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Abstract
Twin support vector machines (TWSVMs) have been shown to be effective classifiers for 
a range of pattern classification tasks. However, the TWSVM formulation suffers from a 
range of shortcomings: (i) TWSVM uses hinge loss function which renders it sensitive 
to dataset outliers (noise sensitivity). (ii) It requires a matrix inversion calculation in the 
Wolfe-dual formulation which is intractable for datasets with large numbers of features/
samples. (iii) TWSVM minimizes the empirical risk instead of the structural risk in its 
formulation with the consequent risk of overfitting. This paper proposes a novel large scale 
pinball twin support vector machines (LPTWSVM) to address these shortcomings. The 
proposed LPTWSVM model firstly utilizes the pinball loss function to achieve a high level 
of noise insensitivity, especially in relation to data with substantial feature noise. Secondly, 
and most significantly, the proposed LPTWSVM formulation eliminates the need to cal-
culate inverse matrices in the dual problem (which apart from being very computation-
ally demanding may not be possible due to matrix singularity). Further, LPTWSVM does 
not employ kernel-generated surfaces for the non-linear case, instead using the kernel trick 
directly; this ensures that the proposed LPTWSVM is a fully modular kernel approach in 
contrast to the original TWSVM. Lastly, structural risk is explicitly minimized in LPT-
WSVM with consequent improvement in classification accuracy (we explicitly analyze the 
properties of classification accuracy and noise insensitivity of the proposed LPTWSVM). 
Experiments on benchmark datasets show that the proposed LPTWSVM model may be 
effectively deployed on large datasets and that it exhibits similar or better performance on 
most datasets in comparison to relevant baseline methods.
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1  Introduction

Support vector machines (SVMs), introduced by Vapnik and co-workers (Cortes & Vap-
nik, (1995; Vapnik, 1999), are a class of highly effective machine learning models for pat-
tern classification. SVMs are based on statistical learning theory (Trafalis & Ince, 2000; 
Vapnik, 1998, 2013; González-Castano et al., 2004; Fung & Mangasarian, 2005) and have 
been applied extensively in relation to binary classification problems. The traditional SVM 
model works by margin maximisation; deriving two unique parallel supporting hyperplanes 
such that the distance between the samples of two classes is maximized. The fact that rel-
atively few training objects are required for this support gives SVMs their characteristic 
robustness. Further, casting the problem in dual form enables explicit kernelization, greatly 
extending the method’s utility. The versatility of SVMs has enabled their widespread adop-
tion in various fields such as financial time-series forecasting (Cao & Tay, 2003), computa-
tional biology (Borgwardt, 2011; Noble, 2004), face recognition (Déniz et al. 2003), cancer 
recognition (Valentini et al., 2004), and EEG signal classification (Richhariya & Tanveer, 
2018). To address the issue of parameter tuning, an automated procedure (Chapelle et al., 
2002) for selecting kernel parameters was introduced in Chapelle et al. (2002) as exhaus-
tive search may become intractable. However, in the era of big data, with significantly 
increasing number of features, many traditional SVM models fail to perform satisfactorily 
on reference datasets (Van Gestel et al., 2004; Fernández-Delgado et al., 2014).

To address this, SVMs have recently been enhanced by the development of several 
non-parallel hyperplane-based classifiers; e.g. the generalized eigen-value proximal 
SVM (GEPSVM) proposed by Mangasarian and Wild (2006), and the twin support vec-
tor machines, proposed by Jayadeva et al. (2007). TWSVM, in particular, improves SVM 
classification accuracy through the calculation of two non-parallel hyperplanes, each of 
which aims to be as close as possible to its corresponding class while being as far away as 
possible from the other. TWSVM, hence, modifies its hyperplanes so as to better accom-
modate the different distributions of the two classes, i.e., by changing the parameters of 
the two sub-problems TWSVM solves. These sub-problems (TWSVM solves two smaller 
quadratic programming problems (QPPs) unlike the original SVM which solves a single 
QPP) also endow TWSVM with additional computational efficiency, being approximately 
4 times faster than the original support vector machine. As a result of these advantages, 
TWSVMs have been widely studied (Chen et al., 2011; Kumar & Gopal, 2008, 2009; Peng, 
2010; Qi et al., 2013; Tanveer et al., 2016a; Richhariya & Tanveer, 2020).

Despite the merits of TWSVM, it still suffers from noise sensitivity and instability 
under resampling as a consequence of hinge loss function. To address these limitations 
within a standard SVM context, Huang et al. (2014) introduced a novel pinball loss func-
tion ( L� (u) ) within the SVM formulation. The pinball loss function uses a quantile met-
ric to measure margin distances in order to reduce noise sensitivity and increase stability 
under re-sampling. However, introduction of the pinball loss function leads to a loss of 
sparsity, a key component of SVM classification performance. To handle this drawback, a �
-insensitive zone pinball loss ( L�

�
(u) ) SVM (Huang et al., 2014) is introduced to reduce the 

effect of noise while obtaining sparse solutions.
Several modifications to the TWSVM methodology have been proposed in order to reduce 

time complexity and improve overall performance (Kumar & Gopal, 2008; Gao et al., 2011; 



3527Machine Learning (2022) 111:3525–3548	

1 3

Kumar et al., 2010; Sharma et al., 2021; Tanveer, 2015; Tanveer et al., 2016b; Tian & Ping, 
2014; Xu & Wang, 2014; Yan et al., 2019). Attempts have also been made to handle multi-
class classification problems (Cheong et al., 2004; Madzarov et al., 2009; Shao et al., 2013). 
These TWSVM based formulations, however, are based on the hinge-loss function which, as 
indicated, suffers from noise sensitivity and re-sampling instability on large datasets. Also, the 
pin-SVM (Huang et al., 2014) solves a single large QPP further reducing its applicability to 
large-scale datasets. To resolve these issues (noise, resampling instability and high computa-
tional complexity), a pinball loss TWSVM was proposed in Tanveer et al. (2019a). However, 
introduction of pinball loss function within the TWSVM leads to a loss of sparsity; in order 
to gain the benefits of noise insensitivity, resampling stability, and sparsity, the sparse pinball 
twin support vector machine (SPTWSVM) was introduced in Tanveer et al. (2019b), Wang 
et al. (2020) and Singla et al. (2020) in which a �−insensitive zone pinball loss function is 
introduced in the standard TWSVM. For more details, interested readers can refer to compre-
hensive review on TWSVM (Tanveer et al., 2021).

However, all of the discussed formulations remain inapplicable to large scale problems due 
to the requirement of computationally expensive or intractable matrix inversion. Hence, exten-
sion of the above problems to large scale problems is still an open challenge.

Motivated by the existing twin bounded SVMs (TBSVM) (Shao et al., 2011) and Pin-gen-
eral twin SVMs (Pin-GTSVM) (Tanveer et al., 2019a), we here propose a novel large scale 
pinball twin SVM (LPTWSVM). In particular, the merits of the proposed LPTWSVM formu-
lation are as follows:

•	 LPTWSVM, by virtue of changes directly introduced to the primal form of TBSVM, can 
be feasibly applied to real-world large-scale datasets. This is done by the elimination of the 
matrix inverse calculation in the dual problem of our model, which can be intractable for 
large scale datasets or even impossible for singular matrices.

•	 LPTWSVM explicitly minimizes the structural risk in its formulation in accordance with 
statistical learning theory, and consequently matches or improves generalization/classifica-
tion accuracy compared to baseline methods.

•	 LPTWSVM obviates the requirement for the computation of the matrix inverse that exists 
in the TBSVM and Pin-GTSVM formulations, and the consequent risk of intractability.

•	 LPTWSVM does not implicate kernel-generated surfaces in its methodology in contrast to 
the majority of twin support vector machine formulations, and is thus free to incorporate 
the kernel trick directly into its dual problem.

•	 LPTWSVM achieves outlier-insensitivity by virtue of the introduction of pinball loss into 
the modified TBSVM problem.

A broad paper outline is given as follows: Sect. 2 gives the background of the previous work, 
Sect. 3 outlines the proposed model. Section 4 covers the theoretical properties of our model 
in detail. Experimental results are given in Sect. 5 and conclusions are provided in Sect. 6.

2 � Background

The formulations of Pin-SVM, TBSVM and Pin-GTSVM are given briefly in this section. 
For further details, readers are referred to Jayadeva et al. (2007), Huang et al. (2014), Shao 
et al. (2011) and Tanveer et al. (2019a). We also have a notation subsection before these 
formulations.
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Consider a binary dataset � = {xi, yi}
m
i=1

 where xi ∈ ℝ
n and yi ∈ {−1, 1} . Let the number 

of samples in class +1 and −1 be m1 and m2 , respectively. Let A represent the positive class 
( +1 ) samples and B represent the negative class ( −1 ) samples.

2.1 � Notations used

Table 1 list the various abbreviations and symbols used throughout the paper here.

2.2 � Pinball support vector machines

Huang et  al. (2014) first formulated the noise insensitive pinball loss function based SVM 
classifier. The optimization problem of the pinball SVM is:

where � ∈ ℝ
n and �(x) is the weight vector  and Hilbert space transformation of   

x, b ∈ ℝ is bias and L� is the pinball loss function. The optimal separating hyperplane is 
given as H ∶ �T�(x) + b = 0 ; a test data sample x ∈ ℝ

𝕟 is hence assigned to the respec-
tive class of +1 or −1 based on the sign of �Tx + b i.e. if the sign is positive it is classified 
as positive class sample otherwise it is negative class sample. In pinball loss SVM, cor-
rectly classified samples are additionally penalized via the loss function with the intention 
of reducing noise sensitivity:

(1)min
�,�

1

2
�T� + C

m∑
i=1

L�
(
1 − yi

(
�T�(xi) + b

))
,

Table 1   Notation table

Symbol/abbreviation Interpretation

� Weight vector
b Bias
� Slack variable
A Class of positive samples ( +1)
B Class of negative samples ( −1)
Lhinge Hinge loss function
L� Pinball loss function
� Pinball loss function penalisation parameter
QPP Quadratic programming problem
SVM Support vector machine
Pin-SVM Pinball support vector machines
TWSVM Twin support vector machines
TBSVM Twin bounded support vector Machines
Pin-GTSVM General twin support vector machine with pin-

ball loss function
LPTWSVM Large scale pinball twin support vector machines
SPTWSVM Sparse pinball twin support vector machines
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Here, � ∈ [0, 1] is a penalisation parameter that controls the magnitude of negative loss val-
ues. Equation (2) is a generalized �1 loss with both vectors close to the decision boundary 
as well as vectors further away from it contributing to the weight vector � . In particular, 
quantile distance is maximized by the Pin-SVM model.

Incorporating the Pinball loss function in Eq. (1), the QPP is given as follows:

where � ∈ ℝ
n is the weight vector, b ∈ ℝ is bias, � = (�1, �2,… , �m)

T is a slack variable 
and C > 0 is a penalty parameter.

Both Pin-SVM and SVM solve a QPP which is used to find an optimal hyperplane. 
However, SVM used hinge loss function and Pin-SVM used pinball loss function. For Eq. 
(3), the constraints are:

When � ≠ 0 , Eq. (5) can be recast as:

when � tends to zero, (6) degenerates into �i ≥ 0 . The optimization problem of nonlinear 
SVM is expressed as follows:

where � ∈ ℝ
n is the weight vector, b ∈ ℝ is bias and Lhinge is the hinge loss function. We 

can get the following inequalities after substituting the hinge loss in (7):

After comparing Eqs. (5) and (8), one can conclude that the pinball loss gives an additional 
penalty to the correctly classified data points. Although Pin-SVM is developed from the 
original SVM, SVM can be regarded as a special case of Pin-SVM.

2.3 � Twin bounded support vector machines (TBSVM)

In an attempt to improve the TWSVM model, Shao et al. (2011) proposed the twin bounded 
support vector machines (TBSVM) in which they directly introduced the structural risk mini-
mization principle into the TWSVM problem and eliminate the need to ensure a well-condi-
tioned matrix (so as to calculate its inverse) involved in the dual formulation of TWSVM. The 

(2)L𝜏 (q) =

{
q, q ≥ 0,

−𝜏q, q < 0.

(3)
min
�,�,�

1

2
‖�‖2 + C

m∑
i=1

�i

subject to yi
�
�T�(xi) + b

�
≥ 1 − �i,

yi
�
�T�(xi) + b

�
≤ 1 +

�i

�
, i = 1, 2,… ,m,

(4)yi
(
�T�

(
xi
)
+ b

)
≥ 1 − �i,

(5)yi
(
�T�

(
xi
)
+ b

)
≤ 1 +

�i

�
.

(6)�yi
(
�T�(xi) + b

)
≤ � + �i,

(7)min
�,�

1

2
�T� + C

m∑
i=1

Lhinge
(
1 − yi

(
�T�

(
xi
)
+ b

))
,

(8)yi
(
�T�

(
xi
)
+ b

)
≥ 1 − �i and �i ≥ 0.
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structural risk minimization principle is implemented via the introduction of a regularization 
term in the objective function of original TWSVM. An added benefit of introducing this regu-
larization term is that it eliminates the need to derive the dual of the problem without addi-
tional assumptions unlike TWSVM. Thus, TBSVM stands as a significant improvement over 
TWSVM. The formulation of TBSVM is given as:

and

Here, �(1),�(2) ∈ ℝ
n are the weight vectors with b(1), b(2) ∈ ℝ the corresponding biases for 

QPPs (9) and (10) respectively; e1 and e2 are vectors of ones of appropriate dimensions 
and � is a slack variable. The term 1

2
c3(||�(1)||2 + b(1)2) in (9) introduces the structural risk 

minimization principle since the term corresponds to the distance between the proximal 
hyperplane, �(1)Tx + b(1) = 0 , and the bounding hyperplane, �(1)Tx + b(1) = −1 . A similar 
analysis holds for (10).

We only consider the dual problem of (9) since a similar approach can be followed for the 
others. The Lagrangian of (9) is given as,

where � ∈ ℝ
m2 , � ∈ ℝ

m2 are Lagrangian multipliers corresponding to the different con-
straints. After applying the necessary and sufficient K.K.T. conditions, the QPP (9) in dual 
form is given as:

where H =
[
A e1

]
, G =

[
B e2

]
, � ∈ ℝ

m2 , I is the identity matrix of size m1 × m1 . As is 
evident, (HTH + c3I)

−1 is naturally nonsingular and, hence, invertible without making any 
extra assumptions unlike TWSVM’s dual problems. However, despite the differences in 
formulation, the decision function of TBSVM is similar to that of TWSVM.

2.4 � General twin support vector machine with pinball loss function (Pin‑GTSVM)

To remove the limitations of hinge loss based support vector machines, in particular, sensitiv-
ity to noise and resampling, Tanveer et al. (2019a) formulated general twin SVMs using the 
pinball loss function, demonstrating that their Pin-GTSVM model successfully reduces sensi-
tivity to feature noise and exhibits stability under re-sampling while retaining the same com-
putational complexity as that of the TWSVM with hinge loss. The formulation of the linear 
Pin-GTSVM is given as follows:

(9)
min

�(�),�(�),�

1

2
c3
(||�(1)||2 + b(1)2

)
+

1

2
||A�(1) + e1b

(1)||2 + c1e
T
2
�

subject to −
(
B�(1) + e2b

(1)
)
+ � ≥ e2, � ≥ 0

(10)
min

�(�),�(�),�

1

2
c4(||�(2)||2 + b(2)2) +

1

2
||B�(2) + e2b

(2)||2 + c2e
T
1
�

subject to
(
A�(2) + e1b

(2)
)
+ � ≥ e1, � ≥ 0.

(11)
L =

1

2
c3
(||�(1)||2 + b(1)2

)
+

1

2

(
A�(1) + e1b

(1)
)T
(A�(1) + e1b

(1))

+ c1e
T
2
� − �T

(
−
(
B�(1) + e2b

(1)
)
+ � − e2

)
− �T�,

(12)
min
�

1

2
�TG

(
HTH + c3I

)−1
GT� − eT

2
�

subject to 0 ≤ � ≤ c1e2,
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and

where �(1),�(2) ∈ ℝ
n are the weight vectors with b(1), b(2) ∈ ℝ the corresponding biases, 

c1, c2 are positive penalty parameters, e1, e2 are vectors of ones of appropriate dimensions 
and �1, �2 are the slack variables.

Similarly, the formulation of the non-linear Pin-GTSVM is given as follows:

and

where c1, c2 are positive penalty parameters, e1, e2 are the vector of ones with appropriate 
dimensions and �1, �2 are the slack variables, D = [A;B] ; u(1), u(2) ∈ ℝ

n and K(⋅) is a kernel 
function.

To solve the QPPs (13−16), we derive their dual form. We consider QPP (15) for this 
purpose. The dual of QPP (15) can be written as:

Likewise the dual of QPP (16) is given as :

where P =
[
K(A,DT ) e1

]
 and Q =

[
K(B,DT ) e2

]
 . �, �, � and � are Lagrangian multipliers.

Once we solve the QPP’s (17) and (18), the optimal hyperplanes are given as:

and

(13)

min
�(1),b(1),�1

1

2
‖A�(1) + e1b

(1)‖2 + c1e
T
2
�1

subject to −
�
B�(1) + e2b

(1)
�
+ �1 ≥ e2,

−
�
B�(1) + e2b

(1)
�
−

�1

�2
≤ e2

(14)

min
�(2),b(2),�2

1

2
‖B�(2) + e2b

(2)‖2 + c2e
T
1
�2

subject to
�
A�(2) + e1b

(2)
�
+ �2 ≥ e1�

A�(2) + e1b
(2)
�
−

�2

�1
≤ e1,

(15)

min
u(1),b(1),�1

1

2
‖K(A,DT )u(1) + e1b

(1)‖2 + c1e
T
2
�1

subject to −
�
K(B,DT )u(1) + e2b

(1)
�
+ �1 ≥ e2

−
�
K
�
B,DT

�
u(1) + e2b

(1)
�
−

�1

�2
≤ e2

(16)

min
u(2),b(2),�2

1

2
‖K�B,DT

�
u(2) + e2b

(2)‖2 + c2e
T
1
�2

subject to
�
K(A,DT )u(2) + e1b

(2)
�
+ �2 ≥ e1�

K(A,DT )u(2) + e1b
(2)
�
−

�2

�1
≤ e1,

(17)
max
(�−�)

eT
2
(� − �) −

1

2
(� − �)TQ(PTP)−1QT (� − �)

subject to − �2c1e2 ≤ (� − �).

(18)
max
(�−�)

eT
1
(� − �) −

1

2
(� − �)TP(QTQ)−1PT (� − �)

subject to (� − �) ≥ −�1c2e1,

(19)
[
u(1)

b(1)

]
= −

(
PTP + �I

)−1
QT (� − �)
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3 � Proposed large scale pinball twin support vector machines 
(LPTWSVM)

In order to render our model suitable for large scale datasets, we aim to re-formulate the 
problem so as to embody the merits of both TBSVM and Pin-GTSVM while eliminating 
the requirement for calculating large matrix inverses. This will involve the introduction of 
a regularization term (as in TBSVM) along with the addition of an equality constraint. 
Furthermore, since pinball loss is already present in the primal problem of Pin-GTSVM, 
LPTWSVM is insensitive to noise and is thus more stable with respect to resampling. The 
LPTWSVM also allows for the kernel trick to be incorporated directly into the dual prob-
lem without having to accommodate kernel-generated surfaces. Lastly, LPTWSVM, unlike 
Pin-GTSVM, directly embodies a structural risk minimization principle, potentially allow-
ing LPTWSVM to obtain better classification accuracy. LPTWSVM thus stands as a sig-
nificant improvement over both TBSVM and Pin-GTSVM.

3.1 � Linear LPTWSVM

We reformulate the optimization problem of TBSVM (9) by incorporating the pinball loss 
function. The reformulated optimization problem is given as:

and

Here �(1),�(2) ∈ ℝ
n are the weight vectors with b(1), b(2) ∈ ℝ the corresponding biases, c1 , 

c2 , c3 , c4 > 0, �1 ∈ ℝ
m1 , �2 ∈ ℝ

m2 , � is a slack vector and e1 and e2 are vectors of ones with 
m1 and m2 elements respectively. The third term in both problems is the error minimization 
term that arises according to whether or not the samples satisfy the constraints. Here, pin-
ball loss (2) gives penalty to both correctly as well as incorrectly classified samples.

Compared to Pin-GTSVM problem, the proposed LPTWSVM model [QPPs (21) and (22)] 
introduced the regularization terms 1

2
c3(||�(1)||2 + b(1)2) and 1

2
c4(||�(2)||2 + b(2)2) and added 

an extra equality constraint in both primal problems. The addition of the regularization terms 
also introduces structural risk minimization since they correspond to the distance between the 
proximal hyperplane, �(1)Tx + b(1) = 0 , and the bounding hyperplane, �(1)Tx + b(1) = −1 

(20)
[
u(2)

b(2)

]
=
(
QTQ + �I

)−1
PT (� − �).

(21)

min
�(�),�(�),��,�

1

2
c3
(||�(1)||2 + b(1)2

)
+

1

2
�T
1
�1 + c1e

T
2
�

subject to A�(1) + e1b
(1) = �1,

−
(
B�(1) + e2b

(1)
)
+ � ≥ e2,

−
(
B�(1) + e2b

(1)
)
≤ e2 +

�

�

(22)

min
�(�),�(�),��,�

1

2
c4
(||�(2)||2 + b(2)2

)
+

1

2
�T
2
�2 + c2e

T
1
�

subject to B�(2) + e2b
(2) = �2,(

A�(2) + e1b
(2)
)
+ � ≥ e1,(

A�(2) + e1b
(2)
)
≤ e1 +

�

�
.



3533Machine Learning (2022) 111:3525–3548	

1 3

(both planes correspond to the first problem). The objective functions of both problems (21) 
and (22) minimize the distance of the data sample of one class from its corresponding hyper-
plane while remaining as far as possible from the hyperplane belonging to the samples of 
the other class. The modified Lagrangian in the proposed LPTWSVM is such that the previ-
ous large matrix inverse calculation is bypassed; it is immediately evident that eliminating 
these calculations will lead to significant efficiency improvements with respect to large scale 
datasets.

To solve problems (21) and (22), we thus consider their dual formulations. The dual of (21) 
and its Lagrangian function can be written as (a similar approach can be followed for others):

here � ∈ ℝ
m2 , � ≥ 0 , � ∈ ℝ

m2 , � ≥ 0 and � ∈ ℝ
m1 ,� ≥ 0 represent the Lagrangian multi-

pliers. Applying the K.K.T conditions on (23), we have:

Using the K.K.T. conditions (24)–(27) and (28)–(30) and substituting � − � = � , the 
Lagrangian of (21) is given as:

(23)

L =
1

2
c3
(||�(1)||2 + b(1)2

)
+

1

2
�T
1
�1 + c1e

T
2
�

− �T
(
−(B�(1) + e2b

(1)) + � − e2
)

− �T
((

B�(1) + e2b
(1)
)
+ e2 +

�

�

)

+ �T
(
A�(1) + e1b

(1) − �1
)
,

(24)
�L

��(1)
= c3�

(1) + BT� − BT� + AT� = 0,

(25)
�L

�b(1)
= c3b

(1) + eT
2
� − eT

2
� + eT

1
� = 0,

(26)
�L

��
= c1e2 − � −

�

�
= 0,

(27)
�L

��1
= �1 − � = 0,

(28)�T
(
−
(
B�(1) + e2b

(1)
)
+ � − e2

)
= 0,

(29)�T
((

B�(1) + e2b
(1)
)
+ e2 +

�

�

)
= 0,

(30)�T
(
A�(1) + e1b

(1) − �1
)
= 0.
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Here, E is a matrix of all ones of size (m1 + m2) × (m1 + m2) . The first constraint can also 
be written as � + �(1 +

1

�
) = c1e2 , using � = � + � . Since � ≥ 0 , (31) can be equivalently 

written as:

Likewise, the dual formulation of (22) is given as:

Once solutions of (32) and (33) are derived so as to obtain the vectors 
[
� � �

]
 and 

[
� � �

]
 , 

the hyperplanes corresponding to each class can be written as:

The decision function for assigning the test data sample x ∈ ℝ
n to a particular class is then 

similar to decision function used by Pin-GTSVM problem.

3.2 � Non‑linear LPTWSVM

In contrast to the non-linear Pin-GTSVM case, we do not need to consider kernel gen-
erated surfaces for LPTWSVM and can thus directly introduce arbitrary kernel func-
tions in the linear case of LPTWSVM. Hence, we introduce an explicit kernel function 
K(x, y) = �(x)T�(y) into the linear case, which enacts the Hilbert space transformation 
� = �(x) , � ∈ ℍ . In a similar fashion to (21) and (22), we now consider the following pri-
mal problems in the Hilbert space ℍ:

and

(31)

max
𝜆,𝜇

−
1

2

[
𝜇T 𝜆T

]
Q̃

[
𝜇

𝜆

]
+ c3𝜆

Te2

subject to c1e2 − 𝛼 −
𝛾

𝜏
= 0,

𝛼 ≥ 0, 𝛾 ≥ 0,

where Q̃ =

[
AAT + c3I ABT

BAT BBT

]
+ E.

(32)

min
𝜇,𝜆

1

2

[
𝜇T 𝜆T

]
Q̃

[
𝜇

𝜆

]
− c3𝜆

Te2

subject to − 𝜏c1e2 ≤ 𝜆 ≤ c1e2,

where Q̃ =

[
AAT + c3I ABT

BAT BBT

]
+ E.

(33)

min
𝜃,𝜙

1

2

[
𝜃T 𝜙T

]
Q̃

[
𝜃

𝜙

]
− c4𝜙

Te1

subject to − 𝜏c2e1 ≤ 𝜙 ≤ c2e1,

where Q̃ =

[
BBT + c4I − BAT

−ABT AAT

]
+ E.

(34)xT�(i) + b(i) = 0 for i = 1, 2.

(35)

min
�(�),�(�),��,�

1

2
c3
(||�(1)||2 + b(1)2

)
+

1

2
�T
1
�1 + c1e

T
2
�

subject to �(A)�(1) + e1b
(1) = �1,

−
(
�(B)�(1) + e2b

(1)
)
+ � ≥ e2,

−
(
�(B)�(1) + e2b

(1)
)
≤ e2 +

�

�
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Here, all constants and notations have similar meaning as in the linear case. We derive the 
dual problem of (35) and (36):

and

All variables, constants and notations are again similar to those from the linear case. Once 
we solve the QPPs (37) and (38), a new test-data sample x ∈ ℝ

n is assigned to a given class 
based on its distance from the corresponding hyperplanes in a manner similar to the linear 
case.

4 � Theoretical properties

We will now examine the properties of the proposed large-scale pinball twin support vector 
machine (LPTWSVM) in more detail.

4.1 � Noise insensitivity

For simplicity, we will discuss the noise sensistivity with respect to the linear LPTWSVM 
problem (21). However, a similar analysis is also applicable to both the non-linear case of 
the first LPTWSVM problem and also the second LPTWSVM problem.

The generalized sign function, sgn� (x) , of the Pinball loss function is given as:

Henceforth, for typographic simplicity, let � and b represent �(1) and b(1) respectively, 
such that problem (21) can be equivalently written:

(36)

min
�(�),�(�),��,�

1

2
c4
(||�(2)||2 + b(2)2

)
+

1

2
�T
2
�2 + c2e

T
1
�

subject to �(B)�(2) + e2b
(2) = �2,(

�(A)�(2) + e1b
(2)
)
+ � ≥ e1,(

�(A)�(2) + e1b
(2)
)
≤ e1 +

�

�
.

(37)

min
𝜇,𝜆

1

2

[
𝜇T 𝜆T

]
Q̃

[
𝜇

𝜆

]
− c3𝜆

Te2

subject to − 𝜏c1e2 ≤ 𝜆 ≤ c1e2,

where Q̃ =

[
K(AT ,AT ) + c3I K(AT ,BT )

K(BT ,AT ) K(BT ,BT )

]
+ E,

(38)

min
𝜃,𝜙

1

2

[
𝜃T 𝜙T

]
Q̃

[
𝜃

𝜙

]
− c4𝜙

Te1

subject to − 𝜏c2e1 ≤ 𝜙 ≤ c2e1,

where Q̃ =

[
K(BT ,BT ) + c4I − K(BT ,AT )

−K(AT ,BT ) K(AT ,AT )

]
+ E.

(39)sgn𝜏 (x) =

⎧⎪⎨⎪⎩

1, x > 0,

[−𝜏, 1], x = 0,

−𝜏, x < 0.
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where L� (e2 + (B� + e2b)) is the Pinball loss function. Differentiating (40) with respect to 
� , we have:

where 0 is a zero vector of appropriate dimensions and x−
i
∈ B.

The index set for B is partitioned in three parts as follows:

where i = 1,… ,m2 . With the above notations and the existence of �i ∈ [−�, 1] Eq. (41) can 
be rewritten as:

The above condition shows that when �, b, c1, and c3 are fixed, � controls the number of 
samples of each set S�,�

0
 , S�,�

1
 and S�,�

2
 . For small values of � , the number of samples in 

S
�,�

2
 is high with fewer number of samples in other sets, and hence the result is an intrinsic 

sensitivity to feature noise. On the other hand, for larger values of � , set-allocation is more 
evenly distributed, with data samples allocated to all of the three sets and hence the result 
is less sensitivity to feature noise.

Proposition 1  If the QPPs (32) or (37) have a solution then the following inequalities must 
hold:

where p0 is the number of samples in S�,�
0

.

Proof  Let x−
i0
∈ S

�,�

0
 , (1 ≤ i0 ≤ m2 ) be an arbitrary sample. From the KKT condition (29), 

�i0 = 0. From the KKT condition (26), we then obtain �i0 = c1 and, subsequently, 
�i0 = �i0 − �i0 = c1 . Also, from the KKT condition (25), we have

Now, since �i ≥ 0 and �i ≥ 0 , we have −�c1 ≤ �i ≤ c1 . Therefore,

(40)
min

�,�,��,�

1

2
c3
(||�||2 + b2

)
+

1

2

(
A� + e1b

)T(
A� + e1b

)

+ c1e
T
2
L�
(
e2 +

(
B� + e2b

))
,

(41)� = c3� + AT
(
A� + e1b

)
+ c1

m2∑
i=1

sgn�
(
1 +

(
�Tx−

i
+ b

))
x−
i
,

(42)

S
�,�

0
=
{
i ∶ 1 +

(
�Tx−

i
+ b

)
> 0

}
,

S
�,�

1
=
{
i ∶ 1 +

(
�Tx−

i
+ b

)
= 0

}
,

S
�,�

2
=
{
i ∶ 1 +

(
�Tx−

i
+ b

)
< 0

}
,

(43)
c3

c1
� +

1

c1
AT

(
A� + e1b

)
+

∑
i∈S�,�

0

x−
i
+

∑
i∈S�,�

1

�ix
−
i
− �

∑
i∈S�,�

2

x−
i
= 0.

(44)−
(
c3b + eT

1
�
)

c1m2

≤ 1 and
p0

m2

≤ 1 −
1 +

(c3b+eT1�)
c1m2

1 + �
,

∑
i∈S�,�

0

�i +
∑
i∉S�,�

0

�i = −
(
c3b + eT

1
�
)

⟹ p0c1 +
∑
i∉S�,�

0

�i = −
(
c3b + eT

1
�
)
.
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which gives us −(c3b+e
T
1
�)

c1m2

≤ 1 and p0(1 + �) ≤
−(c3b+e

T
1
�)+�c1m2

c1
 . The second condition gives 

us

hence proving our proposition. 	�  ◻

One can see that an upper bound on the number of samples in S�,�
0

 is placed by the 
above proposition; for small values of � , p0 gets smaller, hence leading to feature noise 
sensitivity as smaller numbers of data samples are distributed in sets other than S�,�

2
 . 

Hence, classification results that are affected significantly by feature noise around the 
decision boundary can be adjusted for by varying � accordingly. A similar analysis 
holds for the other LPTWSVM problems.

5 � Numerical experiments

A relative performance analysis of TBSVM, TWSVM, Pin-GTSVM and the pro-
posed LPTWSVM model is given in this section. The experimental evaluation of 
the models is performed on MATLAB R2017b with a Windows 10 machine and an 
Intel Xeon(R) Processor ( 2.30 × 2  GHz) and 128  GB RAM. We perform the experi-
ments on 20 benchmark UCI datasets (Dheeru & Taniskidou, 2017) and one syn-
thetic dataset. Grid selection is used to select optimal parameters over the follow-
ing parametric ranges: c1 = [10−7, 10−6,… , 106, 107] , c2 = [10−7, 10−6,… , 106, 107] , 
c3 = [10−7, 10−6,… , 106, 107] , c4 = [10−7, 10−6,… , 106, 107] , � = [0.01, 0.2, 0.5, 1.0].

To avoid computational complexity, we use c1 = c2 and c3 = c4 for the TBSVM 
and LPTWSVM models. We use a 70  :  30 ratio for training and testing, with 10-fold 
cross validation for choosing optimal parameters. We employ a Gaussian kernel 
K(x, y) = exp−||x−y||2∕�2 with parameter values of � = [10−7, 10−6,… , 106, 107] . Details of 
each dataset are given in Tables 4 and 5. The number of samples, features and classes in 
each dataset are given as (number of samples × number of features × number of classes). 
For example, the UCI blood dataset containing 748 samples with feature length 4 and 
number of classes 2 is given as (748 × 4 × 2) . Table 6 contains 5 publicly available real 
world classification datasets (Zhang et al., 2019) including two biomedical datasets i.e., 
Carcinom and Lung, two human face datasets i.e., ORL and Yale and one object recog-
nition datasets i.e., COIL20.

(45)

−
(
c3b + eT

1
�
)

c1
−
(
m2 − p0

)
≤ p0

and p0 ≤
−
(
c3b + eT

1
�
)

c1
+ �

(
m2 − p0

)
,

p0

m2

≤

−(c3b+eT1�)
m2

+ �c1

c1(1 + �)
= 1 −

c1 +
(c3b+eT1�)

m2

c1(1 + �)

= 1 −
1 +

(c3b+eT1�)
c1m2

(1 + �)
,
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•	 Biomedical datasets: The Carcinom dataset consists of 174 samples, with each sample 
represented by a 9182 dimensional feature vector with 11 categories. The Lung dataset 
consists of 203 instances with 634 dimensional vectors.

•	 Face image datasets: The ORL face image dataset consists of 400 images and 40 cat-
egories, with each image of the size 32 × 32 . The Yale face database consists of 165 
face images belonging to 15 different people with each image of the size 32 × 32.

•	 Object recognition datasets: COIL20 dataset consists of 20 categories with 1440 sam-
ple size, each sample of 1024 dimensions.

For the above real world application datasets, we repeated the 4-fold cross validation 5 
times and report the average accuracy and the standard deviation in Table 6. We used one-
vs-all strategy in multiclass datasets for all the classification models.

5.1 � Synthetic dataset

One of the main properties of LPTWSVM is that it is insensitive to noisy samples in and 
around the decision boundary which can perturb the hyperplanes and, eventually, the per-
formance of the model. We analyse LPTWSVM’s robustness to noise in Fig. 1, where we 
take synthetic data samples from two Gaussian distributions (the number of samples in 

Fig. 1   Figures showing noise insensitivity properties of the proposed LPTWSVM model compared to the 
baseline methods TBSVM, TWSVM and Pin-GTSVM. In the figures, we have r = 0 (noise free), r = 0.2 , 
r = 0.3 and r = 0.5 . Here, r is defined as r = total number of noise samples

total number of samples in the synthetic dataset
 . The legend below each fig-

ure is used to match the separating hyperplanes with the corresponding models. The values in the bracket 
after each model name are the slopes of the lower and upper hyperplanes of that model, respectively
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both the classes are kept equal to 100). The two distributions are: 
xi, i ∈ {i ∶ yi = 1} ∼ N(�1,

∑
1) and xi, i ∈ {i ∶ yi = −1} ∼ N(�2,

∑
2) where 

�1 = [0.5,−3]T ,�2 = [−0.5, 3]T and 
∑

1 =
∑

2 =

�
0.2 0

0 3

�
 . These samples constitute our 

synthetic dataset and the above Gaussian distributions can be separated by the Bayes clas-
sifier whose separating hyperplane is fc(x) = 2.5x(1) − x(2) . The data samples are now 
contaminated with noise where the noisy samples are also Gaussian distributed: 

xnoise ∼ N(�noise,
∑

noise) where �noise = [0, 0]T and 
∑

noise =

�
1 − 0.8

−0.8 1

�
 . The total num-

ber of noisy samples is calculated by the value of r, which is defined as 
r =

total number of noise samples

total number of samples in the synthetic dataset
 . These noisy samples are then assigned to either of 

class +1 or class −1 with equal probability. Despite the noise introduced to the synthetic 
dataset affecting labels in and around the decision boundaries, the Bayes classifier remains 
unchanged. In the results mentioned in Fig. 1, � = 0.01 for Pin-GTSVM and LPTWSVM 
and all penalty parameters (that is, the c constants) for the four models TBSVM, TWSVM, 
Pin-GTSVM and LPTWSVM are equal to 1. In the figures, it can be observed that as the 
amount of noise is increased from r = 0 , r = 0.2 , r = 0.3 to r = 0.5 , the separating hyper-
planes of Pin-GTSVM are affected a lot by the feature noise and their slope values deviate 
a lot, going from positive to negative values. TBSVM and TWSVM also decrease and then 
ultimately increase their slope values by big absolute values as noise is increased. On the 
other hand, the absolute change in the slopes of the hyperplanes of our model LPTWSVM 
is generally by the smallest amounts out of the four models as noise levels are progres-
sively increased. This comparative robustness in the absolute change of slope values of our 
model implies the noise insensitivity of LPTWSVM.

5.2 � Performance scaling evaluation on NDC datasets

Experiments conducted on progressively large-scale binary classification datasets are 
set out in Table 2. Here, the NDC Data Generator (Musicant, 1998) is used to assess the 
computational efficiency of the tested models with respect to linearly-increasing train-
ing set sizes (methodological parameters are fixed to be identical across all classifiers: 
c1 = 1, c2 = 1, � = 1 and � = 0.5).

Table  3 shows the execution time results of the non-linear TBSVM, TWSVM, Pin-
GTSVM and LPTWSVM. From the table, one can see that the existing models (TBSVM, 
TWSVM and Pin-GTSVM) rapidly become infeasible—in fact exceeded memory con-
straints—as the dataset size exceeds 70k. However, the proposed LPTWSVM model still 
functions, illustrating the efficacy of the proposed approach.

Table 2   Details of NDC datasets Datasets Training data Testing data Features

NDC-20k 20,000 200 32
NDC-30k 30,000 300 32
NDC-50k 50,000 500 32
NDC-70k 70,000 700 32
NDC-80k 80,000 800 32
NDC-90k 90,000 900 32
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5.3 � Results comparison and discussion

We analyze the relative performance of the proposed LPTWSVM, TBSVM, TWSVM 
and Pin-GTSVM models. The experimental results corresponding to the linear and 
Gaussian kernels are given in Tables 4 and 5, respectively. From Table 4, representing 
the linear kernel, it may be seen that the proposed LPTWSVM and TWSVM models 
achieve the best performance in 5 datasets while Pin-GTSVM and TBSVM emerge as 
overall winners in datasets 1 and 2, respectively. The average prediction accuracy of 
the proposed LPTWSVM is 82.74%; better than other baseline models. Also, it may be 
seen that the proposed LPTWSVM achieved lowest average rank among the baseline 
models.

The Gaussian kernel results presented in Table 5 show that the average prediction 
accuracy of the proposed LPTWSVM is 85%; again better than the other baseline 
models. It can be seen from Table 5 that the proposed LPTWSVM approach emerged 
as overall winner in 5 datasets; a greater number than Pin-GTSVM, TWSVM and 
TBSVM, which achieved best performance for 4, 3 and 2 datasets, respectively.

Table  6 gives the performance of the classification models on the datasets from 
different with large features. One can see that the performance of the proposed LPT-
WSVM model on COIL20, Yale, Lung and Carcinom is better as compared to the base-
line models. In COIL20 dataset, the proposed LPTWSVM model achieved 98.73% 
accuracy which is better than the baseline models. Also, in Yale face dataset the per-
formance of the proposed model is better compared to baseline models. In biological 
datasets i.e., Lung and Carcinom, the performance of the proposed LPTWSVM is bet-
ter compared to the baseline models.

5.4 � Statistical analysis

We carry out an analysis of the statistical significance of the performance values 
obtained for the different models via Friedman testing. In Friedman testing, models are 
ranked for each dataset separately with the best performing model being allocated the 
lowest rank. The results of this test for the models for linear kernel is given in Table 4 
and the Gaussian kernel results are given in Table 5.

Table 3   Comparison of 
execution times of different 
models using the Gaussian kernel

*Denotes out of memory

Datsets TBSVM TWSVM Pin-GTSVM LPTWSVM
Time(s) Time(s) Time(s) Time(s)

NDC-20k 178.35 162.773 409.553 1067.73
NDC-30k 480.201 433.563 1307.55 2622.16
NDC-50k 1874.07 1513.32 5742.23 5813.61
NDC-70k 4838.37 5774.45 17247.5 14622.2
NDC-80k * * * 15382.8
NDC-90k * * * 19819.1
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Table 4   Classification Accuracy1 of TBSVM, TWSVM, Pin-GTSVM and LPTWSVM using linear kernel

Accuracy1 denotes the average accuracy and bold denotes best accuracy

Datasets TBSVM TWSVM Pin-GTSVM LPTWSVM
Accuracy Accuracy Accuracy Accuracy

Dataset size c1, c3,Time(s) c1,Time(s) c1, �,Time(s) c1, c3, �,Time(s)

Blood 75.89 ��.�� 71.88 75
(748 × 4 × 2) 1, 104, 0.05653 10, 0.14843 0.1, 1, 0.21711 10−2, 10, 0.2, 0.29742

Breast-cancer-wisc-
diag

95.32 ��.�� 92.98 ��.��

(569 × 30 × 2) 102, 103, 0.2004 10−1, 0.03925 10−1, 1, 0.06338 10−2, 10, 10−2, 0.3631

Breast-cancer-wisc 97.62 ��.� 98.1 95.71
(699 × 9 × 2) 10−2, 103, 0.40346 10−1, 0.05771 1, 0.2, 0.09911 1, 10, 10−2, 0.63932

Breast-cancer 70.93 70.93 ��.�� 73.26
(286 × 9 × 2) 1, 102, 0.05934 10, 0.0324 10−2, 10−2, 0.01797 10−3, 10−2, 10−1, 0.00756

Conn-bench-sonar-
mines-rocks

72.58 67.74 70.97 ��.��

(208 × 60 × 2) 102, 102, 0.03141 10−1, 0.0296 1, 0.5, 0.03053 10−2, 102, 10−2, 0.00794

Credit-approval ��.�� 85.99 74.40 86.47
(690 × 15 × 2) 1, 10−3, 0.08104 10−2, 0.01212 10−2, 0.2, 0.06422 102, 104, 10−1, 0.38272

Heart-hungarian 80.68 ��.�� 81.82 ��.��

(294 × 12 × 2) 10−7, 106, 0.00257 10−5, 0.00318 1, 10−2, 0.02185 10−7, 106, 10−2, 0.0018

Ilpd-indian-liver 69.14 ��.�� 70.86 70.29
(583 × 9 × 2) 107, 10−3, 0.1018 104, 0.11586 106, 10−2, 0.03423 10−2, 10, 10−1, 0.12589

Ionosphere ��.�� 83.81 89.52 ��.��

(351 × 33 × 2) 10−5, 102, 0.00286 10−1, 0.01815 10−2, 0.5, 0.02805 10, 103, 0.1, 0.14433

Mammographic 82.29 ��.�� 83.33 83.33
(961 × 5 × 2) 10−2, 10, 0.02634 10−2, 0.01824 1, 10−2, 0.07261 102, 104, 0.01, 0.78302

Molec-biol-promoter 81.25 68.75 78.13 ��.��

(106 × 57 × 2) 105, 102, 0.00998 104, 0.00201 10−3, 10−1, 0.02547 105, 104, 10−2, 0.04061

Parkinsons 82.76 ��.�� 91.38 81.03
(195 × 22 × 2) 1, 10−4, 0.01542 1, 0.03424 10−4, 10−1, 0.02495 10−1, 1, 10−1, 0.08794

Pittsburg-bridges-T-
OR-D

87.1 87.1 74.2 ��.��

(102 × 4 × 2) 107, 10−2, 0.00737 10, 0.02153 10−7, 10−1, 0.02503 10−6, 10−3, 1, 0.0005

Statlog-German-credit ��.�� 76 74.67 76.67
(1000 × 24 × 2) 10−4, 107, 0.01335 1, 0.172 10−1, 1, 0.07532 10−3, 102, 10−2, 0.03945

Statlog-heart 85.19 83.95 85.19 ��.��

(270 × 13 × 2) 1, 106, 0.00251 10−2, 0.00485 10−7, 10−2, 0.0279 10−6, 10−1, 10−1, 0.00152

Vertebral-column-
2clases

75.27 64.52 77.42 ��.��

(310 × 6 × 2) 10−1, 10−6, 0.06243 10, 0.09682 10−4, 1, 0.03432 10, 1, 10−2, 0.18321

Average Accuracy 81.98 80.63 80.72 82.74
Average Rank 2.59 2.5 2.88 2.03
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5.4.1 � Linear results

Under the null hypothesis, the Friedman statistics are distributed according to �2
F
 with 

(k − 1) degrees of freedom as follows (Demšar, 2006):

where Rj =
1

N

∑
j r

j

i
 and rj

i
 denotes the rank of the jth algorithm on the ith dataset out of k 

algorithms and N datasets with (k − 1) and (k − 1)(N − 1) degrees of freedom. Here, we are 
comparing the four algorithms on 16 datasets i.e. k = 4 and N = 16 . Also, the average ranks 
of TBSVM, TWSVM, Pin-GTSVM and the proposed LPTWSVM are 2.59375, 2.5, 2.875 
and 2.03125, respectively. Therefore,

For k = 4,N = 16 , the critical values of F(3, 45) for � = 0.05 is 2.815. Thus, Friedman test 
fails to detect the significant difference among the models. However, one can see that the 
proposed LPTWSVM model achieved better average accuracy compared to the existing 
models. Also, the average rank of the proposed LPTWSVM model is better compared to 
baseline models.

5.4.2 � Non‑linear results

Under the null hypothesis, the Friedman statistics are distributed according to �2
F
 with 

(k − 1) degrees of freedom as follows (Demšar, 2006):

Similar to linear case, here also k = 4 and N = 16 . The average ranks of the TBSVM, 
TWSVM, Pin-GTSVM and the proposed LPTWSVM with Gaussian kernel are 
2.65625, 2.59375, 2.3125 and 2.4375, respectively. Therefore,

(46)�2
F
=

12N

k(k + 1)

[∑
j

R2
j
−

k(k + 1)2

4

]
,

(47)FF =
(N − 1)�2

F

N(k − 1) − �2
F

,

�2
F
=
12 × 16

4(4 + 1)

[
2.593752 + 2.52 + 2.8752 + 2.031252

−
4 × 5 × 5

4

]
= 3.5437,

FF =
(16 − 1) × 3.5437

16 × (4 − 1) − 3.5437
= 1.1956.

(48)�2
F
=

12N

k(k + 1)

[∑
j

R2
j
−

k(k + 1)2

4

]
,

(49)FF =
(N − 1)�2

F

N(k − 1) − �2
F

.
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For k = 4,N = 16 , the critical values of F(3, 45) with � = 0.05 is 2.815. Thus, Friedman 
test fails to detect the significant difference among the models. However, one can see that 
the proposed LPTWSVM model achieved better average accuracy compared to the existing 
models. Also, the average rank of the proposed LPTWSVM model is better compared to 
TBSVM and TWSVM models.

6 � Conclusions

In this paper, we have proposed a novel classification model, LPTWSVM. In contrast to 
the TWSVM, the proposed model is tunably-insensitive to feature noise while exhibiting 
greater stability under resampling. Furthermore, a structural risk minimization principle 
is directly implemented within the proposed LPTWSVM model to ensure better generali-
zation. Numerical experiments conducted on standard benchmark datasets with respect to 
both linear as well as non-linear implementations show the validity of the proposed LPT-
WSVM approach, for which the classification performance is similar or better than the 
baseline methods. We further performed experiments on progressively-increased NDC 
dataset sizes to demonstrate the effectiveness of the proposed LPTWSVM model on large-
scale datasets. Finally, we note that in the regularised LPTWSVM, additional parameters 
need to be tuned via cross-validation; future work will focus on the appropriate mecha-
nisms for automatic selection of these parameters.
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