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Abstract
K-Means is one of the most used algorithms for data clustering and the usual clustering 
method for benchmarking. Despite its wide application it is well-known that it suffers from 
a series of disadvantages; it is only able to find local minima and the positions of the ini-
tial clustering centres (centroids) can greatly affect the clustering solution. Over the years 
many K-Means variations and initialisation techniques have been proposed with different 
degrees of complexity. In this study we focus on common K-Means variations along with 
a range of deterministic and stochastic initialisation techniques. We show that, on average, 
more sophisticated initialisation techniques alleviate the need for complex clustering meth-
ods. Furthermore, deterministic methods perform better than stochastic methods. However, 
there is a trade-off: less sophisticated stochastic methods, executed multiple times, can 
result in better clustering. Factoring in execution time, deterministic methods can be com-
petitive and result in a good clustering solution. These conclusions are obtained through 
extensive benchmarking using a range of synthetic model generators and real-world data 
sets.

Keywords K-Means clustering · Deterministic clustering · Benchmarking

1 Introduction

The most well-known algorithm in the field of clustering analysis is the K-Means 
algorithm. Its simplicity, versatility and efficiency makes it popular in many differ-
ent research fields (Pena et  al., 1999; Jain, 2010). Despite its reputation and success 
in many different studies, it has a series of disadvantages such that it can detect only 
spherical and well-separated clusters, it is sensitive to outliers, highly dependent on the 
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features (dimensions) of the data set and it only converges to local minima (Jain, 2010). 
Over the years a number of K-Means variations (Lloyd’s K-Means—Slonim et al., 2013, 
Hartigan–Wong’s K-Means—Hartigan, 1975), K-Means inspired algorithms (K-Medi-
ans—Charu & Chandan, 2013), and K-Means initialisation methods (Celebi et  al., 
2013) have been proposed in order to overcome some of these issues. Such methods 
have also enhanced KMeans with additional properties such as feature selection mech-
anisms (Witten & Tibshirani, 2010; Kondo et  al., 2016), semi-supervised capabilities 
(Bilenko et al., 2004; Vouros & Vasilaki, 2021), and outliers robustification (Al Hasan 
et al., 2009; Brodinová et al., 2017).

In the literature there are various studies regarding the importance of the initial selec-
tion of cluster centroids for the performance of the K-Means algorithm (Jain, 2010) and 
extensive testing on various initialisation techniques (Celebi et al., 2013; Fränti & Sier-
anoja, 2019), but a detailed comparison on the effects on these techniques on common 
K-Means variations is not available. We hypothesize that sophisticated initialisation 
methods alleviate the need for complex clustering and, if deterministic, they could lead 
to satisfactory solutions within a single execution of the clustering algorithm. Conse-
quently, they would alleviate the need for executing a stochastic method multiple times 
and picking the best clustering based on some criterion.

In order to investigate this hypothesis we compare different clustering initialisation 
methods, namely Random (MacQueen, 1967), K-Means++ (Arthur & Vassilvitskii, 
2007), Maximin (Gonzalez, 1985), ROBust INitialisation (ROBIN) (Al Hasan et  al. 
2009), Kaufman and Rousseeuw (2009) and Density K-Means++ (DK-Means++) (Nid-
heesh et al., 2017), and their effects on common K-Means variations, Lloyd’s K-Means 
(Jain, 2010), Hartigan–Wong’s K-Means (Hartigan & Wong, 1979; Hartigan, 1975) and 
K-Medians (Charu and Chandan, 2013). We show that more sophisticated initialisation 
methods reduce on average the performance difference among the K-Means implemen-
tations and that the deterministic DK-Means++ method can achieve better average per-
formance than stochastic methods. Nevertheless there is a trade-off, simplistic stochastic 
methods can achieve better clustering performance if executed multiple times due to the 
potential of discovering better local minima. For very large data sets where execution 
time is a factor, a single run using a deterministic initialisation method can be competi-
tive compared to multiple runs using stochastic initialisation methods.

A similar study comparing many different intialisation methods has been performed 
by Celebi et al. (2013) but it is focused on algorithms of linear complexity without con-
sidering various K-Means implementations. Recently, another study (Fränti and Sier-
anoja 2019) was performed on stochastic initialization heuristics for K-Means and on 
how much the algorithm can be improved by repetition. They based their conclusions 
on a clustering benchmark (Fränti & Sieranoja, 2018, 2019) which contains standalone 
data sets with different properties and they showed that K-Means performance is in gen-
eral poor on unbalanced data sets and that the algorithm is not affected by high dimen-
sionality while more iterations can improve its performance on overlapping clusters. 
In our case we performed a more extensive benchmarking by taking into consideration 
data set generation models as well as standalone data sets. The models gave us the abil-
ity to perform hypothesis testing in order to strengthen our conclusions and to account 
for variability.

The code of the clustering methods, data set model generators, scripts and a stan-
dalone application to reproduce this research are available in the GitHub repository 
https:// github. com/ avour os/ Code- KMeans- bench mark (under the branch additions).

https://github.com/avouros/Code-KMeans-benchmark
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2  Material and method

2.1  The K‑means algorithm

Given K initial centroids, the K-Means algorithm (Jain, 2010) assigns the data points 
into K clusters in a way that minimizes the within cluster sum of squares (WCSS):

where K is the number of clusters, nk the number of data points (observations) of the k-th 
cluster and p the dimensionality (number of features) of a given dataset; xij is the value of 
the j-th feature of the i-th data point, xi∶ is the vector representing the i-th datapoint; mk∶ 
specifies the location of the k-th cluster centroid. This problem is equivalent to maximiz-
ing the between cluster sum of squares (BCSS) which is given by Witten and Tibshirani 
(2010):

where �1∶ specifies the global centroid assuming that all the data points belong to one 
cluster.

2.1.1  Lloyd’s K‑means

Lloyd’s method is the most commonly used K-Means and the standard K-Means cluster-
ing method in many programming languages such as MATLAB (MATLAB, 2019) and 
Python (van Rossum, 1995). The steps of this algorithm are as follows (Jain, 2010): 

1. Initialise K initial centroids m1j,… ,mKj using some initialisation method.
2. Assign each data point xi∶ to cluster ck∗ , 

3. Recompute each cluster centroid using the formula, 

4. Go to step 2 until converge.

(1)
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2.1.2  Hartigan–Wong’s K‑means

Hartigan–Wong’s K-Means algorithm is an alternative to Lloyd’s K-Means and the 
default K-Means of the R language (R Core Team, 2013). In the study of Slonim et al. 
(2013) it is shown that this method has lower probability of converging to a local min-
ima solution compared to Lloyd’s method in exchange of extra complexity. The steps of 
the algorithm are as follows (Hartigan, 1975; Slonim et al., 2013): 

1. Initialise K initial centroids m1j,… ,mKj using an initialisation method.
2. Assign each data point xi∶ to cluster ck′ , 

3. Set an indicator s = 1.
4. For each data point xi∶

(a) Remove it from its cluster ck′.
(b) Compute the centroid of ck′ using the remaining points in that cluster, 

(c) Assign xi∶ to cluster ck∗ , 

(d) Recompute the centroid of the cluster ck∗ , 

(e) If k∗ ≠ k� set s = 0.

5. If s = 0 , set s = 1 and go to step 4.

2.1.3  The K‑medians algorithm

The K-Medians algorithm (Charu & Chandan, 2013) is similar to the K-Means but uses 
the median instead of the mean to calculate the cluster centroid. The objective function 
of the algorithm is given by the equation:

k� = argmin
k

{ p∑
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where m̄kj specifies the location of the k-th cluster centroid in the j-th dimension which is 
computed by taking the median of the data points xij belonging to that cluster. K-Medians 
corresponds to the L1-norm as opposed to the L2-norm of K-Means (Charu & Chandan, 
2013). The use of median in place of the mean makes the K-Medians algorithm robust to 
outliers (Feldman & Schulman, 2012; Whelan et al., 2015) since the median has a break-
ing point of 0.5, i.e. even if half of the data set is corrupted by outliers the median of the 
corrupted data set will be similar to the median of the original data set (Lopuhaa & Rous-
seeuw, 1991). The common implementation of the algorithm is similar to Lloyd’s K-Means 
where, in the 3rd step of Lloyd’s algorithm, the median is used to compute the new cen-
troids locations instead of the mean., i.e. ∀k m̄k∶ = median({xi∶}), xi∶ ∈ ck.

2.2  K‑means initialisation methods

Let D(xi∶) denote the distance between data point xi∶ and the nearest of the selected cluster 
centroids, mk∶ , k = 1,… , L , with L being the number of selected centroids ( L ≤ K):

2.2.1  Random

The initialisation method of MacQueen (1967) proposes a random selection of data points 
from the data set which will be the initial centroids. This is one of the earliest clustering 
initialisation techniques and an improvement of Jancey’s method (1966). The latter study 
suggested the centroids to be at random locations within the minimum hypersphere of the 
data set but this might result in empty clusters to be generated after the execution of the 
K-Means algorithm.

2.2.2  K‑means++

K-Means++ (Arthur & Vassilvitskii, 2007) is a standard clustering initialisation technique 
in many programming languages such as MATLAB and Python. It has linear complexity 
O(N) and it uses a probabilistic approach in order to select as initial centroids data points 
that are far away from each other. The steps of this algorithm are as follows: 

1. Select randomly a data point xi∶ as the first centroid m1∶ and set k = 2.
2. Choose another data point xi�∶ as the next centroid mk∶ with probability 

 and set k = k + 1.

(5)
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3. While k ≤ K go to step 2.

2.2.3  Maximin

The maximin method of Gonzalez (1985) picks data points as cluster centroids that are far 
apart form each other. 

1. Select randomly a data point xi∶ as the first centroid m1∶ and set k = 2.
2. Select as the next centroid mk∶ = xi�∶ with i� = argmax

i

{D(xi∶)} and set k = k + 1.

3. While k ≤ K go to step 2.

Maximin has linear complexity O(N) . The study of Katsavounidis et al. (1994) proposed 
a modification in the first step of the algorithm to select as the first centroid the data point 
with the maximum Euclidean norm (Celebi et  al., 2013). In this way the method can 
become deterministic.

2.2.4  Kaufman

Kaufman and Rousseeuw (2009) proposed a deterministic method for centroids initialisa-
tion. Their method is as follows (Pena et al., 1999): 

1. Select the closest data point to the global centroid of the data set as the first centroid m1∶ 
and set k = 2.

2. For every two non-selected data points xi∶ and xi�∶ calculate, 

3. Select as the next centroid mk∶ = xi∗∶ , with i∗ = argmax
i

{
∑

i� Ci�i} and set k = k + 1.

4. While k ≤ K go to step 2.

Kaufman’s and Rousseeuw’s algorithm has quadratic complexity O(N2) because of the 
computation of the pairwise distances (Celebi et al., 2013).

2.2.5  Robust initialisation (ROBIN)

Al Hasan et al. (2009) is a robust to outliers initialisation method. It uses the Local Outlier 
Factor (LOF) (Breunig et al., 2000) in order to select as initial centroids data points that 
are far away from each other and also representative points of dense regions in the data 
set. In addition it requires one more tuning parameter which is the number of neighbor-
ing data points mp to be consider when computing the LOF of each data point. The LOF 
score of each data point, LOF(xi∶,mp) , is given by the algorithm below (Al Hasan et al., 
2009) (where N(xi∶,mp) is the set of the mp nearest data points to the xi,∶ data point, with 
|N(xi∶,mp)| ≥ mp ): 

1. Compute the density of each data point xi∶ , 

Ci�i = max

{
D(xi∶) −

√√√√ p∑
j=1

(xij − xi�j)
2, 0

}
.
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2. Compute the average relative density of each data point xi∶ , 

3. Compute the LOF score of each data point xi∶ , 

The ROBIN algorithm ( K > 1 ) is described below (Al Hasan et al., 2009): 

1. Pick a reference data point xr∶ from the data set.
2. Sort the data points in decreasing order of their distance from xr∶.
3. For each xi∶ in sorted order, pick the first data point xi�∶ for which LOF(xi�∶,mp) ≈ 1 as 

the first centroid m1∶ and set k = 2.
4. Sort the data points in decreasing order based on D(xi∶) . For the formula of D(xi∶) refer 

to Eq. 6.
5. For each xi∶ in sorted order, pick the first data point xi�∶ for which LOF(xi�∶,mp) ≈ 1 as 

the next centroid mk∶ and set k = k + 1.
6. While k ≤ K go to step 4.

The computational cost of this method is dominated by the complexity of sorting, which 
is O(N log N) (Celebi et  al., 2013) but for the LOF score calculation we have a choice 
of algorithms varying from O(N) to O(N2) , that can be chosen based on dimension-
ality-related constraints, see Breunig et  al. (2000). Regarding the 4th step of the algo-
rithm, in an R implementation (refer to the study of Brodinová et al. (2017)) the formula 
LOF(xr�∶,mp) < 1.05 was used but since the LOF score can also be lower than 1, in our 
experiments, we used the formula 1 − e < LOF(xr�∶,mp) < 1 + e where e was set to 0.05. 
In the original algorithm (Al Hasan et  al., 2009) the authors are using the algorithm in 
a deterministic manner by setting the reference point on step 2, xr ∶ to the origin. In the 
R implementation of Brodinová et al. (2017) the reference point is chosen at random. In 
this study we test both methods, ROBIN(S) will refer to the stochastic method of Brodi-
nová et al. (2017) while ROBIN(D) will refer to the deterministic method of Al Hasan et al. 
(2009).

2.2.6  Density K‑means++ (DK‑means++)

DK-Means++ (Nidheesh et al., 2017) is a deterministic method for centroids initialisation 
based on data density. It is an improved method of Rodriguez and Laio (2014), Lan et al. 
(2015) since it requires only to define the number of clusters K and utilizes a heuristic to 
detect dense regions in the data set based on a radius � in order to select optimal centroids. 
The radius � can be computed form the following algorithm (Nidheesh et al., 2017): 

1. Construct the minimum spanning tree of the distance matrix of the data set.

(7)density(xi∶,mp) =
�N(xi∶,mp)�

∑
xi�∶∈N(xi∶ ,mp)

�∑p

j=1
(xij − xi�j)

2

, i ≠ i�.

(8)ard(xi∶,mp) =
density(xi∶,mp)∑

x
i�∶

∈N(xi∶ ,mp)
density(xi�∶ ,mp)

�N(xi∶,mp)�

.

(9)LOF(xi∶,mp) =
1

ard(xi∶,mp)
.
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2. Let Λ be the weights of edges of the Minimum Spanning Tree and IQR the Inter Quartile 
Range. Then, 

The DK-Means++ algorithm is described below (Nidheesh et al., 2017): 

1. Compute the local density p(xi∶) of each data point using the formula: 

 where �-neighbors(xi∶) are the data points falling under the hypersphere with centroid 
xi∶ and radius �.

2. Normalize p(xi∶) using the min–max normalization.
3. The first cluster centroid m1∶ is the data point xi∗∶ for which p(xi∗∶) = max{p(x)} . Then 

m1∶ = xi∗∶ and k = 2.
4. Compute the prospectiveness all data points that are not selected as centers given the 

formula, �(xi∶) = p(xi∶) ⋅ D(xi∶) . For the formula of D(xi∶) refer to Eq. 6.
5. The next centroid mk∶ is the data point with maximum prospectiveness: mk∶ = xi∗∶ with 

i∗ = argmax
i

{�(xi∶)} and k = k + 1.

6. While k ≤ K go to step 4.

The computation of �-neighbors contributes to the complexity of DK-Means++. It is dom-
inated by the distance matrix computation, which is O(n2) . The computation of the Mini-
mum Spanning Tree depends of the algorithm used to compute it, efficient implementa-
tions of Kruskal’s algorithm and Prim’s algorithm require O(n log n) time to compute a 
minimum spanning tree (Moret & Shapiro, 1992). As O(n2) is the dominating complexity, 
the entire process of finding initial centroids, of DK-Means++ has a time complexity of 
O(n2).

2.3  Clustering evaluation

In the literature there are many indexes for assessing the clustering performance (Al Hasan 
et al., 2009; Rendón et al., 2011; Fränti & Sieranoja, 2018). Here, in order to evaluate the 
clustering solutions, we selected to use one external (supervised) criterion, the Purity and 
one internal (unsupervised) criterion, the Silhouette index.

2.3.1  Purity

Let our data belong to different classes �
�
 and the number of classes � equal the number of 

clusters K, for each cluster the purity is defined as Rendón et al. (2011),

where max
�

{n
(k)

�
�

} specifies the number of data points of the dominant class of the k-th clus-
ter. The overall clustering purity index is then computed as,

� = 3 ⋅ IQR(Λ) + 75thpercentile(Λ).

p(xi∶) =
�

xi� ∈�-neighbors(xi∶)

exp

�−
�∑p

j=1
(xij − xi�j)

2

�

�
.

(10)Pck
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The purity index is bounded between (0 1] ; larger values of purity correspond to better 
performance accuracy and a purity of 1 specifies an accuracy of 100% meaning that each 
cluster has data points from only one class.

2.3.2  Silhouette index

The Silhouette index is a value that specifies the degree of similarity between a data point 
and other data points of the same cluster and the dissimilarity between a data point and 
other data points in different clusters. The Silhouette index of the data point xi∶ ∈ ck is 
given by 12 (Rousseeuw, 1987),

where axi∶ is the average distance of xi∶ and all the other data points in the cluster that xi∶ 
belongs to

and bxi∶ is the minimum average distance of xi∶ to all the other data points in other clusters,

We can then define the average Silhouette index,

The Silhouette index is commonly used to estimate the number of clusters in a data set but 
it can also be used to assess the clustering quality (Rousseeuw, 1987). The Silhouette index 
is bounded between −1 and 1, where 1 specifies maximum separation of clusters and maxi-
mum within cluster density while other indexes, such as the distortion score, gives only an 
estimation of the latter.

3  Benchmarks

In our experiments we use the synthetic data from the studies of Tibshirani et  al. (gap 
statistic) (2001), Yan and Ye (weighted gap statistic) (2007) and Brodinová et al. (2017). 
A summary of the models can be found in Table 1 grouped by specific properties of the 
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K∑
i=1

nk

n
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.
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,
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1
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⎛
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models. For more information refer to the relevant studies and also to Fig. 1 for a sample 
visualization of each model. We exclude model 1 from the gap statistic study (Tibshirani 
et al., 2001) since it contains only one cluster. The Brodinová et al. (2017) generator was 
used to generate high-dimensional data sets consisting of informative and non-informative 
features. No noise injection (attributes with noise contamination) was considered in the 
current study. To avoid situations of overlapping clusters the minimum Euclidean distance 
between any two points in different clusters was set to 3 and data sets violating this rule 
were re-generated. A summary of the models can be found in Table 2. Next we use our 
own synthetic data sets models consisted of clusters with mixed properties. We will refer to 
these models as mixed (refer to Fig. 1 for a sample visualization of these models).

• model 1 generates 3-dimensional clusters, 1 spherical and 2 elongated. The spheri-
cal cluster is an 80 points Gaussian cluster at the origin with standard deviation of 
0.1. The two elongated clusters have 100 points each and are generated as follows: 
x1 = x2 = x3 = t with t taking 100 equally spaced values from − 1 to 1. We then add 
Gaussian noise with standard deviation of 0.3 to each dimension. The second dimen-
sion of the first elongated cluster was shifted by 2 from the centre of the spherical clus-

Table 1  Gap (Tibshirani et al., 2001) and weighted gap statistic (Yan & Ye, 2007) data sets models

Points: the number of data points per cluster, or indicates that a random number was selected among the 
specified numbers for each cluster, to indicates that a random number was selected between the specified 
numbers for each cluster; p: number of features or attributes of the data set (dimensions); K: number of 
generated clusters. Gaussian models: clusters of low dimensionality generated from Gaussian distributions. 
10-D Gaussian models: clusters of higher dimensionality generated from Gaussian distributions. Elongated 
models: clusters generated by adding Gaussian noise across lines. Unbalanced model: data sets containing 
Gaussian clusters of very different sizes, exponential: non-Gaussain clusters generated from the exponential 
distribution. For more information about the parameters used for the Gaussians refer to the relevant studies 
and the supplementary material. Visualization (when possible) of a data set from each model is available in 
Fig. 1

Points p K

Gaussian models
gap model (gap 2) 25,25,50 2 3
gap model 3 (gap 3) 25 or 50 3 4
weighted gap model 1 (wgap 1) 25 to 50 2 6
weighted gap model 6 (wgap 6) 50 each 2 6
10-D Gaussian models
gap model 4 (gap 4) 25 or 50 10 2
weighted gap model 5 (wgap 5) 25 to 50 10 2
Unbalanced model
weighted gap model 2 (wgap 2) 100,15 2 2
Exponential model
weighted gap model 3 (wgap 3) 50 each 2 4
Elongated models
gap model 5 (gap 5) 100 each 3 2
weighted gap model 4 (wgap 4) 100 each 2 2
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ter. Similarly the second dimension of the second elongated cluster was shifted by − 2 
and the first dimension was rotated by 1800.

• model 2 generates 3-dimensional non-Gaussian and normal clusters. It generates: (a) a 
cluster from an exponential distribution with rate of 1 and truncated at [−11] containing 
80 points, (b) a cluster from an exponential distribution with rate of 1 and and truncated 
at [23] with 100 points, (c) a Gaussian cluster of 80 points with mean [0.5, 2.5, 2.5] and 
standard deviation of 0.1 in every dimension and (d) a Gaussian cluster of 100 points 
with mean [2.5, 0.5, 0.5] and standard deviation of 0.2 in every dimension.

• model 3 generates 3-dimensional Gaussian clusters with different standard deviations. 
The first cluster has 80 points with mean at the origin and standard deviation of 0.1 on 
each dimension. The second cluster has of 100 points with mean [2, 0, 0] and stand-
ard deviation of 0.2 on each dimension. The third cluster has of 120 points with mean 
[0, 2, 0] and standard deviation of 0.3 on each dimension. The forth cluster consists of 
140 points with mean [0, 0, 2] and standard deviation of 0.4 on each dimension.

• model 4 generates 3-dimensional mixed Gaussian clusters. The first cluster consists of 
80 points with mean [0, 0, 0] and standard deviations [0.1, 0.1, 0.2]. The second clus-
ter consists of 100 points with mean [2, 0, 0] and standard deviations [0.1, 0.2, 0.3]. 
The third cluster consists of 120 points with mean [0,  2,  0] and standard deviations 
[0.2, 0.4, 0.6]. The forth cluster consists of 140 points with mean [0, 0, 2] and standard 
deviations [1.0, 0.1, 0.1].

Fig. 1  Model visualization. Examples of data used in this study. Gap (gap) and weighted gap (wgap) mod-
els are separated into three categories: a 4 Gaussian models, b 2 elongated models and c one highly unbal-
anced model (wgap2) and one non-Gaussian model (wgap3) in which the clusters are generated from the 
exponential distribution. d Mixed models: these are the additional models proposed in our study that con-
tain clusters with mixed properties such as different sizes (unbalanced) and/or generated from Gaussian and 
non-Gaussian distributions
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Table 3  Real data sets from the 
UCI repository (Asuncion & 
Newman, 2007)

 Points: the number of data points per cluster; p: number of features or 
attributes of the data set (dimensions); K: number of generated clus-
ters 

Name Points p K

Iris 50,50,50 4 3
Ionosphere 225,126 34 2
Wine 59,71,48 13 3
Breast cancer 444,239 9 2
Glass 70,76,17, 19,9,29 9 6
Yeast 463,5,35,44, 51,163,244, 

429,20,30
8 10

Table 2  Brodinova model 
generator (Brodinová et al., 
2017)

 The minimum allowed Euclidean distance between two data points in 
different clusters was set to 3 and no noise injection was considered. 
Name: name of the model; Points: the total number of data points 
in the data set; p: number of features or attributes of the data set, 
Informative (+) indicates attributes that are required to describe the 
data set while Non-informative (–) indicates variables that should be 
ignored; K: number of generated clusters. These models are creating 
high-dimensional Gaussian clusters of different shapes using two dif-
ferent distributions, one for the informative and one for the uninforma-
tive variables. Left table: Each cluster contains 40 data points. The 
parameters of these models are selected to test the performance of the 
clustering algorithm in data sets with different degrees of informative 
and/or uninformative features Right table: The first four models create 
higher-dimensional balanced clusters (clusters of equal sizes) and the 
last two higher-dimensional unbalanced clusters each with number of 
points randomly selected between 50 to 100. The parameters of these 
models are selected to test the performance of the clustering algo-
rithm in balanced and unbalanced data sets of higher dimensionality 
with increasing number of clusters. The input space was selected to be 
sparse, i.e. a few hundred points in 1000 or 1500 dimensions to avoid 
the slow computation of the Kaufman algorithm

Name Points p K

+ -

brod 1 120 20 0 3
brod 2 400 20 0 10
brod 3 120 15 5 3
brod 4 400 15 5 10
brod 5 120 10 10 3
brod 6 400 10 10 10
brod 7 120 1000 0 3
brod 8 400 1000 0 10
brod 9 400 1500 0 10
brod 10 1250 1500 0 50
brod 11 50 to 100 1000 0 3
brod 12 50 to 100 1000 0 10
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We also consider the S-sets (Fränti & Virmajoki, 2006) and the A-sets (Kärkkäinen & 
Fränti, 2002) obtained from the “clustering basic benchmark” which was used in the 
studies of Fränti and Sieranoja (2018), Fränti and Sieranoja (2019). The aforemen-
tioned studies were dedicated to the K-Means properties, advantages and disadvantages 
and assessed used various synthetic data sets. Both models contain 2-dimensional data; 
S-sets contains 4 data sets with 5000 data points distributed among 15 Gaussian clus-
ters with different degree of clustering overlap (Fränti & Virmajoki, 2006) and A-sets 
contains 3 data sets with 20, 35 and 50 clusters and 150 data points per cluster (Kärk-
käinen & Fränti, 2002). For more information about these data sets refer to the relevant 
studies. Finally we considered a selection of data sets from the UCI repository (Asun-
cion & Newman, 2007): Iris, Ionosphere, Wine, Breast Cancer, Glass and Yeast. More 
information about these data sets is shown on Table 3.

4  Results

We test the performance of the K-Means variations, Lloyd’s (Jain, 2010) Harti-
gan–Wong’s (Hartigan & Wong, 1979; Hartigan, 1975) and K-Medians (Charu & 
Chandan, 2013) initialised using the eight different clustering initialisation methods 
named: Random (MacQueen, 1967), K-Means++ (Arthur & Vassilvitskii, 2007), 
Maximin(S) (Gonzalez, 1985), ROBIN(S) (Brodinová et  al., 2017), Kaufman (Kauf-
man & Rousseeuw, 2009), ROBIN(D) (Al Hasan et  al., 2009), DK-Means++ (Nid-
heesh et al., 2017) and Maximin(D) (Katsavounidis et al., 1994). For the ROBIN vari-
ations the mp parameter specifying the number of neighbor data points was set to 10 
as in the original study (Al Hasan et  al., 2009). For the Hartigan–Wong’s algorithm 
NAG’s implementation was used (Numerical Algorithms Group (NAG), 2019).

We conceptually consider a “sophistication” scale for the initialisation methods 
based not only on their execution time but also on the complexity of their underlying 
operators. For example DK-Means++ and ROBIN would be considered more sophis-
ticated than Kaufman since they incorporate more advanced statistics while Kaufman 
uses only distances and still has a complexity of O(N2) . Our scale is as follows: Ran-
dom < K-Means++ < Maximin < Kaufman < ROBIN < DK-Means++.

In our experiments we use the synthetic data sets models from the studies of gap 
statistic (Tibshirani et al., 2001) and weighted gap statistic (Yan & Ye, 2007) (refer to 
Table 1, 10 sets in total), Brodinová et al. (2017) (refer to Table 2, 12 sets in total) and 
other four custom data sets models (refer to Methods and Fig. 1, 4 sets in total). From 
each model we generated 40 data sets and for each data set the stochastic methods were 
executed 50 times. These numbers were selected to provide a good statistical sample. 
We also use the “clustering data sets” (S-sets Fränti & Virmajoki, 2006 and A-sets 
Kärkkäinen & Fränti, 2002) from the studies of Fränti and Sieranoja (2018, 2019) and 
real-world data sets from the UCI repository (Asuncion & Newman, 2007): Iris, Iono-
sphere, Wine, Breast Cancer, Glass and Yeast (see Table 3). For each of these data sets 
we use the same set up of executing the stochastic methods 50 times.

For all our hypothesis testing on the data set models we used the Paired Samples 
Wilcoxon Test, a non-parametric alternative to paired t-test, For the outcome of the 
test we generally use the following symbols for the level of significance, * for p-value 
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< 0.05; ** for p-value < 0.01; *** for p-value < 0.001; **** for p-value < 0.0001. 
We evaluated the monotonic relationship of Silhouette index and Purity via a large 
sample of clustering results on the multiple executions of the methods across all our 
data sets (20000 cases). Using Spearman’s rank correlation coefficient, we confirmed 
that Purity and Silhouette have a strong monotonic relation (Spearman’s Rho 0.97). As 
a side note, we also considered Distortion (Al Hasan et al., 2009) as an unsupervised 
index but found the monotonic relationship with Purity weaker (Spearman’s Rho 0.65).

4.1  Comparison on the average performance among stochastic 
and among deterministic methods

We assess on average the performance of stochastic methods as well as the performance 
of deterministic methods. We calculate the average performance of stochastic methods on 
50 different runs across 40 different data sets for each one of our 26 models (10 gap and 
weighted gap, 12 Brodinova, 4 mixed models). Deterministic methods were executed once 
on the 40 data sets.

Based on Fig.  2 the average performance of K-Means variations increases by using 
more sophisticated initialisation methods and ROBIN(S) initialisation provides the best 
average performance followed by Maximin(S) and K-Means++ while Random initialisa-
tion results in the poorest performance. For the deterministic methods, shown on Fig. 3, we 
observe again that the average performance of K-Means variations increases by using more 
sophisticated initialisation methods. DK-Means++ achieved the best average performance 
followed by ROBIN(D) and then by Kaufman and Maximin(D). Finally we wanted to 
assess if more sophisticated initialization methods alleviate the need for complex cluster-
ing. For this reason we performed comparisons among the K-Means variations initialised 
with either Random and K-Means++ or Kaufman and DK-Means++ methods. Maximin 
and ROBIN have both stochastic and deterministic variations of equal sophistication thus 
we excluded them. As shown in Table 4, deterministic methods that are more sophisticated 
(as per our definition) reduce performance differences among the different variants of the 
K-Means algorithms.

Table 4  Average performance comparison among K-Means variations using simple stochastic and more 
sophisticated deterministic initialisation methods

 We compare two K-Means variations (Hartigan–Wong’s K-Means: HW, Lloyd’s K-Means: Ll and K-Medi-
ans: KMed) initialised with the same method on 26 occasions (10 gap and weighted gap, 12 Brodinova and 
4 mixed models). To calculate performance, we averaged the Purity index across the 50 initial conditions 
and 40 data sets for each model and the comparison is based on the times that there was significant differ-
ence between the two algorithms 

Initialization method Total number of 
instances

Significantly better average performance

HW vs Ll HW vs KMed Ll vs KMed

Random 26 13 vs 0 18 vs 4 6 vs 4
K-Means++ 26 10 vs 0 13 vs 3 2 vs 5
Total 52 23 vs 0 39 vs 12 8 vs 9
Kaufman 26 1 vs 1 2 vs 6 1 vs 6
DK-Means++ 26 1 vs 0 2 vs 4 1 vs 5
Total 52 2 vs 1 4 vs 10 2 vs 11
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Fig. 2  Comparison on the average performance among stochastic initialisation methods. Each plot shows 
the performance of the Hartigan–Wong’s K-Means clustering solution using the Purity index (y-axis) on 
different data sets models (x-axis) and initialized with different stochastic methods. To calculate perfor-
mance, we averaged the Purity index across the 50 initial conditions and 40 data sets for each model (gap, 
weighted gap, Brodinova and mixed). The errorbars are showing the (average) standard deviation across 
the 40 data sets. Solid lines on any two bars underline the level of significant difference between the cor-
responding methods. The accompanying Table below the figure shows a summary of the comparisons 
through all the K-Means variations (Hartigan–Wong’s K-Means (HW), Lloyd’s K-Means (Ll) and K-Medi-
ans (KMed)) where there is a significant performance difference between the compared methods
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Fig. 3  Comparison on the performance among deterministic initialisation methods. Each plot shows the 
performance of the Hartigan–Wong’s K-Means clustering solution using the Purity index (y-axis) on differ-
ent data sets models (x-axis) and initialized with different deterministic methods. To calculate performance, 
we averaged the Purity index across the 40 data sets for each model (gap, weighted gap, Brodinova and 
mixed). Solid lines on any two bars underline the level of significant difference between the correspond-
ing methods (cases of no significant differences are not shown). The accompanying Table below the fig-
ure shows a summary of the comparisons through all the K-Means variations (Hartigan–Wong’s K-Means 
(HW), Lloyd’s K-Means (Ll) and K-Medians (KMed)) where there is a significant performance difference 
between the compared methods
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4.2  Comparison of the average performance between stochastic and deterministic 
methods

Following on from our previous conclusions, we wanted to assess if overall deterministic 
methods provide on average better performance than stochastic methods. For this reason 
we compared the stochastic and deterministic variations of Maximin and ROBIN as well as 
the best stochastic performer (ROBIN(S) see Fig. 2) and the best deterministic performer 
(DK-Means++ see Fig. 3). Based on the results in Fig. 4: (a) Maximin(D) is on average 
better than Maximin(S); (b) ROBIN(D) and ROBIN(S) are on average equivalent; (c) DK-
Means++ is better than ROBIN(S).

Fig. 4  Comparisons on the average performance between stochastic and deterministic methods. Each plot 
shows the performance of the Hartigan–Wong’s K-Means clustering solution using the Purity index (y-axis) 
on different data sets models (x-axis) and initialized with different stochastic methods (only the cases 
where significant difference was present are shown). To calculate performance, we averaged the Purity 
index across the 50 initial conditions and 40 data sets for each model (gap, weighted gap and Brodinova). 
The errorbars (on the stochastic methods only) are showing the average standard deviation across the 40 
data sets. Solid lines on any two bars underline the level of significant difference between the correspond-
ing methods (cases of no significant differences are not shown). The accompanying Table below the fig-
ure shows a summary of the comparisons through all the K-Means variations (Hartigan–Wong’s K-Means 
(HW), Lloyd’s K-Means (Ll) and K-Medians (KMed)) where there is a significant performance difference 
between the compared methods
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Fig. 5  Comparison on the maximum performance among stochastic initialisation methods. Each plot shows 
the performance of the Hartigan–Wong’s K-Means clustering solution using the purity corresponding to the 
best Silhouette score achieved within 50 different executions (y-axis) on different data sets models (x-axis) 
and initialized with different stochastic methods. Purity for best Silhouette score was averaged over the 40 
data sets for each model (gap, weighted gap and Brodinova) The errorbars are showing the standard devia-
tion across the 40 data sets. Solid lines on any two bars underline the level of significant difference between 
the corresponding methods. The accompanying Table below the figure shows a summary of the compari-
sons through all the K-Means variations (Hartigan–Wong’s K-Means (HW), Lloyd’s K-Means (Ll) and 
K-Medians (KMed)) where there is a significant performance difference between the compared methods
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4.3  Comparison of the maximum performance across multiple runs of stochastic 
and deterministic methods

Next, we wanted to compare the stochastic and the deterministic methods but based on the 
maximum performance that the former can achieve on multiple repetitions. We run each of 
the stochastic methods 50 times and select the best outcome based on the Silhouette index. We 
then report its corresponding value according to the purity index. We expect that due to the 
many repetitions, stochastic methods can find different local minima and potentially result in a 
better performance at the cost of multiple repetitions.

Firstly, we repeat the comparison among the different stochastic methods but based on the 
maximum performance that they can achieve. Figure 5 shows the relevant results and, oppo-
site to our observations on the average performance, stochastic methods have higher chances 
of obtaining a better clustering result with multiple execution. K-Means++ is the best method 
followed by Random while ROBIN(S) and Maximin(S) have almost similar performance.

Afterwards, we compared the maximum performance of stochastic methods with 
the performance of deterministic methods similarly to our previous experiment (refer to 
Fig. 4). We compare the stochastic and deterministic variations of Maximin and ROBIN as 
well as the best stochastic performer of the current experiment (K-Means++) and the best 
deterministic performer (DK-Means++ see Fig. 3). Based on the results in Fig. 6, stochas-
tic variations of Maximin and ROBIN achieve overall better performance than their deter-
ministic counterparts and K-Means++ is better than DK-Means++.

We also compare the K-Means variations using different intialisation methods. Based 
on the result on Table  5 K-Medians achieves the best performance followed by Harti-
gan–Wong’s; Lloyd’s was the worst performer. Nevertheless, these systematic differences 
correspond to only 1.5% purity difference.

4.4  Standalone synthetic and real‑world data sets

We regard the standalone data sets as cases where supervised information is unknown and 
we assess the performance of the algorithms based on the Silhouette index. Detailed results 
for each data set (minimum, maximum, average performance and variance for each K-Means 
variation) are illustrated in the supplementary material. Given that these data sets are unique 
it is difficult to draw definite conclusions similar to the ones where data set models were used 
but we would like to highlight some observations. DK-Means++ was always able to achieve 
the best performance of the unsupervised methods while ROBIN(D) failed to achieve the 
best performance in the cases of A-sets 1, S-Sets 3 and S-Sets 4 when Lloyds and K-Medians 
were considered; Kaufman and Maximin(D) where the worst performers. From the stochastic 
methods ROBIN(S) always managed to achieve the maximum performance apart from one 
case of S-Sets 3 when the Harigan-Wong K-Means was considered; Random was the worst 
performer. For the real-world data sets most algorithms behaved the same but Maximin(S) 
outperformed everyone else in the cases of Yeast (all K-Means variations) and Ionosphere 
(Lloyd’s K-Means only). In the case of Glass (all K-Means variations) K-Means++ and 
Maximin(S) had the best performances. However, with the real data sets we should consider 
the fact that in rare situations the number of clusters equals to the number of classes (Gehring 
et al., 2015) thus it might not be the best examples for clustering benchmarking. Also the rel-
atively better performance of Maximin(S) appears only in these few cases where the Silhou-
ette index indicates poor clustering results in general. In such cases comparative conclusions 
may not be meaningful as these specific results could be a product of chance.
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Fig. 6  Comparisons on the maximum performance between stochastic and deterministic methods. Each plot 
shows the performance of the Hartigan–Wong’s K-Means clustering solution using the purity correspond-
ing to the best Silhouette score achieved within 50 different executions (y-axis) on different data sets mod-
els (x-axis) and initialized with different stochastic methods (only the cases where significant difference was 
present are shown). Purity for best Silhouette score was averaged over the 40 data sets for each model (gap, 
weighted gap and Brodinova). The errorbars are showing the standard deviation across the 40 data sets. 
Solid lines on any two bars underline the level of significant difference between the corresponding methods 
(only cases with significant difference are showed). The accompanying Table below the figure shows a sum-
mary of the comparisons through all the K-Means variations (Hartigan–Wong’s K-Means (HW), Lloyd’s 
K-Means (Ll) and K-Medians (KMed)) where there is a significant performance difference between the 
compared methods
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4.5  Average number of runs for which stochastic methods reach or surpass 
deterministic methods

In the aforementioned experiments we considered 50 executions of the clustering algorithm 
using stochastic methods. On average deterministic methods provide better results than sto-
chastic methods but overall stochastic methods may lead to a better clustering solution. 
We would therefore like to quantify how often this happens. To estimate this, we divide 
the number of total repetitions (50) by the number of cases where the stochastic method 
performed better than the deterministic. Table  6 summarises the results of this analysis 
on selected data sets based on their size, dimensionality and number of clusters among 
two stochastic (Random and K-Means++) and two deterministic methods (DK-Means++ 
and ROBIN(D)). Based on the results the number of repetitions required for the clustering 
method using K-Means++ in order to match or surpass the performance of DK-Means++ 
and ROBIN(D) are less compared with Random. This was expected given the performance 
comparison of Random and K-Means++ but an important result is the following: there are 
cases (Yeast, A-sets 2 and A-sets 3) where these stochastic methods fail to match or sur-
pass the performance of deterministic methods under 50 runs. We also observe that when 
the size of the data set surpasses the 1000 data points the number of required repetitions is 
significantly high. Finally we should mention that these performance differences are minor, 
in the order of 10−3 (purity) on average.

4.6  Execution time analysis

Finally, we performed an execution time analysis on the initialisation methods using a 
selection of the data sets depending on their size, dimensionality and number of clusters; 
data sets with equivalent properties were omitted. The analysis was performed as follows: 

Table 5  Best performance comparison on K-Means variations using different initialisation methods

 Each row compares two K-Means variations (Hartigan–Wong’s K-Means: HW, Lloyd’s K-Means: Ll and 
K-Medians: KMed) initialised with the same method on 26 occasions (10 gap and weighted gap, 12 Bro-
dinova and 4 mixed models). The comparison is based on the times that there was significant difference 
between the two methods on their maximum performance based on the purity for the best Silhouette score 

Initialization method Total number of 
instances

Significantly better maximum performance

HW vs Ll HW vs KMed Ll vs KMed

Random 26 4 vs 1 3 vs 7 1 vs 7
K-Means++ 26 5 vs 1 2 vs 7 1 vs 4
ROBIN(S) 26 4 vs 0 1 vs 3 1 vs 7
Maximin(S) 26 2 vs 1 3 vs 5 2 vs 3
Total 104 15 vs 3 9 vs 22 5 vs 21
Kaufman 26 1 vs 1 2 vs 6 1 vs 6
DK-Means++ 26 1 vs 0 2 vs 4 1 vs 5
ROBIN(D) 26 6 vs 0 2 vs 2 1 vs 6
Maximin(D) 26 7 vs 0 2 vs 2 1 vs 6
Total 104 15 vs 1 8 vs 14 4 vs 23
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each initialisation methods followed by K-Means clustering (Lloyd’s K-Means) was exe-
cuted 50 times and the average running time was taken into consideration.

• The benchmarking was exclusively performed on a personal laptop with the following 
properties: Dell G7; Intel i7-9750H processor; 16 GB RAM; Windows 10 Pro edition.

• All the algorithms were written in MATLAB but the LOF score for ROBIN was com-
puted using R code (specifically the dbscan package Hahsler et al., 2019) because we 
found that the MATLAB implementation was very slow.

• The running time recording includes the initialisation method and the clustering algo-
rithm. For ROBIN the computation of LOF was included in the execution duration as 
well as the computation of � for the DK-Means++.

Table 6  Average number of runs for which stochastic initialisations achieve equivalent or better perfor-
mance than deterministic initialisations

 Each column shows a comparison between clustering initialised with stochastic and deterministic methods 
(Rand = Random, DKM++ = DK-Means++, KM++ = K-Means++). Each cell value corresponds to the 
number of executions of the K-Means clustering initialised with the stochastic method to reach or surpass 
its performance if it was initialised with the deterministic method and executed once. N/A values mean 
that in these occasions the stochastic clustering was not able to match or surpass the performance of the 
deterministic clustering under 50 executions. Values higher than 10 are marked in bold. The data sets are 
arranged based on their size, dimensionality and number of clusters (see info on last column; numbers in 
italics correspond to the average number of elements should the model generated data sets of different sizes 

Rand DKM++ Rand ROBIN(D) KM++ DKM++ KM++ 
ROBIN(D)

Size, dimensions, 
number of clusters

gap 2 5 5 4 4 100, 2, 3
wgap 2 6 6 4 4 115, 2, 2
wgap 4 6 6 5 5 200, 2, 2
wgap 3 3 3 3 3 200, 2, 4
gap 5 4 2 4 2 200, 3, 2
wgap 6 8 8 7 6 300, 2, 6
gap 3 5 5 4 4 143, 3, 4
gap 4 10 10 6 6 158, 10, 2
wgap 1 7 7 6 6 227, 2, 6
wgap 5 14 14 6 6 141, 10, 2
brod 1 4 4 5 5 120, 20, 3
brod 2 18 17 17 17 400, 20, 3
Iris 7 7 3 3 150, 4, 3
Wine 3 3 2 2 178, 13, 3
Glass 7 7 6 6 214, 9, 6
Ionosphere 3 3 2 2 351, 34, 2
Breast cancer 12 12 7 7 683, 9, 2
Yeast N/A 16 27 14 1484, 8, 10
A-sets 1 28 26 26 16 3000, 2, 15
S-Sets 1 34 34 26 15 5000, 2 ,15
A-sets 2 N/A N/A 34 33 5250, 2, 35
A-sets 3 N/A N/A N/A N/A 7500, 2, 50
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Fig. 7  Execution time analysis. a Each line shows the execution duration of an initialisation method on dif-
ferent data sets selected based on size, dimensions and number of clusters. We average the execution time 
for 50 repetitions and, in case of models, across the 40 data sets of each model. The data sets are arranged 
based on their size, dimensionality and number of clusters (see info on top, underlined numbers means that 
for these models generate data sets of different sizes). b Each bar shows the summed execution time across 
all data sets of a 

Fig. 8  Execution time until stochastic methods reach or surpass the performance of deterministic meth-
ods. Each bar shows the running time requirements of the clustering algorithm initialised with a stochastic 
method to reach or surpass the performance of the same algorithm initialised with a deterministic method. 
The time requirements of the clustering algorithm using a deterministic method are shown as lines for com-
parison. Cases where bars are not shown mean that, up to 50 runs, the clustering algorithm using a stochas-
tic method was unable to surpass the performance of the deterministic method
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Based on the results in Fig. 7 Kaufman is the worst method in terms of execution dura-
tion and it is affected both by the size, dimensionality and number of clusters. Random 
and K-Means++ are the fastest methods followed by Maximin(S). DK-Means++ is almost 
always better than ROBIN(D) in terms of speed for our implementation.

Furthermore, and based on the results of Table 6 we performed an analysis on the time 
requirements of the stochastic methods to reach or surpass the performance of determin-
istic methods with multiple executions of the clustering algorithm using different seeds. 
In Fig. 8 we show the single run execution time of the stochastic initialisation (plus the 
clustering overhead) multiplied by the number of iterations required to surpass the deter-
ministic methods (see Table 6). Based on the results shown in Fig. 8 we observe that in 
many occasions running DK-Means++ once is better in terms of execution time than 
repeated runs of the clustering with a stochastic method. Equivalent conclusions can also 
be obtained from the Maximin(S) initialisation method (supplementary material).

We also investigated the number of iterations required for the clustering algorithm to 
reach convergence using stochastic and deterministic methods. We find that stochas-
tic methods overall provide worst initial conditions (with the exception of ROBIN(S) vs 
Maximin(D)), and as a consequence the clustering algorithm requires more iterations to 
converge, which adds to the overhead of the stochastic initialisation methods (for results 
refer to the supplementary material).

5  Discussion

K-Means clustering remains one of the most common clustering techniques in many dif-
ferent research fields and frequently it is used as a component of more complex algorithms 
(e.g. hierarchical clustering Jain, 2010). Following similar benchmark studies on K-Means 
(Celebi et al., 2013; Fränti & Sieranoja, 2018, 2019), in this study we compare stochastic 
and deterministic initialisation methods on K-Means variations. We particularly investi-
gated the methods of ROBIN and DK-Means++ since to the best of our knowledge they 
have not been studied as extensively as other initialisation methods. Experimentally we 
showed:

• More sophisticated initialisation methods can lead, on average, to better cluster-
ing regardless of the K-Means variation (see Table  4). From the stochastic meth-
ods, ROBIN(S) can achieve the best average performance compared with Random, 
K-Means++ and Maximin(S) (see Fig.  2). From the deterministic methods, DK-
Means++ can achieve the best performance compared with Kaufman, Maximin(D) 
and ROBIN(D) (see Fig. 3). In addition, DK-Means++ can achieve better performance 
from the average performance of stochastic methods (see Fig. 4). Overall, determinis-
tic methods have on average less performance variability across the data sets of each 
model we tested and lead to more stable solutions than stochastic methods (see supple-
mentary material) and can surpass the performance of stochastic methods (see Fig. 4).

• When executed multiple times stochastic methods can achieve better performance than 
deterministic methods. Opposite to the first point, in that case, less sophisticated meth-
ods (such as Random and K-Means++ as opposed to ROBIN(S)) can achieve better 
performance (see Fig.  6). K-Means++ with 50 executions achieved the best perfor-
mance followed by Random (see Fig. 5). The only deterministic method that can still 
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compete to an extent is DK-Means++ (see supplementary material where we provide a 
full list of all comparisons among all the initialisation methods).

• We found (see Table  5) that as indicated by Slonim et  al. (2013) Hartigan–Wong 
K-Means is better than Lloyd’s K-Means and as shown by Brusco et al. (2017) (only 
for one K-Means variant) K-Medians is better than both Hartigan–Wong and Lloyd’s 
K-Means. However these differences add up to performance difference of only 1.5% as 
measured by the purity index.

• Regarding execution time requirements, Random and K-Means++ are fastest perform-
ers in terms of single runs while Kaufman the slowest (see Fig.  7). Maximin(S) is 
slightly slower than K-Means++. Nevertheless these methods require multiple execu-
tions in order to reach the performance of determinsitic methods (refer to Table 6) espe-
cially with bigger data sets (number of elements to thousands). Multiple executions of 
these methods have almost similar requirements as a single run of deterministic meth-
ods DK-Means++ and ROBIN(D) (refer to Fig. 8). This is due to the fact that the clus-
tering algorithm requires more iterations to reach converge when stochastic methods 
are used (refer to the supplementary material). Between DK-Means++ and ROBIN(D) 
the former is faster than the latter.

Overall, and from a practical point of view, the stochastic Random and the deterministic 
Kaufman methods are not advisable. The first method despite being the simplest and the 
fastest can be replaced with K-Means++ that has better probability of achieving superior 
performance. The latter method is extremely slow and there are better alternatives such 
as the DK-Means++ that has both better performance and execution time. Maximin(D) 
and ROBIN(S) are not advisable either since the former is relatively fast and multiple 
executions of Maximin(S) can be performed instead while the latter has much more time 
requirements, small variability on its solutions and when an approximate clustering is 
required ROBIN(D) can be used instead. DK-Means++ is a good option when determin-
ism is required since with a single run it can achieve better performance compared with 
other deterministic methods and comparable performance to multiple executions of sto-
chastic methods that would require the same or more running time. In applications where 
exhausted search of optimal initial centroids needs to be performed K-Means++ should 
be considered (the study of Celebi et al. (2013) has also benchmarked a greedy version of 
this method which is also recommended). In these cases, if time requirements are flexible, 
a strategy would be to perform first DK-Means++ which would give an indication about 
the clustering capabilities of the data set and then multiple executions of K-Means++. We 
should add that in the mixed model 4, ROBIN(S) and ROBIN(D) performed significantly 
low compared with other cases because both where placing two initial centroids on the 
sides of the most elongated cluster while DK-Means++ were placing correctly a centroid 
almost in the middle of the cluster. This indicates that the DK-Means++’s heuristic might 
be more robust to applications than the LOF score of ROBIN for clusters detection. It 
should be noted that more complex techniques like DK-Means++ can be considered as 
clustering algorithms themselves since they produce good initial clusters. This observation 
was mentioned in the study of Celebi et al. (2013) and we also performed a study (refer 
to the supplementary material) on the number of iterations until the K-Means algorithm 
reaches convergence when it is initialized with different methods. Based on the results 
deterministic methods cause K-Means to converge faster than when it is initialized with 
stochastic methods. As expected, ROBIN(S) and DK-Means++ were again the best sto-
chastic and deterministic methods on that account.
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These conclusions were based on extensive benchmarking considering many different 
clustering models from other studies: Gaussian, high-dimensional (10 dimensions), elon-
gated, unbalanced, non-Gaussian from the studies of Tibshirani et al. (2001) and Yan and 
Ye (2007); high-dimensional (20 dimensions) containing informative and uninformative 
features and higher-dimensional (1000 and 1500 dimensions) with varying number of clus-
ters (3, 10, 50 clusters) and cluster sizes (50–100 points) Brodinová et al. (2017). We also 
used our own models which contain clusters with different properties (unbalanced, elon-
gated and Gaussian; unbalanced Gaussian and non-Gaussian; unbalanced, Gaussian with 
different variability among their dimensions).

With the use of synthetic data set generators we had the ability to generate multiple data 
sets and run hypothesis testing to further strengthen our conclusions but we also consid-
ered standalone data sets. The “clustering data sets” S-sets (Fränti & Virmajoki, 2006) and 
A-sets (Kärkkäinen & Fränti, 2002) were selected from the studies of Fränti and Sieranoja 
(2018), Fränti and Sieranoja (2019) because both are containing more clusters and data 
points than the generated ones and also because in the case of the S-sets the clusters are 
having different overlap degrees. The conclusions we obtained from the data set generators 
match with the conclusions of the standalone S-sets and A-sets data sets. Specifically for 
our higher dimensional data sets (1000, 1500 dimensions) generated using the Brodinova 
generator (Brodinová et al., 2017) (see Table 2) we selected to have small clusters due to 
the Kaufman initialization method which requires significant amount of time to be exe-
cuted. However, we also generated data sets with larger clusters (approximately five times 
bigger) and we tested the ROBIN(D) and DK-Means++ methods on them. The results (not 
shown) and conclusions were similar to the ones reported already.

Based on the previous studies (Fränti & Sieranoja, 2018, 2019) the authors have clearly 
demonstrated that K-Means performs worse when there is large number of clusters and that 
dimensionality does not have a direct effect on the performance of the algorithm. In our 
experiments using the Brodinova models (see Figs. 3, 6 brod 1 to brod 12) we observe that 
indeed the performance of all the methods drops when the number of clusters is increased 
regardless of the dimensionality, especially in the case of Brodinova brod10 model where 
we generate data sets having 50 clusters. Apart from the last extreme case, we observed 
that multiple executions of stochastic methods improve the performance of K-Means. It 
should also be noted that the deterministic DK-Means++ method achieves (similar to 
multiple executions of stochastic methods i.e. Random, K-Means++, Maximin(S) and 
ROBIN(S)) the highest performance on the clustering basic benchmark (Fränti & Sier-
anoja, 2018, 2019) in all the cases (see the supplementary material) even though these data 
sets have high number of clusters (A-sets: 20, 30, 50; S-sets: 15). The same authors (Fränti 
& Sieranoja, 2018, 2019) also demonstrated that strong cluster unbalances affect negatively 
the K-Means clustering. In our experiments and specifically for the weighted gap 2 model 
we observed that data sets with unbalanced clusters do not cause any particular issues to 
the maximum performances of the algorithms. For the performance between K-Means and 
K-Medians, similar to the results of Brusco et al. (2017), we found that K-Medians outper-
forms K-Means on synthetic data set models but on a small difference of 1% of purity and 
on standalone data sets (both synthetic and real-world) any particular differences among 
the K-Means variations couldn’t be clearly detected.

In order to show application to “real world problems” previous studies have chosen to 
use standard classification data sets as benchmarks for clustering. While this approach is 
commonly used, in these data the mapping from classes to clusters is somehow forced: it 
is possible that data from one class belong to different clusters, and assuming that number 
of clusters equals number of classes is likely to underestimate the true number of clusters. 
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This can be seen from the low value of the Silhouette index especially in the cases of Iono-
sphere and Yeast data sets. For this we base our conclusions mostly on the benchmark 
models that allows us to generate multiple samples and evaluate the statistical significance 
of the results. In fact, we considered a broad combination of different clusters, in terms of 
normality (Gaussian, non-Gaussian), shape (spherical, elongated) and size (clusters with 
different number of data points) including high dimensional data, as found in real world 
applications such as bioinformatics (Wang et al., 2008).

It should also be noted that many clustering frameworks designed to deal with complex 
data sets (e.g. sub-clustering Biswas & Jacobs, 2014, or sparse clustering Witten & Tib-
shirani, 2010; Kondo et al., 2016; Brodinová et al., 2017) are using the K-Means or some 
variant of it and are dependent on good clustering initialisation. Our experimental work 
revealed that there are deterministic methods (DK-Means++ Nidheesh et  al., 2017) that 
lead to a good clustering solution with a single execution of the K-Means algorithm.

A limitation of the current study is that the execution time analysis is subject to the 
machine that executed it. More powerful machines or code optimisation of the algorithms 
and initialisation methods can change time analysis results. Nevertheless the rest of the 
analysis including the number of different seeds for stochastic methods to reach the per-
formance of deterministic is, on average, reproducible. Statistics on average performance 
comparison are representative since, the analysis of Sects. 4.1–4.3 had been also per-
formed on 25 instances of the various data sets models instead of 50 and led to the same 
conclusions.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10994- 021- 06021-7.
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