 

binary membership vector �S ∈ {0, 1}N with components (�S)n =
{

1 if n ∈ S,

0 otherwise.

2 � User‑guided ensemble feature selector

Given a finite set of N features, the goal of UBayFS is to find an optimal subset of fea-
ture indices S⋆ ⊂ [N] , or, equivalently, �⋆ = �S

⋆

∈ {0, 1}N . We assume that information is 
available from 

1.	 Training data to collect evidence by conventional data-driven feature selectors—we 
denote this as information from data y,

2.	 The user’s domain knowledge encoded as subjective beliefs � ∈ ℝ
N about the impor-

tance of features, where 𝛼n > 0 for all n ∈ [N] , and
3.	 Side constraints, given as inequality system A� ≤ b , to ensure that the obtained feature 

set conforms with practical requirements and restrictions.

UBayFS assumes a feature importance vector � ∈ [0, 1]N , ‖�‖1 = 1 , which is probabilis-
tic and not directly observable, such that evidence about � is collected from data y and 
prior weights � . Our model aims to maximize the accumulated importances �T� of the 
selected features subject to side constraints A� ≤ b . More specifically, we maximize the 
utility function

where �(�) is a non-negative scalar function which penalizes the degree of violation of the 
constraints. The precise form of �(.) will be given later. Clearly, we require that �(�) = 0 , if 
A� ≤ b is satisfied. In Eq. 1, 𝜆 > 0 plays the role of a Lagrange parameter, ��(�) increases 
the amount of penalization imposed on a feature set violating the constraints. In terms of 
statistical decision theory, a Bayes decision should maximize the posterior expected utility

(1)U(�,�) = �T� − 𝜆𝜅(�), 𝜆 > 0,
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We denote the optimal feature set according to Eq. 2 by �⋆ . The importance parameter � is 
inferred from data from elementary feature selectors trained on subsets of the dataset, sum-
marized as y , as well as prior feature importance scores � . Thus, the posterior probability 
distribution of � given observations y , p(�|y) , is decomposed using Bayes’ theorem into

where p(y|�) describes the model likelihood (evidence from elementary feature selector 
model) and p(�) describes the density of a prior distribution (user domain knowledge).

The remainder of this Section focuses on determining the missing model components to 
define the problem stated in Eq. (2), comprising (a) the feature importances � , discussed in 
Sect. 2.1 and 2.2, and (b) the function � , discussed in Sect. 2.3. Finally, Sect. 2.4 suggests 
the discrete optimization procedure to solve Eq. (2).

2.1 � Ensemble feature selection as likelihood

To collect information about feature importances from the given dataset, we train an ensem-
ble of M elementary feature selectors of the same model type on distinct training subsets. 
The selection of a feature index set �(m) comprising a constant number of l = ‖�(m)‖1 fea-
tures in each elementary model m out of a total of M models can be interpreted as a result 
of drawing l balls from an urn, where each ball has a distinct color representing one feature 
n ∈ [N] . Over all elementary models, y collects the counts of each feature being selected, 
resulting in a count vector in

Each elementary feature selector delivers a proposal for an optimal feature set. Thus, we 
let the frequency of drawing a feature throughout �(1),… , �(M) represent its importance 
by defining the latent importance parameter vector � ∈ [0, 1]N , ‖�‖1 = 1 , as the success 
probabilities of sampling each feature in an individual urn draw. In a statistical sense, we 
interpret the result from each elementary feature selector as realization from a multinomial 
distribution with parameters � and l.1 This multinomial setup delivers the likelihood p(y|�) 
as joint probability density

where fmult(�
(m);�, l) denotes the density of a multinomial distribution with success prob-

abilities � and a number of l urn draws. Relevant notations are summarized in Table 1.

(2)��|y[U(�,�(y))] = �T��|y[�(y)] − ��(�) ⟶ max
�∈{0,1}N

.

(3)p(�|y) ∝ p(y|�) ⋅ p(�),

(4)y =

M∑
m=1

�(m) ∈ {0,… ,M}N .

(5)p(y|�) =
M∏

m=1

fmult(�
(m);�, l),

1  The exact way to describe this procedure is a multivariate hypergeometric distribution, since each feature 
occurs at most once in a set, but an approximation using the multinomial distribution facilitates computa-
tion.
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2.2 � Expert knowledge as prior weights

To constitute the prior distribution, UBayFS uses expert knowledge as a-priori weights of 
features. Since the domain of the distribution of feature importances � is defined to be a 
simplex � ∈ Θ ⊂ [0, 1]N , ‖�‖1 = 1 , the Dirichlet distribution is a natural choice as prior 
distribution, which is widely used in data science problems, such as Nakajima et al. (2014). 
Thus, we initially assume that a-priori

where fDir(�;�) denotes the density of the Dirichlet distribution with positive 
� = (�1,… , �N) . Since the Dirichlet distribution is a conjugate prior of the multinomial 
distribution, the posterior distribution results in a Dirichlet type, again, see DeGroot 
(2005). Thus, it holds for the posterior density that

where the parameter update is obtained in closed form by

In case of integer-valued prior weights � , they may be interpreted as pseudo-counts in the 
context of modelling success probabilities in an urn model—comparable to the informa-
tion gained if the corresponding counts were observed in a multinomial data sample. In 
UBayFS, we obtain � as feature weights provided by the user. If no user knowledge is 
available, the least informative choice is to specify uniform counts with a small positive 
value, such as �unif = 0.01 ⋅ 1N.

2.2.1 � Generalized Dirichlet model

Even though the presented Dirichlet-multinomial model is a popular choice due to its 
favorable statistical properties, it implicitly assumes that classes (in our case, features) are 
mutually independent. However, high-dimensional datasets frequently involve complex 
correlation structures between the features. To account for this aspect, we generalize the 
setup by replacing the Dirichlet prior distribution with some generalized Dirichlet distribu-
tion. The highest level of generalization is achieved by Hankin (2010), who introduced the 
hyperdirichlet distribution, which may take arbitrary covariance structures into account. 
The hyperdirichlet distribution maintains the conjugate prior property with respect to the 
multinomial likelihood, and thus, inference is tractable; however, the analytical expres-
sion of the expected value involves the intractable normalization constant and, as a result, 

(6)p(�) = fDir(�;�),

(7)p(�|y) ∝ fDir(�;�
◦),

(8)�◦ = � + y.

Table 1   Notations for likelihood 
parameters

Input and elementary models

n ∈ [N] Feature indices
m ∈ [M] Elementary models
� ∈ {0, 1}N Feature index set
� ∈ Θ ⊂ [0, 1]N Feature importances
y ∈ {0,… ,M}N Feature counts
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requires numerical means such as Monte-Carlo Markov Chain (MCMC) methods, which 
may face computational challenges due to the high dimensionality of the problem.

A compromise between the complexity of the problem and the flexibility of the covari-
ance structure is given by an earlier version of the generalized Dirichlet distribution by 
Wong (1998), which is a special case of the hyperdirichlet setup, but more general than the 
standard Dirichlet distribution. In addition to the properties of the hyperdirichlet distribu-
tion, the expected value of the generalized Dirichlet distribution can be directly evaluated 
from the distribution parameters. Section 3 provides an experimental evaluation of the pro-
posed variants to account for covariance structures in the UBayFS model.2

2.3 � Side constraints as regularization

Practical setups may require that a selected feature set fulfills certain consistency require-
ments. These may involve a maximum number of selected features, a low mutual correla-
tion between features, or a block-wise selection of features. UBayFS enables the feature 
selection model to account for such requirements via a function � , which incorporates a 
system of K inequalities restricting the feature set � , A� − b ≤ 0 , where A ∈ ℝ

K×N and 
b ∈ ℝ

K . Each single constraint k ∈ [K] can be evaluated via an inadmissibility function 
�k(.) , such that

 where a(k) is the k-th row vector of A and b(k) the k-th element of b . UBayFS generalizes 
the setup by relaxing the constraints: in case that a feature set � violates a constraint, it 
shall be assigned a higher penalty rather than being excluded completely. This effect is 
achieved by replacing �k(.) with a relaxed inadmissibility function �k,�(.) based on a logistic 
function with relaxation parameter � ∈ ℝ

+ ∪ {∞}:

 with �k,� = exp
(
−�

((
a(k)

)T
� − b(k)

))
 . Fig. 1 illustrates that a large parameter � ⟶ ∞ 

lets the inadmissibility converge pointwise towards the associated hard constraint. A low � 
changes the shape of the penalization to an almost constant function in a local neighbor-
hood around the decision boundary, such that only a minor difference is made between fea-
ture sets that fulfill and those that violate a constraint.3

Finally, the joint inadmissibility function �(.) aggregates information from all constraints

(9)�k(�) =

{
0 if

(
a(k)

)T
� − b(k) ≤ 0

1 otherwise,

(10)𝜅k,𝜌(�) =

⎧⎪⎨⎪⎩

0 if
�
a(k)

�T
� ≤ b(k)

1 if
�
a(k)

�T
� > b(k) ∧ 𝜌 = ∞

1−𝜉k,𝜌

1+𝜉k,𝜌
otherwise,

(11)�(�) = 1 −

K∏
k=1

(
1 − �k,�(�)

)
,

2  Details on the generalized prior distributions are provided in Appendix A.
3  for a proof see Appendix A
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which originates from the idea that � = 1 (maximum penalization) if at least one �k,� = 1 , 
while � = 0 (no penalization) if all �k,� = 0.

Note that different relaxation parameters may be used to prioritize the constraints among 
each other, hence � involves a parameter vector � = (�1,… , �K) . Notations related to prior 
parameters and constraints are summarized in Table 2.

2.3.1 � Feature decorrelation constraints

Commonly, feature sets with low mutual correlations are preferred since they tend to 
contain less redundant information. A special case of prior constraints can be defined to 
enforce that such feature sets are selected. We will refer to such constraints as decorrelation 
constraints. Decorrelation constraints are pairwise cannot-link constraints between highly 
correlated features, i.e., features i and j with a correlation coefficient �i,j exceeding a prede-
fined absolute threshold |𝜏i,j| > 𝜏 . For each such pair i, j ∈ [N], i ≠ j , a constraint is added 
to the constraint system as follows: the vector a with elements

and an element b = 1 are appended to A and b , respectively. We set the shape parameter � 
to the odds ratio of the absolute correlation coefficient �i,j , given as

(12)an =

{
1 if n ∈ {i, j}

0 else,

Fig. 1   The effect of � on �
k,� for 

soft constraints

Table 2   Notations used for prior 
parameters

Prior parameters

�,�◦ ∈ ℝ
N Prior/posterior weights

k ∈ [K] Constraint index
A ∈ ℝ

K×N , b ∈ ℝ
K Inequality system

� ∈ ℝ
K Relaxation parameters

�(.) ∶ {0, 1}N → [0, 1] Joint inadmissibility
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Hence, features with higher absolute correlations are assigned higher penalties and vice 
versa. As a result, the selected feature set contains features with lower mutual correlations.4

2.3.2 � Feature block priors

User knowledge may as well be available for feature blocks rather than for single features. 
Feature blocks are contextual groups of features, such as those extracted from the same 
source in a multi-source dataset. It can be desirable to select features from a few distinct 
blocks so that the model does not depend on all sources at once. While prior weights can 
be trivially assigned on block level, we transfer the concept of side constraints to feature 
blocks.

Feature blocks are specified via a block matrix B ∈ {0, 1}W×N , where 1 indicates that 
the feature n ∈ [N] is part of block w ∈ [W] and 0, else. Even though a full partition of 
the feature set is common, feature blocks are neither required to be mutually exclusive, 
nor exhaustive. Along with the block matrix B , an inequality system between blocks con-
sists of a matrix Ablock ∈ ℝ

K×W and a vector bblock ∈ ℝ
K . To evaluate whether a block is 

selected by a feature set � , we define the block selection vector �block ∈ {0, 1}W , given by

where ≥ refers to an element-wise comparison of vectors, delivering 1 for a component, if 
the condition is fulfilled, and 0, otherwise. In other words, a feature block is selected, if at 
least one feature of the corresponding block is selected. Although block constraints intro-
duce non-linearity into the system of side constraints, they can be used in the same way as 
linear constraints between features and integrated into the joint inadmissibility function �.

2.4 � Optimization

Exploiting the conjugate prior property, the posterior density of � can be expressed as a 
Dirichlet, generalized Dirichlet or hyperdirichlet distribution, respectively. The expected 
value ��[�] can be computed either in a closed-form expression (Dirichlet or generalized 
Dirichlet)  Wong (1998), or simulated via a sampling procedure (hyperdirichlet)  Hankin 
(2010). It remains to solve the discrete optimization problem in Eq. (2) as a final step.

(13)� =
|�i,j|

1 − |�i,j| .

(14)�block =
(
B� ≥ 1W

)
,

4  We suggest to use Spearman’s rho as correlation coefficient, since it is robust (in contrast to Pearson’s 
correlation coefficient) and faster to compute than Kendall’s tau.
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Since an analytical minimization of the resulting knapsack problem is not feasible, we 
determine a numerical optimum �⋆ by using discrete optimization: we deploy the Genetic 
Algorithm (GA) described by Givens and Hoeting (2012). To guarantee a fast convergence 
towards an acceptable solution, it is beneficial to provide initial samples, which are good 
candidates for the final solution. For this purpose we propose a probabilistic sampling 
algorithm, Alg. 1: In essence, the algorithm creates a random permutation of all features, 
� ∶ [N] → [N] , by weighted and ordered sampling without replacement. The weights rep-
resent the posterior parameter vector �◦ . Then, the algorithm iteratively accepts or rejects 
feature �(n) with a success probability

denoting the admissibility ratios of feature sets with and without feature �(n) . The gener-
ated sample accounts for high feature weights by low ranks, resulting in a higher probabil-
ity to be accepted in the acceptance/rejection step.

The Genetic Algorithm (GA) for discrete optimization is initialized using Algorithm 1. 
Starting with an initial set of feature membership vectors 

{
�0 ∈ {0, 1}N

}
 , GA creates new 

vectors �t ∈ {0, 1}N as pairwise combinations of two preceding vectors �t−1 and �̃t−1 in 
each iteration t ∈ [T] . A combination refers to sampling component �t

n
 from either �t−1

n
 or 

�̃
t−1

n
 in a uniform way and adding minor random mutations to single components. The pos-

terior density serves as fitness when deciding which vectors �t−1 and �̃t−1 from iteration 
t − 1 should be combined to �t — the fitter, the more likely to be part of a combination.

The runtime of GA depends linearly on the population size, and the number of itera-
tions. A good trade-off between runtime and convergence properties is important—a 
small population size, for example, might lead to faster convergence but might get trapped 

(15)r�†,� =

{
1−𝜅(�†)

1−𝜅(�)
if 𝜅(�) < 1

0 else,
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towards a local minimum. Further, the runtime is dependent on the complexity to compute 
the fitness function, which in turn depends on the dimensionality of the problem.

3 � Experiments and results

Our numerical experiments evaluate the performance, flexibility, and applicability of 
UBayFS in two parts: first, a study conducted on synthetic datasets demonstrates the prop-
erties of the various model parameters, including 

a.	 The number of elementary models M (1a),
b.	 The prior weights � in a block-wise setup (1b),
c.	 The constraint types and their shapes � in a block-wise setup (1c), as well as
d.	 The type of prior distribution to account for feature dependencies (1d).

The second part of our experiment is conducted on real-world classification datasets from 
the life science domain. In a comparison with state-of-the-art ensemble feature selectors, 
we demonstrate that UBayFS delivers similar model performances. Our setups include 
ordinary and block feature selection without prior knowledge to ensure a fair comparison. 
Finally, we conduct a case study with expert knowledge available from biological investi-
gations, and demonstrate how informative priors increase model performance in practice.

3.1 � Default parameters

Six types of feature selectors are evaluated as elementary models for UBayFS:

•	 Minimum Redundancy Maximum Relevance (mRMR) Ding and Peng (2005),
•	 Fisher score Bishop (1995),
•	 Decision tree for classification Breiman et al. (1984),
•	 Recursive feature elimination (RFE) Guyon et al. (2002),
•	 Hilbert-Schmidt Independence Criterion Lasso (HSIC) Yamada et al. (2014),
•	 Lasso Tibshirani (1996).

However, the main focus of the present work is to evaluate the generic concept of UBayFS 
rather than to provide an in-depth analysis of these elementary feature selectors.

Our implementation of UBayFS in R (R Core Team , 2020)5 uses the Genetic Algo-
rithm package authored by Scrucca (2013) with T = 100 and Q = 100 ; in most cases, con-
vergence is achieved after around ten iterations. By default, each UBayFS setup comprises 
an uninformative prior with �n = 0.01 for all n ∈ [N] , and a max-size constraint instructing 
to select bMS features, which is determined individually for each dataset. Thus, by default, 
the constraint system is given as:

A = (1 1 … 1), b = bMS,� = 1.

5  For implementation and experimental setups, see https://​github.​com/​annaj​enul/​UBayFS and https://​
github.​com/​annaj​enul/​UBayFS_​exper​iments; for details, see Appendix B.

https://github.com/annajenul/UBayFS
https://github.com/annajenul/UBayFS_experiments
https://github.com/annajenul/UBayFS_experiments
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No further user knowledge or side constraints are introduced unless stated explicitly in the 
particular setups. Each setup is executed in I = 10 independent runs i ∈ [I] , representing 
distinct random splits of the dataset D into train data T (i)

train
 and test data T (i)

test = D ⧵ T
(i)

train
 

(stratified 75%/25% split).

3.2 � Evaluation metrics

For the synthetic datasets, performance is measured by the F1 score of correctly / incor-
rectly selected features since the ground truth about the relevance of features is known 
from the simulation procedure. For real-world data, F1 scores refer to the predictive results 
obtained by training a classification model after feature selection, and judge the feature 
selection quality indirectly. Furthermore, all experiments evaluate the stability measure by 
Nogueira et al. (2018) across I independent feature selection runs. Stability ranges asymp-
totically in [0, 1], where 1 indicates that the same features are selected in every run (per-
fectly stable). Runtime6 refers to the time the model requires to perform feature selection, 
including elementary model training and optimization, but excluding any predictive model 
trained on top of the feature selection results. Since prior parameters have a minor influ-
ence on the runtime, times will not be provided for experiments investigating these aspects.

3.3 � Experiment 1: simulation study

To investigate major properties of UBayFS, we simulate four different datasets: 

	 i.	 An additive model (experiment 1a) similar to Data1 in Yamada et al. (2014), com-
posed of a (x1,… , x1000) ∼ 1000 × 1000 data matrix simulated from a Gaussian dis-
tribution N(01000, I1000) , and a binary target variable 

 where x1,… , x4 denote the features 1 to 4 and � ∼ N(0, 1) . The function g trans-
forms z into a class variable by 

	 ii.	 A non-additive model (experiment 1a) similar to Data2 in Yamada et al. (2014), 
equivalent to the setup of i., except for a multiplicative target variable 

	 iii.	 A simulated dataset (experiment 1b, 1c) with group structure among the features, 
produced via make_classification (Pedregosa , 2011), delivering a 512 × 256 dataset 
with 8 feature blocks à 32 features—4 of these blocks contain relevant features (4 
important features per block), 2 blocks contain redundant features representing arbi-
trary linear combinations of the relevant features (3 redundant features per block);

f (x, �) = g(−2 sin(2x1) + x2
2
+ x3 + exp(−x4) + �),

g(z) =

{
1 if z ≥ 0,

0 otherwise;

f (x, �) = g(x1 ⋅ exp(2x2) + x2
3
+ �);

6  CentOS Linux 7.9.2009, Intel Xeon(R) CPU E5-2650 @ 2.60GHz, 3 GB RAM, R v3.6.0.
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	 iv.	 Another dataset simulated via make_classification, comprising 32 features in total 
(16 important, 16 redundant) without block structure. This smaller dataset ( 64 × 32 ) 
has a complicated correlation structure due to the high number of redundant features 
and is used to evaluate UBayFS variants that take feature dependence into account 
(experiment 1d).

The maximum number of selected features bMS is set to the ground truth number of rel-
evant features, i.e. bMS = 4 (dataset i.), bMS = 3 (dataset ii.), and bMS = 16 (datasets iii. and 
iv.), respectively. The default constraint shape parameters for MS is set to �MS = 1 . Unless 
otherwise stated, the prior weights are set to a constant, uninformative value of � = 0.01 for 
all features.

In addition to the constraint shape � associated with a single constraint, � balances the 
overall impact of side constraints with the Dirichlet-multinomial model. A small parameter 
𝜆 < 1 is not recommended since a lack of influential constraints (including the MS con-
straint) results in selecting all features due to an unregularized utility function U. On the 
other hand, a high � has a similar effect as setting all shape parameters uniformly to � = ∞ ; 
thus, all constraints are required to be fulfilled. In this study, � has only a minor impact on 
the resulting model metrics and, therefore, is set to � = 1.

3.3.1 � Experiment 1a—likelihood parameters

Figure 2 demonstrates the effect of an increasing number of elementary models M to build 
the feature selector. M represents the parameter to steer the likelihood. Due to their exces-
sive runtimes, HSIC and RFE are computed only for M ≤ 10 , while all other elementary 
feature selectors are evaluated for up to M = 200.

As expected, a higher M contributes largely to the runtime of the model, which increases 
linearly. In contrast, both F1 scores and stability values begin to saturate at around M = 50 
to M = 100 models. Even though large ensembles are intractable with HSIC and RFE, 
small ensembles with M = 5 allow HSIC to retrieve almost all features, whereas simpler 
elementary feature selectors struggle to achieve high performances and stabilities even at 
higher levels of M. We conclude that large M does not necessarily improve the results but 
significantly impacts the runtime. Thus M ≈ 100 appears to be a reasonable choice in the 
subsequent settings, except for HSIC and RFE, where M = 5 will be set as a default.

3.3.2 � Experiment 1b—“correct” and “incorrect” prior weights

To investigate the effect of prior weights � , we alter the prior weights in dataset iii. by fea-
ture block. A constant prior weight �R is assigned to all features from relevant blocks, i.e., 
blocks 1-4 containing informative and non-informative features. In contrast, features from 
blocks 5-8 (containing only non-informative features) are assigned a constant prior weight 
�−R—thereby, we simulate that the expert has approximate, yet not exact beliefs about fea-
ture relevance. By assigning higher prior weights 𝛼R > 𝛼−R , the experiment simulates an 
agreement between the expert belief and the ground truth (“correct prior”), while a lower 
𝛼R < 𝛼−R represents “wrong” prior information (“incorrect prior”). To simulate correct and 
incorrect prior knowledge at different levels, we increase �R while setting �−R to the default 
value 0.01, and vice versa.

Figure 3 illustrates that, as expected, feature selection performance in terms of F1 scores 
(evaluated with respect to the ground truth features) increases for higher �R and decreases 
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for higher �−R . Thus, across all elementary feature selectors, an improvement of the unin-
formative case �R = �−R = 0.01 can be achieved by an informative prior, if the prior rep-
resents a reasonable overlap with reality—this holds even though the relevant blocks also 
contain uninformative features, which are incremented by �R as well. On the other hand, 
erroneous prior knowledge can impact the feature selection results negatively. In contrast 
to the feature-wise F1 scores, stability remains mostly unaffected from strong prior knowl-
edge on relevant or irrelevant blocks—incorrect prior knowledge merely tends to decrease 
stability to a minor degree.

Fig. 2   Different numbers of 
elementary models M 
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3.3.3 � Experiment 1c—side constraints

We investigate the following opposite constraint types:

•	 Block-max-size (BMS): features are selected from at most bBMS distinct blocks, and
•	 Max-per-block (MPB): at most bMPB features are selected from each block.

BMS is designed to enforce a clustering behavior, where all selected features originate 
from a maximum number of bBMS = 4 blocks. On the other hand, MPB aims to disperse the 
selection, indicating that a maximum number of bMPB = 2 features per block is favorable. 
The strength of these constraints is steered via the corresponding shape parameters �BMS 
and �MPB , respectively, while � = 0 indicates that a constraint is omitted. From a default 
case of �BMS = �MPB = 0 (no block constraints), we investigate the behavior of UBayFS 
under one of the two constraints at a time at an increasing level of �BMS or �MPB.

Fig. 4 illustrates how the opposite side constraints BMS and MPB affect the model at 
different levels of relaxation parameters. Both constraint types have a slightly negative 
impact on the outcome in terms of F1 and stability. This is caused by the fact that the 
“best” feature set has to be determined under a side constraint, which is not compatible 
with the ground truth—the ground truth defines 16 features out of four distinct blocks to be 
relevant, which cannot be covered by any of the constraints. Therefore, we can observe that 
UBayFS can handle such scenarios and still deliver appropriate and near-optimal solutions.

3.3.4 � Experiment 1d—between‑feature correlations

In Sect. 2, multiple variants were discussed to account for datasets with a given correla-
tion structure. On the one hand, the UBayFS framework permits to account for between-
feature correlations via a generalization of the prior distribution; on the other hand, we may 
enforce that the highly correlated features should not be selected jointly via a decorrelation 
constraint. Both variants are different insofar as generalized priors aim to deliver a more 

Fig. 3   Different prior weights assigned to relevant blocks, �
R
 , and to non-relevant blocks, �−R
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appropriate estimation of the expected feature importances by correcting for dependencies 
in the observed feature sets, while decorrelation constraints directly affect the optimization 
procedure for �.

In this experiment, we investigate both possibilities to account for between-fea-
ture correlations, along with combinations of both: we set a decorrelation constraint 
between all features with a mutual Spearman correlation 𝜏 > 0.4 as described in 
Sect. 2.3, such that joint selection of highly correlated features is penalized. Further, 
we apply the following prior setups:

•	 Dirichlet prior distribution (default),
•	 Generalized Dirichlet distribution Wong (1998),
•	 Hyperdirichlet distribution Hankin (2010).

Our experiment involves all combinations of prior setups with and without decorre-
lation constraint, executed on dataset iv. To measure the effect of decorrelation, we 
further evaluate the redundancy rate (RED) Zhao et al. (2010), defined as the average 
absolute Pearson correlation among selected features. A small RED is commonly pre-
ferred in practical setups.

The results in Fig. 5 show that neither feature-wise F1 scores nor stabilities change 
significantly between the prior models. Thus, the default Dirichlet model seems suf-
ficient in practice. However, introducing decorrelation constraints has a slightly nega-
tive impact on stability, while yielding a small improvement in F1 scores and RED. 
Nonetheless, the most significant change between the variants can be observed with 
respect to runtime, which reflects the high computational burden associated with the 
hyperdirichlet prior model—even on a small dataset, the runtimes show a significant 
increase on a logarithmic scale. Thus, higher-dimensional datasets can only be tackled 
at an enormous computational cost with the hyperdirichlet setup.

Fig. 4   Different prior constraints assigned to blocks: MPB (maximum one feature per block) and BMS 
(block max-size) constraint types at distinct levels of � . The special case � = 0 indicates that the corre-
sponding constraint is omitted
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Fig. 5   Different setups to account 
for dependence structures 
between features

Table 3   Real-world binary classification datasets from the life science domain used for experimental evalu-
ation. For p53, a stratified subset out of > 16000 rows was used from the original dataset for this experiment

Dataset / source # Features # Rows b
MS

# Blocks b
BMS

Breast cancer wisconsin (BCW)
Wolberg and mangasarian (1990)

30 569 5 3 1

Heart disease (HD)
Detrano (1989)

46 101 5 – –

Mice protein expression (MPE)
Higuera et al. (2015)

77 552 5 – –

Colon gene expression (COL)
Yang and Zou (2015)

100 62 5 20 2

LSVT voice rehabilitation
Tsanas (2013)

310 126 10 14 2

p53
Danziger (2006)

5409 351 20 2 1

Prostate (PRO)
Singh (2002)

6033 102 20 – –

Leukaemia (LEU)
Golub (1999)

7129 72 20 – –

Lung cancer (LUNG)
Gordon (2002)

12533 181 100 – –
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3.4 � Experiment 2: real‑world datasets

Numerical studies are conducted on eight open-source datasets presenting binary clas-
sification problems from the life science domain, see Table 3. For simplicity and due to 
extensive runtimes, we restrict the choice of the elementary feature selector for UBayFS 
to mRMR, Fisher, and decision tree with an uninformative prior, an MS constraint, and 
M = 100 . The number of selected features is specified according to the size of the dataset 
( bMS = 5 / 10 / 20 / 100 for datasets with fewer than 100 / between 100 and 1000 / between 
1000 and 10000 / more than 10000 features, respectively).

In addition to conventional feature selection (scenario 1) with max-size constraint 
bMS , specified in Table 3, we evaluate a block feature selection (scenario 2) for datasets 
with block-wise feature structure. For block feature selection, up to bMS features should 
be selected from at most bBMS distinct blocks.7 Random forests (RF) Breiman (2001), and 
RENT Jenul (2021) (representing ensemble feature selectors that extend the concepts of 
decision trees and elastic net regularized models, respectively) are used as state-of-the-art 
benchmarks for standard feature selection, while Sparse Group Lasso (GL) Ida et al. (2019) 
is used as the benchmark for block feature selection. To conform with UBayFS, RENT 
and RF are adjusted to M = 100 elementary models, and all models are tuned to select 
approximately the same number of features, bMS . Since RENT and GL cannot be instructed 
to select bMS features directly, regularization parameters are determined via bisection, such 
that the number of selected features is approximately equal to bMS.

The selected features cannot be evaluated directly in real-world datasets due to unknown 
ground truth on the feature relevance. Therefore, we train predictive models on T (i)

train
 after 

feature selection and evaluate the selected features indirectly via the predictive perfor-
mance on the test instances. To reduce the influence of the predictive model type, we train 
two distinct classifiers on T (i)

train
 after feature selection, and report F1 scores for predictions 

on T (i)

test
 for both. The choice of baseline classifiers to obtain the prediction comprises:

•	 generalized linear model: logistic regression (GLM),
•	 support vector machine (SVM).

3.4.1 � Results

Tables 4 and 5 present the results of the experiments on real-world data. Thereby, UBayFS 
achieves good predictive F1 scores throughout the different datasets, even though no expert 
knowledge is introduced to ensure a fair comparison. In the block feature selection set-
ups, UBayFS benefits from block constraints and shows more flexibility than Sparse Group 
Lasso. Altogether, UBayFS can keep up with its competitors in terms of predictive perfor-
mance in a diverse range of scenarios (low-dimensional and high-dimensional data, as well 
as unconstrained and constrained setups) while providing higher flexibility to introduce 
additional information or constraints. Overall, the results reflect that a particular strength of 
UBayFS lies in delivering a good trade-off between stabilities and predictive performance, 
compared to competitors such as RF, which deliver high F1 scores, but very low stabilities.

7  Details on the block structure of the datasets are provided in Appendix B.
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Figures 6 and 7 give additional insights into the performances of the UBayFS variants in 
the standard feature selection and block feature selection scenario, respectively. Differences 
between the F1 scores obtained by the different elementary feature selectors underline that 
UBayFS inherits benefits and drawbacks from its underlying elementary model type—in 
particular, the decision tree and HSIC achieved top results. Nevertheless, the building of 
ensembles allows to compensate in parts for mediocre stabilities.

3.4.2 � Case study with prior knowledge

Our evaluations underlined the applicability of UBayFS in real-world scenarios. However, 
due to the absence of prior knowledge, these scenarios covered only parts of the capabilities of 

Table 4   UBayFS with three distinct elementary feature selectors (M: mRMR, F: Fisher, T: decision tree) 
is compared to ensemble feature selectors RF and RENT in a standard feature selection scenario. UBayFS 
with additional (BMS) constraint is compared to Sparse Group Lasso (GL) for block-feature selection on 
datasets with block structure. Average F1 scores are given for different predictive models (GLM, SVM). 
The best scores for each dataset and evaluation metric are marked in bold—standard feature selection and 
block feature selection are assessed separately

Dataset Standard feature selection Block feature selection

RF RENT UBayFS GL UBayFS

M F T M F T

(a) Average F1 score per run (predictor: GLM).
BCW 0.95 0.97 0.96 0.97 0.95 0.96 0.96 0.96 0.96

HD 0.92 0.88 0.91 0.90 0.93 – – – –
MPE 0.86 0.95 0.87 0.83 0.83 – – – –
COL 0.85 0.83 0.83 0.78 0.88 0.82 0.74 0.77 0.89

LSVT 0.70 0.75 0.80 0.84 0.68 0.77 0.67 0.79 0.59
p53 0.71 0.66 0.80 0.78 0.80 0.63 0.76 0.79 0.79

PRO 0.88 0.89 0.78 0.85 0.84 – – – –
LEU 0.88 0.93 0.88 0.91 0.95 – – – –
LUNG 0.93 0.97 0.91 0.90 0.92 – – – –

Dataset Standard feature selection Block feature selection

RF RENT UBayFS GL UBayFS

M F T M F T

(b) Average F1 score per run (predictor: SVM).
BCW 0.95 0.97 0.96 0.96 0.94 0.97 0.96 0.96 0.95
HD 0.92 0.88 0.91 0.91 0.95 – – – –
MPE 0.87 0.95 0.89 0.84 0.84 – – – –
COL 0.86 0.85 0.87 0.83 0.88 0.81 0.82 0.79 0.89

LSVT 0.75 0.75 0.80 0.84 0.71 0.80 0.79 0.79 0.57
p53 0.81 0.82 0.81 0.80 0.82 0.84 0.77 0.82 0.80
PRO 0.91 0.90 0.87 0.88 0.85 – – – –
LEU 0.96 0.94 0.88 0.95 0.96 – – – –
LUNG 0.98 0.97 0.98 0.96 0.94 – – – –
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the method. To exploit prior knowledge in practice, we revisit the lung cancer genome dataset 
(LUNG): in the dataset, eight gene expression features were identified as relevant in biological 
studies by Guan Guan et al. (2009). Thus, we assign higher prior weights �R to a-priori relevant 
features, while all other features get assigned the default prior weight �−R = 0.01 . Our setups 
include one with “weak” prior ( �R = 20 ), and one with “strong” prior ( �R = 100 ), in addition to 
the setup without prior, shown in Table 4. The max-size constraint is set to bMS = 100.

As summarized in Table 6, incorporating prior knowledge leads to an improvement of UBayFS 
results in most cases. Thus, the absolute performance lies in a similar top range as those reported 
in previous work by Brahim and Limam (2014), who evaluated averaged accuracies in a compa-
rable setup on the same dataset ( > 0.99 avg. accuracy). However, the comparability of accuracies 
is limited due to the unbalanced nature of the dataset. Between the UBayFS setups, results with 
weak prior are similar to those from no-prior results in the case of stable elementary feature selec-
tors (mRMR and Fisher). In contrast, weak prior results resemble the strong prior in the case of a 

Table 5   Mean stabilities of 
UBayFS with three distinct 
elementary feature selectors (M: 
mRMR, F: Fisher, T: decision 
tree), compared to ensemble 
feature selectors RF and RENT 
in standard feature selection, as 
well as to GL in block feature 
selection scenarios. The best 
scores in each row are marked in 
bold for each scenario

Dataset Standard feature selection Block feature selection

RF RENT UBayFS GL UBayFS

M F T M F T

BCW 0.73 0.87 0.87 1.00 0.61 0.90 0.80 0.80 0.80
HD 0.45 0.87 0.88 0.65 0.59 – – – –
MPE 0.72 0.87 0.92 0.85 0.77 – – – –
COL 0.39 0.67 0.80 0.72 0.81 0.56 0.84 0.72 0.82
LSVT 0.31 0.59 0.72 0.79 0.55 0.73 0.66 0.88 0.31
p53 0.11 0.56 0.34 0.34 0.36 0.68 0.19 0.25 0.31
PRO 0.17 0.53 0.56 0.61 0.42 – – – –
LEU 0.07 0.64 0.46 0.76 0.53 – – – –
LUNG 0.18 0.78 0.80 0.79 0.40 – – – –

Fig. 6   Performance results of UBayFS feature selection on real-world datasets (MS constraint). F1 scores 
are determined after training and predicting a classifier (GLM or SVM) after feature selection. Results show 
mean values over I = 10 runs along with standard deviations
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non-stable elementary feature selector (decision tree). Thus, a weak prior has a higher impact on 
the final results if the elementary models are more diverse.

3.4.3 � Runtime

Runtimes of all methods and datasets are provided in Table 7. Given a fixed set of model param-
eters, it becomes obvious that the major factor influencing the runtime of UBayFS is the number 
of features (columns) rather than the number of samples (rows). UBayFS runtimes refer to the MS 
setup—however, experiments showed only minor differences to the runtimes in the block feature 
selection setup. While RF and GL are more tractable in high-dimensional datasets, RENT seems 
to suffer from data dimensionality to a more considerable extent.

Across larger datasets, the main influencing factor on the runtime is the number and 
type of elementary models. For example, on the LUNG dataset ( > 12000 features), the 
training procedure of 100 mRMR models as elementary models comprised 40 minutes 

Fig. 7   Performance results of UBayFS block feature selection on real-world datasets (MS and BMS con-
straints). F1 scores are determined after training and predicting a classifier (GLM or SVM) after feature 
selection. Results show mean values over I = 10 runs along with standard deviations

Table 6   Average performance scores delivered by UBayFS on the LUNG dataset with and without prior 
knowledge

Setup GLM SVM Stability

M F T M F T M F T

Without prior 0.91 0.90 0.92 0.98 0.96 0.94 0.80 0.79 0.40
With prior ( �imp = 20) 0.91 0.90 0.91 0.98 0.96 0.96 0.80 0.79 0.45
With prior ( �imp = 100) 0.91 0.94 0.91 0.98 0.96 0.96 0.82 0.81 0.45
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(88% of UBayFS runtime), while optimization using the Genetic Algorithm comprised 5 
minutes (11% of UBayFS runtime).8

4 � Discussion and conclusion

The presented Bayesian feature selector UBayFS has its strength in combining informa-
tion from a data-driven ensemble model with expert prior knowledge targeted at life sci-
ence applications. The generic framework is flexible in the choice of the elementary feature 
selector type, allowing a broad scope of applications scenarios by deploying adequate ele-
mentary feature selectors, such as those suggested by Sechidis and Brown (2018) for semi-
supervised or Elghazel and Aussem (2015) for unsupervised problems. An extension of the 
presented experiments to multiple classes or multi-label classification problems (one object 
is not uniquely assigned to one class) is straightforward as well if the elementary feature 
selector is capable of tackling such datasets, such as Petković et al. (2020).

In general, the choice of the elementary feature selector is a central step when deploy-
ing the concept in practice—in particular, the size and structure of a dataset need to be 
taken into account. This work presented a broad range of elementary models to provide 
user guidance in practical setups. The option to build ensembles combining different model 
types, as discussed by Seijo-Pardo et al. (2017), turned out to deteriorate the stability of 
ensemble feature selectors and hence, is not considered in this study.

UBayFS presents two ways to account for feature dependencies: a generalized prior model as 
well as a decorrelation constraint. The latter effectively restricts the results, such that a simultane-
ous selection of highly correlated features is penalized. The generalizations of the prior model cor-
rect the estimated feature importances by the dependencies—in a low-dimensional scenario, the 
hyperdirichlet variant is the most accurate choice. However, this variant becomes intractable, if the 
dimensionality exceeds a few hundred features and requires simulation to determine the expected 
value in almost any case, preventing from analytically exact solutions. Since our experiments 
depicted that feature importances obtained from each of the three prior setup types are numeri-
cally similar, a conventional Dirichlet setup seems to deliver a sufficiently accurate approximation 

Table 7   Average runtime per 
run [s]

Dataset RF RENT GL UBayFS

M F T

BCW 6.7 3.4 10.9 6.2 2.2 4.3
HD 6.3 3.2 – 1.8 1.6 2.1
MPE 9.4 24.3 – 12.3 5.3 9.6
COL 6.1 3.8 4.6 3.7 2.9 3.6
LSVT 10.0 77.9 9.0 6.4 6.7 9.6
p53 80.2 2712.3 112.7 366.8 125.6 440.3
PRO 29.8 1217.2 – 370.9 232.6 708.0
LEU 41.5 980.9 – 263.0 160.8 549.5
LUNG 116.8 2834.1 – 1930.3 535.1 1885.0

8  Runtime information refers to the current version of the implementation and is subject to further code 
optimization.



3918	 Machine Learning (2022) 111:3897–3923

1 3

for high-dimensional datasets. This observation is also supported by the fact that many elemen-
tary feature selectors, such as mRMR or HSIC, can account for between-feature correlations, thus 
reducing the need to consider correlations in the meta-model.

Prior information from experts is introduced via prior feature weights and linking con-
straints describing between-feature dependencies, represented in a system of side constraints. 
Via a relaxation parameter, the inadmissibility is transferred into a soft constraint, favoring 
solutions that fulfill the constraints and penalizing violations. Introducing user knowledge 
directly into the feature selection process opens new opportunities for data analysis in life sci-
ence applications. Still, such methodology bears the potential of intentional or unintentional 
misuse: as demonstrated in the experiment, the integration of unreliable or incorrect user 
knowledge may distort predictive results. Users have to be aware that UBayFS may contain 
subjective inputs and thus, take precautions to ensure that prior information is sufficiently ver-
ified, e.g., by published research in the field.

Based on the results from extensive experimental evaluations on multiple open-source datasets, 
a clear benefit of the proposed feature selector lies in the balance between predictive performance 
and stability. Particularly in life sciences, where few instances are available in high-dimensional 
datasets, user-guided feature selection is an opportunity to guide models to achieve otherwise 
intractable results. UBayFS delivers more flexibility to integrate domain knowledge than estab-
lished state-of-the-art approaches. A practical limitation of UBayFS is that the runtime is argu-
ably slower than simpler feature selectors, which becomes an obstacle in very high-dimensional 
datasets. The use of highly optimized algorithms like the Genetic Algorithm, along with an ini-
tialization using the suggested Alg. 1 mitigates this issue. However, it cannot compensate for the 
computational burden of training multiple elementary models.

Appendix A theory

A.1 Convergence of inadmissibility function

The point-wise convergence �k,� ⟶

�→∞
�k holds for arbitrary A ∈ ℝ

K×N and b ∈ ℝ
K on the 

domain D = {0, 1}N.

Proof  From the definition of �k,�(�) , the claim is trivially fulfilled for

In the opposite case, we define �k as 𝜆k =
(
a(k)

)T
� − b(k) > 0 . It holds that

Since 𝜆k > 0 , we obtain −��k ⟶
�→∞

−∞ , and thus �k,� = exp
(
−��k

)
⟶

�→∞
0 . It follows that 

�k,�(�) ⟶
�→∞

1 . Hence, we have shown a point-wise convergence of

� ∈

{
�� ∈ {0, 1}N ∶

(
a(k)

)T
�� − b(k) ≤ 0

}
.

�k,�(�) =
1 − �k,�

1 + �k,�

=
1 − exp

(
−��k

)

1 + exp
(
−��k

) .
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which equals to �k on the domain D.

A.2 Generalizations of the Dirichlet distribution

In Sect. 2.2, we discuss the possibility to replace the Dirichlet distribution with one out 
of two generalized variants:

•	 the generalized Dirichlet distribution, and
•	 the hyperdirichlet distribution.

Both variants preserve the conjugate prior property with respect to the multinomial like-
lihood, as explained by the corresponding authors who had introduced these generali-
zations. In this part, we provide a short overview on the probability density functions, 
parameters and (posterior) expected values of these distributions, as these quantities are 
relevant for the UBayFS setup.

The standard Dirichlet distribution, see e.g. DeGroot (2005), is commonly defined by 
the probability density function

where B(�) =

N∏
n=1

Γ(�n)

Γ

�
N∑
n=1

�n

� denotes the multivariate beta function. Due to the simple parameter 

update in the inference step, we obtain the posterior expected value

where �◦ = � + y.
In essence, the generalized Dirichlet distribution by Wong (1998) adds an additional 

parameter vector � ∈ ℝ
N−1 to the parameter vector � from the Dirichlet distribution and 

is defined via the probability density

where B(�n, �n) =
Γ(�n)Γ(�n)

Γ(�n+�n)
 , �n = �n − �n+1 − �n+1 for n ∈ [N − 2] , and �N−1 = �N−1 − 1 . In 

contrast to the standard Dirichlet setting, the distribution is defined on the N − 1-dimen-
sional space, relaxing the side constraint ‖�‖1 = 1 to ‖�′‖1 ≤ 1 , �′ ∈ ℝ

N−1 — both are 

𝜅k,𝜌(�) ⟶
𝜌→∞

{
1 if 𝜆k ≤ 0

0 if 𝜆k > 0,

(16)fDir(�;�) =
1

B(�)

N∏
n=1

��n−1
n

,

���y[�] =
1

‖�◦‖1�
◦,

(17)fgDir(�
�) =

N−1∏
n=1

1

B(�n, �n)

(
��
n

)�n−1
(
1 −

n∑
i=1

��
i

)�n

,
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equivalent, if �n = ��
n
 for n ∈ [N − 1] , and �N = 1 −

N−1∑
n=1

��
n
 . The posterior expected value 

for the generalized Dirichlet distribution is given in closed-form by

where �n =
N∑
i=n

yi , see Wong (1998).

An even more general version is the hyperdirichlet distribution by Hankin (2010), who 
characterizes the distribution by the probability density function

where P(.) denotes the power set and F(G) denotes the parameter for each possible subset 
of [N]. Since the closed-form expression of the expected value involves the normalization 
constant, which is intractable in practical high-dimensional setups, we deploy the Metrop-
olis-Hastings (MH) algorithm implemented in Hankin (2017) to sample from the hyperdi-
richlet distribution and determine the expected value empirically from the sample mean.

�
��[�]

�
n
=

⎧
⎪⎪⎨⎪⎪⎩

�n+yn

�n+�n+�n
n = 1

�n+yn

�n+�n+�n

n−1∏
i=1

�i+ni+1

�i+�i+ni
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Table 8   Dataset sources

Name Link

HD https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​heart+​disea​se
BCW https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​breast+​cancer+​wisco​nsin+​(diagn​ostic)
MPE https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Mice+​Prote​in+​Expre​ssion
COL https://​github.​com/​cran/​gglas​so
LVST https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​LSVT+​Voice+​Rehab​ilita​tion
p53 https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​p53+​Mutan​ts
LEU see R package spls Chung et al. (2019)
PRO see R package propOverlap Mahmoud (2014)
LUNG https://​leo.​ugr.​es/​elvira/​DBCRe​posit​ory/​LungC​ancer/​LungC​ancer-​Harva​rd2.​html

https://archive.ics.uci.edu/ml/datasets/heart+disease
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28diagnostic)
https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression
https://github.com/cran/gglasso
https://archive.ics.uci.edu/ml/datasets/LSVT+Voice+Rehabilitation
https://archive.ics.uci.edu/ml/datasets/p53+Mutants
https://leo.ugr.es/elvira/DBCRepository/LungCancer/LungCancer-Harvard2.html
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Appendix B Experimental datasets

All real-world datasets are publicly available (status: 12/2021), see Table 8. For datasets 
with block structure (BCW, COL, LSVT and p53), block indices are given in Table 9.
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