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Abstract
Data streams are potentially unbounded sequences of instances arriving over time to a 
classifier. Designing algorithms that are capable of dealing with massive, rapidly arriving 
information is one of the most dynamically developing areas of machine learning. Such 
learners must be able to deal with a phenomenon known as concept drift, where the data 
stream may be subject to various changes in its characteristics over time. Furthermore, 
distributions of classes may evolve over time, leading to a highly difficult non-station-
ary class imbalance. In this work we introduce Robust Online Self-Adjusting Ensemble 
(ROSE), a novel online ensemble classifier capable of dealing with all of the mentioned 
challenges. The main features of ROSE are: (1) online training of base classifiers on vari-
able size random subsets of features; (2) online detection of concept drift and creation of 
a background ensemble for faster adaptation to changes; (3) sliding window per class to 
create skew-insensitive classifiers regardless of the current imbalance ratio; and (4) self-
adjusting bagging to enhance the exposure of difficult instances from minority classes. The 
interplay among these features leads to an improved performance in various data stream 
mining benchmarks. An extensive experimental study comparing with 30 ensemble classi-
fiers shows that ROSE is a robust and well-rounded classifier for drifting imbalanced data 
streams, especially under the presence of noise and class imbalance drift, while maintain-
ing competitive time complexity and memory consumption. Results are supported by a 
thorough non-parametric statistical analysis.
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1  Introduction

Modern data is characterized by two crucial factors: volume (massive size) and velocity 
(ever-growing speed and changing nature of data). The combination of these two factors 
gave rise to the notion of data streams (Bahri et al., 2021; Bifet et al., 2019; Gomes et al., 
2019b). Streaming scenarios pose unique challenges to machine learning algorithms, as 
we are not only concerned about their predictive power, but also about their computational 
complexity, response latency, and capability of adapting to and incorporating new data. 
Additionally, data streams evolve over time and their characteristics and definitions are 
subject to change. This is known as concept drift, which forces classifiers to constantly 
update and adapt to the current state of data (Gama et  al., 2014; Lu et  al., 2019a). Fur-
thermore, challenges present in static classification can emerge in streaming environments. 
Class imbalance is one of the most relevant challenges (Branco et al., 2016). When com-
bined with concept drift, no longer only the disproportions among classes pose a learning 
difficulty, class roles and imbalance ratio may change dynamically. This renders the major-
ity of traditional algorithms dedicated to countering imbalanced distributions inadequate 
for data streams (Fernández et al., 2018). All of those mentioned challenges have led to 
intensive research on algorithms capable of thriving in such difficult environments. Ensem-
bles emerged as the most powerful solutions (Krawczyk et al., 2017).

In this paper we introduce Robust Online Self-Adjusting Ensemble (ROSE), a novel 
online ensemble architecture dedicated to mining imbalanced and drifting data streams. It 
incorporates four primary features that allow ROSE to handle any type of data stream and 
concept drift and offer robustness to variable class imbalance over time. ROSE employs 
adaptive self-tuning, adjusting its parameters and ensemble line-up dynamically on the go 
for best performance, without the need for human supervision or ad-hoc solutions. The 
main contributions of this paper are:

•	 Novel online ensemble architecture on dynamic feature subspaces ROSE is an online 
self-adjusting ensemble for exploring variable-size feature subspaces to adapt to con-
cept drift and dynamic class imbalance ratios in non-stationary data streams.

•	 Background ensemble for concept drift adaptation ROSE monitors the base classifiers 
for detecting concept drift within each of the feature subspaces. If a drift warning is 
emitted, the algorithm learns a new ensemble on the background on a new set of feature 
subspaces. The performance of base classifiers in the current and background ensemble 
are compared, selecting the top performing ones to replace the ensemble. This allows 
for adding new classifiers to the ensemble that are specialized on the current concept 
and discarding outdated models adapting to changes in the feature space.

•	 Automatic handling of class imbalance ROSE holds a sliding window buffer per class 
to keep a representation of the most recent instances on which to build new background 
base learners. This counters class imbalance, as the buffer enforces an undersampling 
of majority classes.

•	 Enhancing the exposure to minority class instances In order to further make ROSE 
skew-insensitive, we propose a self-adjusting � for bagging to reflect the evolving dis-
tribution of the data classes and enforce the Hoeffding bound to improve the classifica-
tion performance on minority classes.

•	 Extensive and reproducible experimental framework The performance of ROSE is 
examined based on a comprehensive experimental study and comparison with 30 state-
of-the-art ensembles. We present seven different sets of experiments on imbalanced 
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streams, artificial stream generators, noisy streams, and real-world data streams. This 
makes the present study one of the most thorough and reproducible experimental analy-
sis of ensemble performance with concept drift and class imbalance.

The rest of the paper is organized as follows. Section  2 presents an overview of data 
streams and related works in ensemble learning. Section  3 discusses the challenges and 
approaches for imbalanced data streams. Section 4 presents the proposed ROSE algorithm 
and its features. Section 5 presents a thorough experimental study on a large set of data 
streams, including imbalanced streams with concept drift, varying imbalance ratio, and 
noise, as well as an ablation study. Experimental results are also validated through non-
parametric statistical analysis. Finally, Sect. 6 summarizes the concluding remarks and dis-
cusses future lines of work.

2 � Learning from data streams

Preliminaries We define a data stream as a sequence < S1, S2,… , Sn,… > , in which each 
element Sj is a collection of instances (batch scenario) or a single instance (online sce-
nario). Each instance is independent and randomly generated using a stationary probabil-
ity distribution Dj . In this paper, we consider the supervised online learning scenario that 
allows us to define each element as Sj ∼ pj(x

1,… , xd, y) = pj(�, y) , where pj(�, y) is a joint 
distribution of j-th instance, defined by d-dimensional feature space and belonging to class 
y. Each instance in the stream is independent and randomly drawn from a stationary prob-
ability distribution �j(�, y).

Concept drift Whenever a new instance (or batch of instances) arrives, we refer to 
the progression of the data stream. If S j → S j+1 (where D j = D j+1 ) is true, then we deal 
with a stationary data stream and no changes occur. However, real-life problems are very 
frequently subject to concept drift, where the characteristics and definitions of a stream 
change. Drifts can be of various characteristics and understanding what type of change is 
currently affecting the stream helps to better adapt to it (Lu et al., 2019a). Concept drift 
taxonomy analyzes two factors: (1) influence on the decision boundaries; and (2) speed of 
change. The former divides concept drift into virtual and real. Virtual concept drift affects 
only the distribution of feature values within each class, but does not affect posterior prob-
abilities. Real concept drift affects the decision boundaries of a classifier, increasing the 
error of the underlying classifier. This type of drift enforces an adaptation of a classifier in 
order to maintain high predictive power. When looking at the speed of changes, one may 
distinguish three types of concept drift. Sudden drift takes place instantaneously, switch-
ing to a new distribution at a given point. Gradual drift interleaves instances from old and 
new concepts. Incremental concept drift can be seen as a transition between two states with 
multiple intermediate concepts between them. Additionally, we distinguish recurring con-
cept drift, where previously seen concepts may reemerge.

There are two potential ways of addressing concept drift: explicit and implicit (Lu 
et al., 2019a). Explicit drift detection is based on the assumption that we are capable of 
recognizing when drift is taking place. This is achieved by combining classifiers with an 
external tool, called drift detectors (de Barros & de Carvalho Santos, 2018). Such detec-
tors are capable of continuous stream monitoring and raising an alarm when it is highly 
probable that stream is subject to a drift. Various factors are taken into an account, 
such as classifier’s error, statistical distribution of data, similarity metrics, etc. When 
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drift is detected, the classifier is replaced with a new one trained on the most recent 
instances. The main drawback of drift detectors lies in their requirements for labeled 
instances (semi-supervised and unsupervised detectors also exist, although they are less 
accurate) and in the cost paid for false alarms (unnecessary replacement of a competent 
classifier). Implicit drift detection methods assume that the classifier is capable of self-
adjusting to new instances coming from the stream while forgetting the old information 
(Liu et al., 2016). This way, new information is constantly incorporated into the learner, 
which should allow for adapting to evolving concepts (Kozal et al., 2021). Drawbacks of 
implicit methods lie in their parametrization - establishing proper learning and forget-
ting rates, as well as the size of a sliding window.

Ensemble learning for data streams Ensemble learning has proven itself to be one of 
the most effective solutions for data streams  (Ghomeshi et  al., 2019; Krawczyk et  al., 
2017). It maintains all of the advantages of this approach for static scenarios, such as 
improved predictive power, increased robustness and stability. Additionally, ensembles 
can naturally manage concept drift by incorporating new base learners trained on most 
recent data and discarding outdated ones (Cano & Krawczyk, 2020). New concepts offer 
a natural way of maintaining diversity among ensemble members, allowing them to con-
tinuously be mutually complementary (Gomes et al., 2019a). When looking at the possi-
ble approaches to ensemble learning for data streams, three main paths exist (Krawczyk 
et  al., 2017): (1) dynamic combiners; (2) dynamic ensemble setup; and (3) dynamic 
ensemble updating. Combiners assume that we focus on adapting the combination rule 
(e.g., weights in voting) to promote classifiers that are best adapted to the current state 
of the stream. Dynamic ensemble setup assumes that the pool of classifiers should be 
constantly updated with new ones and pruned to remove its weakest members. Dynamic 
ensemble updating assumes that classifiers in the ensemble should not be discarded, but 
continuously updated with new instances, while maintaining their diversity. ROSE pro-
posed in this paper is a hybrid approach that combines the advantages of adaptive online 
update of base classifiers with dynamic ensemble setup with online pruning, while man-
aging per-class balanced instance buffers.

Continual learning and data stream mining Continual learning is one of the recently 
emerged paradigms in deep learning that focuses on building models that can accumu-
late new knowledge without forgetting the previously learned one (Parisi et al., 2019). 
While the majority of the works in this domain focus purely on deep neural networks 
and image-based benchmarks, we should note that the general idea of continual learn-
ing is not reserved only to them. There exist interesting similarities between contin-
ual learning and data stream mining, as both focus on incorporating new information 
into the model  (Krawczyk, 2021). Data stream mining puts emphasis on adaptation to 
changes (i.e., handling concept drift), while continual learning puts emphasis on retain-
ing knowledge (i.e., avoiding catastrophic forgetting). Recent works point to the poten-
tial of combining these two domains, offering learning systems capable of being robust 
to both catastrophic forgetting and concept drift affecting previously learned knowledge 
(Cano & Krawczyk, 2019; Korycki & Krawczyk, 2021a). Furthermore, the setting of 
data stream mining is identical to task-free (Aljundi et al., 2019) or task-agnostic (He 
et al., 2019) continual learning, where classes arrive mixed with each other and are not 
separated into pre-defined tasks. In this paper we discuss that data stream mining tools 
can be beneficial to continual learning scenarios and we show that having a per class 
buffer allows it to retain knowledge and is parallel to experience replay approaches used 
to avoid catastrophic forgetting (Buzzega et al., 2020).
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3 � Imbalanced data streams

Challenges in imbalanced data stream mining Skewed class distributions are a common 
problem in data stream mining (Aminian et al., 2020; Gao et al., 2008; Wu et al., 2014). 
When combined with concept drift novel learning difficulties arise. Imbalance ratio is no 
longer static and will change with the progress of the stream (Brzeziński & Stefanowski, 
2017). Classes may switch their roles over time, with minority transitioning to be majority 
and vice versa. This is known as imbalance ratio drift and poses a significant challenge to 
the majority of the existing algorithms that need to have a pre–defined minority class in 
order to effectively balance distributions (Korycki & Krawczyk, 2021b). This drift can be 
independent from or connected with concept drift, where class definitions will change over 
time (Wang & Minku, 2020). Therefore, one must not only monitor each class for changes 
in its properties, but also for changes in its frequency. New classes may appear and old ones 
disappear, leading to oscillations between binary and multi-class imbalanced (Krawczyk, 
2016). In most real-life scenarios, streams are not predefined as balanced or imbalanced, 
they may be imbalanced only temporarily (Wang et al., 2018). Examples of dynamic class 
imbalance include evolving user interests over time (where new topics emerge and old ones 
dynamically change their relevance) (Wang et al., 2014), social media analysis (where new 
events may take place and existing events may appear with fluctuating frequency) (Liu 
et al., 2020), or medical data streams (where patient records continually evolve over time 
and we observe changing ratios of admission reasons) (Al-Shammari et al., 2019).

Data-level approaches for imbalanced data streams While resampling approaches are 
very popular for standard imbalanced problems, they cannot be trivially adapted to stream-
ing setting. Here, we need to keep track of which class to dynamically resample, to avoid 
enhancing class imbalance instead of countering it. Modifications of SMOTE algorithm for 
drifting data streams are popular  (Bernardo et al., 2020b), with the most recent versions 
working with any number of classes and under limited supervision (Korycki & Krawc-
zyk, 2020). Other popular methods include Incremental Oversampling for Data Streams 
(IOSDS) (Anupama & Jena, 2019) that focus on replicating instances that are not identi-
fied as noisy or overlapping; and undersampling via Selection-Based Resampling (SRE) 
(Ren et al., 2019) that iteratively removes the safe instances from majority class without 
introducing reverse bias towards the minority class. Some studies report the usefulness 
of combining multiple resampling approaches together in order to obtain a more diverse 
representation of the minority class (Bobowska et al., 2019). Drawbacks of existing data-
level approaches lie in their high memory requirements (for oversampling) or possibility of 
removing instances from older concepts that are still relevant (for undersampling).

Algorithm-level approaches for imbalanced data streams As an alternative to resam-
pling incoming data, one may modify the streaming classifier itself to make it skew-insen-
sitive. This can be done either via cost-sensitive adaptation or by modifying the underly-
ing learning mechanisms (Loezer et al., 2020). The cost-sensitive method has been applied 
successfully to streaming decision trees, where their leaves have been replaced with per-
ceptrons that use threshold adjustment of their decision outputs (Krawczyk & Skryjom-
ski, 2017). Their cost matrix is updated using the current imbalance ratio and the local 
difficulty factors of incoming instances. Another approach uses Online Multiple Cost-
Sensitive Learning (OMCSL) (Yan et  al., 2017) where cost matrices for all classes are 
adjusted incrementally according to a sliding window. Among algorithm-level modifica-
tions, the most popular one is the combination of Hoeffding Decision Trees with Hell-
inger splitting criteria to make them robust to imbalanced distributions (Lyon et al., 2014). 
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Another approach uses online one-class Support Vector Machines to track minority classes 
(Klikowski & Wozniak, 2020). Nearest neighbor classifiers have been used efficiently for 
imbalanced data streams, by modifying their sliding-window approaches with a reactive 
memory mechanism (Abolfazli & Ntoutsi, 2020; Roseberry et al., 2019, 2021). Drawbacks 
of algorithm-level solutions lie in their lack of flexibility (as they can be used only with a 
specific type of classifier) and in their reliance on either external drift detectors (that are 
either biased towards majority class or sensitive to false alarms) or implicit online adapta-
tion (that may be delayed with respect to drift occurrence).

Ensemble learning for imbalanced data streams Combining multiple classifiers offers 
a very powerful way of tackling imbalanced data streams, as combining base classifiers 
with different skew-insensitive solutions allows for increased robustness and diversity that 
allows additionally to effectively handle concept drifts (Brzeziński & Stefanowski, 2018; 
Du et al., 2021; Grzyb et al., 2021; Krawczyk et al., 2017). The most popular approach is 
to combine either under- or oversampling with Online Bagging (Wang etal., 2015). Similar 
approaches can be applied to either Adaptive Random Forest (Ferreira et al., 2019), Online 
Boosting (Wang & Pineau, 2016), Random Subspaces (Klikowski & Wozniak, 2019), 
Dynamic Weighted Majority (Lu et al., 2017), Kappa Updated Ensemble (Cano & Krawc-
zyk, 2020) or any ensemble that can incrementally update its base learners (Li et al., 2020). 
Robustness of ensembles to class imbalance can also be increased by using dedicated 
combination schemes or adaptive chunk-based learning  (Lu et  al., 2019b). Alternatively, 
one may see preprocessing approaches as a way of ensuring diversity among base classi-
fiers (Korycki & Krawczyk, 2021c). This allows for anticipating the direction of concept 
drift and choosing the most suitable learner by dynamic classifier (or ensemble) selection 
(Zyblewski et al. 2021). Finally, abstaining mechanisms can be introduced into ensembles 
to temporarily remove most uncertain classifiers from contributing to the collective deci-
sion–making process (Korycki et al., 2019). The drawback of existing ensemble solutions 
lies in their specialization to imbalanced streams—they do not perform well when handling 
balanced streams. As in real-world applications imbalance may be a temporal characteristic 
of the analyzed stream, their practical applicability is severely limited.

4 � ROSE: robust online self‑adjusting ensemble

This section presents the ROSE features and algorithm, a robust and well-rounded ensem-
ble classifier that is flexible to various imbalanced data stream mining scenarios. ROSE 
aims at improving the effectiveness and latency in the response to fast concept drift and 
varying class imbalance. We will use the notation of an ensemble E of k � base classifiers 
such that E = {�1, �2,… �k} are built on the data stream S.

4.1 � ROSE features

The main features are: (1) online training of base classifiers on variable size random sub-
sets of features; (2) online detection of concept drift and creation of a background ensem-
ble for faster adaptation to changes; (3) sliding window per class to create skew-insensi-
tive classifiers regardless of the current imbalance ratio; and (4) self-adjusting bagging to 
enhance the exposure of difficult instances from minority classes.

Variable size random feature subspaces ROSE builds each base classifier �j on a ran-
dom r-dimensional feature subspace �j , where 1 ≤ r ≤ f  from the original f-dimensional 
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space in the data stream S. The r dimensionality and the �j subset of features are both 
randomly generated for each base learner. It allows to generate diverse feature subspaces 
of variable size. This is a significant difference when compared to Adaptive Random 
Forest  (Gomes et  al., 2017) which selects a static subspace dimensionality for all the 
base classifiers. Diverse feature subspaces of random size have demonstrated to improve 
the performance of the ensemble in KUE  (Cano & Krawczyk, 2020). However, while 
KUE follows a uniform probability distribution to pick the subspace size in the range 
[1,f] (leading to a wide range of sizes), ROSE follows a normal distribution for subspace 
sizes as in Eq. 1:

where � is 0.7 by default and ranged [0,1] (leading to a more centered subspace size close 
to the mean), giving the end-user a better control on the feature subspace sizes centered 
around the desired mean. This allows to maintain a higher diversity of the ensemble and 
make base classifiers locally specialized in varying regions of the decision space. Using 
feature subsets offers two additional advantages—reduced effects of noise and allows for 
a faster adaptation to local concept drifts that affect only certain features. These advan-
tages of this diverse ensemble architecture were demonstrated in KUE (Cano & Krawczyk, 
2020).

Detection of concept drift and background ensemble ROSE monitors the base classi-
fiers for detecting concept drift on the respective feature subspaces. Since they exploit 
different feature subspaces, drift may occur on one or several of the subspaces. Some 
features may become relevant while others may lose discriminatory power in the clas-
sification over time. If a drift warning is emitted by any of the drift detectors (we use 
the ADWIN drift detector), ROSE starts training another ensemble in the background. 
Building ensembles in the background is a successful strategy due to the different capa-
bilities that their base classifiers have in adapting to concept drift (Minku & Yao, 2011) 
as the new ensemble will not be influenced by old concepts which no longer present in 
the current state of the data stream. ROSE combines this with the different feature sub-
spaces used by the background ensemble, leading to enhanced diversity of individual 
classifiers and better adaptation to concept drift.

The background ensemble is initialized using a sliding window per class with the most 
recent instances, providing a solid foundation to learn the most recent decision bounda-
ries. Newly trained base classifiers do not carry any previous history, so when old concepts 
become irrelevant they will offer better adaptation than their older counterparts. Addition-
ally, new base classifiers are trained using different feature subsets than the ones already in 
the pool, hence offering ROSE the option to explore new areas of the decision space that 
may become relevant after a drift. The background ensemble continues learning instance 
by instance after the first drift warning was emitted, adapting to the new data distribution. 
After a certain number of instances, which by default is the total window size of 1000 
instances, the performance of the current ensemble and the background ensemble can be 
compared. The novelty compared to other approaches such as (Brzeziński & Stefanowski, 
2014a) is the replacement of multiple base classifiers at once. The k base classifiers of 
the current ensemble and the k base classifiers of the background ensemble compete to 
select the k best performing classifiers that will replace and become the new ensemble. The 
weakest worst performing classifiers are discarded. The selection of the best classifiers is 
driven by the maximization of the product of their accuracy and Kappa metrics.

(1)r = � × f +
(1 − �) × f ×N(0, 1)

2
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Kappa is commonly used in imbalanced classification (Brzeziński et al., 2018, 2019). It 
evaluates the competence of a classifier by measuring the inter-rater agreement between the 
successful predictions and the statistical distribution of the data classes, correcting agree-
ments that occur by mere statistical chance. Kappa ranges from −100 (total disagreement) 
through 0 (default probabilistic classification) to 100 (total agreement). Kappa penalizes 
all-positive or all-negative predictions. Moreover, Kappa provides better insight than other 
metrics in detecting changes in the distribution of the classes in multi-class imbalanced 
data. However, Kappa may be too drastic in penalizing misclassifications on difficult 
data. Therefore, we propose the product of accuracy and Kappa to drive the selection and 
weighting of the classifiers.

This strategy allows for a two-way adaptation to drift: (1) existing base classifiers are 
updated in an online manner; (2) a new background ensemble is trained on the most recent 
data per class and on new subset of features. We combine the online incremental learning 
with the dynamic ensemble setup approach, allowing the addition of new classifiers to the 
ensemble and removal of the least accurate ones.

Sliding window per class Similar approaches in the literature employ one buffer of 1000 
instances as a sliding window to train the base classifiers. However, since data classes are 
imbalanced, the sliding window will also be skewed. Class distributions may change over 
time and we need to be prepared to handle evolving and dynamic imbalance ratios. Our 
original contribution is to propose to employ one sliding window buffer per class to keep 
a representation of the most recent instances per class. Therefore, we create independent 
representations for any number of classes that can hold instances from various stages of 
the stream. ROSE uses this buffer of most recent instances per class to initialize a new 
ensemble upon drift warning. Since we employ one buffer per class, to keep a fair compari-
son with similar approaches, the sum of the buffers is limited to the same 1000 instances. 
Therefore, we define a maximum buffer size per class of 1000/number of classes. This 
strategy allows ROSE to perform an undersampling of majority classes, retaining only a 
fixed number of the most recent instances from them. This approach does not add any addi-
tional computational complexity, contrary to other methods (Wu et al., 2014). Whenever a 
new background ensemble is initialized, the sliding window per class provides a balanced 
class distribution to warm up the new base classifiers. This allows for alleviating the bias 
towards majority classes and handling evolving imbalance ratios. Furthermore, (Gao et al., 
2008) strategies are designed for balancing chunk-based ensembles, while our sliding win-
dow strategy is designed for online training of ensembles. ROSE effectively scales up to 
any number of classes, while other approaches were designed for two-class problems and 
their chunk rebalancing strategies may suffer when handling more classes inside chunks of 
the same size.

Self-adjusting � for bagging ROSE employs online bagging to weight and resample with 
replacement instances in the subspace using the Poisson(�) distribution. Online bagging 
improves the performance of data stream ensembles and it is employed in OzaBag (Oza, 
2005), Leveraging Bagging (Bifet et al., 2010b), Adaptive Random Forest (Gomes et al., 
2017), and KUE  (Cano & Krawczyk, 2020). However, existing approaches use a fixed 
value for � , typically 1 or 4. Consequently, the weighting and resampling will follow a 
static distribution for all of the instances, regardless of the imbalance ratio of the classes. 
Moreover, � will be constant through all of the stream regardless of whether the stream is 
stable or recently experienced an imbalance ratio drift. On the other hand, ROSE uses a 
self-adjusting � that dynamically changes over time to adapt to varying imbalance ratios, 
reflecting the increasing difficulty in classifying minority class instances. The initial value 
of � is set as �min = 4 when the distribution of the classes is not yet known.
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Ensembles based on the idea of online bagging use the Poisson(�) distribution to control 
how many times a given instance will be shown to each base learner. Standard online bag-
ging uses � = 1 to mimic static bagging, while algorithms like Leveraging Bagging (Bifet 
et al., 2010b) or Adaptive Random Forest (Gomes et al., 2017) use � = 4 for a more aggres-
sive exploitation of instances. ROSE proposes a dynamic self-adjusting � value. We keep a 
histogram of the data class distribution in the window of most recent instances. The value 
of � will be dynamically adjusted based on the most recent imbalance ratios between the 
instance’s class and the majority class. We propose to calculate the self-adjusting � as in 
Eq. 2:

where �min = 4 . This self-adjusting parametrization benefits both balanced and imbalanced 
distributions. Under balanced data the logarithmic function makes � = 4 , similar to Lev-
eraging Bagging or Adaptive Random Forest. On the other hand, if the imbalance ratio is 
10:1 then � = 8 , or if the imbalance ratio is 100:1 then � = 12 . The logarithmic function 
provides a more reasonable and smoother scaling of the � value as the imbalance ratio 
increases. This strategy allows ROSE to enhance the importance of the minority class 
instances and use them more aggressively to train a balanced classifier. Increased exposure 
to minority instances will also result in faster creation of new split in decision tree-based 
classifiers that use Hoeffding’s bound, adapting faster to concept drift. Self-adaptive � for 
class imbalance was also discussed in (Wang etal., 2015), but the approach proposed there 
was based on checking conditional clauses and switching between various formulas for 
lambda calculation. ROSE simplifies this by proposing a single formula for � calculation, 
which leads to better classification performance.

4.2 � ROSE algorithm

The algorithm to build the ROSE classifier comprises three main stages: (1) the ensemble 
initialization on a diverse set of random feature subspaces, (2) the ensemble model update 
per-instance adapting to class imbalance, and (3) the learning of a background ensemble 
and replacement of base learners to adapt to concept drift and varying properties of the 
stream. Algorithm 1 presents the pseudo-code of ROSE.

(2)� = �min + log10 (#majority Class∕#instance Class) × �min
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Ensemble initialization and diversity The main idea of the initialization phase (lines 3–8 
in Algorithm 1) is to generate diverse base classifiers � exploring variable r-dimensional 
random feature subspaces � . Random subspaces of varied size sample the input feature 
space adding diversity of the classifiers.

Ensemble update The ensemble update phase (lines 10-16 in Algorithm 1) involves 
the incremental learning of the base classifiers. The self-adjusting � for bagging (line 
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10) adjusts the � value according to the class of the current instance Si and the most 
recent distribution of the data classes in the sliding window per class w. Next, the pre-
quential accuracy and Kappa metrics are calculated after classifying the instance Si 
(lines 13–14). Finally, the base classifiers are updated with the instance Si and its weight 
according to Poisson(�) (line 15).

Ensemble replacement Lines 17–40 in Algorithm 1 detail the creation and training of 
the background ensemble, and the replacement of base classifiers. The ensemble polls 
the current base classifiers for concept drift or warning detection using ADWIN on the 
respective feature subspaces. If a warning is detected in any of them (line 17), the algo-
rithm starts learning an ensemble in the background on new sets of feature subspaces to 
early adapt to drifts. The background ensemble is initialized using the sliding window 
per class containing the most recent instances (lines 19–26), where instances on the 
sliding window are presented to the base classifiers in the order they were originally 
received. In the following set of instances, the background ensemble is updated on a 
purely online manner (lines 29–34). After a certain number of instances equal to the 
sliding window size of 1000 instances (line 37), the performance of the current and 
background base classifiers are compared to identify the best performing classifiers on 
their respective feature subspaces. The top performing base classifiers are selected to 
replace the ensemble (line 38). This strategy allows to incorporate the multiple classi-
fiers dynamically and discard under-performing models based on outdated concepts.

Weighted voting to classify new instances ROSE combines its base classifiers using 
weighted voting, where weights are calculated based on the product of the accuracy and 
Kappa of each individual classifier, similar to the selection of the best performing clas-
sifiers in the ensemble replacement. The combination of the two metrics is preferred to 
the individual metrics for two main reasons: (1) not to introduce an excessive bias by 
having a metric too sensitive to skew class distributions (accuracy), and (2) Kappa may 
produce extremes while accuracy provides better continuity, which is preferred to multi-
ply classifier weights.

Time and memory complexity analysis The primary ensemble comprises k base clas-
sifiers. The base classifier for ROSE is HoeffdingTree (Hulten et al., 2001), also known 
as VFDT, which builds a decision tree with a constant time and constant memory per 
instance. Thus, the ensemble initialization on the first instance S1 has a time complexity 
of O(k) . The ensemble model update and incremental learning on a subsequent instance 
Si has a time complexity of O(k ⋅ �) to update the k existing classifiers according to the 
current � . Moreover, if the algorithm trains the background ensemble of another k clas-
sifiers, it adds a time complexity of O(k ⋅ �) but only when a drift warning is detected. 
Consequently, the worst-case time complexity of ROSE is O(2 ⋅ k ⋅ � ⋅ |S|).

The memory complexity of the base classifier HoeffdingTree is O(f ⋅ v ⋅ l ⋅ c) where f 
is the number of features, v is the maximum number of values per feature, l is the num-
ber of leaves in the tree, and c is the number of classes (Hulten et al., 2001). However, 
ROSE performs r-dimensional random subspace projections for each of the k classi-
fiers, where r ≤ f  , then effectively reducing the memory complexity of HoeffdingTree 
to O(r ⋅ v ⋅ l ⋅ c) . ROSE also needs to store a sliding window per class w of the most 
recent instances. Therefore, the worst-case memory complexity of ROSE comprising 
k classifiers in the primary ensemble plus the k classifiers in the background ensemble 
is O((2 ⋅ k ⋅ r ⋅ v ⋅ l ⋅ c) + (|w| ⋅ f )) . The reduction of the feature subspaces makes ROSE 
competitive in time and memory complexity compared to its counterparts.
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4.3 � Comparison between ROSE and the Kappa updated ensemble

Our previous work introduced KUE (Cano & Krawczyk, 2020), which is also driven by the 
Kappa metric. Therefore, it is necessary to clearly describe the major differences between 
KUE and ROSE, as they are both driven by the same metric for ensemble lineup man-
agement. While KUE is a chunk-based general-purpose ensemble for drifting data streams 
(and also happens to do well for imbalanced data), ROSE is an online ensemble specifi-
cally designed for imbalanced data streams with dynamic imbalance ratio and concept 
drift, offering a number of features designed specifically to tackle these challenges. We 
want to highlight that all of underlying ROSE features are not simple extensions of our pre-
vious work, but are novel contributions that lead to the excellent robustness to non-station-
ary, imbalanced, and difficult data. The detailed comparison between the two is provided in 
Table 1 and the differences of the experimental studies are in Table 2.

5 � Experimental study

The experimental study was designed to answer the following research questions (RQ):

•	 RQ1 Can ROSE outperform state-of-the-art ensemble methods under static imbalance 
ratios?

•	 RQ2 Can ROSE outperform state-of-the-art ensemble methods under drifting imbal-
ance ratios?

•	 RQ3 Can ROSE offer better learning capabilities under instance-level difficulties?
•	 RQ4 Does ROSE exhibit improved robustness to drifting noise on imbalanced streams?
•	 RQ5 Does ROSE maintain its performance when handling real-world data streams?
•	 RQ6 How does each of ROSE features improve the competence of the ensemble?

Experimental setup
Algorithms Table  3 enumerates the ensemble classifiers used in the experiments. 

Ensembles are categorized based on their general-purpose versus class-imbalance design. 
All ensembles are evaluated with the same parameter settings of 10 base classifiers using 
HoeffdingTree as the base learner. Algorithms employing a sliding window use a buffer 
size of 1000 instances. No individual hyperparameter optimization was conducted for 
any algorithm as we believe algorithms should exhibit a robust performance off the shelf. 
Results reported for all algorithms/benchmarks are for a single run.

The source code for ROSE and the experimental setups for the seven experiments 
are publicly available on GitHub.1 All algorithms are implemented in MOA (Bifet et al., 
2010a), where their source code is publicly available, and run on an Intel Xeon CPU 
E5-2690v4 with 384 GB memory and CentOS 8.

Experiments 1 to 5 show the detailed results for the nine most representative ensembles 
(ROSE, KUE, ARF, LB, SRP, OOB, UOB, OUOB, and CSMOTE). Experiment 6 shows 
the aggregated results for all 31 ensembles on all benchmarks. Experiment 7 presents an 
ablation study of ROSE’s features.

1  Source code and experimental setup available at https://​github.​com/​canoa​lberto/​ROSE.

https://github.com/canoalberto/ROSE
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Performance evaluation Algorithms are compared using their prequential Kappa and 
AUC  (Brzeziński & Stefanowski, 2017) metrics and their rank. The rank is calculated 
using the Friedman’s test rank (Demšar, 2006). Let rj

i
 be the rank of the j-th of k algorithms 

on the i-th of N datasets. The algorithm’s rank is calculated as Rj =
1

N

∑
i r

j

i
.

5.1 � Experiment 1: analyzing robustness to static class imbalance

Goal of the experiment This experiment was designed to address RQ1 and evaluate the 
robustness of the classifiers to static class imbalance (general-purpose vs. imbalance-spe-
cific ensembles, respectively) without enforced concept drift. It is desired that any classifier 
designed for skewed data will display a high robustness to different levels of imbalance, 
i.e., output stable predictive performance regardless of the disproportion among classes. To 
evaluate this, we prepared six data stream benchmarks {Agrawal, AssetNegotiation, Ran-
domRBF, SEA, Sine, Hyperplane} with static imbalance ratios of {5, 10, 20, 50, 100}. 
This allows us not only to gain insight into how each given classifier behaves under specific 
class distributions but also how it performs with increasing class imbalance. Figure 1 illus-
trates the performance of the selected general-purpose and imbalance-specific ensembles, 
respectively, with the increasing static imbalance ratio. Tables 4  and 5 present the aver-
age Kappa and AUC for each of the evaluated imbalance ratios averaged over the six data 
stream benchmarks, and the overall rank of the algorithms according to Friedman. Best 
results in the tables are presented in bold font.

Comparison with class-imbalance ensembles ROSE was compared with OOB, UOB, 
OUOB, and CSMOTE. We can see that UOB displays the worst robustness to increasing 
imbalance ratio, showing significant drops in performance when IR becomes higher than 
20 (with the exception of AssetNegotiation, SEA, and Sine datasets). This can be explained 
by the fact that with increased IR, there are increasing less minority instances in each 
batch. As UOB uses undersampling, it tries to reduce the size of the majority class. This 

Table 1   Algorithmic differences between KUE and ROSE

KUE ROSE

Purpose Data streams with concept drift Imbalanced streams with con-
cept drift

Training model Chunk-based (blocks of 1000 instances) Online (instance by instance)
Bagging Fixed � Self-adjusting � based on 

imbalance ratio
Instances window One window One window per class
Subspaces of features Uniform distribution [1,f] Normal distribution 

� × f +
(1−�)×f×N(0,1)

2

Background ensemble No Yes
Base classifier replacement One base classifier per chunk Multiple base classifiers at any 

time
Base classifier selection Kappa-only driven Kappa and accuracy driven
Drift detector No (concept drift is handled through 

dynamic classifier selection)
Yes, simultaneously using 

ADWIN to detect concept 
drift on each of the feature 
subspaces and through 
dynamic classifier selection
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leads to having a smaller training set that hinders the online learning capabilities of UOB. 
This is especially crucial when high imbalance ratio is combined with concept drift, since 
the small sample size will reduce the chances of quick recovery from changes. Even when 
instances from new concept will arrive their numbers will be continually reduced, lead-
ing to much more prolonged adaptation process. OOB, the counterpart of UOB, displays 
much better robustness and stability to varying imbalance ratio. However, especially for 
the hyperplane dataset, we can see a significant drop in performance when handling higher 
imbalance ratios. The hyperplane generator uses sudden drifts internally, which allows us 
to understand the reason behind such a drop. Oversampling of instances in case of high 
imbalance ratio, leads to an oversaturation of the classifier with instances from old con-
cepts. This may significantly reduce the forgetting capability of any underlying classifier, 
thus leading to lower reactivity to concept drift. CSMOTE and OUOB display very good 
robustness to increasing imbalance ratio. Sadly, their predictive power is lowest from all 
methods, proving that robustness on its own is not enough. The proposed ROSE combines 
robustness with best predictive performance, showing that ROSE is capable of handling 
even high class imbalance. This is especially desired in various real-world continual and 
streaming problems, where we do not know how the imbalance ratio may change over time 
and we need a classifier that can offer stable performance regardless of characteristics of 
incoming data. ROSE is capable of outperforming all of the methods on most of the data-
sets. On a few of them (notably AssetNegotiation and SEA) ROSE returns comparable per-
formance to reference methods, but never is outperformed by them.

Comparison with general-purpose ensembles ROSE was compared with KUE, ARF, 
LB, and SRP. Surprisingly, general-purpose ensembles display similar robustness to 
increasing imbalance ratio as skew-insensitive approaches discussed previously. This can 
be explained by the diversity of base learners employed in those ensembles. Using mutu-
ally complimentary learners leads to a reduction in bias towards the majority class and 
better management of even higher class disproportion. This shows that the idea of classi-
fier diversity, strongly explored in ROSE, is a key factor in designing effective ensemble 
learners for imbalanced data streams. However, SRP has problems with stability on SEA, 
Hyperplane, and Sine datasets, where increasing imbalance ratio leads to higher variance 
in its results. ROSE outperforms all of the reference ensemble methods in terms of stability 
and predictive power on all imbalance ratios.

Table 2   Experimental study differences between KUE and ROSE

KUE ROSE

Ensemble algorithms compared 15 general-purpose 21 general-purpose9 
imbalanced-
specific

(Traditional) standard datasets Yes (13 datasets) No
Class-balanced generators without concept drift Yes (20 generators) No
Class-balanced generators with concept drift Yes (25 generators) No
Imbalanced datasets Yes (7 datasets) Yes (24 datasets)
Imbalanced generators with static imbalance ratio Yes (20 generators) Yes (36 generators)
Imbalanced generators with dynamic imbalance ratio Partial (6 generators) Yes (12 generators)
Instance-level difficulties in imbalanced data No Yes (39 datasets)
Drifting noise and imbalance ratio No Yes (12 datasets)



2575Machine Learning (2022) 111:2561–2599	

1 3

Table 3   Algorithms employed in the experimental evaluation

References Algorithm

General-purpose ensem-
bles

Cano and Krawczyk (2020) KUE: Kappa Updated Ensemble.
Wang et al. (2003) AWE: Accuracy Weighted Ensemble.
Brzeziński and Stefanowski (2011) AUE1: Accuracy Updated Ensemble 1.
Brzeziński and Stefanowski 

(2014b)
AUE2: Accuracy Updated Ensemble 2.

Kolter and Maloof (2007) DWM: Dynamic Weighted Majority.
Gomes and Enembreck (2014) SAE2: Social Adaptive Ensemble 2.
Jaber et al. (2013) DACC: Dynamic Adaptation to Concept 

Changes.
Jaber et al. (2013) ADACC: Anticipative and Dynamic 

Adaptation to Concept Changes.
Gomes et al. (2017) ARF: Adaptive Random Forest.
de Carvalho Santos et al. (2014) ADOB: Adaptable Diversity-based 

Online Boosting.
de Barros et al. (2016) BOLE: Boosting-like Online Learning 

Ensemble.
Bonab and Can (2018) GOOWE: Geometrically Optimum and 

Online-Weighted Ensemble.
Van Rijn et al. (2015) HEB: Heterogeneous Ensemble BLAST.
Bifet et al. (2010b) LB: Leveraging Bagging Adwin.
Pelossof et al. (2009) OCB: Online Coordinate Boosting.
Oza (2005) OBA: Online Bagging.
Bifet et al. (2009) OBAD: Online Bagging with ADWIN.
Bifet et al. (2009) OBASHT: Online Bagging Adaptive-

Size Hoeffding Tree.
Oza (2005) OBO: Online Boosting.
Oza (2005) OBOA: Online Boosting with ADWIN.
Gomes et al. (2019a) SRP: Streaming Random Patches.

Class imbalance ensem-
bles

This paper ROSE: Robust Online Self-Adjusting 
Ensemble.

Wang et al. (2016) OOB: Oversampling Online Bagging.

Wang et al. (2016) UOB: Undersampling Online Bagging.

Wang and Pineau (2016) OSMOTE: Online Continuous Synthetic 
Minority Oversampling Bagging.

Wang and Pineau (2016) OUOB: Online Undersampling and 
Oversampling Bagging.

Bernardo et al.,(2020b) CSMOTE: Continuous Synthetic Minor-
ity Oversampling.

Wang and Pineau (2016) OADA: Online AdaBoost.

Wang and Pineau (2016) OADAC2: Online AdaC2.

Wang and Pineau (2016) ORUS: Online Random Undersampling 
Boosting.

Bernardo et al. (2020a) IRL: Incremental Rebalancing Learning.
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5.2 � Experiment 2: analyzing robustness to drifting class imbalance

Goal of the experiment This experiment was designed to address RQ2 and evaluate the 
robustness of classifiers to a scenario with drifting imbalance ratio. Concept drift may also 
affect the class distributions, changing the learning difficulty over time. While many exist-
ing methods are designed to cope well with the static imbalance ratio present during the 
training phase, they lack effective mechanisms that allow for skew-insensitive adaptation to 
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Fig. 1   Robustness to class imbalance ratios (Kappa). The first group of algorithms includes imbalanced-
specific ensembles (ROSE vs. OOB, UOB, OUOB, CSMOE). The second group of algorithms includes 
general-purpose ensembles (ROSE vs. KUE, ARF, LB, SRP)

Table 4   Kappa averages over the six stream benchmarks on static class imbalance ratios

Imbalance ratio ROSE KUE ARF LB SRP OOB UOB OUOB CSMOTE

5 79.80 73.87 73.73 73.01 63.71 75.17 72.10 67.12 65.17
10 72.46 68.07 64.49 65.84 50.00 68.56 63.87 59.56 56.54
20 64.65 59.12 54.04 57.15 42.58 57.67 53.34 49.36 47.91
50 54.25 47.65 44.86 42.18 33.55 45.33 34.80 35.64 35.26
100 47.07 40.52 33.87 37.40 29.02 40.00 22.28 28.68 31.84
Average 63.65 57.85 54.20 55.12 43.77 57.35 49.28 48.07 47.34
Rank 2.00 4.84 5.46 3.86 5.81 3.17 6.40 7.14 6.31
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time-varying disproportions between classes. To evaluate this, we prepared six data stream 
benchmarks {Agrawal, AssetNegotiation, RandomRBF, SEA, Sine, Hyperplane} with 
drifting imbalance ratio representing first increasing and then decreasing imbalance ratio 
{5, 10, 20, 100, 20, 10, 5}. This allows us to analyze not only how each analyzed classifier 
is able to cope with class imbalance, but also how adaptive it is to the dynamic imbalance 
ratio occurrences. Figure 2 illustrates the prequential Kappa over time for the selected gen-
eral-purpose and imbalance-specific ensembles. Tables 6 and 7 present the average Kappa 
and AUC for each of the drift types on the six generators, and the rank of the algorithms.

Comparison with class-imbalance ensembles We can see that while all methods can 
handle drifting imbalance ratios, their main differences lie in how strongly imbalance drift 
affects them and how quickly they can recover from the imbalance drift. It is interesting 
to see that both over- and undersampling based ensemble methods perform significantly 
worse in the case of drifting imbalance ratios. While OOB (on Kappa) and UOB (on AUC) 
are the best performing method from all class-imbalance ensembles (despite their lack of 
explicit drift handling mechanisms), their hybrid OUOB counterpart often falls short to 
most of the methods. This can be explained by its inability to effectively switch between 
different resampling approaches that leads to slower recovery from changes in imbalance 
ratio and drifts. In all of six benchmarks CSMOTE (with ARF) shows the biggest drops 
in performance among all methods when imbalance ratio increases. This can be explained 
by the inability of the online k-nearest neighbor-based oversampling method to properly 
model the majority class with the increasing class disproportions. This forces CSMOTE 
to introduce artificial instances to wrong classes, not being able to adapt quickly enough 
to sudden changes. Therefore, we can conclude that SMOTE-based solutions are not suit-
able to handle drifting imbalance ratios in data streams, especially when imbalance ratio 
is increasing over time. ROSE offers superior performance to all four of class-imbalance 
ensembles, showing both smaller drops in performance when imbalance ratio drift occurs, 
but also displaying quicker recovery rates after the drift, leading to faster adaptations to 
new concepts with different class proportions. This shows that ROSE offers great capabili-
ties of adaptation to drifting and imbalanced data streams, far outperforming state-of-the-
art skew-insensitive solutions.

Comparison with general-purpose ensembles We can see that general-purpose ensem-
ble approaches cannot cope with the imbalance drift and require significant time to recover 
from changes in class ratios and thus offer lower recovery rates than ROSE. Even if their 
performance on a fully learned concept is satisfactory, they require more instances than 
ROSE to achieve this performance and capture the properties of concept with new imbal-
ance ratio. It is interesting to notice that in case of the Kappa metric, KUE and LB ensem-
ble classifiers work better than skew-insensitive solutions discussed earlier. This shows that 
ensemble approaches can effectively utilize their diversity to offer faster adaptation to sud-
den changes. Skew-insensitive solutions (especially CSMOTE) do not emphasize diversity 
during their base classifier update, thus leading to slower adaptation to drifts. ROSE com-
bines the advantages of both approaches, combining fast adaptation via promoted diversity 
of base classifiers with skew-insensitive mechanisms offering robustness to static and drift-
ing imbalance ratios.

5.3 � Experiment 3: analyzing robustness to instance‑level difficulties

Goal of the experiment This experiment was designed to address RQ3 and evaluate the 
robustness of the data stream classifiers to instance-level difficulties  (Brzeziński et  al., 



2578	 Machine Learning (2022) 111:2561–2599

1 3

2021). We used two imbalance generators2 to create scenarios with the presence of bor-
derline or rare instances, as well as with both types at once, while experiencing a split 
of the cluster. Difficult instances were created for the minority class to present a signifi-
cantly more challenging scenario. We evaluated their influence on classifiers on their own 
and combined with medium IR equal to 10 and high IR equal to 100. Borderline instances 
are challenging to classifiers as they lie in the uncertainty area of the decision space and 
strongly impact the induction of the classification border. Rare instances are overlapping 
with the majority class, leading to small sample and sparse subconcepts created within the 
minority class. So far only few works discussed the idea of analyzing the instance-level dif-
ficulty in the context of data streams and concept drift, while this issue is of crucial impor-
tance in imbalanced data domain. Figure 3 and Tables 8 and 9 show the performance of the 
ensemble methods on data streams with various ratios of instance-level difficulties injected 
into the stream.

Comparison with class-imbalance ensembles All four reference methods were designed 
to learn from imbalanced data stream, but only by considering the global imbalance ratio. 
One can see that none of the state-of-the-art skew-insensitive classifiers display any addi-
tional robustness to the increasing number of both borderline and rare instances. Out of 
the two types, rare instances pose much more difficulty to all methods. UOB and OOB 
cannot effectively handle the borderline instances, as their sampling methods only increase 
the overlap on the boundary, leading to a decreased certainty between the classes. This 
is especially visible in the case of OOB, as it may enhance the presence of borderline 
instances that are overlapping with the majority class, leading effectively to higher error 
on both classes. In case of rare instances, UOB, OOB, and OUOB cannot efficiently clean 
their neighborhoods or oversample them in a meaningful manner, leading to significant 
drops in predictive performance with an increased ratio of difficult instances. Interest-
ingly, CSMOTE displays much better performance than random resampling approaches, 
which is particularly visible on the rare instances. This can be attributed to the fact that 
rare instances create the small sample size problem, not offering enough information for 
classifiers to efficiently capture their properties. CSMOTE indirectly increases the density 
of instances in their neighborhood, leading to their increased importance during the clas-
sifier training. ROSE can handle borderline and rare instances more effectively than those 
four classifiers, due to its capabilities of increased exposure to difficult instances. The pro-
posed self-adjusting � allows for displaying borderline and rare instances multiple times 
to base classifiers, increasing their adaptation to local data characteristics. This shows that 

Table 5   AUC averages over the six stream benchmarks on static class imbalance ratios

Imbalance ratio ROSE KUE ARF LB SRP OOB UOB OUOB CSMOTE

5 88.33 85.10 84.38 84.20 78.90 85.93 85.87 81.06 80.55
10 83.46 81.06 78.60 79.50 71.10 81.28 82.16 75.93 75.19
20 78.88 75.67 73.21 74.71 67.26 75.46 77.93 70.59 70.56
50 73.84 70.29 69.37 68.38 63.31 69.80 72.65 64.40 65.11
100 70.85 67.43 65.09 66.48 61.63 67.59 70.25 61.62 63.61
Average 79.07 75.91 74.13 74.65 68.44 76.01 77.77 70.72 71.01
Rank 2.04 5.33 6.04 4.40 6.31 2.97 3.57 7.53 6.80

2  Imbalance generators available at https://​github.​com/​dabrze/​imbal​anced-​stream-​gener​ator.

https://github.com/dabrze/imbalanced-stream-generator
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Table 6   Kappa averages over the six stream benchmarks on drifting class imbalance ratios

Bold values indicates best results

IR drift ROSE KUE ARF LB SRP OOB UOB OUOB CSMOTE

Sudden 62.02 53.45 50.93 57.28 40.46 52.47 44.32 48.38 47.60
Gradual 57.87 53.03 47.23 51.62 38.38 51.22 43.71 45.13 44.82
Average 59.95 53.24 49.08 54.45 39.42 51.85 44.02 46.75 46.21
Rank 2.23 4.57 5.64 3.18 7.59 3.64 6.25 5.86 6.05

Table 7   AUC averages over the six stream benchmarks on drifting class imbalance ratios

Bold values indicates best results

IR drift ROSE KUE ARF LB SRP OOB UOB OUOB CSMOTE

Sudden 78.38 73.63 72.45 75.36 66.78 74.59 75.83 71.20 71.07
Gradual 76.64 73.68 70.78 72.90 65.94 74.28 75.74 69.86 69.78
Average 77.51 73.65 71.62 74.13 66.36 74.43 75.78 70.53 70.43
Rank 2.36 5.09 6.09 3.64 8.05 3.55 3.45 6.18 6.59
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Fig. 2   Prequential Kappa on drifting class imbalance ratios. The first group of algorithms includes imbal-
anced-specific ensembles (ROSE vs. OOB, UOB, OUOB, CSMOE). The second group of algorithms 
includes general-purpose ensembles (ROSE vs. KUE, ARF, LB, SRP)
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ROSE displays high robustness not only to class imbalance, but also data irregularities and 
instance-level difficulties.

Comparison with general-purpose ensembles Results show that when only instance-
level difficulties are present the general-purpose ensembles display performance and 
robustness similar to their skew-insensitive counterparts. This is a very interesting obser-
vation, as it shows that instance-level difficulties pose completely different challenges to 
learning systems than imbalanced data. And while they can be a part of the imbalanced 
problem, they can pose as a difficult problem on their own. Surprisingly, KUE which in 
other experiments was one of the best performing methods, here is among the most affected 
by increasing ratios of difficult instances. This shows that while KUE displays great per-
formance on standard and cleaned data streams, it cannot be effectively applied to data 
streams with irregularities. Here the second most robust method, after the proposed ROSE, 
is SRP. By training classifiers on random feature subspaces, SRP alters the instance-level 
characteristics (by altering distances between instances), which may lead to better captur-
ing of rare objects. This observation applies to ROSE, as our approach uses a similar mech-
anism. ARF also displays good robustness to instance-level difficulties. As ARF trains its 
base learners on both subsets of instances and features, some of the learners in its pool 
are going to be more affected by difficult instances than the others. However ARF, unlike 
ROSE, does not offer any mechanisms for increasing the exposure to difficult instances—
which in the end results in it having worse predictive performance on difficult data streams 
than the proposed ROSE.

5.4 � Experiment 4: analyzing robustness to drifting noise on imbalanced streams

Goal of the experiment This experiment was designed to address RQ4 and evaluate the 
robustness of classifiers to a scenario with the presence of drifting noise affecting the fea-
tures. To make this scenario more realistic and at the same time challenging, we combined 
it with the dynamic imbalance ratio examined in Experiment 2. This way, both noise and 
IR drift over time. Feature distribution affects the definition of class boundaries, thus lead-
ing to a more challenging skewed learning scenario with higher degree of overlap between 
classes. Features affected by noise should be discarded by a classifier (Krawczyk & Cano, 
2018), as they may display a highly negative impact on the learning from minority classes. 
We used the six generators from Experiment 2 with drifting imbalance ratio, further inject-
ing noise into a varying ratio of features {10%, 20%, 30%, 40%}. Figure 4 shows the plots 
depicting robustness to increasing noise ratio and Fig. 5 depicts the comparison between 
ROSE and best performing ensemble methods under drifting imbalance ratio and 20% of 
features being subject to noise. This is further accompanied by Tables 10 and 11 show-
ing average Kappa and AUC metrics under varying noise levels over the six data stream 
benchmarks.

Comparison with class-imbalance ensembles We can see that the reference streaming 
classifiers, while able to work with class imbalance as the only learning difficulty, they do 
not possess any mechanisms for coping with the presence of noise in the stream. Neither 
over- or undersampling based solutions can remove noisy or redundant features, leading 
to noise significantly impairing their learning. UOB and CSMOTE are the ones that are 
impacted most negatively by noise. While CSMOTE performance can be easily explained 
(SMOTE uses Euclidean distance to generate artificial instances, thus noise decreases the 
quality of oversampling), the poor performance of UOB comes as a surprising observa-
tion. Random undersampling does not use any feature-based information, thus the noise 
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must negatively impact the bagging procedure itself. UOB does not have any explicit drift 
handling mechanism, which may lead to performance degradation over time under non-
stationary noise. At the same time, ROSE shows robustness to varying levels of noise, 
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Fig. 3   Robustness to borderline and rare instances under different class imbalance (Kappa). The first group 
of algorithms includes imbalanced-specific ensembles (ROSE vs. OOB, UOB, OUOB, CSMOE). The sec-
ond group of algorithms includes general-purpose ensembles (ROSE vs. KUE, ARF, LB, SRP)

Table 8   Kappa over the stream benchmarks on instance-level difficulties

Bold values indicates best results

Instance-level difficulty ROSE KUE ARF LB SRP OOB UOB OUOB CSMOTE

Borderline – IR 1 89.45 88.60 89.71 90.47 89.94 86.04 85.18 87.62 88.79
Borderline – IR 10 81.41 75.29 75.86 78.99 58.33 75.39 71.24 75.27 81.64
Borderline – IR 100 65.92 58.92 63.74 65.53 62.73 54.45 49.11 62.12 58.80
Rare – IR 1 70.10 65.32 74.84 71.72 77.68 64.69 63.71 68.73 73.52
Rare – IR 10 68.31 60.14 62.09 63.66 51.48 62.58 57.00 59.27 71.39
Rare – IR 100 64.49 57.68 61.79 62.61 60.91 50.99 44.09 60.26 54.99
Borderline + Rare – IR 1 72.90 71.51 75.31 73.97 76.27 70.12 68.93 74.85 73.13
Borderline + Rare – IR 10 70.24 61.33 61.94 65.44 48.13 65.46 60.29 62.10 70.37
Borderline + Rare – IR 100 60.99 55.31 60.39 60.93 59.83 49.43 45.38 59.17 54.81
Average 71.47 65.71 69.53 70.23 65.02 63.95 60.16 67.58 69.70
Rank 2.72 6.31 3.50 2.82 4.76 6.85 8.44 5.51 4.10
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significantly outperforming reference solutions. It is very important to notice that the dif-
ference between ROSE and reference classifiers in terms of their predictive power (meas-
ured both as prequential Kappa and prequential AUC) is much more significant in Experi-
ment 2 (which used the same data streams but without noise). This shows that reference 
skew-insensitive classifiers are strongly impacted by noise, while ROSE suffers signifi-
cantly lower drops in performance regardless of the noise level present. By analyzing Fig. 5 
we can see that the combination of feature noise and drifting imbalance ratio becomes 
even more challenging for reference classifiers. We observe that with the increasing imbal-
ance ratio the negative impact of noise strengthens. This can be attributed to the impact of 
noise on both majority and minority classes. Their distributions become shifted, leading to 
increasing overlapping and more difficult borderline instances. With increasing imbalance 
ratio, we have less and less safe minority instances, thus negatively impacting the adapta-
tion of classifiers to drifts. ROSE is capable of removing noisy features and effectively 
utilizing feature subspaces to train noise-insensitive classifiers that improve its adaptation 
to concept drift and incorporation of new, useful knowledge into ROSE ensemble.

Comparison with general-purpose ensembles While standard ensembles do not offer 
high robustness to class imbalance, they are capable of handling feature noise as well as 
skew-insensitive streaming classifiers. In some cases (e.g., Agrawal or Hyperplane genera-
tors) we observe that general-purpose ensembles display higher robustness to noise than 
their skew-insensitive counterparts. This can be explained by some specific mechanisms 
embedded in the ensembles that allow to handle implicitly some noise. KUE uses a com-
bination of feature subspaces (like ROSE) that allow to filter out noisy features from being 
included in newly trained classifiers. Additionally, KUE uses an abstaining mechanism that 
removes the most uncertain classifiers from the voting procedure. If a classifier is highly 
affected by noisy features, its certainty will become closer to a random classifier. Abstain-
ing mechanism will temporarily switch off such a classifier, leading to better a response to 
noisy data streams. ARF also uses feature subspaces, but in each decision tree node, lead-
ing to a reduced probability of noisy features becoming the backbone of its base classifiers. 
ROSE displays the highest robustness to any level of noise due to its capability of using 
feature subspaces combined with the use of a background ensemble to explore new random 
subspaces without noise.

Table 9   AUC over the stream benchmarks on instance-level difficulties

Bold values indicates best results

Instance-level difficulty ROSE KUE ARF LB SRP OOB UOB OUOB CSMOTE

Borderline – IR 1 94.77 94.34 94.90 95.27 95.01 93.07 92.64 93.86 94.44
Borderline – IR 10 92.55 86.31 85.77 88.09 77.23 92.36 91.47 85.46 94.29
Borderline – IR 100 85.39 83.69 81.86 83.24 81.07 88.39 90.37 80.96 93.35
Rare – IR 1 85.11 82.70 87.47 85.90 88.89 82.39 81.90 84.41 86.80
Rare – IR 10 82.93 78.84 79.24 80.38 74.44 81.92 80.92 77.79 85.35
Rare – IR 100 82.84 81.52 80.69 81.45 80.14 84.09 84.43 79.90 87.74
Borderline + Rare – IR 1 86.52 85.82 87.72 87.04 88.20 85.12 84.53 87.50 86.62
Borderline + Rare – IR 10 84.13 78.91 78.57 80.43 72.93 84.22 83.31 78.63 86.32
Borderline + Rare – IR 100 81.71 79.75 79.99 80.45 79.54 82.81 85.59 79.34 88.15
Average 86.24 83.44 84.04 84.65 81.94 85.96 85.95 83.07 89.30
Rank 3.56 6.54 5.22 4.44 6.01 4.68 5.28 7.01 2.26
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5.5 � Experiment 5: real‑world datasets

Goal of the experiment This experiment was designed to address RQ5 and evaluate the 
predictive power of ROSE on 24 real-world imbalanced and drifting data streams. The four 
previous experiments focused on analyzing the robustness of ROSE to various learning 
difficulties present in imbalanced data streams, allowing us to gain deeper insight into why 
ROSE is a highly effective and well-rounded classifier. We used data stream generators 
to have a full control over the created data and to simulate specific challenging scenarios. 
Real-world datasets pose specific challenges to classifiers, as they are not generated in a 
controlled environment. They are characterized by a combination of various learning dif-
ficulties that appear with varying strength or frequency. Their imbalance ratio changes over 
time, while concept drift may oscillate among different types with varying speed. There-
fore, evaluating ROSE against reference methods on real-world data streams is a crucial 
step towards proving effectiveness of our classifier. The real-world data streams employed 
in the study are popular benchmarks for streaming classifiers. This will allow readers to 
position the effectiveness of the methods among other studies on data streams, even those 
not focusing on class imbalance. Figure 6 shows the plot depicting the prequential Kappa 
over time and Table 12 presents the prequential metrics (accuracy, Kappa, and AUC) aver-
aged across all 24 datasets and the ranks.

Unique nature of real-world imbalanced data streams It is important to highlight a cru-
cial difference between artificial and real-world imbalanced data streams. All generators 
are probabilistic and base the generation of instances on prior probability taken from cur-
rent parametric imbalance ratio. With the change of imbalance ratio, the underlying prob-
ability of generating instance from minority and majority classes also change. Still, their 
appearance in the stream is dictated strictly by these priors, leading to bounded time win-
dows within which minority and majority instances appear. This does not hold for real-
world imbalanced data streams, as they were collected following some specific phenome-
non observations and are not bounded with such clear probabilistic mechanisms. Therefore, 
there are no uniform characteristics to be observed over extended periods of time and the 
arrival of class-specific instances is dictated by how the observations were collected. This 
poses unique challenges to imbalanced data stream mining, such as latency with which 
instances from a specific class arrive, or extended periods of time when instances from 
only a single class appear. Such a formulation of data streams is much more challeng-
ing for existing streaming classifiers, as it makes blind adaptation to every new instance 

Table 10   Kappa averages over the six stream benchmarks with drifting noise

Bold values indicates best results

Noise level (%) ROSE KUE ARF LB SRP OOB UOB OUOB CSMOTE

0 59.95 53.24 49.08 54.45 39.42 51.85 44.02 46.75 46.21
10 52.93 47.17 42.01 45.90 33.69 47.55 34.32 41.15 39.49
20 50.18 43.52 38.91 43.91 30.11 43.95 31.00 39.65 37.83
30 43.09 36.34 30.97 35.93 21.94 36.34 24.13 33.53 31.85
40 36.54 29.80 24.98 29.83 19.55 31.33 22.08 27.71 25.26
Average 48.54 42.01 37.19 42.00 28.94 42.20 31.11 37.76 36.13
Rank 1.70 4.43 6.02 3.75 7.61 3.57 6.43 5.40 6.09
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insufficient. Instead, it forces guided adaptation when useful knowledge is retained to avoid 
the forgetting of specific classes. This makes real-world imbalanced data streams akin to 
continual / lifelong learning, where robustness to catastrophic forgetting becomes a key 
issue. Such benchmarks allow us to gain additional insights into ROSE and reference clas-
sifiers, allowing to evaluate them under these unique and challenging conditions.

Comparison with class-imbalance ensembles It is very interesting to see that skew-
insensitive methods deliver inferior results to ROSE on most of the datasets with respect 
to Kappa. This shows us that these reference methods cannot handle compound real-world 
problems that are characterized by mixed drifts and varying class imbalance ratios. The 
especially low performance of OOB and UOB can be attributed to their online nature. They 
adapt their resampling strategy to the newly arriving instance, not being able to retain any 
memory of the previously seen concepts. When subject to a high latency of instances from 
a certain class (i.e., one of classes not appearing for a certain period) they will become 
highly skewed and cannot effectively recover from such an extreme imbalance ratio. 
OUOB and CSMOTE display much better performance, showing that their more complex 
mechanisms (hybrid resampling for OUOB and guided oversampling for CSMOTE) are 
able to capture more compound characteristics of the real-world streams. ROSE is capable 
of outperforming all four reference methods, which we contribute to storing buffers for 
each class independently, making ROSE robust to catastrophic forgetting in such latency 
scenarios.

Comparison with general-purpose ensembles When analyzing prequential accuracy, we 
can see that SRP is the best performing method. However, when analyzing skew-insen-
sitive metrics such as Kappa we can see that ROSE outperforms every single ensemble 
method. This shows how using accuracy as a metric may lead to false conclusions and 
how existing ensemble methods can be biased towards the majority class. This is especially 
visible in case of ARF and LB that achieve great prequential accuracy on all benchmarks, 
but a significantly lower Kappa. ROSE offers flexibility to various challenges present in 
real-world data, delivering stable performance. It is important to note that ROSE always 
achieves high ranks, while reference ensembles are characterized by a high variance in 
their performance, making them impractical for deployment in new, unknown domains.

Table 11   AUC averages over the six stream benchmarks with drifting noise

Bold values indicates best results

Noise level (%) ROSE KUE ARF LB SRP OOB UOB OUOB CSMOTE

0 77.51 73.65 71.62 74.13 66.36 74.43 75.78 70.53 70.43
10 75.01 70.85 68.30 70.25 63.63 73.45 73.08 68.38 67.30
20 73.41 69.09 67.05 69.36 62.05 71.72 71.82 67.66 66.58
30 70.04 65.46 63.09 65.31 58.55 68.71 69.36 64.99 63.63
40 66.81 62.39 60.22 62.37 57.53 66.65 66.29 62.04 60.49
Average 72.56 68.29 66.06 68.28 61.63 70.99 71.27 66.72 65.69
Rank 2.39 5.16 6.56 4.47 8.07 2.98 2.91 5.71 6.75
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5.6 � Experiment 6: overall comparison and statistical analysis

Goal of the experiment The previous experiments presented a detailed evaluation of ROSE 
against selected reference methods on imbalanced and drifting data streams, as well as on 
real-world benchmarks. Due to the readability of the results, we compared ROSE with 
four top performing skew-insensitive ensembles and four top-performing general-purpose 
ensembles. However, each experiment was actually run using all 30 ensembles listed in 
Table 3, resulting in the biggest study of learning from imbalanced data streams conducted 
so far. In this section, we present the summary of results for all of 30 ensembles, includ-
ing non-parametric and Bayesian statistical analyses. Tables 13 and 14 present the results 
for all classifiers according to prequential Kappa and AUC. Results are divided into five 
major groups (following the previous five experiments) and averaged over all benchmarks 
belonging to a given group. The meta rank represents the rank of the ranks across all of the 
benchmarks. Table 15 shows the averages and ranks of the runtime (seconds per 10,000 
instances) and memory consumption (RAM-hours) of all algorithms.

To evaluate the statistical significance of the results over multiple datasets, Figs. 7 and 8 
present the visualization of Bonferroni-Dunn tests (multiple algorithm comparison) for 
both metrics using a p-value of 0.01. The algorithms are sorted according to their rank. The 
critical distance (CD) interval indicates the difference of ranks between algorithms to be 
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Fig. 4   Robustness to different levels of noise with sudden drift (Kappa). The first group of algorithms 
includes imbalanced-specific ensembles (ROSE vs. OOB, UOB, OUOB, CSMOE). The second group of 
algorithms includes general-purpose ensembles (ROSE vs. KUE, ARF, LB, SRP)
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considered statistically different. Furthermore, Fig. 9 depicts the visualizations of Bayes-
ian rank test (pairwise algorithm comparison) between ROSE and best performing skew-
insensitive method (OOB) and best performing general-purpose ensemble method (LB). 
This test returns probabilities that one model will outperform the other based on measured 
performance. The top region indicates practical equivalence, while the lower right portion 
denotes better performance for ROSE and the remaining side for the opposing algorithm.

Comparison with reference classifiers We observe that ROSE achieves the best perfor-
mance and ranks regardless of the benchmark (from five major groups) and outperforms 
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Fig. 5   Prequential Kappa on drifting noise (noise on 20% of the features). The first group of algorithms 
includes imbalanced-specific ensembles (ROSE vs. OOB, UOB, OUOB, CSMOE). The second group of 
algorithms includes general-purpose ensembles (ROSE vs. KUE, ARF, LB, SRP)

Table 12   Performance on 24 real-world datasets

Bold values indicates best results

Dataset ROSE KUE ARF LB SRP OOB UOB OUOB CSMOTE

Avg. Accuracy 86.81 78.83 85.89 84.85 88.69 79.60 51.24 83.30 81.44
Avg. Kappa 62.48 39.73 58.94 57.92 61.85 50.14 23.35 59.08 57.84
Avg. AUC​ 88.96 84.71 86.33 86.05 87.42 87.74 86.69 86.55 88.52
Rank Accuracy 3.42 6.10 3.81 4.13 1.75 6.58 8.63 5.56 5.02
Rank Kappa 2.67 6.75 4.69 4.79 3.08 5.58 7.88 5.13 4.44
Rank AUC​ 2.79 6.81 5.58 5.33 3.71 4.52 6.69 5.65 3.92
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in a statistically significant manner all of 30 methods. It is important to note that ROSE 
delivers a very stable performance and high ranks over all benchmarks. This cannot be 
said about any of the other methods that are subject to high variation depending on the 
benchmark. This is further augmented by the observation of behaviors on Kappa and 
AUC. While ROSE always achieves best rank on both metrics, the second-best performing 
method for Kappa is LB, while for AUC is OOB. At the same time LB for AUC is ranked 
as the fourth classifier. This showcases that ROSE is a well-rounded and flexible classifier, 
capable of dealing with various learning challenges present in imbalanced and drifting data 
streams. This allows ROSE to be efficiently deployed on a data stream with no prior knowl-
edge of its characteristics, imbalance ratio, or presence of noise. Due to its self-adjusting 
nature ROSE can tackle any emerging and unknown difficulties, while remaining robust to 
skewed distributions. ROSE exhibits a runtime similar to LB and ARF while improving the 
Kappa and AUC. ROSE requires additional memory compared to KUE to train and store 
the background ensemble. While DACC is the fastest and has the lowest memory con-
sumption its Kappa and AUC ranks are among the worst. On the other hand, OSMOTE and 
OUOB show the slowest runtime and the largest demand of memory resources.
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Fig. 6   Prequential Kappa on real-world datasets. The first group of algorithms includes imbalanced-specific 
ensembles (ROSE vs. OOB, UOB, OUOB, CSMOE). The second group of algorithms includes general-
purpose ensembles (ROSE vs. KUE, ARF, LB, SRP)
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5.7 � Experiment 7: ablation study

Goal of the experiment Previous experiments allowed us to establish the effectiveness and 
robustness of ROSE when facing diverse benchmarks within learning from imbalanced 
data streams. In this final experiment, we aim at performing an ablation study to gain 
deeper insights into why ROSE is such an effective classifier and which of its features help 
to improve the accuracy and robustness to drift and class imbalance. ROSE consists of four 
main features. We performed an ablation study by switching off each of these features indi-
vidually and seeing how they influence the performance of our ensemble. Therefore, the 
static lambda version uses a fixed � = 4 , the one window version uses a single sliding win-
dow of 1000 instances regardless the number of classes, the no background ensemble skips 
the training of an ensemble on the background, the all features version uses all input fea-
tures for learning on all base classifiers, and the none version uses none of these features. 
Moreover, we also compare ROSE by testing three other alternatives, replacing one clas-
sifier at a time, selecting uniform subspace distributions, and using the (Wang etal., 2015) 
� rule. Tables 16 and 17 present the averaged results of ROSE without its features over the 
previous five experimental studies along with the three alternatives. Figure 10 shows the 
prequential performance of ROSE and its impaired versions over time for selected repre-
sentative data stream benchmarks.

Self-adjusting � for bagging Usage of adaptive � in online bagging has a significant 
impact on ROSE performance. This is especially visible for benchmarks with drifting 
imbalance ratio, instance-level difficulties, and noise. The � parameter explicitly controls 
the Poisson distribution for online bagging, and thus implicitly moderates the exposure of 
instances to base classifiers of our ensemble. By presenting more difficult instances to clas-
sifiers several times, we focus their adaptation on such challenging cases. This is crucial for 
better adaptation to minority classes, as borderline/rare instances should be better modeled 
by the classifier, while safe instances do not require such an exposure. Existing methods 
use a fixed value of � , while ROSE proposes a self-adjusting modification. This is a crucial 
reason behind ROSE adaptation to drifting imbalance and instance-level difficulties, as the 
impact of most challenging instances is boosted during adaptation. At the same time, this 
increases the robustness of ROSE to noise, as potentially noisy instances are less exposed 
to ROSE and thus do not deteriorate the adaptation process.

Sliding window per class Storing individual sliding windows for each class seems to 
have the lowest impact on ROSE from all four features. We can see that it offers small 
improvements for drifting imbalance, instance-level difficulties, and noisy streams, but the 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
CD

ROSE
LB

OOB
OBO
BOLE
KUE
ARF

OBAD
OUOB

CSMOTE
OCB
SAE2
HEB

OBOA
AUE2
SRP

OSMOTE
IRL
GOOWE
OBA
UOB
AUE1
ORUS
OBASHT
AWE
DWM
OADAC2
DACC
ADACC
ADOB
OADA

Fig. 7   Bonferroni-Dunn statistical analysis on Kappa
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gains are overshadowed by remaining features. However, for real-world data streams we 
can see a much higher improvement of having a sliding window per class. This is due to 
the nature of these benchmarks discussed in detail in Experiment 5. Artificially generated 
data streams follow a probabilistic distribution and thus there always will be instances from 
each class present in the stream (although with varying ratios). Real-world data are not 
bounded by such mechanisms and thus some classes may periodically disappear from the 
stream. This situation is identical to catastrophic forgetting in continual learning of deep 
architectures, where accommodation of new information leads to discarding of the previ-
ously seen one. Buffers per class in ROSE offer robustness to catastrophic forgetting, as 
even during periods of high latency our ensemble will have access to instances from all 

Table 13   Comparison of ranks using all algorithms (Kappa)—mean (standard deviation)

Algorithm Static IR Drifting IR Instance-
level

Noise Datasets Average rank Meta rank

ROSE 2.57 (3.41) 3.77 (3.59) 3.92 (3.00) 2.13 (2.37) 5.33 (3.72) 3.55 (3.22) 3.08 (3.19)
KUE 7.57 (4.07) 8.61 (4.16) 14.08 (7.14) 8.71 (6.28) 18.31 (9.06) 11.46 (6.14) 10.62 (7.27)
AWE 23.16 (4.46) 21.70 (5.05) 23.10 (3.97) 19.90 (5.70) 22.75 (7.51) 22.12 (5.34) 21.57 (5.61)
AUE1 20.04 (6.88) 19.02 (6.64) 16.64 (6.65) 19.48 (7.06) 22.52 (6.57) 19.54 (6.76) 19.34 (7.04)
AUE2 16.04 (7.55) 15.50 (7.33) 13.36 (7.23) 14.88 (7.80) 20.56 (7.20) 16.07 (7.42) 15.51 (7.80)
DWM 23.71 (4.55) 22.77 (6.02) 22.62 (5.40) 22.84 (5.27) 17.52 (7.03) 21.89 (5.65) 22.32 (5.78)
SAE2 16.66 (5.41) 14.14 (5.71) 14.82 (4.80) 10.38 (4.67) 19.67 (3.78) 15.13 (4.87) 13.74 (5.84)
DACC​ 26.60 (3.28) 26.41 (4.16) 21.69 (7.56) 24.31 (5.54) 17.94 (8.17) 23.39 (5.74) 23.69 (6.48)
ADACC​ 27.60 (2.98) 26.73 (3.92) 21.21 (7.32) 25.07 (5.46) 18.06 (8.19) 23.73 (5.57) 24.14 (6.52)
ARF 9.87 (6.49) 11.95 (5.78) 4.85 (2.39) 14.84 (5.93) 11.44 (7.75) 10.59 (5.67) 11.43 (6.85)
ADOB 18.81 (8.91) 22.73 (8.16) 29.21 (3.01) 25.33 (7.78) 22.50 (9.57) 23.72 (7.49) 24.36 (8.30)
BOLE 13.86 (6.61) 9.80 (6.85) 15.82 (6.63) 7.49 (4.62) 8.77 (6.56) 11.15 (6.25) 10.51 (6.78)
GOOWE 18.19 (6.08) 16.70 (8.23) 13.59 (5.91) 15.57 (8.02) 20.63 (7.36) 16.94 (7.12) 16.34 (7.60)
HEB 11.89 (5.04) 12.86 (6.08) 15.26 (5.02) 15.11 (6.16) 12.63 (7.79) 13.55 (6.02) 14.07 (6.16)
LB 5.83 (3.99) 5.68(3.52) 3.95 (3.40) 8.07 (5.77) 11.06 (6.48) 6.92 (4.63) 7.01 (5.44)
OCB 11.79 (4.01) 11.73 (4.11) 19.26 (5.53) 9.25 (4.28) 21.83 (9.71) 14.77 (5.53) 13.27 (7.18)
OBA 11.47 (5.54) 14.61 (8.63) 20.97 (6.81) 18.04 (7.02) 17.15 (4.31) 16.45 (6.46) 17.02 (7.34)
OBAD 9.90 (5.19) 10.52 (5.48) 10.38 (5.96) 13.53 (6.89) 15.65 (5.87) 12.00 (5.88) 12.26 (6.51)
OBASHT 20.09 (3.44) 21.16 (5.27) 18.33 (4.43) 23.01 (3.79) 16.81 (5.70) 19.88 (4.53) 20.73 (4.85)
OBO 8.10 (4.22) 9.32 (6.83) 11.79 (7.39) 9.97 (6.95) 13.02 (6.01) 10.44 (6.28) 10.28 (6.71)
OBOA 16.60 (7.02) 15.18 (6.10) 15.72 (6.93) 15.41 (7.01) 13.60 (6.93) 15.30 (6.80) 15.44 (6.94)
SRP 14.29 (11.3) 19.18 (9.46) 10.18 (9.40) 20.80 (9.46) 7.17 (6.61) 14.32 (9.26) 15.97 (10.8)
OOB 5.13 (4.55) 8.41 (8.85) 16.23 (8.36) 6.98 (6.67) 13.56 (5.55) 10.06 (6.80) 9.31 (7.98)
UOB 14.74 (7.49) 15.36 (7.72) 21.15 (7.56) 16.96 (8.72) 23.60 (7.02) 18.36 (7.70) 17.97 (8.53)
OSMOTE 17.63 (5.84) 15.55 (7.17) 13.23 (7.89) 18.19 (5.86) 11.77 (8.08) 15.27 (6.97) 16.15 (7.13)

OUOB 16.13 (5.81) 13.23 (5.44) 9.28 (3.83) 11.87 (7.14) 13.50 (7.64) 12.80 (5.97) 12.43 (6.66)
CSMOTE 14.09 (8.44) 14.73 (6.65) 9.92 (9.38) 14.80 (6.61) 9.98 (7.31) 12.70 (7.68) 13.20 (7.90)
OADA 27.99 (2.30) 27.98 (3.52) 23.74 (6.88) 25.84 (7.01) 17.54 (9.80) 24.62 (5.90) 25.07 (7.24)
OADAC2 25.57 (3.99) 23.66 (5.08) 23.41 (7.43) 20.75 (8.42) 23.29 (8.79) 23.34 (6.74) 22.66 (7.61)
ORUS 27.03 (3.92) 23.00 (4.50) 16.41 (10.6) 20.05 (7.78) 14.29 (11.9) 20.16 (7.76) 20.19 (9.14)
IRL 13.07 (4.70) 14.00 (7.41) 21.87 (5.66) 16.47 (6.53) 13.54 (7.67) 15.79 (6.39) 16.31 (7.03)

Bold values indicates best results
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the classes. This makes our individual sliding windows indispensable for any real-world 
scenario and offers a powerful backbone for adapting ROSE to class-incremental learning 
problems in the future.

Background ensemble Background ensemble offers a quick and safe way for ROSE 
to completely restart its architecture in case of a sudden changes or a strong noise pres-
ence in the stream. While ROSE adapts its base classifiers in an online manner, in some 
scenarios it may be more beneficial to replace most, if not all, base classifiers with new 
ones trained on the most recent concept (as adaptation may be too slow to properly 
recover from drift.) This is a significant step further from existing adaptive ensemble 
architectures that train only a single background classifier and use it to replace the worst 
performing member of the ensemble. This limits their adaptation capabilities to sudden 
drifts or extreme changes in imbalance ratios, as only one classifier can be replaced at a 
time. The background ensemble significantly improves the robustness to noise, as if the 
most of the base classifiers use noisy features, then one-by-one replacement will not be 
enough. As each member of background ensemble is trained on a new feature subset, we 
limit the chances of using the same noisy features in both old and new ensembles.

Random feature subspaces The combination of feature and instance subspaces sup-
port the diversity among the base classifiers in ROSE. This factor leads to one of the 
most significant gains in classification accuracy for ROSE, showing the importance of 
using diversified subspace representations for training base learners for drifting and 
imbalanced data streams. When subspaces are combined with self-adjusting � , ROSE 
effectively gains a mechanism to control its own diversity. As it is known for data stream 
ensembles, high diversity is helpful when recovering from concept drift, while low / 
moderate diversity allows better exploitation of the stable concept. Furthermore, such 
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subspaces limit the chances of using noisy features / instances to adapt the classifiers, 
leading to better robustness when learning from imbalanced data streams.

Alternative mechanisms Finally, we analyze the benefits of the ROSE features over 
the state-of-the-art existing mechanisms in the literature. This will allow us to prove that 
not only ROSE as whole offers superior performance to reference ensembles, but also 
that every mechanism introduced by ROSE is individually justified. Existing ensemble 
methods usually replace the single worst classifier (Brzeziński & Stefanowski, 2014a), 
while ROSE may replace several of them simultaneously. By offering the flexibility of 
replacing multiple classifiers at once, ROSE offers improved adaptability to changing 
and difficult data. In case of sudden drifts or evolving data complexity levels more than 
a single classifier can become outdated and simply replacing them one by one will lead 

Table 14   Comparison of ranks using all algorithms (AUC)—mean (standard deviation)

Algorithm Static IR Drifting IR Instance-
level

Noise Datasets Average rank Meta rank

ROSE 2.49 (3.11) 4.41 (3.83) 4.82 (2.38) 3.21 (2.44) 6.40 (5.53) 4.26 (3.46) 3.88 (3.43)
KUE 8.59 (4.08) 10.11 (4.43) 11.23 (5.57) 10.41 (5.76) 18.35 (7.60) 11.74 (5.49) 11.14 (6.23)
AWE 23.67 (3.97) 20.73 (7.41) 25.15 (2.47) 19.38 (6.72) 23.17 (7.55) 22.42 (5.62) 21.76 (6.39)
AUE1 20.84 (6.32) 19.02 (6.43) 19.00 (6.28) 19.95 (6.93) 23.56 (5.86) 20.48 (6.36) 20.24 (6.68)
AUE2 17.09 (6.98) 16.25 (7.09) 16.33 (6.86) 15.91 (7.33) 21.75 (6.58) 17.47 (6.97) 16.90 (7.30)
DWM 23.93 (4.10) 21.14 (8.92) 25.31 (3.17) 21.52 (7.45) 15.08 (6.46) 21.39 (6.02) 21.85 (7.05)
SAE2 16.54 (5.13) 13.64 (4.76) 14.56 (4.57) 11.27 (4.55) 18.90 (5.47) 14.98 (4.90) 13.90 (5.48)
DACC​ 26.86 (2.77) 24.95 (6.55) 23.79 (7.00) 23.57 (5.78) 16.25 (8.44) 23.08 (6.11) 23.47 (6.75)
ADACC​ 27.74 (2.77) 27.02 (3.66) 23.18 (6.71) 25.25 (5.21) 15.94 (8.46) 23.83 (5.36) 24.39 (6.51)
ARF 11.11 (6.39) 13.61 (6.30) 8.23 (3.53) 16.81 (6.54) 14.56 (8.19) 12.87 (6.19) 13.64 (7.08)
ADOB 16.99 (10.6) 21.93 (8.24) 30.44 (1.88) 24.13 (8.46) 20.04 (10.3) 22.71 (7.90) 23.41 (9.35)
BOLE 12.91 (5.58) 9.66 (5.71) 16.95 (6.20) 7.20 (4.01) 9.81 (6.29) 11.31 (5.56) 10.55 (6.39)
GOOWE 18.80 (5.81) 17.75 (8.02) 17.00 (6.01) 17.19 (7.94) 20.96 (6.62) 18.34 (6.88) 17.92 (7.25)
HEB 13.30 (5.59) 13.50 (6.19) 17.23 (2.95) 16.11 (6.19) 14.63 (7.78) 14.95 (5.74) 15.40 (6.02)
LB 6.71 (3.91) 6.68(3.33) 6.41 (3.45) 9.85 (5.43) 13.17 (7.23) 8.56 (4.67) 8.72 (5.42)
OCB 10.24 (4.29) 11.00 (4.58) 16.15 (6.64) 8.50 (3.67) 21.92 (9.84) 13.56 (5.80) 12.04 (7.13)
OBA 12.61 (5.49) 15.27 (8.35) 15.21 (5.67) 19.28 (6.78) 16.85 (5.23) 15.85 (6.30) 16.69 (6.88)
OBAD 11.07 (5.16) 11.80 (5.93) 13.56 (5.16) 15.09 (6.39) 16.06 (5.52) 13.52 (5.63) 13.89 (6.08)
OBASHT 20.79 (2.97) 21.73 (5.15) 20.87 (4.17) 24.28 (3.35) 16.77 (6.18) 20.89 (4.36) 21.92 (4.75)
OBO 8.63 (4.02) 10.59 (6.76) 9.51 (5.69) 10.11 (6.03) 11.44 (5.56) 10.06 (5.61) 9.95 (5.76)
OBOA 16.69 (6.42) 15.50 (5.69) 17.69 (6.67) 16.15 (6.57) 13.85 (7.49) 15.98 (6.57) 16.20 (6.68)
SRP 15.13 (11.1) 20.59 (8.47) 12.82 (8.94) 22.41 (8.32) 9.13 (6.87) 16.02 (8.73) 17.66 (10.1)
OOB 4.37 (3.95) 7.77 (8.73) 7.62 (5.74) 4.91 (6.07) 11.23 (7.30) 7.18 (6.36) 6.36 (6.59)
UOB 5.71 (5.44) 7.23 (6.98) 9.62 (8.01) 5.18 (6.57) 18.60 (9.51) 9.27 (7.30) 7.87 (8.28)
OSMOTE 18.39 (5.90) 17.20 (7.44) 15.49 (8.25) 19.47 (5.82) 13.92 (7.26) 16.89 (6.94) 17.66 (6.99)

OUOB 16.97 (5.49) 14.36 (5.25) 12.41 (4.37) 12.82 (6.80) 15.71 (8.41) 14.45 (6.07) 13.94 (6.50)
CSMOTE 14.86 (7.94) 16.39 (6.10) 5.36 (3.64) 16.76 (5.46) 9.92 (6.70) 12.65 (5.97) 13.10 (7.82)
OADA 28.27 (2.07) 28.70 (1.89) 25.87 (6.95) 27.27 (5.24) 19.04 (9.86) 25.83 (5.20) 26.38 (6.39)
OADAC2 25.01 (3.92) 19.59 (7.78) 22.26 (10.6) 14.89 (8.93) 20.52 (10.1) 20.45 (8.28) 19.12 (9.56)
ORUS 25.94 (5.17) 23.52 (4.04) 18.51 (11.1) 20.01 (7.72) 14.90 (11.3) 20.58 (7.86) 20.51 (8.93)
IRL 13.74 (4.42) 14.34 (7.47) 15.41 (6.03) 17.11 (6.85) 13.58 (8.19) 14.84 (6.59) 15.52 (6.77)

Bold values indicates best results
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to slower recovery rates after the change. This is most pronounced in the case of drifting 
IR and instance-level difficulties. When building feature subspaces for base classifiers 
reference approaches usually use a uniform probability to select the number of used 
features (Cano & Krawczyk, 2020), while ROSE replaces this with a normal distribu-
tion. We can see that this leads to most significant gain when handling instance-level 
difficulties and real-world datasets. This can be explained by the fact that better-defined 
subspaces lead to improved separation among instances, thus leading to reduction in 
classification difficulties and lower susceptibility to presence of noisy features. Finally, 
we have compared ROSE self-adaptive � from Eq. 2 to the approach proposed by (Wang 
etal., 2015). We can see that our � calculation method outperforms the reference one, 
especially when dealing with noisy and real-world datasets. This shows that ROSE � 
adaptation process is less prone to temporal disturbances caused by noise, as well as can 
better handle diverse combinations of concept drift and imbalance ratio changes present 
in real-world problems.

6 � Conclusions and future work

Summary In this paper, we have introduced Robust Online Self-Adjusting Ensemble 
(ROSE) for mining drifting and imbalanced data streams. The novelty of ROSE lies in an 
original ensemble architecture design with multiple features designed for a high level of 
interplay with each other. ROSE uses base classifiers trained on subsets of both instances 
and features, which allows for handling both complex and noisy data streams. ROSE offers 
a hybrid architecture that maintains a fixed-size pool of classifiers updated in an online 
manner, but is capable of automatic training of new classifiers. Drift detectors associated 
with each base classifier in the pool (and hence with a feature subset that it represents) 
control the training of a background ensemble. A Kappa-based classifier selection is used 
to determine if the newly trained learner should be added to the ensemble. ROSE is capa-
ble of handling both standard and imbalanced data streams without any need for switch-
ing between these modes. This is achieved by using balanced buffers per class that store 
instances to train new classifiers; and thanks to adaptive � parameter that forces increased 
exposure of minority instances to all classifiers.

Main research findings The extensive experimental study on a total of five diverse 
benchmarks proved that ROSE not only is capable of significantly outperforming 30 state-
of-the-art skew-insensitive and general-purpose ensembles, but additionally can handle a 
variety of difficult data stream mining scenarios (such as skewed classes, evolving class 
imbalance ratio, instance-level difficulties, noisy features, or binary and multi-class prob-
lems) without the need of end-user tuning or supervision. ROSE has a runtime and mem-
ory consumption comparable to reference methods such as Kappa Updated Ensemble, Lev-
eraging Bag, and Adaptive Random Forest.

Lessons learned Experimental comparison: In order to gain a deeper insight into 
the performance of any algorithm for imbalanced data streams, it must be be evaluated 
using a diverse set of scenarios, including static and dynamic imbalance ratios paired 
with instance-level difficulties, noise, and concept drift, as well as real-world datasets to 
have a holistic comparison. Only such a thorough experimental study allows to formulate 
specific recommendations for applicability areas. We can conclude that ROSE is a well-
rounded ensemble capable of displaying robustness under diverse difficulties present in 
imbalanced data streams. Handling skewed distributions: ROSE shows that robustness to 
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class imbalance can be achieved by exploiting learning mechanisms and per-class forget-
ting, outperforming existing resampling approaches. Computational and memory com-
plexity: all features of ROSE contribute to its high predictive performance (as seen dur-
ing the ablation study), while being characterized by low time and memory complexities. 
This allows ROSE to display resource consumption on par with algorithm like Leveraging 
Bagging and Adaptive Random Forest. Metrics: ROSE evaluation have shown that that 
Kappa and AUC metrics provide complementary information about the performance of 
the classifiers. While Kappa strengthens the significance of the minority class under highly 
imbalanced datasets, AUC offers a balanced trade-off between the majority and minority 

Table 15   Comparison of averages and ranks of the runtime (seconds per 10,000 instances) and memory 
consumption (RAM-hours)—mean (standard deviation)

Bold values indicates best results

Algorithm Runtime—seconds Memory—RAM-hours Runtime—rank Memory—rank

ROSE 7.2 (1.9) 0.042 (0.019) 20.72 (0.60) 19.54 (1.39)
KUE 5.2 (1.0) 0.018 (0.005) 18.56 (0.78) 17.69 (0.91)
AWE 1.1 (0.0) 0.001 (0.000) 4.36 (0.53) 4.36 (0.48)
AUE1 3.8 (2.0) 0.016 (0.009) 17.72 (1.68) 15.31 (2.78)
AUE2 2.0 (0.8) 0.004 (0.002) 11.26 (2.35) 10.33 (2.56)
DWM 0.6 (0.1) 0.000 (0.000) 1.67 (0.47) 1.92 (0.57)
SAE2 1.3 (0.3) 0.002 (0.001) 6.08 (2.27) 5.59 (1.66)
DACC​ 0.6 (0.0) 0.001 (0.000) 1.33 (0.47) 1.21 (0.40)
ADACC​ 0.7 (0.0) 0.001 (0.000) 3.00 (0.00) 2.87 (0.33)
ARF 12.9 (4.4) 0.125 (0.073) 22.28 (0.45) 22.03 (0.62)
ADOB 8.6 (1.0) 0.010 (0.001) 16.21 (0.46) 21.03 (1.02)
BOLE 4.2 (0.2) 0.005 (0.000) 13.54 (0.98) 16.51 (1.24)
GOOWE 2.0 (0.2) 0.005 (0.001) 13.36 (0.83) 10.72 (1.08)
HEB 2.0 (0.1) 0.004 (0.000) 10.79 (0.85) 10.69 (1.26)
LB 6.4 (1.5) 0.026 (0.010) 19.79 (0.61) 18.95 (1.15)
OCB 1.6 (0.4) 0.002 (0.001) 7.28 (1.28) 8.49 (2.10)
OBA 2.3 (0.2) 0.004 (0.000) 11.21 (0.72) 12.82 (0.67)
OBAD 1.5 (0.2) 0.002 (0.000) 7.28 (1.28) 7.28 (1.87)
OBASHT 1.4 (0.1) 0.002 (0.000) 5.85 (0.95) 5.95 (0.88)
OBO 4.3 (0.2) 0.014 (0.001) 17.97 (0.73) 16.41 (0.71)
OBOA 21.3 (12.3) 0.313 (0.297) 22.72 (0.45) 22.72 (0.90)
SRP 313.4 (106.6) 71.995 (41.225) 28.87 (0.61) 29.21 (0.69)
OOB 2.8 (0.2) 0.006 (0.001) 14.31(0.91) 14.31 (0.76)
UOB 1.8 (0.3) 0.003 (0.000) 8.72 (0.71) 9.44 (0.96)
OSMOTE 1,069.5 (636.1) 450.841 (368.807) 30.97 (0.16) 31.00 (0.00)
OUOB 344.9 (156.2) 139.497 (123.730) 29.69 (0.65) 29.46 (0.63)
CSMOTE 227.1 (67.9) 50.522 (28.527) 28.38 (0.80) 28.26 (0.74)
OADA 92.7 (30.3) 7.976 (8.760) 25.38 (0.89) 25.44 (0.87)
OADAC2 88.6 (11.7) 5.992 (2.595) 25.38 (0.54) 25.64 (0.62)
ORUS 119.2 (32.4) 13.612 (8.926) 26.90 (0.44) 26.87 (0.52)
IRL 39.6 (16.9) 2.617 (1.930) 24.41 (0.93) 23.97 (0.53)
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classes. Therefore, a complete comparison of classifiers should include both complemen-
tary metrics.

Future works Our future works will concentrate on extending the classifier generation 
and selection procedure in such a way that will increase the probability of features that 
were marked as drifting ones to be included in the newly created feature subspaces. We 
will further investigate connections between data stream mining and continual learning to 
adapt ROSE mechanisms to create robust deep learning architectures. We will study the 
application to multi-label classification where labels are often highly imbalanced.

Table 16   Contribution of each of the ROSE features in improving Kappa + alternatives

Bold values indicates best results

Algo-
rithm

ROSE Static 
�

One 
window

No back-
ground

All 
features

None Replace 
One

Uniform 
subspace

Wang �

Static IR 63.65 62.10 63.27 63.37 59.07 55.31 63.51 63.63 62.72
Drifting 

IR
60.36 57.80 60.09 58.78 59.39 56.73 59.34 60.23 60.07

Instance 
diff

71.47 68.48 71.16 67.03 71.23 70.40 69.56 69.64 70.78

Noise 48.54 43.93 48.18 47.52 47.12 42.88 48.12 48.01 45.34
Datasets 62.48 59.87 61.49 60.48 57.96 55.45 61.29 61.14 60.24
Average 61.30 58.44 60.84 59.44 58.95 56.15 60.36 60.53 59.83
Rank 2.99 6.36 4.19 5.80 4.48 5.57 4.48 3.95 5.18

Table 17   Contribution of each of the ROSE features in improving AUC + alternatives

Bold values indicates best results

Algo-
rithm

ROSE Static 
�

One 
window

No back-
ground

All 
features

None Replace 
One

Uniform 
subspace

Wang �

Static IR 79.07 78.15 78.08 79.02 76.34 74.66 78.52 78.55 77.43
Drifting 

IR
77.72 75.95 76.80 77.13 76.82 75.16 77.26 77.53 77.51

Instance 
diff

86.24 83.72 86.09 84.40 86.14 84.73 84.37 85.17 85.61

Noise 72.56 69.21 71.63 71.14 71.73 68.67 71.69 71.71 69.31
Datasets 88.96 86.25 87.31 84.02 81.51 81.10 86.94 85.41 84.05
Average 80.91 78.66 79.98 79.14 78.51 76.86 79.76 79.67 78.78
Rank 3.38 7.57 4.35 6.08 4.48 6.58 4.78 4.23 4.54
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Fig. 10   Contribution of each of the ROSE features in different experiments

Acknowledgements  This research was partially supported by the 2018 VCU Presidential Research Quest 
Fund and an Amazon AWS Machine Learning Research award. High Performance Computing resources 
provided by the High Performance Research Computing (HPRC) Core Facility at Virginia Commonwealth 
University (https://chipc.vcu.edu) were used for conducting the research reported in this work.

Author contributions  AC contributed to the design of the algorithm, implementation, experimental eval-
uation, and manuscript preparation. BK contributed to the manuscript preparation. All authors read and 
approved the final manuscript.

Funding  This research was partially supported by the 2018 VCU Presidential Research Quest Fund (Alberto 
Cano) and an Amazon AWS Machine Learning Research award (Alberto Cano & Bartosz Krawczyk).

Availability of data and material  Data & materials available at https://​github.​com/​canoa​lberto/​ROSE.

Code availability  Source code is available at https://​github.​com/​canoa​lberto/​ROSE.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

References

Abolfazli, A., & Ntoutsi, E. (2020). Drift-aware multi-memory model for imbalanced data streams. In IEEE 
international conference on big data (pp. 878–885).

https://github.com/canoalberto/ROSE
https://github.com/canoalberto/ROSE


2596	 Machine Learning (2022) 111:2561–2599

1 3

Al-Shammari, A., Zhou, R., Naseriparsa, M., & Liu, C. (2019). An effective density-based clustering and 
dynamic maintenance framework for evolving medical data streams. International Journal of Medical 
Informatics, 126, 176–186.

Aljundi, R., Kelchtermans, K., & Tuytelaars, T. (2019). Task-free continual learning. In IEEE conference on 
computer vision and pattern recognition (pp. 11254–11263).

Aminian, E., Ribeiro, R. P., & Gama, J. (2020). A study on imbalanced data streams. In Machine learning 
and knowledge discovery in databases (pp. 380–389).

Anupama, N., & Jena, S. (2019). A novel approach using incremental oversampling for data stream mining. 
Evolving Systems, 10(3), 351–362.

Bahri, M., Bifet, A., Gama, J., Gomes, H. M., & Maniu, S. (2021). Data stream analysis: Foundations, 
major tasks and tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(3), 
e1405.

Bernardo, A., Della  Valle, E., & Bifet, A. (2020a). Incremental rebalancing learning on evolving data 
streams. In International conference on data mining workshops (pp. 844–850).

Bernardo, A., Gomes, H. M., Montiel, J., Pfahringer, B., Bifet, A., & Della Valle, E. (2020b). C-SMOTE: 
Continuous synthetic minority oversampling for evolving data streams. In IEEE international confer-
ence on big data (pp. 483–492).

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., & Gavaldà, R. (2009). New ensemble methods for evolv-
ing data streams. In ACM SIGKDD international conference on knowledge discovery and data mining 
(pp. 139–148).

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive online analysis. Journal of 
Machine Learning Research, 11, 1601–1604.

Bifet, A., Holmes, G., & Pfahringer, B. (2010b). Leveraging bagging for evolving data streams. In European 
conference on machine learning (pp. 135–150).

Bifet, A., Hammer, B., & Schleif, F. (2019). Recent trends in streaming data analysis, concept drift and 
analysis of dynamic data sets. In European symposium on artificial neural networks.

Bobowska, B., Klikowski, J., & Wozniak, M. (2019). Imbalanced data stream classification using hybrid 
data preprocessing. Machine Learning and Knowledge Discovery in Databases, 1168, 402–413.

Bonab, H. R., & Can, F. (2018). GOOWE: Geometrically optimum and online-weighted ensemble classifier 
for evolving data streams. ACM Transactions on Knowledge Discovery from Data, 12(2), 25.

Branco, P., Torgo, L., & Ribeiro, R. P. (2016). A survey of predictive modeling on imbalanced domains. 
ACM Computing Surveys (CSUR), 49(2), 1–50.

Brzeziński, D., & Stefanowski, J. (2011). Accuracy updated ensemble for data streams with concept drift. In 
International conference on hybrid artificial intelligence systems (pp. 155–163).

Brzeziński, D., & Stefanowski, J. (2014). Combining block-based and online methods in learning ensembles 
from concept drifting data streams. Information Sciences, 265, 50–67.

Brzeziński, D., & Stefanowski, J. (2014). Reacting to different types of concept drift: The accuracy updated 
ensemble algorithm. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 81–94.

Brzeziński, D., & Stefanowski, J. (2017). Prequential AUC: Properties of the area under the ROC curve for 
data streams with concept drift. Knowledge and Information Systems, 52(2), 531–562.

Brzeziński, D., & Stefanowski, J. (2018). Ensemble classifiers for imbalanced and evolving data streams. 
Data Mining in Time Series and Streaming Databases, Machine Perception and Artificial Intelligence, 
83, 44–68.

Brzeziński, D., Stefanowski, J., Susmaga, R., & Szczȩch, I. (2018). Visual-based analysis of classification 
measures and their properties for class imbalanced problems. Information Sciences, 462, 242–261.

Brzeziński, D., Stefanowski, J., Susmaga, R., & Szczȩch, I. (2019). On the dynamics of classification meas-
ures for imbalanced and streaming data. IEEE Transactions on Neural Networks and Learning Sys-
tems, 31(8), 2868–2878.

Brzeziński, D., Minku, L. L., Pewinski, T., Stefanowski, J., & Szumaczuk, A. (2021). The impact of data 
difficulty factors on classification of imbalanced and concept drifting data streams. Knowledge and 
Information Systems, 63(6), 1429–1469.

Buzzega, P., Boschini, M., Porrello, A., & Calderara, S. (2020). Rethinking experience replay: A bag of 
tricks for continual learning. In 25th international conference on pattern recognition (pp. 2180–2187).

Cano, A., & Krawczyk, B. (2019). Evolving rule-based classifiers with genetic programming on GPUs for 
drifting data streams. Pattern Recognition, 87, 248–268.

Cano, A., & Krawczyk, B. (2020). Kappa updated ensemble for drifting data stream mining. Machine 
Learning, 109(1), 175–218.

de Carvalho Santos, S. G. T., Júnior, P. M. G., dos Santos Silva, G. D., & de Barros, R. S. M. (2014). Speed-
ing up recovery from concept drifts. In European conference on machine learning and knowledge dis-
covery in databases (pp. 179–194).



2597Machine Learning (2022) 111:2561–2599	

1 3

de Barros, R. S. M., & de Carvalho Santos, S. G. T. (2018). A large-scale comparison of concept drift detec-
tors. Information Sciences, 451–452, 348–370.

de Barros, R. S. M., de Carvalho Santos, S. G. T., & Júnior, P. M. G. (2016). A boosting-like online learning 
ensemble. In International joint conference on neural networks (pp. 1871–1878).

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine 
Learning Research, 7, 1–30.

Du, H., Zhang, Y., Gang, K., Zhang, L., & Chen, Y. C. (2021). Online ensemble learning algorithm for 
imbalanced data stream. Applied Soft Computing, 107, 107378.

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from Imbal-
anced Data Sets. Springer.

Ferreira, L. E. B., Gomes, H. M., Bifet, A., & Oliveira, L. S. (2019). Adaptive random forests with resam-
pling for imbalanced data streams. In International joint conference on neural networks (pp. 1–6).

Gama, J., $\breve{Z}$liobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept 
drift adaptation. ACM Computing Surveys, 46(4):44:1–44:37.

Gao, J., Ding, B., Fan, W., Han, J., & Yu, P. S. (2008). Classifying data streams with skewed class distri-
butions and concept drifts. IEEE Internet Computing, 12(6), 37–49.

Ghomeshi, H., Gaber, M. M., & Kovalchuk, Y. (2019). Ensemble dynamics in non-stationary data stream 
classification. In Learning from data streams in evolving environments (pp. 123–153). Springer.

Gomes, H. M., & Enembreck, F. (2014). SAE2: Advances on the social adaptive ensemble classifier for 
data streams. In ACM symposium on applied computing (pp. 798–804).

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., et al. (2017). Adaptive 
random forests for evolving data stream classification. Machine Learning, 106(9–10), 1469–1495.

Gomes, H. M., Read, J., & Bifet, A. (2019a). Streaming random patches for evolving data stream clas-
sification. In IEEE international conference on data mining (pp. 240–249). IEEE

Gomes, H. M., Read, J., Bifet, A., Barddal, J. P., & Gama, J. (2019). Machine learning for streaming 
data: State of the art, challenges, and opportunities. ACM SIGKDD Explorations Newsletter, 21(2), 
6–22.

Grzyb, J., Klikowski, J., & Wozniak, M. (2021). Hellinger distance weighted ensemble for imbalanced 
data stream classification. Journal of Computational Science, 51, 101314.

He, X., Sygnowski, J., Galashov, A., Rusu, A. A., Teh, Y. W., & Pascanu, R. (2019). Task agnostic con-
tinual learning via meta learning. CoRR arXiv:abs/1906.05201

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In ACM SIGKDD 
international conference on knowledge discovery and data mining (pp. 97–106).

Jaber, G., Cornuéjols, A., & Tarroux, P. (2013). A new on-line learning method for coping with recur-
ring concepts: The ADACC system. In International conference on neural information processing 
(pp. 595–604).

Klikowski, J., & Wozniak, M. (2019). Multi sampling random subspace ensemble for imbalanced data 
stream classification. In R. Burduk, M. Kurzynski, & M. Wozniak (Eds.), International conference 
on computer recognition systems (Vol. 977, pp. 360–369).

Klikowski, J., & Wozniak, M. (2020). Employing one-class SVM classifier ensemble for imbalanced 
data stream classification. International Conference on Computational Science, 12140, 117–127.

Kolter, J. Z., & Maloof, M. A. (2007). Dynamic weighted majority: An ensemble method for drifting 
concepts. Journal of Machine Learning Research, 8, 2755–2790.

Korycki, L., & Krawczyk, B. (2020). Online oversampling for sparsely labeled imbalanced and non-
stationary data streams. In International joint conference on neural networks (pp. 1–8).

Korycki, L., & Krawczyk, B. (2021a). Class-incremental experience replay for continual learning under 
concept drift. In IEEE conference on computer vision and pattern recognition workshops (pp. 
3649–3658).

Korycki, L., & Krawczyk, B. (2021b). Concept drift detection from multi-class imbalanced data streams. 
In IEEE international conference on data engineering (pp. 1068–1079).

Korycki, L., & Krawczyk, B. (2021c). Low-dimensional representation learning from imbalanced data 
streams. In Pacific-Asia conference on advances in knowledge discovery and data mining (Vol. 
12712 LNCS, pp. 629–641).

Korycki, L., Cano, A., & Krawczyk, B. (2019). Active learning with abstaining classifiers for imbalanced 
drifting data streams. In IEEE international conference on big data (big data) (pp. 2334–2343).

Kozal, J., Guzy, F., & Wozniak, M. (2021). Employing chunk size adaptation to overcome concept drift. 
CoRR arXiv:abs/2110.12881

Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress 
in Artificial Intelligence, 5(4), 221–232.



2598	 Machine Learning (2022) 111:2561–2599

1 3

Krawczyk, B. (2021). Tensor decision trees for continual learning from drifting data streams. Machine 
Learning, 110(11), 3015–3035.

Krawczyk, B., & Cano, A. (2018). Online ensemble learning with abstaining classifiers for drifting and 
noisy data streams. Applied Soft Computing, 68, 677–692.

Krawczyk, B., & Skryjomski, P. (2017). Cost-sensitive perceptron decision trees for imbalanced drifting 
data streams. Machine Learning and Knowledge Discovery in Databases, 10535, 512–527.

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Wozniak, M. (2017). Ensemble learning for 
data stream analysis: A survey. Information Fusion, 37, 132–156.

Li, Z., Huang, W., Xiong, Y., Ren, S., & Zhu, T. (2020). Incremental learning imbalanced data streams 
with concept drift: The dynamic updated ensemble algorithm. Knowledge-Based Systems, 195, 
105694.

Liu, C., Feng, L., & Fujimaki, R. (2016). Streaming model selection via online factorized asymptotic 
bayesian inference. In IEEE international conference on data mining (pp. 271–280).

Liu, X., Fu, J., & Chen, Y. (2020). Event evolution model for cybersecurity event mining in tweet 
streams. Information Sciences, 524, 254–276.

Loezer, L., Enembreck, F., Barddal, J. P., & de Souza Britto Jr, A. (2020). Cost-sensitive learning for imbal-
anced data streams. In Proceedings of the 35th annual ACM symposium on applied computing (pp. 
498–504).

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2019). Learning under concept drift: A review. 
IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363.

Lu, Y., Cheung, Ym., & Tang, Y. Y. (2017). Dynamic weighted majority for incremental learning of imbal-
anced data streams with concept drift. In International joint conference on artificial intelligence (pp. 
2393–2399).

Lu, Y., Cheung, Y. M., & Tang, Y. Y. (2019). Adaptive chunk-based dynamic weighted majority for imbal-
anced data streams with concept drift. IEEE Transactions on Neural Networks and Learning Systems, 
31(8), 2764–2778.

Lyon, R., Brooke, J., Knowles, J., & Stappers, B. (2014). Hellinger distance trees for imbalanced streams. In 
International conference on pattern recognition (pp. 1969–1974).

Minku, L. L., & Yao, X. (2011). DDD: A new ensemble approach for dealing with concept drift. IEEE 
Transactions on Knowledge and Data Engineering, 24(4), 619–633.

Oza, N. C. (2005) Online bagging and boosting. In IEEE international conference on systems, man and 
cybernetics (pp. 2340–2345).

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning with neu-
ral networks: A review. Neural Networks, 113, 54–71.

Pelossof, R., Jones, M., Vovsha, I., & Rudin, C. (2009). Online coordinate boosting. In IEEE international 
conference on computer vision (pp. 1354–1361).

Ren, S., Zhu, W., Liao, B., Li, Z., Wang, P., Li, K., et  al. (2019). Selection-based resampling ensemble 
algorithm for nonstationary imbalanced stream data learning. Knowledge-Based System, 163, 705–722.

Roseberry, M., Krawczyk, B., & Cano, A. (2019). Multi-label punitive kNN with self-adjusting memory for 
drifting data streams. ACM Transactions on Knowledge Discovery from Data, 13(6).

Roseberry, M., Krawczyk, B., Djenouri, Y., & Cano, A. (2021). Self-adjusting k nearest neighbors for con-
tinual learning from multi-label drifting data streams. Neurocomputing, 442, 10–25.

Van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2015). Having a blast: Meta-learning and 
heterogeneous ensembles for data streams. In IEEE international conference on data mining (pp. 
1003–1008).

Wang, B., & Pineau, J. (2016). Online bagging and boosting for imbalanced data streams. IEEE Transac-
tions on Knowledge and Data Engineering, 28(12), 3353–3366.

Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams using ensemble clas-
sifiers. In ACM SIGKDD international conference on knowledge discovery and data mining (pp. 
226–235).

Wang, S., & Minku, L. L. (2020). AUC estimation and concept drift detection for imbalanced data streams 
with multiple classes. In International joint conference on neural networks (pp. 1–8).

Wang, S., Minku, L. L., & Yao, X. (2015). Resampling-based ensemble methods for online class imbalance 
learning. IEEE Transactions on Knowledge and Data Engineering, 27(5), 1356–1368.

Wang, S., Minku, L. L., & Yao, X. (2016). Dealing with multiple classes in online class imbalance learning. 
In International joint conference on artificial intelligence (pp. 2118–2124).

Wang, S., Minku, L. L., & Yao, X. (2018). A systematic study of online class imbalance learning with con-
cept drift. IEEE Transactions on Neural Networks Learning Systems, 29(10), 4802–4821.



2599Machine Learning (2022) 111:2561–2599	

1 3

Wang, T., Jin, X., Ding, X., & Ye, X. (2014). User interests imbalance exploration in social recommenda-
tion: A fitness adaptation. In ACM international conference on conference on information and knowl-
edge management (pp. 281–290).

Wu, K., Edwards, A., Fan, W., Gao, J., & Zhang, K. (2014). Classifying imbalanced data streams via 
dynamic feature group weighting with importance sampling. In SIAM international conference on data 
mining (pp. 722–730).

Yan, Y., Yang, T., Yang, Y., & Chen, J. (2017). A framework of online learning with imbalanced streaming 
data. In AAAI conference on artificial intelligence (pp. 2817–2823).

Zyblewski, P., Sabourin, R., & Wozniak, M. (2021). Preprocessed dynamic classifier ensemble selection for 
highly imbalanced drifted data streams. Information Fusion, 66, 138–154.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	ROSE: robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams
	Abstract
	1 Introduction
	2 Learning from data streams
	3 Imbalanced data streams
	4 ROSE: robust online self-adjusting ensemble
	4.1 ROSE features
	4.2 ROSE algorithm
	4.3 Comparison between ROSE and the Kappa updated ensemble

	5 Experimental study
	5.1 Experiment 1: analyzing robustness to static class imbalance
	5.2 Experiment 2: analyzing robustness to drifting class imbalance
	5.3 Experiment 3: analyzing robustness to instance-level difficulties
	5.4 Experiment 4: analyzing robustness to drifting noise on imbalanced streams
	5.5 Experiment 5: real-world datasets
	5.6 Experiment 6: overall comparison and statistical analysis
	5.7 Experiment 7: ablation study

	6 Conclusions and future work
	Acknowledgements 
	References




