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Abstract
Unwanted bias is a major concern in machine learning, raising in particular significant 
ethical issues when machine learning models are deployed within high-stakes decision sys-
tems. A common solution to mitigate it is to integrate and optimize a statistical fairness 
metric along with accuracy during the training phase. However, one of the main remain-
ing challenges is that current approaches usually generalize poorly in terms of fairness on 
unseen data. We address this issue by proposing a new robustness framework for statistical 
fairness in machine learning. The proposed approach is inspired by the domain of distribu-
tionally robust optimization and works in ensuring fairness over a variety of samplings of 
the training set. Our approach can be used to quantify the robustness of fairness but also to 
improve it when training a model. We empirically evaluate the proposed method and show 
that it effectively improves fairness generalization. In addition, we propose a simple yet 
powerful heuristic application of our framework that can be integrated into a wide range 
of existing fair classification techniques to enhance fairness generalization. Our extensive 
empirical study using two existing fair classification methods demonstrates the efficiency 
and scalability of the proposed heuristic approach.

Keywords  Supervised learning · Fairness · Generalization · Distributionally robust 
optimization

1  Introduction

The growing integration of machine learning models in high-stakes decision systems raises 
several ethical, legal and philosophical issues. Among them, fairness is often a desired 
property in addition to being a legal requirement. Machine learning models extract and 
exploit correlations from their given training data. However, such correlations may not 
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be relevant because of the data collection, processing, sampling, or historical discrimina-
tion  (Tommasi et  al. 2017; Torralba and Efros 2011). To mitigate such negative biases, 
several fairness notions have emerged (Verma and Rubin 2018). In a nutshell, individual 
fairness (Dwork et al. 2012; Ignatiev et al. 2020) consists in ensuring that similar individu-
als receive similar treatment. In contrast, statistical fairness requires that a given metric’s 
value does not differ between specified subgroups of the population. The key idea here 
is that individuals should not receive different treatment based on their membership to a 
protected group. Finally, causal fairness analyzes the relationships between the different 
attributes and the decision to find (and possibly eliminate) correlations that can be a source 
of discrimination.

Many methods were proposed in the literature to enhance the fairness of machine learn-
ing models  (Caton and Haas 2020; Barocas et  al. 2019; Ignatiev et  al. 2020). However, 
models that are fair with respect to their training data may still exhibit unfairness when 
applied to previously unseen data. Indeed, fairness constraint overfitting (Cotter et al. 2018, 
2019a) can occur, and fairness generalization has been identified as an open challenge for 
trustworthy machine learning (Chuang and Mroueh 2021; Cotter et al. 2018, 2019a; Huang 
and Vishnoi 2019; Mandal et al. 2020). Our objective in this paper is precisely to address 
this issue.

Recent work on fairness generalization targets integrating different techniques for 
improving robustness into existing fair learning algorithms. While such methods have been 
shown (theoretically and empirically) to improve fairness generalization, they often induce 
a considerable computational overhead (e.g., solving an additional problem to determine 
a worst-case unfairness  (Mandal et  al. 2020)), and thus have limited scalability. Some 
methods do not suffer from this drawback but instead require additional splitting of the 
data  (Cotter et al. 2018, 2019a), hence possibly penalizing utility, as the amount of data 
used to update the model is reduced. Finally, other approaches have limited applicability, as 
they are designed for a particular algorithm or hypothesis class (Taskesen et al. 2020; Wang 
et al. 2021), or require some special property of the underlying algorithm (e.g., access to a 
cost-sensitive classification oracle (Mandal et al. 2020)). To tackle these issues, we propose 
a new framework for statistical fairness robustness. Intuitively, our approach consists in 
ensuring fairness over a variety of samplings of the training set. We show that this notion 
can be quantified precisely, and leveraged to audit or train fair and robust machine learn-
ing models in practice. We additionally design a flexible and efficient heuristic method for 
learning robust and fair models, which can easily be integrated into existing fair classifica-
tion methods, formulated as constrained optimization problems. More precisely, our contri-
butions can be summarized as follows.

•	 We propose and study a sample-robust formulation of the fair learning problem, based 
on the Jaccard distance and inspired by Distributionally Robust Optimization (Ben-Tal 
et  al. 2013; Duchi et  al. 2021; Rahimian and Mehrotra 2019). The main idea of our 
method is that we want to meet a given fairness constraint, even if the training set sam-
pling were somehow different (i.e. if some examples were not part of it).

•	 We show how this exact formulation can be used to quantify statistical fairness robust-
ness of machine learning models. Our exact method is model-agnostic and can be 
applied to any type of hypothesis classes.

•	 We show that our exact method can be used for sample-robust fair learning and high-
light its practical computational and integrability limitations.
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•	 We design a simple, efficient and flexible heuristic application of our proposed formu-
lation and illustrate its versatility by integrating it into two fair learning algorithms of 
the literature.

•	 We empirically evaluate both our exact and heuristic approaches and compare them on 
different datasets and statistical fairness metrics.

•	 We empirically demonstrate the effectiveness and performance of the proposed heuris-
tic approach on various datasets and metrics and compare it to a state-of-the-art method 
for improving statistical fairness generalization.

The paper is organized as follows. First, in Sect. 2, we describe the necessary background 
and review the relevant literature on statistical fairness generalization in machine learning. 
Afterwards, in Sect. 3, we formulate our notion of sample-robustness for fairness and study 
its implications and practical limitations. We motivate and introduce a heuristic application 
of our approach in Sect. 4 and show how to integrate it into state-of-the-art fair learning 
techniques. Then, we empirically evaluate our proposed approaches in Sect. 5 before con-
cluding in Sect. 6.

2 � Background & related work

In this section, we first present a high-level background on supervised machine learn-
ing, fairness and distributionally robust optimization. Then, we review existing methods 
addressing the problem of statistical fairness generalization.

2.1 � Preliminaries

2.1.1 � Supervised machine learning ‑ classification

Let X  denote the feature space, A the sensitive attributes and Y the label set. In addition, 
P will denote the true distribution over X ×A × Y and D = (X,A,Y) a dataset drawn from 
P . Given such a dataset and an hypothesis class of models H , the objective of a supervised 
learning algorithm L is to build a model L(D) = h ∈ H such that h minimizes a given 
objective function fobj.

For a specific training dataset D drawn from some distribution P , the desired model h is 
the solution to the following problem, in which fobj(h,P) is the expected objective function 
under distribution P:

In practice, P is often unknown, and we only get a limited number of observations from it, 
contained in the dataset D . Then, the optimal solution of Problem (1) is commonly approx-
imated solving Problem (2).

(1)argmin
h∈H

fobj(h,P)

(2)argmin
h∈H

fobj(h,D)
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2.1.2 � Fairness in machine learning

In this work, we focus on statistical metrics for fairness. Such metrics aim at equalizing a 
given statistical measure (e.g., the True Positive Rate) between several (possibly overlap-
ping) protected groups (m being the number of protected groups), defined by the sensitive 
attributes. For each example ei in D , we denote by ai ∈ A the list of sensitive attributes. 
Each coordinate k ∈ [1..m] of ai indicates the membership of example ei to the protected 
group k. Intuitively, the objective is to ensure that examples (e.g., profiles of individuals) 
receive similar treatment independently of the protected group they belong to. Depending 
on the particular value being equalized across groups, many metrics have been proposed 
such as statistical parity  (Dwork et  al. 2012), predictive equality  (Chouldechova 2017), 
equal opportunity (Hardt et al. 2016) and equalized odds (Hardt et al. 2016). These notions, 
as well as the statistical measure they equalize, are summarized in Table 1. In this paper, 
we denote by ��� (h,D) an oracle quantifying the unfairness of a classifier h over a data-
set D . The value of ��� (h,D) is in [0, 1]. The lower the value of ��� (h,D) , the more fair 
is h over D . In practice, we consider a maximum acceptable unfairness value � ∈ [0, 1] 
(or, equivalently, a minimum acceptable fairness value 1 − � ), and say that h is fair over D 
when ��� (h,D) ≤ �.

Several fairness-enhancement algorithms have been proposed in the literature. They 
can be categorized into three categories, depending on the stage of the machine learning 
pipeline in which they intervene. Preprocessing techniques  (Kamiran and Calders 2012) 
remove undesired biases from the training data before applying regular learning algorithms 
on the sanitized dataset. Post-processing algorithms  (Hardt et  al. 2016) modify the pre-
dictions of a (possibly unfair) classifier to achieve fairness. Finally, algorithmic modifica-
tion (also called in-processing) techniques (Zafar et al. 2017) directly modify the learning 
algorithm to ensure that the model built is fair. These in-processing approaches naturally 
define a bi-objective optimization problem: minimizing error while maximizing fairness 
(or, equivalently, maximizing accuracy while minimizing unfairness). Several methods can 
then be used to solve this problem, including optimizing directly or indirectly a measure of 
fairness or enforcing fairness constraints while learning an accurate model. In this paper, 
we are interested in fair learning methods formulated as constrained optimization prob-
lems, as described in Problem (3).

(3)
argmin

h∈H

fobj(h,D)

s.t. ��� (h,D) ≤ �.

Table 1   Summary of some 
statistical fairness measures

Fairness notion Equalized statistical measure

Statistical parity Probability of being assigned the positive class
Predictive equality False positive rate
Equal opportunity False negative rate
Equalized odds False negative rate and False positive rate
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2.1.3 � Distributionally robust optimization in supervised machine learning

As stated in Sect. 2.1.1, an important challenge in machine learning is that we usually do 
not know the true underlying distribution P . Instead, we often have access to a limited 
training set D , whose distribution P′ may differ from P . To take into account this uncer-
tainty, Distributionally Robust Optimization (DRO) techniques can be leveraged. Instead 
of minimizing an objective function fobj for a given distribution P′ , DRO (Ben-Tal et al. 
2013; Duchi et al. 2021; Rahimian and Mehrotra 2019) consists in minimizing fobj for a 
worst-case distribution, among a set of perturbed versions of P′ (Sagawa et al. 2020). More 
precisely, the objective is to build a model h minimizing fobj for a set of neighbouring dis-
tributions of P′ . Such neighbouring distributions are contained in a perturbation set (also 
called ambiguity set) B(P�) . In the DRO setting, the supervised machine learning problem 
becomes:

Distributionally Robust Optimization has been used in many domains  (Rahimian and 
Mehrotra 2019), and has been applied widely in machine learning (Kang 2017).

2.2 � Related work on improving statistical fairness generalization

To improve the generalization of statistical fairness, several approaches have been designed 
based on the method proposed by Agarwal et al. (2018), who formulated the problem of 
learning an accurate classifier under fairness constraints as a two-player zero-sum game. 
Considering the Lagrangian relaxation of this constrained optimization problem, the first 
player ( �-player) optimizes the model’s parameters for the objective function with cur-
rent Lagrange multipliers, while the second player ( �-player) approximates the strongest 
Lagrangian relaxation by updating the Lagrangian multipliers. In their original contribu-
tion, Agarwal et al. (2018) analyzed the fairness generalization error of the models trained 
using this framework. In order to avoid the fairness constraints overfitting, in Cotter et al. 
(2018, 2019a) the �-player updates the Lagrangian multipliers based on fairness violations 
measured on a separate validation set (instead of the training set itself). In Mandal et al. 
(2020), the �-player uses linear programming to compute the worst-case fairness violation 
among a set of re-weightings of the training set. This approach falls into the category of 
DRO techniques.

Other methods also leverage DRO approaches. For instance in Sagawa et  al. (2020), 
a model is learnt while minimizing the maximum error over a set of protected groups 
defined by the value of some biased attributes. Several approaches have been proposed to 
tackle this worst-group error minimization problem. In particular, different methods do 
not require the full training set protected groups knowledge. Indeed, annotating protected 
groups membership for each training point can be costly in real-world settings (Duchi et al. 
2020; Nam et al. 2020; Liu et al. 2021). Such methods do not reach the performances levels 
of the standard DRO approach with groups knowledge but constitute interesting alterna-
tives. For example, Nam et al. (2020) and Liu et al. (2021) use two-stage approaches, in 
which they first train a model before leveraging its errors to train another more robust one. 
Duchi et al. (2020) applies a DRO technique to approximate and optimize for a worst-case 
subpopulation above a certain size, without any group annotations.

(4)argmin
h∈H

max
Q∈B(P�)

fobj(h,Q).
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In Taskesen et al. (2020), distributionally robust and fair logistic regression models are 
trained by optimizing the fairness-regularized objective function for a worst-case distribu-
tion. This most adversarial distribution is considered within an ambiguity set characterized 
as a Wasserstein distance-based ball around the original training distribution. Rezaei et al. 
(2020) also leverages the principles of DRO to optimize a robust logarithmic loss under 
fairness constraints. Their approach uses a minimax formulation, in which a fair predictor 
minimizes the training loss while a worst-case approximator of the population distribution 
(subject to statistic-matching constraints) maximizes it. In a similar line of work, Wang 
et al. (2021) proposes a distributionally robust measure of unfairness for the Equality of 
Opportunity metric. Robustness is achieved by computing the worst-case unfairness over a 
set of neighbouring distributions, within a type-∞ Wasserstein ambiguity set. Taking into 
account this measure enables the training of distributionally robust fair Support Vector 
Machines (SVM).

Du and Wu (2021) proposes two algorithms for fair and robust learning under sample 
selection bias. These two methods aim at estimating the sample selection probabilities, by 
leveraging (or not) the availability of unlabeled unbiased data. The key point is that knowl-
edge of these biased sample selection probabilities can be used to re-weight the training 
dataset to make it representative of the true distribution. As an approximation error exists, 
a minimax approach is used to optimize the objective function for the worst-case sample 
selection probabilities in a given radius around the estimated ones. The proposed method 
can only handle the statistical parity metric, which is approximated using decision bound-
ary fairness and included as a regularization term to the objective function. One conse-
quence is that robustness is enforced jointly for error and fairness. Nonetheless, the fairness 
constraints may not be strictly satisfied.

Measuring prediction stability on the training set, Huang and Vishnoi (2019) proposes 
the addition of a regularisation term to the objective function of a fair learning algorithm. 
This regularisation term aims at ensuring that the predictions of the built model do not 
vary too much when the training dataset is perturbed. In addition, this method theoretically 
bounds the generalization error. This work is closely related to ours, as we seek to improve 
fairness robustness on samplings of the training set (which can be viewed as a form of 
training fairness stability).

In a different line of work, Slack et  al. (2020) have studied the scenario in which a 
model trained to be fair may behave unfairly on related but slightly different tasks. This 
paper introduces two contributions, namely Fairness Warnings and Fair-MAML. 
On the one side, Fairness Warnings aims at predicting whether shifts in the features’ 
distributions may result in violating fairness. This is achieved by generating perturbed ver-
sions of the training set (they only consider mean-shifting of the features), measuring the 
resulting fairness violation and training an interpretable model to predict such violation 
given the features’ shifts. On the other side, Fair-MAML has for objective to learn a fair 
model that can be adapted to particular new tasks using minimal (and possibly biased) 
task-specific data. This is done by adding a fairness regularizer (for either the Statistical 
Parity or Equal Opportunity metrics) to the loss of the Model Agnostic Meta Learning 
(MAML) framework.

More recently, Chuang and Mroueh (2021) proposed a data augmentation strategy 
improving the generalization of fair classifiers. This method leverages existing data aug-
mentation strategies to generate interpolated distributions between two given sensitive 
groups. During training, a regularisation term penalizes changes in the model’s predictions 
between the different interpolated distributions. The goal here is to ensure that the model 
has a smooth behavior along the “path” formed by the interpolated distributions between 
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the two sensitive groups. This approach theoretically and empirically improves the fairness 
generalization of the models built.

Furthermore, fairness robustness has also been studied in other settings, such as multi-
source learning  (Iofinova et al. 2021), or for other notions of fairness such as individual 
fairness (Yurochkin et al. 2020). Both are out of the scope of this paper and thus we do not 
further detail these approaches.

Finally, the approach that is the more closely related to ours is that of Mandal et  al. 
(2020), which is based on a similar intuition, namely ensuring fairness on a set of neigh-
bouring distributions of the training set, called re-weightings versions, can improve its gen-
eralization. However, we consider different definitions for such neighbouring distributions 
and in addition we propose a heuristic approach variant exhibiting practical advantages 
compared to the exact one.

3 � Sample‑based robustness for statistical fairness

In this section, we present our sample-based approach of robustness for statistical fair-
ness. In a nutshell, it aims at improving fairness generalization by enforcing the fairness 
constraints over particular samplings of the training set. More precisely, we first introduce 
a dataset sampling technique based on the Jaccard distance, which is used to define our 
perturbation sets, before characterizing the structure of such perturbation sets. Second, we 
define the sample-robust fair learning problem on a given perturbation set and show how 
unfairness metrics increase through neighbouring subsets. Then, we discuss conditions for 
ensuring perfect fairness sample-robustness and their implications over the resulting mod-
els. Afterwards, we introduce an approach to quantify this notion based on the resolution 
of an integer optimization problem. Finally, we show how to integrate this robustness for-
mulation into existing learning algorithms solving Problem  (3) and discuss the practical 
limitations of the approach.

3.1 � Jaccard distance‑based perturbation sets

Following the principles of DRO, it has been shown  (Mandal et  al. 2020; Sagawa et  al. 
2020; Taskesen et al. 2020; Wang et al. 2021) that enforcing fairness over a set of distribu-
tions that are neighbours to the training one is an efficient way to improve its generaliza-
tion. While DRO was formalized using distributions, practical machine learning applica-
tions usually deal with finite training sets that are sampled from an underlying distribution. 
Indeed, instead of considering fairness robustness over perturbed underlying distributions 
(which, in practice, are unknown), we enforce robustness with respect to the training set 
sampling. For this reason, we propose to use the Jaccard distance J� as the distance metric 
measuring similarity between sample sets.

Definition 1  (Jaccard distance) Let D1 and D2 be two sample sets. The Jaccard distance 
between D1 and D2 is defined as follows: J�(D1,D2) = 1 −

|D1∩D2|
|D1∪D2|

The Jaccard distance is a very popular measure, used to quantify (dis)similarity between 
sample sets in a wide range of applications. For example, it has been used in Machine 
Learning for feature ranking stability  (Khoshgoftaar et  al. 2013; Saeys et  al. 2008) and 
feature selection (Zou et al. 2016). Intuitively, two sample sets D1 and D2 that have a large 
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intersection are close (i.e., J�(D1,D2) is small and in particular J�(D,D) = 0 ) while two 
sample sets D3 and D4 with empty intersection are far from each other (i.e., J�(D3,D4) is 
1).

We now define the perturbation sets of a given dataset D and highlight some 
consequences.

Definition 2  (Perturbation sets) Let d ∈ [0, 1] , we define a perturbation set B(D, d) as 
the set of subsets of D whose Jaccard distance from D is less than or equal to d. That is, 
B(D, d) = {D� ∣ J𝛿(D,D�) ≤ d ∧ (D� ⊆ D)}.

Definition 2 states that B(D, d) contains all subsets of D of size at least |D| × (1 − d) . A 
special case arises if d = 0 , as B(D, d) is D itself. Then, because the perturbation sets 
defined in Definition 2 contain only subsets of D , the Jaccard distance between such sub-
sets and D is necessarily of the form i

|D| , in which i is an integer between 0 and |D| (as the 
union between D and any of its subsets is D itself).

Notice that extending a perturbation set consists in adding new subsets of the original 
training set. An immediate consequence of Definition 2 is that a perturbation set defined 
with Jaccard distance d is included in perturbation sets with higher distance d′ . This is 
stated in the following proposition:

Proposition 1  (Perturbation sets inclusion) Consider a dataset D and two Jaccard dis-
tances d, d� ∈ [0, 1] . Then, d ≤ d� ⟹ B(D, d) ⊆ B(D, d�)

Proof  Consider D� ∈ B(D, d) . Based on Definition  2, D′ ⊆ D and J�(D,D�) ≤ d ≤ d� . 
Hence, D� ∈ B(D, d�) and B(D, d) ⊆ B(D, d�) . 	� ◻

In the following definition, we introduce an additional notation to facilitate the study of 
the space of our perturbation sets. We then formalize the notion of neighbouring datasets, 
that will be useful in the remainder of our analysis.

Definition 3  (Sets of equidistant subsets) Let i be an integer between 0 and |D| . Then, for 
any d of the form i

|D| , we define Γ(D, d) as the set of subsets of D whose Jaccard distance 
from D is exactly d:

As an immediate consequence of Definition 3, {Γ(D, d�) ∣ d� ≤ d} constitutes a partition 
of B(D, d).

Definition 4  (Neighbouring datasets) Let D1 and D2 be two sample sets. D1 and D2 are 
called neighbouring datasets (in the Jaccard sense) if and only if J�(D1,D2) =

1

|D1∪D2|
 . This 

means that D1 and D2 differ by exactly one element.

Γ(D, d) = {D� ∣ J𝛿(D,D�) = d ∧ (D� ⊆ D)}
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In a nutshell, the subsets of D contained in B(D, d) can be seen as points in a met-
ric space equipped with the Jaccard distance,1 contained within a ball centered around D 
whose radius is d. This ball is itself contained within all sets B(D, d�) with d′ ≥ d . Again, 
because we restrict our attention to subsets of the training set, Γ(D, d) is a sphere centered 
in D with radius d. The ball B(D, d) thus includes all spheres Γ(D, d�) with radius d′ ≤ d.

An interesting representation of our perturbation sets space can be done using a nearest 
neighbours (in the Jaccard sense) graph. In such graph, each vertex represents a subset of 
the training set, and each edge between two vertices means that their associated sets are 
neighbours. Figure 1 uses such representation to illustrate our perturbation sets structure on 
a toy dataset with two protected groups for the statistical fairness measure. In the remain-
der of the paper, the perturbation sets are considered for insuring fairness constraints. Thus 
in this graph at least one example of each protected group must be present in each subset.2 
Based on this representation, we could also derive a directed graph G′ in which each edge 
from D1 to D2 means that D2 ⊆ D1 , thus representing a superset relationship.

We now formulate a recursive definition of B(D, d) . First, observe that the smallest per-
turbation set B(D, d) not restricted to D itself is B(D,

1

|D| ) . It contains all subsets of D 
formed by removing at most one example from D . This is a particular case of Proposi-
tion 2, which generalizes this observation.

Fig. 1   Example of perturbation sets for a dataset D with 5 examples and two protected groups a 
( {e1, e2, e3} ) and b ( {e4, e5} ). Subsets that can not be used to audit a model’s fairness with respect to pro-
tected groups (a) and (b) are not represented

1  The Jaccard distance satisfies all required properties to equip a metric space, and in particular the triangle 
inequality (Kosub 2019).
2  Indeed, statistical fairness with respect to protected groups a and b can only be measured on datasets con-
taining examples from both protected groups. For instance, the Equal Opportunity metric measures the dif-
ference between the True Positive Rates (TPR) of the two protected groups. Hence, if there are no examples 
from one protected group, its TPR is undefined, and so is the unfairness measure.
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Proposition 2  (Perturbation sets structure) Consider a dataset D and a Jaccard distance 
d ∈ [0, 1 −

1

|D| ] . We can formulate recursive definitions for Γ(D, d) and B(D, d) as follows:

•	 Γ(D, d +
1

|D| ) = {D�� ∣ ∃D� ∈ Γ(D, d) ∣ D�� ⊂ D� ∧ |D��| = |D�| − 1}

•	 B(D, d +
1

|D| ) = B(D, d) ∪ Γ(D, d +
1

|D| )

Proof 

•	 By construction following the definition of Γ(D, d +
1

|D| ) (Definition 3).
•	 Definition  2 states that B(D, d) contains all subsets of D up to a Jaccard distance d. 

Definition 3 states that Γ(D, d +
1

|D| ) contains all subsets of D whose Jaccard distance 

from D is exactly d + 1

|D| . Thus, the union of these two sets define exactly B(D, d +
1

|D| ) , 
which, according to Definition 2, contains all subsets of D up to a Jaccard distance of 
d +

1

|D|.

	�  ◻

Proposition  2 states that the smallest set that is strictly bigger than B(D, d) is 
B(D, d +

1

|D| ) . By construction, it contains B(D, d) . The sets outside B(D, d) and inside 

B(D, d +
1

|D| ) are exactly those in Γ(D, d +
1

|D| ) . The later includes all sets formed by 
removing exactly one element from the (smallest) sets in B(D, d) (which form Γ(D, d) ). 
Again, this can be visualized in Fig. 1.

One may remark that instead of considering only subsets of the training set, we could 
take into account all neighbouring sets (as stated in Definition 4). This would require con-
sidering that examples can be added to our subsets. Even though this formulation can seem 
theoretically appealing, it does not have the interesting structure that we studied in this sec-
tion and quantifying it is computationally harder as the denominator of the Jaccard distance 
would no longer be a constant.

3.2 � Sample‑robust fair learning with our perturbation sets

Similar to DRO, the proposed approach consists in ensuring a given property (e.g., fair-
ness) over a set of elements contained in a perturbation set. For DRO, such elements are 
distributions while we rather consider sample sets. By doing so, our objective is to improve 
the fairness generalization on unseen data. Hence, our perturbation sets contain different 
samplings of the original training set. Thus, we propose to study a sample-robust fair learn-
ing problem to reach fairness generalization.

We formulate our sample-robust fair learning problem before characterizing the evolu-
tion of unfairness through the considered subsets. Then, we investigate the conditions and 
implications for perfectly satisfying our proposed fairness sample-robustness criterion.

3.2.1 � Robust fair learning for a given perturbation set

By considering the perturbation set B(D, d) as a set of samplings of the dataset D , we aim 
at building a model that is fair on all sets of B(D, d) , including D itself. This leads to the 
formulation of our sample-robust version of Problem (3).
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The sample-robust fair learning problem on a perturbation set B(D, d) is formulated as 
follows:

This formulation is a particular instantiation of the general DRO formulation of Prob-
lem (4), in which robustness is applied only on the enforced fairness constraints rather than 
on the objective function. An optimal solution to Problem (5) corresponds to a model h that 
minimizes the objective function fobj on D , among those of H that exhibit unfairness at 
most � over all sets contained in B(D, d) , including D itself.

With the proposed perturbation sets definition, we observe that augmenting the distance 
d increases the number of subsets being considered, as stated in Proposition 1. As a conse-
quence, considering higher values of d can only raise the worst-case fairness violation, thus 
hardening the problem. This is formalized in Proposition 3. Hence, the parameter d directly 
controls the strength of the enforced robustness of the fairness constraint.

Proposition 3  (Worst-case fairness violation monotonicity with respect to d) Consider a 
dataset D and a classifier h.

Proof  According to Proposition 1, if d ≤ d′ then B(D, d) ⊆ B(D, d�) . Thus, the maximum 
unfairness over all sets in B(D, d) is less than or equal to the maximum unfairness over all 
sets in B(D, d�) . 	�  ◻

3.2.2 � Unfairness increase through neighbouring subsets

In order to characterize the possible increase of fairness violation (i.e., the strength of the 
fairness constraints applied in Problem (5)) induced by increasing the size of the consid-
ered perturbation set, we first need to introduce the notion of sensitivity, which is directly 
taken from the differential privacy framework (Dwork and Roth 2014) in Definition 5.

Definition 5  (Unfairness l1-sensitivity) The unfairness measure l1-sensitivity � quantifies 
the maximum contribution of a single example to the unfairness value of any classifier, for 
any pair of neighbouring datasets:

The increase of the worst-case fairness violation induced by extending a perturbation set 
B(D, d) to the next one B(D, d +

1

|D| ) can then be upper bounded as shown in the next prop-
osition. This is due to the bounded sensitivity (as stated in Definition 5) of the unfairness 
measure ��� (.) at hand, which has been proved for common statistical fairness metrics in 
the context of differentially private and fair learning (Cummings et al. 2019). The formali-
zation of the bound goes as follows.

(5)
argmin

h∈H

fobj(h,D)

s.t. max
D�∈B(D,d)

��� (h,D�) ≤ �.

∀d, d� ∈ [0, 1], d ≤ d� ⟹ max
D�∈B(D,d)

��� (h,D�) ≤ max
D��∈B(D,d�)

��� (h,D��).

� = max
h ∈ H

D1,D2

J�(D1,D2) =
1

|D1∪D2|

|��� (h,D2) − ��� (h,D1)|



2142	 Machine Learning (2023) 112:2131–2192

1 3

Proposition 4  (Bounded worst-case fairness violation increase between consecutive pertur-
bation sets (general case)) Consider a dataset D and a classifier h. Let � be the l1-sensitivity 
of the unfairness measure and a Jaccard distance d ∈ [0, 1 −

1

|D| ] , we have:

Proof 

•	 Left inequality: Follows from Proposition 3 and the fact that d ≤ d +
1

|D|.
•	 Right inequality: Consider D�� ∈ B(D, d +

1

|D| ) . By Proposition 2, we know that D′′ is 

either in B(D, d) or in Γ(D, d +
1

|D| ).

–	 In the first case, D�� ∈ B(D, d) . The maximum unfairness measure across the pertur-
bation set is not worsened and we have: 

–	 In the second case, D�� ∈ Γ(D, d +
1

|D| ) . By definition of Γ , we know that there 
exists some set D� ∈ B(D, d) such that D′′ is formed by removing exactly one ele-
ment from D′ . Hence, D′ and D′′ are neighbouring datasets, and following Defini-
tion 5, we know that: 

	�  ◻

This property can be visualized using the Jaccard neighbouring graph of Fig. 1. It states 
that extending the perturbation set B(D, d) by adding one more layer of the graph (the sets 
contained in Γ(D, d +

1

|D| ) ) cannot worsen the worst-case fairness violation by more than � . 
This is due to the fact that the unfairness measure cannot be increased by more than � 
between any two neighbouring datasets (i.e., represented by two connected vertices in the 
Jaccard neighbours graph).

While Proposition 4 does not rely on any specific fairness formulation, depending on 
the metric at hand, tight values of � can be computed. For instance, considering common 
statistical fairness metrics, we demonstrate that an exact finite value of � can be computed 
for each subset, given the classifier’s predictions. To ease the readibility, hereafter we con-
sider the binary sensitive attribute setting in which there are only two non-overlapping pro-
tected groups a and b. However, note that the generalisation of the following proposition is 
valid for any number of protected groups, by considering all pairs of protected groups, as 
the resulting unfairness can be measured as the pairwise maximum unfairness.

Common statistical unfairness metrics can be defined using expressions of the form 
���(h,D1) = | S

D1
a

X
D1
a

−
S
D1

b

X
D1

b

| , in which S
D1

i

X
D1

i

 is the chosen statistical measure of classifier h for 

group i ∈ {a, b} . As it will always be clear from context, we do not include index h in the 
notations S and X.

For instance, for the Statistical Parity metric, SD1

i
 (respectively XD1

i
 ) is the number of 

positive predictions (respectively number of examples) among group i in the dataset D1 , 
given classifier h’s predictions. For the Equal Opportunity metric, SD1

i
 (respectively XD1

i
 ) 

max
D�∈B(D,d)

��� (h,D�) ≤ max
D��∈B(D,d+

1

|D| )
��� (h,D��) ≤ max

D�∈B(D,d)
��� (h,D�) + � .

��� (h,D��) ≤ max
D�∈B(D,d)

��� (h,D�)

|��� (h,D��) − ��� (h,D�)| ≤ � ⟹ ��� (h,D��) ≤ ��� (h,D�) + �

⟹ ��� (h,D��) ≤ max
D�∈B(D,d)

��� (h,D�) + � .
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is the number of true positive predictions (respectively number of positively labeled exam-
ples) among group i, for the dataset D1 , given classifier h’s predictions.

While the particular measures of SD1

i
 and XD1

i
 depend on the fairness metric at hand, our 

proposed formulation covers all common statistical fairness metrics (in particular, those 
considered in this paper and listed in Table  1). Additionally, we always have SD

i
≤ XD

i
 , 

because the examples counted within SD
i

 correspond to a subset of those counted within XD
i

 
that satisfy a given condition.

We assume without loss of generality that S
D1
a

X
D1
a

>
S
D1

b

X
D1

b

 . We also assume XD1

a > 0 and 

X
D1

b
> 0 , which means that the (sub)set D1 contains examples from both protected groups 

that can be used to quantify fairness. Otherwise, D1 cannot be used to audit a model’s fair-
ness with respect to protected groups a and b. An exact value of � can then be obtained, 
that depends on the particular (sub)set D1 considered. Indeed, common statistical fairness 
metrics’ sensitivity are data-dependent, as discussed in Cummings et al. (2019) in the con-
text of differentially-private fair learning. By a slight abuse of notation, we define �(h,D1) 
as the local l1-sensitivity (as opposed to the global sensitivity � ) of the unfairness measure, 
given a classifier h, considering a dataset D1 and any neighbouring dataset D2 (see Defini-
tion  4) such that D2 ⊆ D1 . In other words, �(h,D1) quantifies the maximum unfairness 
increase made possible by removing at most one element from D1 . It upper bounds the fair-
ness violation increase between D1 and any of its neighbours D2 such that D2 ⊆ D1:

We can illustrate this notion with Fig. 1. On one hand, the global sensitivity � (Proposi-
tion 4) was previously able to upper bound the increase of the fairness violation among all 
edges of the graph. On the other hand, by leveraging the statistical fairness metrics’ formu-
lation, we can compute the (tighter) value of the local sensitivity �(h,D1) , upper-bounding 
the unfairness increase through all edges outgoing the vertex associated to D1 , in G′ (the 
directed graph derived from Fig. 1, where each edge from D1 to D2 means that D2 ⊆ D1).

Proposition 5  (Bounded worst-case fairness violation increase between consecutive pertur-
bation sets (statistical fairness metrics)) Consider a dataset D , a classifier h and a Jaccard 
distance d ∈ [0, 1 −

1

|D| ] . We have: 

1.	 Given a subset D′ of D , the value of �(h,D�) can be computed explicitly and has finite 
value.

2.	 max
D��∈B(D,d+

1

|D| )
��� (h,D��) ≤ max

D�∈B(D,d)
��� (h,D�) + �(h,D�).

3.	 ∃D�� ∈ B(D, d +
1

|D| ) such that ��� (h,D��) = max
D�∈B(D,d)

��� (h,D�) + �(h,D�).

Proof  We sketch the proof here and give the details in Appendix A. In this Proposition, 
�(h,D�) is the maximum increase of the unfairness measure made possible by removing at 

𝛾(h,D1) = max
D2 ⊆ D1

J𝛿(D1,D2) =
1

|D1∪D2|

||��� (h,D2) − ��� (h,D1)||1

= max
D2 ⊆ D1

J𝛿(D1,D2) =
1

|D1∪D2|

|��� (h,D2) − ��� (h,D1)|
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most one example from D′ . For statistical metrics, ���(h,D�) = | S
D�

a

XD�
a

−
SD

�

b

XD�

b

| and we observe 
that there are exactly four ways of modifying ��� (h,D�) : removing an example of group a 
satisfying or not satisfying the measure, or removing an example of group b satisfying or 
not satisfying the measure. Note that this makes the complexity of computing �(h,D�) 
independent of |D′| (effectively resulting in �(h,D�) being computed in constant time for 
any D′ ). 	� ◻

Proposition 5 shows that the worst-case unfairness increase induced by extending our 
perturbation set with minimal change can be bounded and that this upper-bound can be 
reached (i.e., the corresponding subset can be build by carefully selecting the element to 
be removed from D′ ). The analysis of this bound (explicitly stated in Appendix A) demon-
strates that the higher both groups’ size are, the smoother ��� (.) is. This observation natu-
rally holds for any value of the Jaccard distance d, theoretically highlighting the advantage 
of working with sufficiently large protected groups. Indeed, too small protected groups 
cause unfairness to have higher sensitivity, hence being less stable to punctual changes in 
the data.

3.2.3 � Conditions for perfect statistical fairness metrics sample‑robustness

One important implication of Proposition  5 is that the worst-case fairness violation 
increase induced by minimal extension of any perturbation set is, in the general case, 
greater than 0 and can be computed exactly. Hence, it is in general not possible for 
a classifier h to be perfectly fair over all our perturbation sets. Formally, we say that h 
achieves perfect fairness sample-robustness given unfairness tolerance � if and only if 
∀d ∈ [0, 1],∀D� ∈ B(D, d), ���(h,D�) ≤ � . In other terms, h achieves perfect fairness sam-
ple-robustness on D if and only if it meets the desired fairness constraint over all possible 
subsets of D . In the general case, for common statistical fairness metrics, it is not possible 
for h to be fair for all 0 < d ≤ 1 . Indeed, it is possible to build a subset of D on which 
unfairness is exactly 1.0 (hence violating any fairness constraint 𝜖 < 1 ). Given the values 
of SD

i
 and XD

i
 for all protected groups i (here, i ∈ {a, b} ), we can easily check whether 

the corresponding classifier h verifies perfect fairness sample robustness without building 
any subsets. The following proposition gives necessary and sufficient conditions that both 
imply the impossibility for h to satisfy perfect fairness sample robustness.

Proposition 6  (Necessary and sufficient conditions for perfect fairness sample-robust-
ness infeasibility) Consider a dataset D and a classifier h, as well as a maximum accept-
able unfairness 𝜖 < 1 . Perfect fairness sample-robustness of h on D is infeasible, that is 
∃D� ⊆ D such that ��� (h,D�) = 1.0 , if and only if one of the following two conditions 
holds: 

1.	 SD
a
> 0 and SD

b
< XD

b
 . In this case, D� ∈ B(D, d) , for all d ≥

1

|D| (X
D
a
− SD

a
+ SD

b
).

2.	 SD
b
> 0 and SD

a
< XD

a
 . In this case, D� ∈ B(D, d) , for all d ≥

1

|D| (X
D
b
− SD

b
+ SD

a
).

Proof  The gist of the proof is that we can, by removing a sufficiently important number of 
examples from D , get a subset D′ which exhibits the worst possible unfairness 
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��� (h,D�) = 1.0 . Indeed, to reach this value, one of the two rate measures S
D′

a

XD′
a

 or S
D′

b

XD′

b

 has to 

be brought to 0 while the other reaches 1. To achieve value 0 for the ratio S
D′

i

XD′

i

 , we need to 

remove SD
i

 instances from D (those satisfying the measure), and to reach value 1.0, we 
must remove XD

i
− SD

i
 examples (those not satisfying the measure). Finally, we can either 

remove XD
a
− SD

a
+ SD

b
 or XD

b
− SD

b
+ SD

a
 carefully chosen examples from D . In Case 1, we 

bring the a-ratio to 1 and the b-ratio to 0. In Case 2, it is the contrary. If neither 1 nor 2 can 
be applied, then necessarily either SD

i
= 0 for all protected groups or SD

i
= XD

i
 for all pro-

tected groups. In that case, perfect fairness sample-robustness is achieved (which is dis-
cussed later in Proposition 8). 	�  ◻

Proposition 6 shows that a minimum finite value of d can be easily computed to define 
the smallest B(D, d) containing a subset for which unfairness is exactly 1.0 (i.e., fairness 
is 0.0 - the worst possible value). This illustrates the fact that considering too large values 
of d may not make sense and that the constraints defined in Problem (5) are very strong. 
For example, for the Statistical Parity metric, this implies that any classifier with non-con-
stant prediction across protected groups a and b (hence, XD

a
> SD

a
> 0 or XD

b
> SD

b
> 0 for 

this metric) may be exactly fair on D but exactly unfair for some subset of D contained in 
B(D, d) . Additionally, Proposition 6 shows how this value of d can be computed. Based 
on the principles of this proposition, we infer in Proposition 7 a simple, yet powerful, suf-
ficient condition for perfect fairness sample-robustness infeasibility based on the unfairness 
measure over D.

Proposition 7  (Sufficient condition for perfect fairness sample-robustness infeasibility) 
Consider a dataset D and a classifier h. If ��� (h,D) > 0 then perfect fairness sample-
robustness of h on D is infeasible for any maximum acceptable unfairness value 𝜖 < 1.

Proof  Assume that ��� (h,D) > 0 , which means that | S
D
a

XD
a

−
SD
b

XD
b

| > 0 , hence either SD
a
> 0 or 

SD
b
> 0 (or both). We also observe that either SD

a
< XD

a
 or SD

b
< XD

b
 (or both). If SD

a
> 0 , two 

cases are possible:

•	 On the one hand, it may be that SD
a
= XD

a
 . Then, necessarily, SD

b
< XD

b
 and Case 1 of 

Proposition 6 is applicable.
•	 On the other hand, SD

a
< XD

a

–	 If SD
b
= XD

b
 , then Case 2 of Proposition 6 is applicable.

–	 If SD
b
= 0 , then Case 1 of Proposition 6 is applicable.

–	 If 0 < SD
b
< XD

b
 then either Case 1 or Case 2 of Proposition 6 are applicable.

A similar disjunction can be conducted over possible values of SD
b

 . Observe that if 
��� (h,D) = 0 then we can not conclude without looking at SD

a
 and SD

b
 . 	�  ◻

We now formulate necessary and sufficient conditions for guaranteeing perfect fairness 
sample-robustness.

Proposition 8  (Necessary and sufficient conditions for perfect fairness sample-robustness) 
Consider a dataset D and a classifier h as well as a maximum acceptable unfairness 𝜖 < 1 . 
Perfect fairness sample-robustness is guaranteed if and only if one of the following condi-
tions holds: 
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1.	 SD
i
= XD

i
 for all protected groups i (here, i ∈ {a, b}).

2.	 SD
i
= 0 for all protected groups i (here, i ∈ {a, b}).

Proof  If SD
i
= XD

i
 for all protected groups i, then the ratio associated to all protected groups 

is exactly 1.0 and cannot be modified by removing examples. Similarly, if SD
i
= 0 for all 

protected groups i, then the ratio associated to all protected groups is exactly 0.0 and can-
not be modified by removing examples. Finally, in any other case, either Points 1 or 2 of 
Proposition 6 can be applied to prove the infeasibility of perfect fairness sample-robust-
ness. 	�  ◻

The different possible cases mentioned in Propositions  6 and 8 are summarized in 
Fig. 2. Observe that, as expected, the conditions established in Proposition 8 are equivalent 
to the negation of those formulated in Proposition 6.

3.2.4 � Implications of perfect statistical fairness metrics sample‑robustness

Based on the conditions established in Proposition 8, we now study the implications for h 
of being exactly fair for all our perturbation sets for statistical fairness metrics.

Consider a dataset D and a classifier h satisfying perfect fairness sample-robustness. On 
the one hand, it means that h is perfectly fair on D and all its subsets, which can be desir-
able. However, depending on the fairness metric at hand, such a model may not be interest-
ing as we show below.

3.2.4.1  Statistical Parity  For the Statistical Parity metric, it means that h’s predictions are 
constant for all instances of groups a and b. This conflict strongly with utility and may result 
in h being a trivial model.

3.2.4.2  Predictive Equality  For the Predictive Equality metric, it means that either all nega-
tive samples of groups a and b are well classified (True Negative Rates are 1.0), or they are 
all misclassified (False Positive Rates are 1.0). Hence, a perfectly robust-fair model for this 
metric would either be 100% accurate over negative samples, or 100% inaccurate over such 

Fig. 2   The different possible situations to establish perfect fairness sample-robustness (Yes) or its impos-
sibility (No)
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examples. Observe that the first case is desirable, but also easily reachable by a trivial clas-
sifier constantly predicting the negative class.

3.2.4.3  Equal Opportunity  For the Equal Opportunity metric, it means that either all posi-
tive samples of groups a and b are well classified (True Positive Rates are 1.0) or they are 
all misclassified (False Negative Rates are 1.0). Hence, a perfectly robust-fair model for this 
metric would also be either 100% accurate over positive samples, or 100% inaccurate over 
such examples. Observe that the first case is desirable, but also easily reachable by a trivial 
classifier constantly predicting the positive class.

3.2.4.4  Equalized Odds  The Equalized Odds metric is the conjunction of Predictive Equal-
ity and Equal Opportunity. Hence, a perfectly robust-fair model for this metric would be 
100% accurate over its training set (or 100% inaccurate over its training set - in which case 
inverting its predictions would be sufficient).

These results illustrate the strength of our robustness notion. However, they also suggest 
that a direct application may not be possible. Indeed, a training accuracy of 100% cannot 
be reached in general. In addition, it may not be desirable to reach such accuracy as it usu-
ally indicates overfitting. In the next subsection, we show how our framework can be used 
to quantify the sample-robustness of statistical fairness.

3.3 � Maximal perturbation set ensuring statistical fairness constraint

We showed in Proposition 8 that in the special situations in which both SD
a
= 0 and SD

b
= 0 , 

or both SD
a
= XD

a
 and SD

b
= XD

b
 , h is perfectly fair over all the perturbation sets defined with 

respect to D . However, as discussed earlier, perfect fairness sample-robustness may not be 
desirable, nor achievable.

Instead of trying to enforce perfect sample-robustness of statistical fairness for a classi-
fier, we will use our new framework to quantify a classifier’s fairness sample-robustness, as 
defined in the following definition.

Definition 6  (Quantifying sample-robustness for fairness) Consider a dataset D , a classi-
fier h and an acceptable unfairness tolerance � . The unfairness sample-robustness of h on D 
for constraint � , denoted by SR(h,D, �) , is the Jaccard distance ( SR(h,D, �) ∈ [0, 1] ) such 
that: 

1.	 ∀d ≥ SR(h,D, �),∃D� ∈ B(D, d) such that ��� (h,D�) > 𝜖.
2.	 ∀d < SR(h,D, 𝜖),∀D� ∈ B(D, d), ��� (h,D�) ≤ 𝜖.

In other words, SR(h,D, �) is the largest possible value of the Jaccard distance d such that 
h is fair over all sets in B(D, d�),∀d� < d.

Consider that D and all its subsets are points into a metric space equipped with the Jac-
card distance. Intuitively, SR(h,D, �) is the radius of the largest ball centered around D 
such that h if fair over all sample sets strictly contained within this ball. In simple words, 
h is fair on D and on subsets of D up to a (Jaccard) distance of SR(h,D, �) . The bigger 
SR(h,D, �) , the more sample-robust h’s fairness is. The a- and b-ratios evolve non-linearly. 
Hence, it is not possible to compute a simple bound as in Proposition  6 for values of � 
such that 0 < 𝜖 < 1 . Therefore, we propose to consider a simple constrained optimization 
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problem, denoted by IPSR(h,D, �) , to compute the minimal number of examples that 
need to be removed from D to build a subset of examples such that h is not �-fair over it. 
Note, however, that the bounds proposed in Proposition 6 still hold, but are not tight (i.e., 
using these bounds we get an over-estimation of SR(h,D, �)).

Definition 7  (The integer program for quantifying sample-robustness for fairness) A solu-
tion of IPSR(h,D, �) is a tuple (xa, xb, ya, yb) , in which these four decision variables rep-
resent the number of examples to be removed from D to form a subset on which the unfair-
ness constraint is violated.

More precisely, xi represents the number of examples of group i satisfying the given 
measure (hence counted within both SD

i
 and XD

i
 ), while yi represents the number of exam-

ples of group i not satisfying the given measure (hence counted only within XD
i

 ). The opti-
mal solution of IPSR(h,D, �) is the one minimizing the total number of examples to be 
removed (7) to build the closest (in the Jaccard sense) subset of D.

Constraint (8) encodes the fact that the fairness constraint must be violated on the result-
ing subset. Constraints (9) to (12) capture the variables’ domains. Finally, constraints (13) 
and (14) enforce that at least one example of each group is kept (otherwise unfairness is 
undefined).

Illustration of IPSR(h,D, �) for an example metric For the Equal Opportunity metric, 
recall that SD

i
 is the number of positively labelled examples belonging to group i that are 

positively predicted by h (true positives). For this metric, XD
i

 is the total number of posi-
tively labelled examples belonging to group i. Then, xi represents the number of examples 
removed from D that belong to group i and are positively labelled and positively predicted 

(6)IPSR(h,D, �) ∶

(7)min
xa ,xb ,ya,yb

xa + xb + ya + yb

(8)s.t.

|||||

SD
a
− xa

XD
a
− xa − ya

−
SD
b
− xb

XD
b
− xb − yb

|||||
> 𝜖

(9)0 ≤ xa ≤ SD
a

(10)0 ≤ xb ≤ SD
b

(11)0 ≤ ya ≤ XD
a
− SD

a

(12)0 ≤ yb ≤ XD
b
− SD

b

(13)xa + ya < XD
a

(14)xb + yb < XD
b
.
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by h. Removing xi such examples decrements both SD
i

 and XD
i

 . On the other side, yi is the 
number of examples removed from D that belong to group i and are positively labelled and 
negatively predicted by h. Removing yi such examples decrements only XD

i
.

In the next proposition, we show that IPSR(h,D, �) can be used to exactly compute a 
classifier’s fairness sample-robustness SR(h,D, �).

Proposition 9  (Quantifying Sample-Robustness for fairness using IPSR(h,D, �) ) Let 
(x∗

a
, x∗

b
, y∗

a
, y∗

b
) be the optimal solution of IPSR(h,D, �) . Then:

Proof  To prove this equality, we will need to prove the two conditions of Definition 6.
Let z∗ = x∗

a
+ x∗

b
+ y∗

a
+ y∗

b
 be the value of the objective function of the optimal solution 

of IPSR(h,D, �) . We define d∗ = z∗

|D| =
x∗
a
+x∗

b
+y∗

a
+y∗

b

|D|  . Then: 

1.	 Consider D∗ , the subset of D formed by removing x∗
a
 (respectively x∗

b
 ) examples of group 

a (respectively b) satisfying the statistical criterion, and y∗
a
 (respectively y∗

b
 ) examples 

of group a (respectively b) not satisfying the statistical criterion. The bounds of the 
decision variables of Problem  (6) enforce that D∗ exists. We have: 
J�(D,D∗) =

x∗
a
+x∗

b
+y∗

a
+y∗

b

|D| = d∗ . Additionally, we know that ��� (h,D∗) > 𝜖 , because 
(x∗

a
, x∗

b
, y∗

a
, y∗

b
) is a solution of IPSR(h,D, �) and then necessarily satisfies Constraint (8). 

Hence, ∀d ≥ d∗,∃D� = D∗ ∈ B(D, d) such that ��� (h,D�) > 𝜖.
2.	 Assume that ∃D�� ∈ B(D, d) with d < d∗ such that ��� (h,D��) > 𝜖 . Then, D′′ is formed 

by removing z�� < z∗ examples from D . In addition, D′′ is a solution to Problem (6) as 
��� (h,D��) > 𝜖 . This contradicts the fact that z∗ is the optimal objective value of Prob-
lem (6). Hence, ∀d < d∗,∀D� ∈ B(D, d), ���(h,D�) ≤ 𝜖.

Finally, by (1) and (2), d∗ = SR(h,D, �) . 	�  ◻

IPSR(h,D, �) can be solved using any Mixed-Integer Programming (MIP) solver 
(more implementation details are provided in Sect. 5.1.2). The main computational chal-
lenge resides in the fact that Constraint (8) is non-linear. However, due to the modest size 
of the model, common solvers are able to solve the problem to optimum within fractions of 
seconds.

Additionally, based on the principles described in Proposition  5, we have designed a 
simple greedy algorithm GreedySR(h,D, �) that can be used to approximate SR(h,D, �) . 
Its pseudo-code is depicted in Appendix A.

Intuitively, GreedySR(h,D, �) starts with the entire dataset D , and successively removes 
examples to build subsets of D until fairness is violated. At each step, it removes exactly 
one example from the current subset Dc . This example is chosen to maximize the fairness 
violation increase. Indeed, this value, as well as the associated example to be removed, 
can be computed in constant time using �(h,Dc) as defined in Proposition 5. This is due to 
the fact that, given Dc , only four possible operations can be considered to modify fairness: 
remove an example of protected group a (respectively b) that satisfies (respectively does 
not satisfy) the fairness requirement.

GreedySR(h,D, �) comes with no optimality guarantee and we can easily craft 
instances on which it does not achieve optimality. However, it provides an upper-bound on 
SR(h,D, �) , and has polynomial O(|D|) complexity, where |D| is the number of examples 

SR(h,D, �) =
x∗
a
+ x∗

b
+ y∗

a
+ y∗

b

|D|
.
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in D . We show empirically in Sect.  5.1.4 that it can approximate SR(h,D, �) well in 
practice.

We formally defined our sample-robustness criterion for fairness, as well as an Integer 
Programming model to precisely quantify it. One of the strengths of the proposed approach 
is that it can be used to quantify the fairness robustness of any classifier h, given only 
an access to its predictions. In particular, the approach is agnostic to the hypothesis class 
of the classifier h, no additional assumptions are necessary and a black-box access to the 
model is sufficient. In the next subsection, we present the resulting learning problem state-
ment. Afterwards, we discuss the practical issues with this formulation and show how it 
can be integrated within existing learning algorithms.

3.4 � Integration with fair learning algorithms and practical challenges

As discussed previously, the use of the Jaccard distance to define the perturbation sets 
around D has some theoretical advantages. However, carefully calibrating the parameter d 
to avoid over-constraining the problem is necessary. In addition, the resulting problem may 
still be hard to solve in practice and/or penalize utility too much.

A possible use would be to solve IPSR(h,D, �) and directly use the resulting 
SR(h,D, �) to quantify the fairness sample-robustness of classifier h. Integrating this term 
directly within the objective function of a learning algorithm might appear to be suitable. 
However, this would require solving IPSR(h,D, �) at each model update to be able to 
audit the fairness sample-robustness. For instance, this would not be trivial for gradient-
based learning techniques, as SR(h,D, �) is not a differentiable value. In addition, sample-
robustness values found by solving IPSR(h,D, �) depend on the dataset considered and its 
structure (in particular, through the influence of the cardinalities of the protected groups). 
This implies that a particular sample-robustness value may be satisfactory for a given task, 
but may not be meaningful for another dataset or another pair of protected groups. Fur-
thermore, there is often an important gap between realistic, task-useful models’ sample-
robustness and that of any constant classifier (which is 1.0). These observations make the 
integration of our robustness quantification notion into learning algorithms more difficult. 
Then, we formulate the sample-robust fair learning problem as a multi-objective problem, 
using an �-constraint method. In other words, considering the fair learning problem (3), we 
include our fairness sample-robustness term as a constraint:

Note that Problem (15) is indeed equivalent to Problem (5), reformulated to use the fair-
ness sample-robustness quantification notion introduced in Sect. 3.3 (i.e., SR(h,D, �) and 
the discussed tools to measure it). In particular, the � parameter of Problem  (15) corre-
sponds to the d parameter of Problem (5).

As discussed earlier, an important difficulty with Problem (15) is the calibration of the 
� parameter. More precisely, as a meaningful value of � depends on the dataset at hand, 
on the considered sensitive attributes, on the unfairness metric and on the unfairness con-
straint � , determining a good value for � is difficult. For this reason, we propose to build 
a Pareto frontier between utility ( fobj(h,D) ) and fairness sample-robustness ( SR(h,D, �) ), 
for a fixed value of � . To realize this, we first solve Problem  (15) with no constraint on 

(15)

argmin
h∈H

fobj(h,D)

s.t. ��� (h,D) ≤ �

SR(h,D, �) ≥ �
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SR(h,D, �) ( � = 0 ). Then, we measure the resulting model’s h0 sample robustness and 
solve Problem (15) again, using this value ( SR(h0,D, �) ) for the � parameter. We iterate 
this process until reaching perfect sample-robustness of 1.0 (which can always be reached 
by building a trivial constant classifier). However, remark that this approach has two draw-
backs. First, it is not obvious which solution of the Pareto frontier should be kept. Second, 
as the process is done sequentially, it may be long to finish and this time is not predictable.

To address the first challenge, once a model’s training is finished, we propose to audit 
its fairness on a separate validation set. If the validation unfairness meets a given criterion 
(e.g., is lower than the training unfairness or lower than � ), we return this model. Oth-
erwise, we strengthen the sample-robustness constraint and iterate. The second difficulty 
remains (even though the validation step stops the process earlier instead of building the 
entire Pareto frontier).

Finally, we propose a sample-robustness framework for statistical fairness. After charac-
terizing our perturbation sets structure and the resulting learning problem, we show how it 
can be integrated within existing algorithms. We further conduct an experimental evalua-
tion of this approach in Sect. 5.1. However, practical difficulties remain, such as an impor-
tant computational overhead and practical integration challenges (solving a MIP within a 
learning algorithm). These challenges motivate a heuristic formulation of the problem.

4 � A heuristic method to improve fairness sample‑robustness

In this section, we propose a heuristic method designed to improve fairness sample-robust-
ness, without exhibiting some of the practical limitations of the exact approach proposed 
in the previous section. First, we introduce this heuristic method before showing how it can 
be integrated into two state-of-the-art fair learning algorithms.

4.1 � Approximating the perturbation sets

We have showed that an exact application of our proposed formulation is possible, but 
challenging. Indeed, in practice, a heuristic application of our proposed principle can be 
beneficial, even if no formal guarantees hold. The approach we propose consists in comput-
ing n random subsets of the training set using n random binary masks. Each mask Mi is a 
vector of size |D| , in which each coordinate Mij ∈ {0, 1} ( i ∈ {1… n} and j ∈ {1… |D|} ) 
is a random binary value. We denote by Di the subset associated with mask Mi as follows: 
Di = {ej ∈ D ∣ Mi,j = 1} . This is used in Definition 8 to define the heuristic perturbation 
set.

Definition 8  (Heuristic perturbation sets) Consider a dataset D and a set of n binary 
masks M1 …Mn of size |D| . The heuristic perturbation set, denoted by B�(D, n) , is defined 
as: B�(D, n) = {D,D1,D2,…Dn}.

In a nutshell, instead of considering the entire previously defined perturbation set 
B(D, d) , we only enforce fairness on some randomly generated subsets (belonging to 
B(D, d) by construction). Intuitively, B(D, d) considers all subsets of D whose Jaccard dis-
tance from D is at most d. In contrast, B�(D, n) only considers n random subsets of D 
(along with D itself). In the graph representation of Fig. 1, our heuristic perturbation sets 
contain randomly selected vertices.
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By replacing B(D, d) by B�(D, n) in Problem (5), we get the heuristic formulation of 
our sample-robust fair learning problem. The intuition behind this heuristic approach is 
that the randomly sampled subsets of D have slightly different distributions. Hence, enforc-
ing fairness for such subsets effectively leads to a form of heuristic distributionally robust 
optimization. It is possible to draw a parallel with the Bagging (Bootstrap AGGregatING) 
ensemble learning method (Zhou 2012). Indeed, the idea underlying bagging is that train-
ing different models using different samplings of the training set may improve robustness 
by reducing the variance. This happens because such samplings have slightly different 
distributions, neighbouring the original one. While bagging leverages the different sam-
plings to learn a set of models that will reduce the variance of the accuracy, we use them to 
enforce fairness in a robust manner.

This heuristic formulation does not have the theoretical appeal of our exact sample-
robustness quantification framework, but exhibits considerable practical advantages. 
Indeed, it does not require calibrating the � parameter of Problem (15), which explains why 
we no longer need a separate validation set. In addition, computing unfairness over a finite 
set of subsets defined with masks can be done in linear time with respect to the input size, 
which is considerably simpler than solving IPSR(h,D, �) . It is also easier to integrate 
within existing algorithms (and in particular, gradient-based techniques - as we show later).

Compared to the approach of Mandal et al. (2020), our heuristic method for robust fair 
learning does not come with theoretical guarantees, but its simplicity provides practical 
advantages in terms of scalability and applicability. First, it can be easily integrated into 
most fair classification techniques and it does not require access to a cost-sensitive learn-
ing algorithm (in cost-sensitive learning, the instances of the training set are associated to 
weights that define their contribution to the objective function value). Second, unlike Cot-
ter et al. (2018, 2019a), we do not require a prior split of the data. Finally, as we show later 
in the experiments section, our heuristic method can be efficiently integrated within fair 
learning algorithms and allows an empirical improvement of the generalization of fairness.

In the next two sections, we show how to include our heuristic method into two state-
of-the-art fair classification techniques (solving Problem (3)) that have different character-
istics. The first one is an exact branch-and-bound algorithm that builds inherently inter-
pretable models. It works with binary data and binary protected group membership. As 
interpretability is becoming a key property for machine learning models  (Freitas 2014; 
Rudin 2019), we believe that our method could be applicable in a wide range of contexts.

The second one is based on a two-player game formulation of constrained optimization. 
It uses gradient-based techniques without necessarily binarizing the data and handles fair-
ness for any number of protected groups. Both methods are metric-agnostic and could be 
used to enforce any statistical fairness measure.

4.2 � Integration with FairCORELS

FairCORELS (Aïvodji et al. 2019, 2021) is an extension of the CORELS (Angelino et al. 
2017, 2018) algorithm that builds fair rule lists on binary datasets (attributes and labels) 
given two protected groups. A rule list (Rivest 1987) is a classification model defined by 
an ordered list of if-then rules (with a default prediction if non of the rules applies). Given 
a collection of rules (consisting in any combination of attributes mined as preprocessing), 
FairCORELS certifiably builds a rule list with the highest objective function among those 
meeting a given statistical fairness constraint. It is a branch-and-bound algorithm that rep-
resents the search space of the rule lists R using a prefix tree. In this prefix tree, each node 
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is a rule and each path from the root to a node is a prefix (ordered set of rules), that can 
be extended with a default decision to form a potential solution. Leveraging a collection 
of bounds, FairCORELS explores this search space using a given search heuristic and 
updates the current best solution only when the candidate model has an unfairness value at 
most equal to a given � . Let ����(.) be the misclassification error, ��� (.) the unfairness ora-
cle, Kr the length of prefix of rule list r and � a regularization parameter penalizing longer 
rule lists, FairCORELS solves the following constrained optimization problem:

Integrating the proposed heuristic perturbation sets into the FairCORELS algorithm is 
quite simple. Whenever an evaluated rule list improves over the current best objective 
function, it is accepted only if it has an unfairness value lower than � on the training set and 
on each of its subsets defined by the n masks. Finally, the modified algorithm searches for 
the rule list solution to the following problem:

In practice, it is often not necessary to compute ��� (.) for each subset. We only compute 
these quantities if the candidate prefix improves over the current best one and meets the 
fairness constraint on the training set. In this case, subsets unfairness are computed sequen-
tially and stopped early if the constraint is violated on any of the subsets. This efficient 
implementation leads to no significant computational overhead compared to the original 
FairCORELS.

4.3 � Integration with TFCO

TensorFlow Constrained Optimization3 (TFCO) is a Python library for opti-
mizing inequity-constrained problems in TensorFlow to produce machine learning mod-
els (not restricted to the fair learning problem). It implements the method of Cotter et al. 
(2019b), formulating the constrained optimization problem as a two-player game. Con-
sidering the Lagrangian relaxation of the problem, the first player ( �-player) optimizes a 
model’s parameters to minimize the objective function while the second player ( �-player) 
updates the Lagrangian-multipliers to approximate the strongest Lagrangian relaxation. 
While original fairness constraints are non-differentiable proportions (linear combinations 
of indicators), TFCO allows for the computation of objective and proxy constraints as hinge 
upper bounds of the real quantities, which allows for the use of gradient-based techniques. 
In this setting, Cotter et al. (2019b) proposes the Proxy Lagrangian framework. The latter 
reduces the constrained optimization problem to a two-player non-zero sum game, in which 
the “learner” optimizes the model’s parameters to minimize objective function including 
proxy constraints while the “auditor" updates the Lagrangian multipliers based on the true 
constraints’ violations.

argmin
r∈R

fobj���������� = ����(r,D) + �.Kr

s.t. ���(r,D) ≤ �

argmin
r∈R

fobj���������� = ����(r,D) + �.Kr

s.t. max
D�∈B�(D,n)

��� (h,D�) ≤ �

3  https://​github.​com/​google-​resea​rch/​tenso​rflow_​const​rained_​optim​izati​on

https://github.com/google-research/tensorflow_constrained_optimization
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In the general context of constrained optimization, the proxy Lagrangians associated to 
the two players optimizing objective function g0(�) under m constraints gi,i∈[m] are:

in which �j are the Lagrange multipliers, gi measures violation of constraint i and g̃i is its 
differentiable proxy.

Integrating our heuristic perturbation sets into the TFCO framework does not require 
modifying the library. Indeed, it simply consists in including additional constraints to the 
declared optimization problem, to enforce the fairness constraints on the subsets of the 
training set defined by the n masks. Formally, we add one constraint per protected group 
per mask. When dealing with m protected groups, the original fair formulation includes m 
constraints (bounding a statistical measure’s difference between each protected group and 
the overall training set). Our heuristic sample-robust method declares m.(n + 1) fairness 
constraints (enforcing the m fairness constraints on the n + 1 sets of B�(D, n) ) that will be 
included in the objective function and weighted with Lagrange-multipliers, following the 
approach of Cotter et al. (2019b), as in Eq. (16). Finally, integrating our proposed heuristic 
approach within TFCO is quite straightforward. One may observe that it would not be the 
case for the exact method proposed in Sect. 3, as the output of IPSR is not a differentiable 
value.

5 � Experiments

We now empirically evaluate the proposed sample-robustness approaches for statistical 
fairness, over a variety of datasets, sensitive attributes, and statistical fairness metrics, and 
two fair learning algorithms of the literature.

In a first subsection, we compare the exact and heuristic formulations, both integrated 
within the FairCORELS algorithm. Afterwards in a second subsection, we demonstrate 
the effectiveness of our heuristic formulation within TFCO and compare it to a state-of-the 
art technique for improving statistical fairness generalization (Cotter et al. 2018, 2019a).

5.1 � Integration into FairCORELS and comparison between exact and heuristic 
methods

In this section, we integrate and evaluate our exact and heuristic methods within the 
FairCORELS algorithm. We first introduce the considered setup and define the differ-
ent methods implemented. Then, we show that the exact formulation effectively improves 
unfairness generalization through the performed iterations. In the fourth and fifth subsec-
tions, we show that our heuristic method improves fairness sample-robustness and statisti-
cal fairness generalization. Finally, we compare the exact and heuristic approaches in terms 
of fairness sample-robustness and learning quality (trade-offs between accuracy and fair-
ness at test time).

(16)

L𝜃(𝜃, 𝜆) = 𝜆1g0(𝜃) +

m∑

i=1

𝜆i+1g̃i(𝜃)

L𝜆(𝜃, 𝜆) =

m∑

i=1

𝜆i+1gi(𝜃)
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5.1.1 � Setup

Our experiments cover four binarized datasets widely used in the fair learning literature. 
For each dataset, the mined rules are single- and two-clause antecedents (i.e., conjunctions 
of at most two attributes or their negation).

•	 Adult Income dataset4  (Frank and Asuncion 2010). This dataset gathers records of 
more than 45, 000 individuals from the 1994 U.S. census. We consider the binary clas-
sification task of predicting whether an individual earns more than 50, 000$ per year. 
We use the same preprocessing as Aïvodji et al. (2019, 2021), considering gender to be 
the binary sensitive attribute (Male or Female).

•	 COMPAS dataset5(analyzed by Angwin et  al. (2016)). We consider the same discre-
tized dataset used to evaluate CORELS in Angelino et al. (2017). The associated label/
decision is whether the person will re-offend (recidivate) within 2 years (yes or no) 
while the binary sensitive attribute is race (African-American or Caucasian). 
Rule mining is done similarly to Aïvodji et al. (2019, 2021).

•	 Defaut of Credit Card Clients dataset6  (Yeh and hui Lien 2009). The dataset is dis-
cretized using quantiles. The discrete attributes were used to generate single and two 
clause rules, and only rules with support higher than 0.5 were kept. The associated 
decision is whether the person will default in payment (the next time they use their 
credit card), with the sensitive attribute being gender (Male or Female). The result-
ing dataset contains 189 rules and 29,986 examples.

•	 Bank Marketing dataset7 (Moro et al. 2014). The dataset is discretized using quantiles. 
The discrete attributes are used to generate single and two clause rules and only rules 
with support higher than 0.5 were kept. The associated decision is whether the person 
will subscribe to a term deposit. The resulting dataset contains 41,175 examples and 
179 rules, among which the 2 protected attributes : age:30-60 and not_age:30-
60.

For each dataset, we prevent the use of the sensitive attributes in the model built to avoid 
disparate treatment. For all experiments, we set the maximum number of nodes in Fair-
CORELS’ prefix tree to 2.5 × 106 along with some fixed parameters such as the branching 
heuristic after a preprocessing step.

5.1.2 � Methods

Exact method We modified ���������� to solve Problem (15)8. Solving IPSR(h,D, �) is 
costly (even though it can be done in fractions of seconds in practice) and we should avoid 
doing it at each iteration of the learning algorithm. Within ���������� , IPSR(h,D, �) 
is solved only when the current best solution update subroutine is called (just like mask-
related constraints are verified in the integration of our heuristic approach). In other words, 
we only audit a model’s sample-robustness when it is about to become the new current 

4  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​adult
5  https://​raw.​githu​buser​conte​nt.​com/​propu​blica/​compas-​analy​sis/​master/​compas-​scores-​two-​years.​csv
6  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​defau​lt+​of+​credit+​card+​clien​ts
7  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Bank+​Marke​ting
8  Our source code is available on https://​github.​com/​ferry​jul/​Fairn​essSa​mpleR​obust​ness

https://archive.ics.uci.edu/ml/datasets/adult
https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-scores-two-years.csv
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://github.com/ferryjul/FairnessSampleRobustness
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best solution. This guarantees that the final solution meets the desired fairness sample-
robustness constraint, while in practice performing a small number of calls to the solver. 
For our experiments, IPSR(h,D, �) is solved using the OR-Tools CP-SAT solver (Per-
ron and Furnon 2019). Implementation of IPSR(h,D, �) necessitates some reformulation, 
in particular regarding Constraint  (8), which is non-linear and requires products compu-
tation. Indeed, we can get rid of the divisions by multiplying both sides of the inequal-
ity by the (positive) product of the denominator variables, and further using intermediate 
variables. We consider the four fairness metrics presented in Table  1 and an unfairness 
tolerance � ∈ {0.02, 0.015, 0.01, 0.005} . Results for the different values of � show similar 
trends, hence we only report those for � = 0.01 for conciseness reasons. We compare five 
variants based on our exact method:

•	 We solve Problem (15) iteratively and update the fairness sample-robustness constraint 
� at each step, without validation set, until SR(h,D, �) = 1 . More precisely, we build 
the entire Pareto frontier between accuracy and fairness sample-robustness, for a fixed 
value of � . We denote this set of models the sample robust fair frontier 
(no validation). While selecting a particular model within the built sequence 
remains an open problem, this enables to visualize the different trade-offs that are 
obtained during the iterations. Among these built models, we select the non-constant 
one with higher fairness sample robustness. We call this the no validation 
(before-constant) method.

•	 We solve Problem (15) iteratively with a validation set. We then obtain a Pareto frontier 
between train accuracy and fairness sample-robustness. This set of models is the sam-
ple robust fair frontier (validation). We leverage the validation set 
to define two stopping criteria. The first one, called validation (� criterion), 
stops iterating when the validation unfairness is under � (i.e., when the fairness con-
straint enforced on the training set is also met on the validation set). The second one 
is called validation (train unf. criterion). It stops iterating when the 
validation unfairness is smaller or equal to the training one.

Heuristic method The integration of our heuristic approach within FairCORELS is 
depicted in Sect.  4.2.9 For a number of masks n ∈ {0, 10, 30} , we compute the training 
Pareto frontier (between accuracy and fairness) of FairCORELS, with a fixed list of 147 
values for the unfairness tolerance � (ranging non-linearly with a higher density for higher 
fairness constraints). By evaluating each model obtained on its test set, we obtain approxi-
mations of the Pareto frontier of FairCORELS in test. We compute such frontier for 
the four different statistical notions of fairness presented in Table 1. Based on this setup, 
we assess FairCORELS’ fairness generalization ability, with ( n ∈ {10, 30} ) or without 
( n = 0 ) our proposed approach.

All reported values are averaged using 5-folds cross-validation, with all methods are 
trained and evaluated on the same data splits. For the methods sample robust fair 
frontier (validation), validation (� criterion) and validation 
(train unf. criterion), part of the original training set is used for validation (and 
not used for training the model).

9  Our source code is available on https://​github.​com/​ferry​jul/​Fairn​essSa​mpleR​obust​ness

https://github.com/ferryjul/FairnessSampleRobustness
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5.1.3 � Exact method: effects of fairness sample‑robustness on fairness generalization 
and accuracy

In this subsection, we show that our exact method effectively improves the statistical fair-
ness generalization. We also visualize the resulting trade-offs between accuracy and fair-
ness sample-robustness.

Figures  3 and 4 illustrate the obtained results on the four datasets, for the Statistical 
Parity fairness metric ( � = 0.01 ). Results for the three other metrics ( � = 0.01 ), and for the 
four datasets, are given in Appendices C.1 and C.2. Detailed results for the Statistical Par-
ity metric (including standard deviation) are included in Appendix  C.3. In both figures, 
the sample-robust fair frontier (with or without validation set) presents all 
obtained models, sorted by their index in the sequence. This means that the leftmost point 
corresponds to the unconstrained model, while the rightmost point exhibits 1.0 fairness 
sample-robustness and is obtained after the last iteration of the process. Note that this 
last model is usually a constant classifier, as discussed in Sect. 3.2.4. However, this is not 
always the case, and for the Predictive Equality and Equal Opportunity metrics, some mod-
els achieve perfect sample-robustness without reaching trivial accuracy. This is possible if 
the built rule lists only make mistakes on the positively (respectively negatively) labelled 
instances. This is the case, for example, if the model’s prefix rules only capture positively 

Fig. 3   Training, test and validation (when applicable) unfairness of models generated by ���������� 
through the iterations of our exact method (Statistical Parity metric, � = 0.01)
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(respectively negatively) labelled examples, while a default decision classifies negatively 
(respectively positively) the uncaptured ones.

Intuitively, we strengthen the fairness sample-robustness constraint of Problem  (15) 
through the iterations of the method (numbered in the x-axis). This increases the fairness 
sample-robustness sequentially, as shown in Fig. 4. This effectively lowers the test unfair-
ness as expected (Fig. 3), but degrades the training and test accuracy (Fig. 4). This sug-
gests that a trade-off between accuracy and fairness sample-robustness exists. In Fig. 3, we 
see that considering the non-constant classifier with higher fairness sample-robustness (no 
validation (before-constant) method) satisfies the fairness requirement at test 
time, which was precisely the aim of our method. However, we see in Fig. 4 that this fair-
ness generalization improvement comes at a high cost in terms of accuracy (both at train-
ing and test times).

While using a separate validation set, we see that we usually require fewer iterations and 
get models closer to the unfairness tolerance � . Such models do not always meet the fair-
ness constraint at test time, but still lead to a reduction of the test unfairness.

One may observe that the points associated to no validation (before-con-
stant), validation (� criterion) and validation (train unf. cri-
terion) do not lie on their associated curves. The reason for this is that the stopping cri-
teria are applied separately on each fold (with the fold’s validation set). Hence, the models 
obtained with these methods are learnt with different number of steps on different folds. 
The x-positioning of the points is then performed based on the average sample-robustness 

Fig. 4   Fairness sample-robustness and accuracy of models generated by ���������� through the iterations 
of our exact method (Statistical Parity metric, � = 0.01)
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value within the corresponding frontier. Finally, we see that when the fairness constraint is 
already satisfied (as for the Bank Marketing dataset), the method still allows a reduction of 
the test unfairness, which may strengthen unfairness robustness.

The evaluation of our exact methods’ test accuracy as well as comparison with our heu-
ristic method is performed later in Sect. 5.1.6. In the next two subsections, we evaluate our 
heuristic method.

5.1.4 � Heuristic method: fairness sample‑robustness improvement results

In this part of our experiments, we use our heuristic sample-robust method within 
���������� and empirically show that it effectively improves the fairness sample-
robustness. As stated previously, we compare three variants: the original FairCORELS  
(no mask) as well as FairCORELS modified with our heuristic sample-robust method 
for 10 masks and 30 masks.

We use IPSR(h,D, �) and GreedySR(h,D, �) to audit a posteriori the fairness sam-
ple-robustness of the models built with each of the three methods. As discussed earlier, 
GreedySR(h,D, �) provides no optimality guarantee, but it has polynomial complexity and 
can be used to upper-bound SR(h,D, �) . On the other side, IPSR(h,D, �) computes the 
exact value of SR(h,D, �) but is computationally more expensive.

To empirically demonstrate that our heuristic approach is suitable to improve sample-
robustness, we report in Fig.  5 results for the four metrics (Statistical Parity, Predictive 

Fig. 5   Fairness sample-robustness of models generated by ���������� using our heuristic method (Default 
of Credit Card Clients dataset)
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Equality, Equal Opportunity and Equalized Odds), for the Defaut of Credit Card Clients 
dataset. Results for the remaining datasets are given in Appendix C.4. When the fairness 
constraint enforced is strengthened ( 1 − � grows), fairness sample-robustness decreases. We 
explain this by the fact that, as the fairness constraint becomes tighter, it is met on a lower 
number of subsets of the training set. In particular, the radius of the ball (measured using 
the Jaccard distance) around the training dataset in which the fairness constraint is met eve-
rywhere ( SR(h,D, �) ) diminishes. However, we observe in Fig. 5 that our heuristic method 
is able to mitigate the decrease of the fairness sample-robustness. Additionally, there seems 
to be a correlation between the number of masks used and the resulting fairness sample-
robustness. We note that GreedySR(h,D, �) actually performs very well and proposes a 
close over-approximation of SR(h,D, �) . For these experiments, GreedySR(h,D, �) found 
the optimal solution (i.e., the value returned by IPSR(h,D, �) ) 88% of the time. For the 
remaining 12% , the average gap to optimality is less than 5% . Considering the four datasets 
and the four fairness metrics, GreedySR(h,D, �) found the optimal solutions for 78% of 
the executions. For the remaining 22% , the average gap to optimality is around 36% . This 
means that, for some executions, the value found by GreedySR(h,D, �) is considerably 
higher than the exact value of IPSR(h,D, �) , resulting in a high upper-bound.

We have showed that our heuristic method empirically improves fairness sample-robust-
ness. In the next subsection, we show that as a result it also improves the fairness generali-
zation, hence allowing the construction of models with better test accuracy/fairness trade-
offs in regimes of low unfairness.

Fig. 6   Results of our heuristic method (Adult Income dataset, Equal Opportunity metric)

Fig. 7   Results of our heuristic method (COMPAS dataset, Equal Opportunity metric)



2161Machine Learning (2023) 112:2131–2192	

1 3

5.1.5 � Heuristic method: statistical fairness generalization improvement results

In this part of our experiments, we use our heuristic sample-robust method within 
���������� and empirically show that it effectively enhances the statistical fairness 
generalization.

Figures 6, 7, 8 and 9 present respectively the performances of the three variants on the 
Adult Income, COMPAS, Defaut of Credit Card Clients and Bank Marketing datasets, for 
the Equal Opportunity metric (which is widely used in the literature). Results for the four 
datasets using all fairness metrics, which display similar trends, are included in Appen-
dix C.5. Each figure has three graphs, with each point of a graph corresponding to a solu-
tion (averaged with the 5-folds cross validation). Note that we focus on solutions whose 
unfairness is at most 0.05, because this part of the trade-offs (medium to strong fairness 
constraints) is the most interesting one in our experiments. It allows us to investigate 
unfairness generalization under meaningful constraints. To ease train/test comparison, the 
ranges of both axis of the first two plots are set identically.

The first graph is a Pareto frontier built on the training set, which displays the set of 
non-dominated solutions (in terms of unfairness and error) on the training set. Solutions 
closer to the lower left corner are preferable, as they correspond to lower error and lower 
unfairness. We observe that, in all cases, our heuristic method leads to a lower trade-off on 
the training set. This suggests that robustness comes at the cost of a lower training perfor-
mance, which is not really problematic as we shall prefer solutions exhibiting worse accu-
racy/fairness trade-offs at training time but generalizing better.

The second graph is the Pareto frontier built on the test set, which illustrates the effec-
tiveness of our proposed approach. In all cases, using our heuristic method (with either 10 

Fig. 8   Results of our heuristic method (Default Credit dataset, Equal Opportunity metric)

Fig. 9   Results of our heuristic method (Marketing dataset, Equal Opportunity metric)
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or 30 masks) leads to a denser Pareto frontier, exhibiting better accuracy/fairness tradeoffs. 
This is particularly the case for tight fairness constraints, in which the standard Fair-
CORELS fails to generate solutions exhibiting such low test unfairness.

The third graph illustrates the generalization of unfairness, presenting the test unfairness 
as a function of the training one. The ideal generalization scenario, in which the test unfair-
ness is exactly equal to the training unfairness, is represented by the diagonal line. We 
observe that for tight fairness constraints (left side of the figure), solutions generated by the 
original FairCORELS generalize badly: they exhibit low training unfairness but consider-
ably higher test unfairness. In contrast, solutions generated using our approach generalize 
considerably better as the corresponding points are closer to the ideal scenario.

Finally, all the presented results show that the use of our heuristic method leads to the 
generation of models trading some training performances for fairness robustness, and pre-
senting better accuracy/fairness trade-offs on unseen data (at test time). In particular, mod-
els learnt using our heuristic method have a considerably smaller unfairness generalization 
error, which allows for populating areas of the test Pareto frontier that the original Fair-
CORELS failed to fill in.

5.1.6 � Comparing the exact and heuristic approaches

We now compare the proposed exact and heuristic approaches on similar problems.
Figure 10 displays the built models’ sample-robustness, for the Statistical Parity metric 

( � = 0.01 ). Results for the three other metrics ( � = 0.01 ) and for the four datasets, are given 
in Appendix C.6. We observe that both the heuristic and exact methods are able to improve 
fairness sample-robustness over the original FairCORELS. Overall, as expected the exact 
method can lead to higher sample-robustness values as the models are learnt with con-
straints over this precise value.

Figure 11 shows the obtained test error/test unfairness trade-offs for the Statistical Parity 
metric ( � = 0.01 ). Results for the three other metrics ( � = 0.01 ), for the four datasets, are 
given in Appendix C.7. We observe that all the proposed methods usually diminish fairness 
violation at test time (the associated points are either under � or closer to it). This improve-
ment on fairness generalization induces a cost on the model’s error. As a general trend, we 
see that the greater the fairness generalization improvement, the greater the error incurred. 
However, the generated solutions often propose interesting trade-offs between error and 

Fig. 10   Fairness sample-robustness of models generated by ���������� using our exact and heuristic sam-
ple-robust fair methods (Statistical Parity metric, � = 0.01)
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unfairness. In particular, in the Bank Marketing experiment the robustness enforced for 
fairness can sometimes benefit the error generalization as well.

Finally, we showed that the integration of our exact or heuristic methods within Fair-
CORELS practically improve fairness generalization. While both approaches successfully 
enforce fairness robustness, the exact method is computationally more expensive, because 
it consists in a sequence of trainings (while the heuristic method only trains once). In addi-
tion, each training is more expensive as it requires solving an integer programming model. 
Overall, the heuristic approach seems more appealing for practical applications, thanks to 
its flexibility, computational efficiency and empirical effectiveness.

5.2 � Heuristic method: integration into TFCO and comparison to a state‑of‑the‑art 
method

The objective of this section is two-fold. First, we show that the use of our heuristic sam-
ple-robust method improves fairness generalization over the standard fair learning formula-
tion using TFCO. Second, we compare these results with a state-of-the-art method improv-
ing fairness generalization (Cotter et al. 2018, 2019a). This approach possesses scalability and 
applicability properties similar to ours. It is also implemented using TensorFlow Con-
strained Optimization, which enables a direct comparison with our heuristic method.

Fig. 11   Test error and unfairness of models generated by ���������� using our exact and heuristic sam-
ple-robust fair methods (Statistical Parity metric, � = 0.01)
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5.2.1 � Setup

For these experiments, we build on the setup of Cotter et al. (2019a) and compare the fol-
lowing approaches:

•	 unconstrained trains a model without enforcing fairness constraints (hence only 
minimizing training error).

•	 baseline is the fair learning approach based on the implementation of Cotter et al. 
(2019b) for non-convex constrained optimization (minimizing training error subject to 
fairness constraints).

•	 validation is the approach described in Cotter et al. (2018, 2019a), which is pro-
posed to improve fairness generalization over the baseline approach. In a nutshell, 
to avoid constraints overfitting, the training set is split between two distinct sets: train 
and validation. Then, the Lagrangians of Eq. (16) are computed on these two different 
sets. On the one side, the �-player optimizes the model parameters over train. On the 
other side, the �-player measures fairness constraints violations on validation.

•	 dromasks-n is the integration of our method into baseline, using n masks (in 
practice, we use n ∈ {10, 30, 50}).

All methods are implemented using the TensorFlow Constrained Optimiza-
tion library (Cotter et al. 2019b). Similar to Cotter et al. (2019a), we evaluate all methods 
using two formulations: the Proxy Lagrangian described in Eq. (16) (Algorithm 2 of Cotter 
et al. (2019b)) and the usual Lagrangian (Algorithm 3 of Cotter et al. (2019b)).

For baseline, validation and dromasks-n, the result of the training is a 
sequence of iterations. Following Cotter et al. (2019a), we use their “shrinking” procedure 
to find the best stochastic classifier supported on the sequence of iterates. We average all 
the results obtained over 100 runs. For unconstrained and baseline, the runs differ 
by the random seed used to generate the mini-batches. For validation, the runs are dif-
ferent due to the seed used to generate the training/validation split, and for ��������−n , 
they differ by the seed used to generate the random binary masks. All methods see exactly 
the same training data at each run and are evaluated over the same testing set.

We extend the setup of Cotter et al. (2019a), considering four experiments using differ-
ent datasets and notions of fairness10. We train the neural network models with one hid-
den layer containing 50 ReLU neurons. All models are trained using minibatches of 100 
instances. For each experiment, we measure the training and testing errors and maximum 
fairness constraint violations. The latter increases as the reported values increase (values 
≤ 0 correspond to no fairness violation). For the validation method, training error is 
computed on the training subset while training constraint violation is computed on the vali-
dation subset similarly to Cotter et al. (2019a).

Experimentation 1 uses the UCI Adult dataset11 (Frank and Asuncion 2010), preprocessed 
to include only binary attributes, with the classification task being to predict whether a per-
son’s yearly income is greater than $50,000, subject to the 80% rule for Statistical Parity. This 
means that for each of four overlapping protected classes (Black, White, Female and Male), 
the Positive Prediction Rate must be at least 80% of the overall Positive Prediction Rate. We 

10  The third and fourth experiments differ respectively because we could not reproduce their results and 
because the data is not publicly available
11  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​adult

https://archive.ics.uci.edu/ml/datasets/adult
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use the designated training/testing split, with 32, 561 instances for training and 16, 281 for 
testing. The dataset has 122 attributes with the model being trained for 40 epochs.

Experimentation 2 uses the ProPublica COMPAS dataset12 (analyzed by Angwin et al. 
(2016)), preprocessed to include only binary attributes, with the classification task being to 
predict recidivism, subject to Equal Opportunity fairness constraints. This means that for 
each of four overlapping protected classes (Black, White, Female and Male), the Positive 
Prediction Rate on the positively-labeled examples (True Positive Rate) must be at most 
5% higher than the overall Positive Prediction Rate on positively-labeled examples. We use 
a designated training/testing split, with 4, 134 instances for training and 2, 038 for testing. 
The dataset has 32 attributes with all models being trained for 100 epochs.

Experimentation 3 uses the UCI Bank Marketing dataset13  (Moro et  al. 2014), with 
the classification task being to predict subscription to a term deposit, subject to Predictive 
Equality fairness constraints. We use a version of the dataset with 16 attributes, among 
which 10 are categorical and 6 are numerical. We form four protected groups based on the 
quartiles of the real-valued age attribute and constrain each group’s false positive rate to 
be no larger than that of the full dataset. We use a designated training/testing split, with 
30, 292 instances for training and 14, 919 for testing. While the 6 real attributes are left 
unchanged (i.e., they are not discretized, as both TFCO and our proposed framework can 
handle them directly), we one-hot encode categorical ones. We also apply a standard pre-
processing (centering and scaling) to all features. The resulting dataset contains 51 attrib-
utes. All models are trained for 200 epochs.

Experimentation 4 uses the Defaut of Credit Card Clients dataset14 (Yeh and hui Lien 
2009), which contains 23 numerical attributes. Among them, there are 9 integer attributes 
representing categories, and 14 real attributes. We do not discretize them, as TFCO is able 
to handle continuous features, and our proposed framework imposes no limitation on the 
attributes’ nature. Here also, we apply a standard preprocessing (centering and scaling) to 
all features. There are 30,  000 examples in the dataset. We generate 100 random splits, 
using two thirds of the dataset for training, and one third for testing. We form four overlap-
ping protected groups, based on the values of the attributes gender (Male or Female) 
and age (Young or Old, based on the median value). The classification task is to predict 
whether a client will default in payment. However, the dataset is highly unbalanced, with 
about 78% negative examples. Hence, machine learning models can reach a high predic-
tive accuracy without accurately detecting positive examples. For this reason, we enforce 
that the True Positive rates among each protected group is at least 50% . This may result in 
slightly increasing the overall error (because we might increase the False Positive rates), 
but detecting more positive examples. Remark that such constraints do not follow the tra-
ditional statistical fairness formulation but nevertheless, we show that our approach is still 
able to improve their generalization. The models are trained for 100 epochs.

5.2.2 � Results

Table 2 summarizes the results obtained and shows that our method effectively improves 
fairness generalization while not penalizing accuracy significantly. Overall, the method 
is competitive to the state-of-the-art validation method without requiring prior split 
of the data. Results of Experimentation 1 on Adult Income demonstrate that the fairness 

12  https://​raw.​githu​buser​conte​nt.​com/​propu​blica/​compas-​analy​sis/​master/​compas-​scores-​two-​years.​csv
13  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Bank+​Marke​ting
14  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​defau​lt+​of+​credit+​card+​clien​ts

https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-scores-two-years.csv
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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constraints violations on the test set are the smallest using our method. In addition, only 
the dromasks-n techniques are able to meet the fairness constraints on the test set. 
Furthermore, increasing the number of masks seems to improve the fairness generaliza-
tion while penalizing accuracy, which suggest a fairness robustness / accuracy trade-off. 
While the validation method also proposes an important reduction of the test fair-
ness violation, dromasks-n gives more interesting results on these experiments while 
less conflicting with accuracy (which was expected as in the validation approach, each 
player only sees half of the data during training). Results for Experimentation 2 (on the 
COMPAS dataset) suggest that in some situations the fact that our approach does not use 
a separate validation set (but subsets of the same training data) can limit its generalization 

Table 2   Error rates and maximum fairness constraints violations for all compared methods, for our four 
experiments (all values are averaged over 100 runs as described in the setup). Best test results are shown in 
bold, second best in italics 

Method Proxy Lagrangian Lagrangian

Train Test Train Test

Error Viol. Error Viol. Error Viol. Error Viol.

Adult Income Dataset
unconstrained .122 .072 .144 .071 .122 .072 .144 .071
baseline .141 0 .154 .009 .141 0 .155 .006
validation .132 −.002 .158 .004 .134 0 .157 .004
dromasks-10 .14 −.003 .156 .003 .143 −.001 .155 −.003
dromasks-30 .14 −.004 .157 −.001 .148 −.002 .156 −.003
dromasks-50 .14 −.003 .157 −.001 .151 −.002 .157 −.003
COMPAS Dataset
unconstrained .265 .043 .33 .064 .265 .043 .33 .064
baseline .263 −.004 .33 .019 .264 −.003 .328 .025
validation .235 .001 .353 .005 .235 −.002 .352 .001
dromasks-10 .261 −.008 .336 .014 .295 −.007 .326 −.006
dromasks-30 .261 −.009 .337 .015 .307 −.009 .326 −.011
dromasks-50 .262 −.009 .337 .013 .31 −.011 .322 −.012
Bank Marketing Dataset
(unfairness violations are ×10−1)
unconstrained .058 .071 .102 .161 .058 .071 .102 .161
baseline .073 .001 .099 .096 .081 0 .099 .073
validation .078 .005 .102 .041 .075 0 .105 .042
dromasks-10 .074 .001 .099 .091 .089 0 .101 .057
dromasks-30 .076 0 .099 .083 .114 0 .115 .009
dromasks-50 .078 0 .1 .082 .117 0 .117 .003
Default of Credit Card Clients Dataset
unconstrained .171 .141 .181 .164 .171 .141 .181 .164
baseline .18 −.001 .192 .035 .183 −.002 .193 .03
validation .18 .001 .203 .012 .182 −.001 .204 .011
dromasks-10 .18 −.002 .192 .035 .185 −.017 .197 .016
dromasks-30 .18 −.002 .193 .035 .188 −.035 .202 .001
dromasks-50 .18 −.002 .193 .035 .19 −.041 .205 −.005



2167Machine Learning (2023) 112:2131–2192	

1 3

improvement abilities. However, compared to validation, it has a considerably smaller 
impact on accuracy, and the resulting trade-offs appear competitive overall. Additionally, 
we observe that enforcing fairness constraints in a robust manner can improve error gen-
eralization due to the metric used (i.e., Equal Opportunity) being aligned with accuracy. 
Hence, ensuring fairness robustness may also benefit to accuracy. This is also observed is 
the third experiment on the Bank Marketing dataset, in which some fair models are also 
more accurate at testing time. Overall, the Lagrangian algorithm appears more suitable 
for our method. Indeed, we observe that enforcing our proxy constraints (as done with the 
Proxy Lagrangian algorithm) may not always lead to significant generalization improve-
ments using our masks method. This is particularly clear in the fourth experiment using the 
Default of Credit Card Clients dataset.

Overall, our method, combined with the Lagrangian algorithm, leads to the most important 
constraints violation generalization improvements, while having limited impact on accuracy.

6 � Conclusion

We proposed a novel formulation of robustness for fair learning aimed at enhancing the 
statistical fairness generalization in machine learning. Our framework is metric-agnostic 
and based on the idea that one wants to learn a model whose fairness is verified, even if the 
training dataset sampling is somehow different. Our formulation is designed to be widely 
applicable, as many real-world machine learning applications consider finite training sets. 
In addition, the proposed method can be used both to audit any classifier’s fairness robust-
ness without any knowledge of the classifier’s structure but also for robust fair learning, 
although it has some practical limitations. To deal with this issue, we proposed an effective 
and efficient heuristic method, exhibiting practical advantages while still improving fair-
ness sample-robustness and fairness generalization.

A limitation of our framework is that it considers only subsets of the training set (and 
not all possible sample sets within a given Jaccard distance). This prevents the creation of 
unrealistic sample sets, which could result in over-constraining the problem. It also gives 
an interesting structure to our perturbation sets, allowing the derivation of several theo-
retical properties. Additionally, it leads to an important computational advantage. Indeed, 
fairness sample robustness audit can be performed solving an integer programming model 
whose objective function is linear in the decision variables. However, in a more general 
formulation of sample robustness, this would not be the case, as the denominator of the 
Jaccard distance would no longer be a constant. Formulating and solving this problem effi-
ciently is a promising direction as well as studying the theoretical and empirical privacy 
implications of our sample-robustness formulation for fairness.

Finally, automatically determining the best parameters for our heuristic method (i.e., 
distribution and number of the binary masks, and cardinalities of the defined subsets) is 
also a research avenue that we want to pursue in the future.

Appendix A proof of proposition (5)

Proposition 5 1  (Bounded worst-case fairness violation increase between consecutive per-
turbation sets (statistical fairness metrics)) Consider a dataset D , a classifier h and a Jac-
card distance d ∈ [0, 1 −

1

|D| ] . We have: 
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1.	 Given a subset D′ of D , the value of �(h,D�) can be computed explicitly and has finite 
value.

2.	 max
D��∈B(D,d+

1

|D| )
��� (h,D��) ≤ max

D�∈B(D,d)
��� (h,D�) + �(h,D�)

3.	 ∃D�� ∈ B(D, d +
1

|D| ) such that ���(h,D��) = max
D�∈B(D,d)

��� (h,D�) + �(h,D�).

Proof 

1.	 We consider a dataset D′ , whose associated unfairness is ��� (h,D�) . In the context of 
this Proposition, �(h,D�) is then the maximum increase of the unfairness measure made 
possible by removing at most one example from D′ . We will denote the resulting data-
set D′′ throughout this proof. Recall that ���(h,D�) = | S

D�

a

XD�
a

−
SD

�

b

XD�

b

| . Observe that there 
are exactly four ways of modifying ��� (h,D�).

•	 In the first case, we remove an example of group a not satisfying the measure. The 

a-ratio becomes SD
�

a

XD�
a
−1

 . Then, ���(h,D��) =
SD

�

a

XD�
a
−1

−
SD

�

b

XD�

b

 and we have: 

 We note that this change is possible only if SD′

a
< XD′

a
 and XD′

a
> 1 . We define 

1(�) as the indicator function, which evaluates to 1 if � is True, and to 0 otherwise. 
Finally, we note: 

•	 In the second case, we remove an example of group b satisfying the measure. The 
b-ratio becomes S

D�

b
−1

XD�

b
−1

 . Then, ���(h,D��) =
SD

�
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XD�
a

−
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�

b
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b
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 We note that this change is possible only if SD′

b
> 0 and XD′

b
> 1 . Finally, we note: 

•	 In a third case, we remove an example of group a satisfying the measure. This will 
decrease the a-ratio, which becomes S

D�

a
−1

XD�
a
−1

 . However, because we consider the abso-
lute value of the difference, this may result in increasing unfairness overall. Then, 

���(h,D��) = | S
D�

a
−1

XD�
a
−1

−
SD

�

b

XD�

b

| . If S
D�

a
−1

XD�
a
−1

≥
SD

�

b

XD�

b

 , unfairness is not increased and this mod-
ification should not be considered. We hence only consider the case where 
SD

�

a
−1

XD�
a
−1

<
SD

�

b

XD�

b

 . Then, we have: 

 We note that this change is possible only if SD′

a
> 0 and XD′

a
> 1 . Finally, we note: 

•	 In a fourth case, we remove an example of group b not satisfying the measure. This 
will increase the b-ratio, which becomes SD

�

b

XD�

b
−1

 . However, because we consider the 
absolute value of the difference, this may result in increasing unfairness overall. 
Then, ���(h,D��) = | S
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−
SD

�
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b
−1
| . If SD

�

b
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≤
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 , unfairness is not increased and 
this modification should not be considered. We hence only consider the case where 
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>
SD

�

a

XD�
a

 . Then, we have: 

 We note that this change is possible only if SD′

b
< XD′

b
 and XD′

b
> 1 . Finally, we note: 
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 An interesting observation is that �(h,D�) depends on the protected groups sizes. In 
particular, the bigger such groups are, the smaller �(h,D�) is (because XD�

j
, j ∈ {a, b} 

terms appear at the denominators of all �i, i ∈ {1..4}).
2.	 Consequence of Proposition 4 and of the fact that �(h,D�) is the l1-sensitivity of the 

unfairness measure of h over dataset D′ , in the particular case where we remove at most 
one example from D′ . Intuitively, observe that for all D�� ∈ B(D, d +

1

|D| ) , there exists 
a superset D� ∈ B(D, d) such that D′′ is formed by removing exactly one element from 
D′ . Hence, ��� (h,D��) ≤ ���(h,D�) + �(h,D�).

3.	 In 1, we showed that �(h,D�) can be reached be carefully selecting the element to be 
removed from D′ to build dataset D�� ∈ B(D, d +

1

|D| ).

	�  ◻

Appendix B greedy algorithm for quantifying sample robustness

The pseudo-code of GreedySR(h,D, �) is depicted in Algorithm 1. Intuitively, our greedy 
algorithm starts from D and successively removes elements to build a subset of D . The 
process stops when the fairness constraint is violated over the current subset or when there 
are no more examples that can be removed to increase unfairness. At each iteration of the 
main loop, we compute the unfairness increase induced by the four possible moves (remov-
ing an element from protected group i that satisfies (or not) the statistical criterion). Details 
on the computation of these values can be found in the proof of Proposition 5 in Appen-
dix A. We then execute the move associated to the higher unfairness increase. Finally, the 
algorithm returns the Jaccard distance from D to the (implicitly) built subset.

The objective of this greedy strategy is to find the closest subset (in the Jaccard sense) 
on which the fairness constraint is violated. This algorithm comes with no optimality guar-
antee (as the subset found by the greedy strategy may not be the closest from the original 
dataset). In other terms, GreedySR(h,D, �) returns an upper-bound on SR(h,D, �) , and 
this upper-bound may be not be tight. Its has O(|D|) worst-case complexity, as the opera-
tions performed within the While loop are constant-time, and this loop is executed at most 
|D| − 2 times (we keep at least one example from each group - which is guaranteed by the 
conditions of the indicator functions). Such appealing complexity can be achieved because 
we do not need to explicitly build the corresponding subsets (as, for the unfairness metric, 
only subgroups cardinalities Si and Xi matter).

��� (h,D��) − ���(h,D�) = �(h,D�)

= max(�1(D
�), �2(D

�), �3(D
�), �4(D

�))
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Appendix C integration of our methods within FairCORELS: 
experimental results

This appendix section contains the experimental results of the integration of our exact and 
heuristic methods within the FairCORELS algorithm.

Appendix  C.1 Exact method: unfairness generalization improvements results

This subsection contains experimental results (training, test and validation unfairness 
functions of the number of steps performed by our method) for the integration of our 
exact method with ���������� . Results for the Statistical Parity metric are presented in 
Sect. 5.1.3. Results for the remaining metrics, for � = 0.01 , are detailed here.
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Figures 12, 13 and 14 summarize the experimental results using the Predictive Equality, 
Equal Opportunity, and Equalized Odds metrics (respectively).

Fig. 12   Training, test and validation (when applicable) unfairness of models generated by ���������� 
through the iterations of our exact method (Predictive Equality metric, � = 0.01)
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Fig. 13   Training, test and validation (when applicable) unfairness of models generated by ���������� 
through the iterations of our exact method (Equal Opportunity metric, � = 0.01)
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Appendix C.2 Exact method: sample robustness and accuracy evolution

This subsection contains experimental results (fairness sample-robustness along with train-
ing and test accuracy, functions of the number of steps performed by our method) for the 
integration of our exact method with ���������� . Results for the Statistical Parity metric 
are presented in Sect. 5.1.3. Results for the remaining metrics, for � = 0.01 , are detailed 
here.

Figures 15, 16 and 17 summarize the experimental results using the Predictive Equality, 
Equal Opportunity, and Equalized Odds metrics (respectively).

Fig. 14   Training, test and validation (when applicable) unfairness of models generated by ���������� 
through the iterations of our exact method (Equalized Odds metric, � = 0.01)
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Fig. 15   Fairness sample-robustness and accuracy of models generated by ���������� through the itera-
tions of our exact method (Predictive Equality metric, � = 0.01)
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Fig. 16   Fairness sample-robustness and accuracy of models generated by ���������� through the itera-
tions of our exact method (Equal Opportunity metric, � = 0.01)



2177Machine Learning (2023) 112:2131–2192	

1 3

Appendix C.3 Exact method: detailed results

Table  3 summarizes all results obtained (and presented in Sect.  5.1.3) using our exact 
method within FairCORELS, for the Statistical Parity metric. It shows that accuracy is 
rather stable between the different folds, and its variation is not significantly affected by 
our method. Considering all datasets, the unfairness variation that exists between the dif-
ferent folds is not significantly affected by our method, and when the enforced fairness 
sample-robustness is strong enough (e.g., with the no validation (before-con-
stant) method) it tends to be reduced. Note that this variation can be explained by the 
fact that, for the validation (� criterion) and validation (train unf. 
criterion) methods, the models are built performing different numbers of steps (i.e., 
enforcing different fairness sample-robustness levels) - depending on the unfairness meas-
ured on a different validation set. Then, because different fairness sample-robustness levels 
are needed to reach the stopping criterion on the validation sets, unfairness measures are 
reduced for all folds, but in different magnitudes. As mentioned earlier, the fact that the 
number of performed steps is not known in advance and may vary is one of the drawbacks 
of our exact method (motivating our heuristic formulation), especially when dealing with 
small datasets such as COMPAS.

Fig. 17   Fairness sample-robustness and accuracy of models generated by ���������� through the itera-
tions of our exact method (Equalized Odds metric, � = 0.01)
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Appendix C.4 Heuristic method: fairness sample‑robustness audit results

This appendix section contains experimental results for the integration of our heuristic 
method with ���������� . Sample-Robustness audit performed on the built models using 
IPSR(h,D, �) and GreedySR(h,D, �) are presented in Sect. 5.1.4 for the Default of Credit 
Card Clients dataset. Results for the Adult Income, COMPAS, and Bank Marketing data-
sets are presented in Figs. 18, 19, and 20 (respectively).

Table 3   Summary of the experimental results using our exact sample-robustness method within Fair-
CORELS, for the Statistical Parity metric. We report training accuracy (Train Acc.), test accuracy (Test 
Acc.), training unfairness (Train Unf.) and test unfairness (Test Unf.). For each measure, we report its 
average value and standard deviation. The results are reported for the different methods introduced in 
Sect. 5.1.2: the original FairCORELS (original), validation (� criterion) (val. ( �)), valida-
tion (train unf. criterion) (val. (train. unf.)) and no validation (before-con-
stant) (before-constant)

Method Train Acc. Test Acc. Train Unf. Test Unf.

Adult income
original .7822 ± .0037 .7819 ± .0073 .0090 ± .0011 .0127 ± .0087

val. ( �) .7723 ± .0060 .7707 ± .0077 .0049 ± .0033 .0060 ± .0055

val. (train. unf.) .7685 ± .0056 .7676 ± .0054 .0051 ± .0029 .0056 ± .0035

before-constant .7549 ± .0008 .7546 ± .0037 .0047 ± .0004 .0043 ± .0012

COMPAS
original .5704 ± .0038 .5686 ± .0125 .0085 ± .0011 .0336 ± .0130

val. ( �) .5512 ± .0190 .5420 ± .0266 .0055 ± .0028 .0163 ± .0214

val. (train. unf.) .5497 ± .0197 .5412 ± .0281 .0048 ± .0034 .0145 ± .0224

before-constant .5316 ± .0045 .5319 ± .0184 .0031 ± .0003 .0031 ± .0016

Default of credit card clients
original .8015 ± .0024 .8010 ± .0016 .0098 ± .0002 .0137 ± .0040

val. ( �) .7975 ± .0028 .7977 ± .0042 .0051 ± .0030 .0103 ± .0034

val. (train. unf.) .7972 ± .0031 .7964 ± .0053 .0050 ± .0029 .0084 ± .0056

before-constant .7818 ± .0010 .7807 ± .0044 .0007 ± .0006 .0017 ± .0012

Bank Marketing
original .8936 ± .0009 .8932 ± .0036 .0095 ± .0003 .0095 ± .0055

val. ( �) .8930 ± .0006 .8935 ± .0031 .0061 ± .0026 .0082 ± .0072

val. (train. unf.) .8925 ± .0004 .8922 ± .0042 .0054 ± .0024 .0053 ± .0054

before-constant .8909 ± .0008 .8907 ± .0033 .0023 ± .0010 .0041 ± .0021
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Fig. 18   Fairness sample-robustness of models generated by ���������� using our heuristic method (Adult 
Income dataset)
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Fig. 19   Fairness sample-robustness of models generated by ���������� using our heuristic method 
(COMPAS dataset)
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Appendix C.5 Heuristic method: performances results

This appendix section contains experimental results for the integration of our heuristic 
method with ���������� . Performances results for the equal opportunity metric are pre-
sented in Sect. 5.1.5. Results for the remaining metrics are detailed here.

Figs. 21, 22, 23, 24 summarize the experimental results using the Statistical Parity met-
ric. Figs. 25, 26, 27, 28 summarize the experimental results using the Predictive Equality 
metric. Figs. 29, 30, 31, 32 summarize the experimental results using the Equalized Odds 
metric. Note that for all these Figures, the ranges of both axis of the first two plots are set 
identically in order to ease train/test comparison.

Fig. 20   Fairness sample-robustness of models generated by ���������� using our heuristic method (bank 
marketing dataset)
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Fig. 21   Results of our heuristic method (adult income dataset, statistical parity metric)

Fig. 22   Results of our heuristic method (COMPAS dataset, statistical parity metric)

Fig. 23   Results of our heuristic method (default credit dataset, statistical parity metric)
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Fig. 24   Results of our heuristic method (marketing dataset, statistical parity metric)

Fig. 25   Results of our heuristic method (adult income dataset, predictive equality metric)

Fig. 26   Results of our heuristic method (COMPAS dataset, Predictive Equality metric)
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Fig. 27   Results of our heuristic method (default credit dataset, predictive equality metric)

Fig. 28   Results of our heuristic method (marketing dataset, predictive equality metric)

Fig. 29   Results of our heuristic method (adult income dataset, equalized odds metric)
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Appendix C.6 Comparison between the exact and heuristic methods: fairness 
sample‑robustness

This appendix section contains the experimental comparison of the fairness sample-robust-
ness of our exact and heuristic methods with ���������� . Results for the Statistical Par-
ity metric are presented in Sect. 5.1.6. Results for the remaining metrics, for � = 0.01 , are 
detailed here. Figs. 33, 34 and 35 summarize the experimental results using the Predictive 
Equality, Equal Opportunity, and Equalized Odds metrics (respectively).

Fig. 30   Results of our heuristic method (COMPAS dataset, equalized odds metric)

Fig. 31   Results of our heuristic method (default credit dataset, equalized odds metric)

Fig. 32   Results of our heuristic method (marketing dataset, equalized odds metric)
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Fig. 33   Fairness sample-robustness of models generated by ���������� using our exact and heuristic sam-
ple-robust fair methods (predictive equality metric, � = 0.01)

Fig. 34   Fairness sample-robustness of models generated by ���������� using our exact and heuristic sam-
ple-robust fair methods (equal opportunity metric, � = 0.01)

Fig. 35   Fairness sample-robustness of models generated by ���������� using our exact and heuristic sam-
ple-robust fair methods (equalized odds metric, � = 0.01)
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Appendix C.7 Comparison between the exact and heuristic methods: performances

This appendix section contains the experimental comparison of the performances (test 
error/test unfairness tradeoffs) of our exact and heuristic methods with ���������� . 
Results for the statistical parity metric are presented in Sect. 5.1.6. Results for the remain-
ing metrics, for � = 0.01 , are detailed here. Figs. 36, 37 and 38 summarize the experimen-
tal results using the Predictive Equality, Equal Opportunity, and Equalized Odds metrics 
(respectively).

Fig. 36   Test error and unfairness of models generated by ���������� using our exact and heuristic sam-
ple-robust fair methods (predictive equality metric, � = 0.01)
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Fig. 37   Test error and unfairness of models generated by ���������� using our exact and heuristic sam-
ple-robust fair methods (equal opportunity metric, � = 0.01)
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