
Vol.:(0123456789)

Machine Learning (2021) 110:1975–2003
https://doi.org/10.1007/s10994-021-06021-7

1 3

An empirical comparison between stochastic
and deterministic centroid initialisation for K‑means
variations

Avgoustinos Vouros1 · Stephen Langdell2 · Mike Croucher2 · Eleni Vasilaki1

Received: 29 November 2019 / Revised: 14 June 2021 / Accepted: 15 June 2021 /
Published online: 12 July 2021
© The Author(s) 2021

Abstract
K-Means is one of the most used algorithms for data clustering and the usual clustering
method for benchmarking. Despite its wide application it is well-known that it suffers from
a series of disadvantages; it is only able to find local minima and the positions of the ini-
tial clustering centres (centroids) can greatly affect the clustering solution. Over the years
many K-Means variations and initialisation techniques have been proposed with different
degrees of complexity. In this study we focus on common K-Means variations along with
a range of deterministic and stochastic initialisation techniques. We show that, on average,
more sophisticated initialisation techniques alleviate the need for complex clustering meth-
ods. Furthermore, deterministic methods perform better than stochastic methods. However,
there is a trade-off: less sophisticated stochastic methods, executed multiple times, can
result in better clustering. Factoring in execution time, deterministic methods can be com-
petitive and result in a good clustering solution. These conclusions are obtained through
extensive benchmarking using a range of synthetic model generators and real-world data
sets.

Keywords K-Means clustering · Deterministic clustering · Benchmarking

1 Introduction

The most well-known algorithm in the field of clustering analysis is the K-Means
algorithm. Its simplicity, versatility and efficiency makes it popular in many differ-
ent research fields (Pena et al., 1999; Jain, 2010). Despite its reputation and success
in many different studies, it has a series of disadvantages such that it can detect only
spherical and well-separated clusters, it is sensitive to outliers, highly dependent on the

Editor: Tijl De Bie

 * Avgoustinos Vouros
 avouros@gmail.com

1 Department of Computer Science, University of Sheffield, Sheffield S10 2TN, UK
2 Numerical Algorithms Group (NAG), Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR, UK

http://orcid.org/0000-0002-3383-6133
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06021-7&domain=pdf

1976 Machine Learning (2021) 110:1975–2003

1 3

features (dimensions) of the data set and it only converges to local minima (Jain, 2010).
Over the years a number of K-Means variations (Lloyd’s K-Means—Slonim et al., 2013,
Hartigan–Wong’s K-Means—Hartigan, 1975), K-Means inspired algorithms (K-Medi-
ans—Charu & Chandan, 2013), and K-Means initialisation methods (Celebi et al.,
2013) have been proposed in order to overcome some of these issues. Such methods
have also enhanced KMeans with additional properties such as feature selection mech-
anisms (Witten & Tibshirani, 2010; Kondo et al., 2016), semi-supervised capabilities
(Bilenko et al., 2004; Vouros & Vasilaki, 2021), and outliers robustification (Al Hasan
et al., 2009; Brodinová et al., 2017).

In the literature there are various studies regarding the importance of the initial selec-
tion of cluster centroids for the performance of the K-Means algorithm (Jain, 2010) and
extensive testing on various initialisation techniques (Celebi et al., 2013; Fränti & Sier-
anoja, 2019), but a detailed comparison on the effects on these techniques on common
K-Means variations is not available. We hypothesize that sophisticated initialisation
methods alleviate the need for complex clustering and, if deterministic, they could lead
to satisfactory solutions within a single execution of the clustering algorithm. Conse-
quently, they would alleviate the need for executing a stochastic method multiple times
and picking the best clustering based on some criterion.

In order to investigate this hypothesis we compare different clustering initialisation
methods, namely Random (MacQueen, 1967), K-Means++ (Arthur & Vassilvitskii,
2007), Maximin (Gonzalez, 1985), ROBust INitialisation (ROBIN) (Al Hasan et al.
2009), Kaufman and Rousseeuw (2009) and Density K-Means++ (DK-Means++) (Nid-
heesh et al., 2017), and their effects on common K-Means variations, Lloyd’s K-Means
(Jain, 2010), Hartigan–Wong’s K-Means (Hartigan & Wong, 1979; Hartigan, 1975) and
K-Medians (Charu and Chandan, 2013). We show that more sophisticated initialisation
methods reduce on average the performance difference among the K-Means implemen-
tations and that the deterministic DK-Means++ method can achieve better average per-
formance than stochastic methods. Nevertheless there is a trade-off, simplistic stochastic
methods can achieve better clustering performance if executed multiple times due to the
potential of discovering better local minima. For very large data sets where execution
time is a factor, a single run using a deterministic initialisation method can be competi-
tive compared to multiple runs using stochastic initialisation methods.

A similar study comparing many different intialisation methods has been performed
by Celebi et al. (2013) but it is focused on algorithms of linear complexity without con-
sidering various K-Means implementations. Recently, another study (Fränti and Sier-
anoja 2019) was performed on stochastic initialization heuristics for K-Means and on
how much the algorithm can be improved by repetition. They based their conclusions
on a clustering benchmark (Fränti & Sieranoja, 2018, 2019) which contains standalone
data sets with different properties and they showed that K-Means performance is in gen-
eral poor on unbalanced data sets and that the algorithm is not affected by high dimen-
sionality while more iterations can improve its performance on overlapping clusters.
In our case we performed a more extensive benchmarking by taking into consideration
data set generation models as well as standalone data sets. The models gave us the abil-
ity to perform hypothesis testing in order to strengthen our conclusions and to account
for variability.

The code of the clustering methods, data set model generators, scripts and a stan-
dalone application to reproduce this research are available in the GitHub repository
https:// github. com/ avour os/ Code- KMeans- bench mark (under the branch additions).

https://github.com/avouros/Code-KMeans-benchmark

1977Machine Learning (2021) 110:1975–2003

1 3

2 Material and method

2.1 The K‑means algorithm

Given K initial centroids, the K-Means algorithm (Jain, 2010) assigns the data points
into K clusters in a way that minimizes the within cluster sum of squares (WCSS):

where K is the number of clusters, nk the number of data points (observations) of the k-th
cluster and p the dimensionality (number of features) of a given dataset; xij is the value of
the j-th feature of the i-th data point, xi∶ is the vector representing the i-th datapoint; mk∶
specifies the location of the k-th cluster centroid. This problem is equivalent to maximiz-
ing the between cluster sum of squares (BCSS) which is given by Witten and Tibshirani
(2010):

where �1∶ specifies the global centroid assuming that all the data points belong to one
cluster.

2.1.1 Lloyd’s K‑means

Lloyd’s method is the most commonly used K-Means and the standard K-Means cluster-
ing method in many programming languages such as MATLAB (MATLAB, 2019) and
Python (van Rossum, 1995). The steps of this algorithm are as follows (Jain, 2010):

1. Initialise K initial centroids m1j,… ,mKj using some initialisation method.
2. Assign each data point xi∶ to cluster ck∗ ,

3. Recompute each cluster centroid using the formula,

4. Go to step 2 until converge.

(1)
WCSS =

K�
k=1

nk�
⎛
⎜⎜⎝

i = 1

xi∶ ∈ ck

⎞
⎟⎟⎠

p�
j=1

(xij − mkj)
2,

(2)
BCSS =

p�
j=1

� n�
i=1

(xij − �1j)
2 −

K�
k=1

nk�
⎛
⎜⎜⎝

i = 1

xi∶ ∈ ck

⎞
⎟⎟⎠

(xij − mkj)
2

�
,

(3)k∗ = argmin
k

{ p∑
j=1

(xij − mkj)
2

}
.

(4)
mkj =

∑nk

⎛⎜⎜⎝
i = 1

xi∶ ∈ ck

⎞⎟⎟⎠

xij

nk
.

1978 Machine Learning (2021) 110:1975–2003

1 3

2.1.2 Hartigan–Wong’s K‑means

Hartigan–Wong’s K-Means algorithm is an alternative to Lloyd’s K-Means and the
default K-Means of the R language (R Core Team, 2013). In the study of Slonim et al.
(2013) it is shown that this method has lower probability of converging to a local min-
ima solution compared to Lloyd’s method in exchange of extra complexity. The steps of
the algorithm are as follows (Hartigan, 1975; Slonim et al., 2013):

1. Initialise K initial centroids m1j,… ,mKj using an initialisation method.
2. Assign each data point xi∶ to cluster ck′ ,

3. Set an indicator s = 1.
4. For each data point xi∶

(a) Remove it from its cluster ck′.
(b) Compute the centroid of ck′ using the remaining points in that cluster,

(c) Assign xi∶ to cluster ck∗ ,

(d) Recompute the centroid of the cluster ck∗ ,

(e) If k∗ ≠ k� set s = 0.

5. If s = 0 , set s = 1 and go to step 4.

2.1.3 The K‑medians algorithm

The K-Medians algorithm (Charu & Chandan, 2013) is similar to the K-Means but uses
the median instead of the mean to calculate the cluster centroid. The objective function
of the algorithm is given by the equation:

k� = argmin
k

{ p∑
j=1

(xij − mkj)
2

}
.

mk�j =
1

nk�

nk��
⎛
⎜⎜⎝

i = 1

xi∶ ∈ ck�

⎞
⎟⎟⎠

xij.

k∗ = argmin
k

{ p∑
j=1

(xij − mkj)
2

}
.

mk∗j =
1

nk∗

nk∗�
⎛
⎜⎜⎝

i = 1

xi∶ ∈ ck∗

⎞
⎟⎟⎠

xij.

1979Machine Learning (2021) 110:1975–2003

1 3

where m̄kj specifies the location of the k-th cluster centroid in the j-th dimension which is
computed by taking the median of the data points xij belonging to that cluster. K-Medians
corresponds to the L1-norm as opposed to the L2-norm of K-Means (Charu & Chandan,
2013). The use of median in place of the mean makes the K-Medians algorithm robust to
outliers (Feldman & Schulman, 2012; Whelan et al., 2015) since the median has a break-
ing point of 0.5, i.e. even if half of the data set is corrupted by outliers the median of the
corrupted data set will be similar to the median of the original data set (Lopuhaa & Rous-
seeuw, 1991). The common implementation of the algorithm is similar to Lloyd’s K-Means
where, in the 3rd step of Lloyd’s algorithm, the median is used to compute the new cen-
troids locations instead of the mean., i.e. ∀k m̄k∶ = median({xi∶}), xi∶ ∈ ck.

2.2 K‑means initialisation methods

Let D(xi∶) denote the distance between data point xi∶ and the nearest of the selected cluster
centroids, mk∶ , k = 1,… , L , with L being the number of selected centroids (L ≤ K):

2.2.1 Random

The initialisation method of MacQueen (1967) proposes a random selection of data points
from the data set which will be the initial centroids. This is one of the earliest clustering
initialisation techniques and an improvement of Jancey’s method (1966). The latter study
suggested the centroids to be at random locations within the minimum hypersphere of the
data set but this might result in empty clusters to be generated after the execution of the
K-Means algorithm.

2.2.2 K‑means++

K-Means++ (Arthur & Vassilvitskii, 2007) is a standard clustering initialisation technique
in many programming languages such as MATLAB and Python. It has linear complexity
O(N) and it uses a probabilistic approach in order to select as initial centroids data points
that are far away from each other. The steps of this algorithm are as follows:

1. Select randomly a data point xi∶ as the first centroid m1∶ and set k = 2.
2. Choose another data point xi�∶ as the next centroid mk∶ with probability

 and set k = k + 1.

(5)
E =

K�
k=1

nk�
⎛
⎜⎜⎝

i = 1

xi∶ ∈ ck

⎞
⎟⎟⎠

p�
j=1

�xij − m̄kj�,

(6)D(xi∶) = min
k

√√√√ p∑
j=1

(xij − mkj)
2.

p(xi�∶) =
D(xi�∶)

2

∑n

i=1
D(xi∶)

2

1980 Machine Learning (2021) 110:1975–2003

1 3

3. While k ≤ K go to step 2.

2.2.3 Maximin

The maximin method of Gonzalez (1985) picks data points as cluster centroids that are far
apart form each other.

1. Select randomly a data point xi∶ as the first centroid m1∶ and set k = 2.
2. Select as the next centroid mk∶ = xi�∶ with i� = argmax

i

{D(xi∶)} and set k = k + 1.

3. While k ≤ K go to step 2.

Maximin has linear complexity O(N) . The study of Katsavounidis et al. (1994) proposed
a modification in the first step of the algorithm to select as the first centroid the data point
with the maximum Euclidean norm (Celebi et al., 2013). In this way the method can
become deterministic.

2.2.4 Kaufman

Kaufman and Rousseeuw (2009) proposed a deterministic method for centroids initialisa-
tion. Their method is as follows (Pena et al., 1999):

1. Select the closest data point to the global centroid of the data set as the first centroid m1∶
and set k = 2.

2. For every two non-selected data points xi∶ and xi�∶ calculate,

3. Select as the next centroid mk∶ = xi∗∶ , with i∗ = argmax
i

{
∑

i� Ci�i} and set k = k + 1.

4. While k ≤ K go to step 2.

Kaufman’s and Rousseeuw’s algorithm has quadratic complexity O(N2) because of the
computation of the pairwise distances (Celebi et al., 2013).

2.2.5 Robust initialisation (ROBIN)

Al Hasan et al. (2009) is a robust to outliers initialisation method. It uses the Local Outlier
Factor (LOF) (Breunig et al., 2000) in order to select as initial centroids data points that
are far away from each other and also representative points of dense regions in the data
set. In addition it requires one more tuning parameter which is the number of neighbor-
ing data points mp to be consider when computing the LOF of each data point. The LOF
score of each data point, LOF(xi∶,mp) , is given by the algorithm below (Al Hasan et al.,
2009) (where N(xi∶,mp) is the set of the mp nearest data points to the xi,∶ data point, with
|N(xi∶,mp)| ≥ mp):

1. Compute the density of each data point xi∶ ,

Ci�i = max

{
D(xi∶) −

√√√√ p∑
j=1

(xij − xi�j)
2, 0

}
.

1981Machine Learning (2021) 110:1975–2003

1 3

2. Compute the average relative density of each data point xi∶ ,

3. Compute the LOF score of each data point xi∶ ,

The ROBIN algorithm (K > 1) is described below (Al Hasan et al., 2009):

1. Pick a reference data point xr∶ from the data set.
2. Sort the data points in decreasing order of their distance from xr∶.
3. For each xi∶ in sorted order, pick the first data point xi�∶ for which LOF(xi�∶,mp) ≈ 1 as

the first centroid m1∶ and set k = 2.
4. Sort the data points in decreasing order based on D(xi∶) . For the formula of D(xi∶) refer

to Eq. 6.
5. For each xi∶ in sorted order, pick the first data point xi�∶ for which LOF(xi�∶,mp) ≈ 1 as

the next centroid mk∶ and set k = k + 1.
6. While k ≤ K go to step 4.

The computational cost of this method is dominated by the complexity of sorting, which
is O(N log N) (Celebi et al., 2013) but for the LOF score calculation we have a choice
of algorithms varying from O(N) to O(N2) , that can be chosen based on dimension-
ality-related constraints, see Breunig et al. (2000). Regarding the 4th step of the algo-
rithm, in an R implementation (refer to the study of Brodinová et al. (2017)) the formula
LOF(xr�∶,mp) < 1.05 was used but since the LOF score can also be lower than 1, in our
experiments, we used the formula 1 − e < LOF(xr�∶,mp) < 1 + e where e was set to 0.05.
In the original algorithm (Al Hasan et al., 2009) the authors are using the algorithm in
a deterministic manner by setting the reference point on step 2, xr ∶ to the origin. In the
R implementation of Brodinová et al. (2017) the reference point is chosen at random. In
this study we test both methods, ROBIN(S) will refer to the stochastic method of Brodi-
nová et al. (2017) while ROBIN(D) will refer to the deterministic method of Al Hasan et al.
(2009).

2.2.6 Density K‑means++ (DK‑means++)

DK-Means++ (Nidheesh et al., 2017) is a deterministic method for centroids initialisation
based on data density. It is an improved method of Rodriguez and Laio (2014), Lan et al.
(2015) since it requires only to define the number of clusters K and utilizes a heuristic to
detect dense regions in the data set based on a radius � in order to select optimal centroids.
The radius � can be computed form the following algorithm (Nidheesh et al., 2017):

1. Construct the minimum spanning tree of the distance matrix of the data set.

(7)density(xi∶,mp) =
�N(xi∶,mp)�

∑
xi�∶∈N(xi∶ ,mp)

�∑p

j=1
(xij − xi�j)

2

, i ≠ i�.

(8)ard(xi∶,mp) =
density(xi∶,mp)∑

x
i�∶

∈N(xi∶ ,mp)
density(xi�∶ ,mp)

�N(xi∶,mp)�

.

(9)LOF(xi∶,mp) =
1

ard(xi∶,mp)
.

1982 Machine Learning (2021) 110:1975–2003

1 3

2. Let Λ be the weights of edges of the Minimum Spanning Tree and IQR the Inter Quartile
Range. Then,

The DK-Means++ algorithm is described below (Nidheesh et al., 2017):

1. Compute the local density p(xi∶) of each data point using the formula:

 where �-neighbors(xi∶) are the data points falling under the hypersphere with centroid
xi∶ and radius �.

2. Normalize p(xi∶) using the min–max normalization.
3. The first cluster centroid m1∶ is the data point xi∗∶ for which p(xi∗∶) = max{p(x)} . Then

m1∶ = xi∗∶ and k = 2.
4. Compute the prospectiveness all data points that are not selected as centers given the

formula, �(xi∶) = p(xi∶) ⋅ D(xi∶) . For the formula of D(xi∶) refer to Eq. 6.
5. The next centroid mk∶ is the data point with maximum prospectiveness: mk∶ = xi∗∶ with

i∗ = argmax
i

{�(xi∶)} and k = k + 1.

6. While k ≤ K go to step 4.

The computation of �-neighbors contributes to the complexity of DK-Means++. It is dom-
inated by the distance matrix computation, which is O(n2) . The computation of the Mini-
mum Spanning Tree depends of the algorithm used to compute it, efficient implementa-
tions of Kruskal’s algorithm and Prim’s algorithm require O(n log n) time to compute a
minimum spanning tree (Moret & Shapiro, 1992). As O(n2) is the dominating complexity,
the entire process of finding initial centroids, of DK-Means++ has a time complexity of
O(n2).

2.3 Clustering evaluation

In the literature there are many indexes for assessing the clustering performance (Al Hasan
et al., 2009; Rendón et al., 2011; Fränti & Sieranoja, 2018). Here, in order to evaluate the
clustering solutions, we selected to use one external (supervised) criterion, the Purity and
one internal (unsupervised) criterion, the Silhouette index.

2.3.1 Purity

Let our data belong to different classes �
�
 and the number of classes � equal the number of

clusters K, for each cluster the purity is defined as Rendón et al. (2011),

where max
�

{n
(k)

�
�

} specifies the number of data points of the dominant class of the k-th clus-
ter. The overall clustering purity index is then computed as,

� = 3 ⋅ IQR(Λ) + 75thpercentile(Λ).

p(xi∶) =
�

xi� ∈�-neighbors(xi∶)

exp

�−
�∑p

j=1
(xij − xi�j)

2

�

�
.

(10)Pck
=

1

nk
max
�

{n
(k)

�
�

},

1983Machine Learning (2021) 110:1975–2003

1 3

The purity index is bounded between (0 1] ; larger values of purity correspond to better
performance accuracy and a purity of 1 specifies an accuracy of 100% meaning that each
cluster has data points from only one class.

2.3.2 Silhouette index

The Silhouette index is a value that specifies the degree of similarity between a data point
and other data points of the same cluster and the dissimilarity between a data point and
other data points in different clusters. The Silhouette index of the data point xi∶ ∈ ck is
given by 12 (Rousseeuw, 1987),

where axi∶ is the average distance of xi∶ and all the other data points in the cluster that xi∶
belongs to

and bxi∶ is the minimum average distance of xi∶ to all the other data points in other clusters,

We can then define the average Silhouette index,

The Silhouette index is commonly used to estimate the number of clusters in a data set but
it can also be used to assess the clustering quality (Rousseeuw, 1987). The Silhouette index
is bounded between −1 and 1, where 1 specifies maximum separation of clusters and maxi-
mum within cluster density while other indexes, such as the distortion score, gives only an
estimation of the latter.

3 Benchmarks

In our experiments we use the synthetic data from the studies of Tibshirani et al. (gap
statistic) (2001), Yan and Ye (weighted gap statistic) (2007) and Brodinová et al. (2017).
A summary of the models can be found in Table 1 grouped by specific properties of the

(11)P =

K∑
i=1

nk

n
Pck

.

(12)Sxi∶ =
bxi∶ − axi∶

max{bxi∶ , axi∶}
,

(13)
axi∶ =

1

nk − 1

nk�
⎛
⎜⎜⎝

i� = 1

xi�∶ ∈ ck

⎞
⎟⎟⎠

���� p�
j=1

(xij − xi�j)
2

(14)
bxi∶ = min

k�

1

nk�

nk��
⎛
⎜⎜⎝

i� = 1

xi�∶ ∈ ck�

⎞
⎟⎟⎠

���� p�
j=1

(xij − xi�j)
2, k� ≠ k.

(15)S =
1

n

n∑
i=1

Sxi∶ .

1984 Machine Learning (2021) 110:1975–2003

1 3

models. For more information refer to the relevant studies and also to Fig. 1 for a sample
visualization of each model. We exclude model 1 from the gap statistic study (Tibshirani
et al., 2001) since it contains only one cluster. The Brodinová et al. (2017) generator was
used to generate high-dimensional data sets consisting of informative and non-informative
features. No noise injection (attributes with noise contamination) was considered in the
current study. To avoid situations of overlapping clusters the minimum Euclidean distance
between any two points in different clusters was set to 3 and data sets violating this rule
were re-generated. A summary of the models can be found in Table 2. Next we use our
own synthetic data sets models consisted of clusters with mixed properties. We will refer to
these models as mixed (refer to Fig. 1 for a sample visualization of these models).

• model 1 generates 3-dimensional clusters, 1 spherical and 2 elongated. The spheri-
cal cluster is an 80 points Gaussian cluster at the origin with standard deviation of
0.1. The two elongated clusters have 100 points each and are generated as follows:
x1 = x2 = x3 = t with t taking 100 equally spaced values from − 1 to 1. We then add
Gaussian noise with standard deviation of 0.3 to each dimension. The second dimen-
sion of the first elongated cluster was shifted by 2 from the centre of the spherical clus-

Table 1 Gap (Tibshirani et al., 2001) and weighted gap statistic (Yan & Ye, 2007) data sets models

Points: the number of data points per cluster, or indicates that a random number was selected among the
specified numbers for each cluster, to indicates that a random number was selected between the specified
numbers for each cluster; p: number of features or attributes of the data set (dimensions); K: number of
generated clusters. Gaussian models: clusters of low dimensionality generated from Gaussian distributions.
10-D Gaussian models: clusters of higher dimensionality generated from Gaussian distributions. Elongated
models: clusters generated by adding Gaussian noise across lines. Unbalanced model: data sets containing
Gaussian clusters of very different sizes, exponential: non-Gaussain clusters generated from the exponential
distribution. For more information about the parameters used for the Gaussians refer to the relevant studies
and the supplementary material. Visualization (when possible) of a data set from each model is available in
Fig. 1

Points p K

Gaussian models
gap model (gap 2) 25,25,50 2 3
gap model 3 (gap 3) 25 or 50 3 4
weighted gap model 1 (wgap 1) 25 to 50 2 6
weighted gap model 6 (wgap 6) 50 each 2 6
10-D Gaussian models
gap model 4 (gap 4) 25 or 50 10 2
weighted gap model 5 (wgap 5) 25 to 50 10 2
Unbalanced model
weighted gap model 2 (wgap 2) 100,15 2 2
Exponential model
weighted gap model 3 (wgap 3) 50 each 2 4
Elongated models
gap model 5 (gap 5) 100 each 3 2
weighted gap model 4 (wgap 4) 100 each 2 2

1985Machine Learning (2021) 110:1975–2003

1 3

ter. Similarly the second dimension of the second elongated cluster was shifted by − 2
and the first dimension was rotated by 1800.

• model 2 generates 3-dimensional non-Gaussian and normal clusters. It generates: (a) a
cluster from an exponential distribution with rate of 1 and truncated at [−11] containing
80 points, (b) a cluster from an exponential distribution with rate of 1 and and truncated
at [23] with 100 points, (c) a Gaussian cluster of 80 points with mean [0.5, 2.5, 2.5] and
standard deviation of 0.1 in every dimension and (d) a Gaussian cluster of 100 points
with mean [2.5, 0.5, 0.5] and standard deviation of 0.2 in every dimension.

• model 3 generates 3-dimensional Gaussian clusters with different standard deviations.
The first cluster has 80 points with mean at the origin and standard deviation of 0.1 on
each dimension. The second cluster has of 100 points with mean [2, 0, 0] and stand-
ard deviation of 0.2 on each dimension. The third cluster has of 120 points with mean
[0, 2, 0] and standard deviation of 0.3 on each dimension. The forth cluster consists of
140 points with mean [0, 0, 2] and standard deviation of 0.4 on each dimension.

• model 4 generates 3-dimensional mixed Gaussian clusters. The first cluster consists of
80 points with mean [0, 0, 0] and standard deviations [0.1, 0.1, 0.2]. The second clus-
ter consists of 100 points with mean [2, 0, 0] and standard deviations [0.1, 0.2, 0.3].
The third cluster consists of 120 points with mean [0, 2, 0] and standard deviations
[0.2, 0.4, 0.6]. The forth cluster consists of 140 points with mean [0, 0, 2] and standard
deviations [1.0, 0.1, 0.1].

Fig. 1 Model visualization. Examples of data used in this study. Gap (gap) and weighted gap (wgap) mod-
els are separated into three categories: a 4 Gaussian models, b 2 elongated models and c one highly unbal-
anced model (wgap2) and one non-Gaussian model (wgap3) in which the clusters are generated from the
exponential distribution. d Mixed models: these are the additional models proposed in our study that con-
tain clusters with mixed properties such as different sizes (unbalanced) and/or generated from Gaussian and
non-Gaussian distributions

1986 Machine Learning (2021) 110:1975–2003

1 3

Table 3 Real data sets from the
UCI repository (Asuncion &
Newman, 2007)

 Points: the number of data points per cluster; p: number of features or
attributes of the data set (dimensions); K: number of generated clus-
ters

Name Points p K

Iris 50,50,50 4 3
Ionosphere 225,126 34 2
Wine 59,71,48 13 3
Breast cancer 444,239 9 2
Glass 70,76,17, 19,9,29 9 6
Yeast 463,5,35,44, 51,163,244,

429,20,30
8 10

Table 2 Brodinova model
generator (Brodinová et al.,
2017)

 The minimum allowed Euclidean distance between two data points in
different clusters was set to 3 and no noise injection was considered.
Name: name of the model; Points: the total number of data points
in the data set; p: number of features or attributes of the data set,
Informative (+) indicates attributes that are required to describe the
data set while Non-informative (–) indicates variables that should be
ignored; K: number of generated clusters. These models are creating
high-dimensional Gaussian clusters of different shapes using two dif-
ferent distributions, one for the informative and one for the uninforma-
tive variables. Left table: Each cluster contains 40 data points. The
parameters of these models are selected to test the performance of the
clustering algorithm in data sets with different degrees of informative
and/or uninformative features Right table: The first four models create
higher-dimensional balanced clusters (clusters of equal sizes) and the
last two higher-dimensional unbalanced clusters each with number of
points randomly selected between 50 to 100. The parameters of these
models are selected to test the performance of the clustering algo-
rithm in balanced and unbalanced data sets of higher dimensionality
with increasing number of clusters. The input space was selected to be
sparse, i.e. a few hundred points in 1000 or 1500 dimensions to avoid
the slow computation of the Kaufman algorithm

Name Points p K

+ -

brod 1 120 20 0 3
brod 2 400 20 0 10
brod 3 120 15 5 3
brod 4 400 15 5 10
brod 5 120 10 10 3
brod 6 400 10 10 10
brod 7 120 1000 0 3
brod 8 400 1000 0 10
brod 9 400 1500 0 10
brod 10 1250 1500 0 50
brod 11 50 to 100 1000 0 3
brod 12 50 to 100 1000 0 10

1987Machine Learning (2021) 110:1975–2003

1 3

We also consider the S-sets (Fränti & Virmajoki, 2006) and the A-sets (Kärkkäinen &
Fränti, 2002) obtained from the “clustering basic benchmark” which was used in the
studies of Fränti and Sieranoja (2018), Fränti and Sieranoja (2019). The aforemen-
tioned studies were dedicated to the K-Means properties, advantages and disadvantages
and assessed used various synthetic data sets. Both models contain 2-dimensional data;
S-sets contains 4 data sets with 5000 data points distributed among 15 Gaussian clus-
ters with different degree of clustering overlap (Fränti & Virmajoki, 2006) and A-sets
contains 3 data sets with 20, 35 and 50 clusters and 150 data points per cluster (Kärk-
käinen & Fränti, 2002). For more information about these data sets refer to the relevant
studies. Finally we considered a selection of data sets from the UCI repository (Asun-
cion & Newman, 2007): Iris, Ionosphere, Wine, Breast Cancer, Glass and Yeast. More
information about these data sets is shown on Table 3.

4 Results

We test the performance of the K-Means variations, Lloyd’s (Jain, 2010) Harti-
gan–Wong’s (Hartigan & Wong, 1979; Hartigan, 1975) and K-Medians (Charu &
Chandan, 2013) initialised using the eight different clustering initialisation methods
named: Random (MacQueen, 1967), K-Means++ (Arthur & Vassilvitskii, 2007),
Maximin(S) (Gonzalez, 1985), ROBIN(S) (Brodinová et al., 2017), Kaufman (Kauf-
man & Rousseeuw, 2009), ROBIN(D) (Al Hasan et al., 2009), DK-Means++ (Nid-
heesh et al., 2017) and Maximin(D) (Katsavounidis et al., 1994). For the ROBIN vari-
ations the mp parameter specifying the number of neighbor data points was set to 10
as in the original study (Al Hasan et al., 2009). For the Hartigan–Wong’s algorithm
NAG’s implementation was used (Numerical Algorithms Group (NAG), 2019).

We conceptually consider a “sophistication” scale for the initialisation methods
based not only on their execution time but also on the complexity of their underlying
operators. For example DK-Means++ and ROBIN would be considered more sophis-
ticated than Kaufman since they incorporate more advanced statistics while Kaufman
uses only distances and still has a complexity of O(N2) . Our scale is as follows: Ran-
dom < K-Means++ < Maximin < Kaufman < ROBIN < DK-Means++.

In our experiments we use the synthetic data sets models from the studies of gap
statistic (Tibshirani et al., 2001) and weighted gap statistic (Yan & Ye, 2007) (refer to
Table 1, 10 sets in total), Brodinová et al. (2017) (refer to Table 2, 12 sets in total) and
other four custom data sets models (refer to Methods and Fig. 1, 4 sets in total). From
each model we generated 40 data sets and for each data set the stochastic methods were
executed 50 times. These numbers were selected to provide a good statistical sample.
We also use the “clustering data sets” (S-sets Fränti & Virmajoki, 2006 and A-sets
Kärkkäinen & Fränti, 2002) from the studies of Fränti and Sieranoja (2018, 2019) and
real-world data sets from the UCI repository (Asuncion & Newman, 2007): Iris, Iono-
sphere, Wine, Breast Cancer, Glass and Yeast (see Table 3). For each of these data sets
we use the same set up of executing the stochastic methods 50 times.

For all our hypothesis testing on the data set models we used the Paired Samples
Wilcoxon Test, a non-parametric alternative to paired t-test, For the outcome of the
test we generally use the following symbols for the level of significance, * for p-value

1988 Machine Learning (2021) 110:1975–2003

1 3

< 0.05; ** for p-value < 0.01; *** for p-value < 0.001; **** for p-value < 0.0001.
We evaluated the monotonic relationship of Silhouette index and Purity via a large
sample of clustering results on the multiple executions of the methods across all our
data sets (20000 cases). Using Spearman’s rank correlation coefficient, we confirmed
that Purity and Silhouette have a strong monotonic relation (Spearman’s Rho 0.97). As
a side note, we also considered Distortion (Al Hasan et al., 2009) as an unsupervised
index but found the monotonic relationship with Purity weaker (Spearman’s Rho 0.65).

4.1 Comparison on the average performance among stochastic
and among deterministic methods

We assess on average the performance of stochastic methods as well as the performance
of deterministic methods. We calculate the average performance of stochastic methods on
50 different runs across 40 different data sets for each one of our 26 models (10 gap and
weighted gap, 12 Brodinova, 4 mixed models). Deterministic methods were executed once
on the 40 data sets.

Based on Fig. 2 the average performance of K-Means variations increases by using
more sophisticated initialisation methods and ROBIN(S) initialisation provides the best
average performance followed by Maximin(S) and K-Means++ while Random initialisa-
tion results in the poorest performance. For the deterministic methods, shown on Fig. 3, we
observe again that the average performance of K-Means variations increases by using more
sophisticated initialisation methods. DK-Means++ achieved the best average performance
followed by ROBIN(D) and then by Kaufman and Maximin(D). Finally we wanted to
assess if more sophisticated initialization methods alleviate the need for complex cluster-
ing. For this reason we performed comparisons among the K-Means variations initialised
with either Random and K-Means++ or Kaufman and DK-Means++ methods. Maximin
and ROBIN have both stochastic and deterministic variations of equal sophistication thus
we excluded them. As shown in Table 4, deterministic methods that are more sophisticated
(as per our definition) reduce performance differences among the different variants of the
K-Means algorithms.

Table 4 Average performance comparison among K-Means variations using simple stochastic and more
sophisticated deterministic initialisation methods

 We compare two K-Means variations (Hartigan–Wong’s K-Means: HW, Lloyd’s K-Means: Ll and K-Medi-
ans: KMed) initialised with the same method on 26 occasions (10 gap and weighted gap, 12 Brodinova and
4 mixed models). To calculate performance, we averaged the Purity index across the 50 initial conditions
and 40 data sets for each model and the comparison is based on the times that there was significant differ-
ence between the two algorithms

Initialization method Total number of
instances

Significantly better average performance

HW vs Ll HW vs KMed Ll vs KMed

Random 26 13 vs 0 18 vs 4 6 vs 4
K-Means++ 26 10 vs 0 13 vs 3 2 vs 5
Total 52 23 vs 0 39 vs 12 8 vs 9
Kaufman 26 1 vs 1 2 vs 6 1 vs 6
DK-Means++ 26 1 vs 0 2 vs 4 1 vs 5
Total 52 2 vs 1 4 vs 10 2 vs 11

1989Machine Learning (2021) 110:1975–2003

1 3

Fig. 2 Comparison on the average performance among stochastic initialisation methods. Each plot shows
the performance of the Hartigan–Wong’s K-Means clustering solution using the Purity index (y-axis) on
different data sets models (x-axis) and initialized with different stochastic methods. To calculate perfor-
mance, we averaged the Purity index across the 50 initial conditions and 40 data sets for each model (gap,
weighted gap, Brodinova and mixed). The errorbars are showing the (average) standard deviation across
the 40 data sets. Solid lines on any two bars underline the level of significant difference between the cor-
responding methods. The accompanying Table below the figure shows a summary of the comparisons
through all the K-Means variations (Hartigan–Wong’s K-Means (HW), Lloyd’s K-Means (Ll) and K-Medi-
ans (KMed)) where there is a significant performance difference between the compared methods

1990 Machine Learning (2021) 110:1975–2003

1 3

Fig. 3 Comparison on the performance among deterministic initialisation methods. Each plot shows the
performance of the Hartigan–Wong’s K-Means clustering solution using the Purity index (y-axis) on differ-
ent data sets models (x-axis) and initialized with different deterministic methods. To calculate performance,
we averaged the Purity index across the 40 data sets for each model (gap, weighted gap, Brodinova and
mixed). Solid lines on any two bars underline the level of significant difference between the correspond-
ing methods (cases of no significant differences are not shown). The accompanying Table below the fig-
ure shows a summary of the comparisons through all the K-Means variations (Hartigan–Wong’s K-Means
(HW), Lloyd’s K-Means (Ll) and K-Medians (KMed)) where there is a significant performance difference
between the compared methods

1991Machine Learning (2021) 110:1975–2003

1 3

4.2 Comparison of the average performance between stochastic and deterministic
methods

Following on from our previous conclusions, we wanted to assess if overall deterministic
methods provide on average better performance than stochastic methods. For this reason
we compared the stochastic and deterministic variations of Maximin and ROBIN as well as
the best stochastic performer (ROBIN(S) see Fig. 2) and the best deterministic performer
(DK-Means++ see Fig. 3). Based on the results in Fig. 4: (a) Maximin(D) is on average
better than Maximin(S); (b) ROBIN(D) and ROBIN(S) are on average equivalent; (c) DK-
Means++ is better than ROBIN(S).

Fig. 4 Comparisons on the average performance between stochastic and deterministic methods. Each plot
shows the performance of the Hartigan–Wong’s K-Means clustering solution using the Purity index (y-axis)
on different data sets models (x-axis) and initialized with different stochastic methods (only the cases
where significant difference was present are shown). To calculate performance, we averaged the Purity
index across the 50 initial conditions and 40 data sets for each model (gap, weighted gap and Brodinova).
The errorbars (on the stochastic methods only) are showing the average standard deviation across the 40
data sets. Solid lines on any two bars underline the level of significant difference between the correspond-
ing methods (cases of no significant differences are not shown). The accompanying Table below the fig-
ure shows a summary of the comparisons through all the K-Means variations (Hartigan–Wong’s K-Means
(HW), Lloyd’s K-Means (Ll) and K-Medians (KMed)) where there is a significant performance difference
between the compared methods

1992 Machine Learning (2021) 110:1975–2003

1 3

Fig. 5 Comparison on the maximum performance among stochastic initialisation methods. Each plot shows
the performance of the Hartigan–Wong’s K-Means clustering solution using the purity corresponding to the
best Silhouette score achieved within 50 different executions (y-axis) on different data sets models (x-axis)
and initialized with different stochastic methods. Purity for best Silhouette score was averaged over the 40
data sets for each model (gap, weighted gap and Brodinova) The errorbars are showing the standard devia-
tion across the 40 data sets. Solid lines on any two bars underline the level of significant difference between
the corresponding methods. The accompanying Table below the figure shows a summary of the compari-
sons through all the K-Means variations (Hartigan–Wong’s K-Means (HW), Lloyd’s K-Means (Ll) and
K-Medians (KMed)) where there is a significant performance difference between the compared methods

1993Machine Learning (2021) 110:1975–2003

1 3

4.3 Comparison of the maximum performance across multiple runs of stochastic
and deterministic methods

Next, we wanted to compare the stochastic and the deterministic methods but based on the
maximum performance that the former can achieve on multiple repetitions. We run each of
the stochastic methods 50 times and select the best outcome based on the Silhouette index. We
then report its corresponding value according to the purity index. We expect that due to the
many repetitions, stochastic methods can find different local minima and potentially result in a
better performance at the cost of multiple repetitions.

Firstly, we repeat the comparison among the different stochastic methods but based on the
maximum performance that they can achieve. Figure 5 shows the relevant results and, oppo-
site to our observations on the average performance, stochastic methods have higher chances
of obtaining a better clustering result with multiple execution. K-Means++ is the best method
followed by Random while ROBIN(S) and Maximin(S) have almost similar performance.

Afterwards, we compared the maximum performance of stochastic methods with
the performance of deterministic methods similarly to our previous experiment (refer to
Fig. 4). We compare the stochastic and deterministic variations of Maximin and ROBIN as
well as the best stochastic performer of the current experiment (K-Means++) and the best
deterministic performer (DK-Means++ see Fig. 3). Based on the results in Fig. 6, stochas-
tic variations of Maximin and ROBIN achieve overall better performance than their deter-
ministic counterparts and K-Means++ is better than DK-Means++.

We also compare the K-Means variations using different intialisation methods. Based
on the result on Table 5 K-Medians achieves the best performance followed by Harti-
gan–Wong’s; Lloyd’s was the worst performer. Nevertheless, these systematic differences
correspond to only 1.5% purity difference.

4.4 Standalone synthetic and real‑world data sets

We regard the standalone data sets as cases where supervised information is unknown and
we assess the performance of the algorithms based on the Silhouette index. Detailed results
for each data set (minimum, maximum, average performance and variance for each K-Means
variation) are illustrated in the supplementary material. Given that these data sets are unique
it is difficult to draw definite conclusions similar to the ones where data set models were used
but we would like to highlight some observations. DK-Means++ was always able to achieve
the best performance of the unsupervised methods while ROBIN(D) failed to achieve the
best performance in the cases of A-sets 1, S-Sets 3 and S-Sets 4 when Lloyds and K-Medians
were considered; Kaufman and Maximin(D) where the worst performers. From the stochastic
methods ROBIN(S) always managed to achieve the maximum performance apart from one
case of S-Sets 3 when the Harigan-Wong K-Means was considered; Random was the worst
performer. For the real-world data sets most algorithms behaved the same but Maximin(S)
outperformed everyone else in the cases of Yeast (all K-Means variations) and Ionosphere
(Lloyd’s K-Means only). In the case of Glass (all K-Means variations) K-Means++ and
Maximin(S) had the best performances. However, with the real data sets we should consider
the fact that in rare situations the number of clusters equals to the number of classes (Gehring
et al., 2015) thus it might not be the best examples for clustering benchmarking. Also the rel-
atively better performance of Maximin(S) appears only in these few cases where the Silhou-
ette index indicates poor clustering results in general. In such cases comparative conclusions
may not be meaningful as these specific results could be a product of chance.

1994 Machine Learning (2021) 110:1975–2003

1 3

Fig. 6 Comparisons on the maximum performance between stochastic and deterministic methods. Each plot
shows the performance of the Hartigan–Wong’s K-Means clustering solution using the purity correspond-
ing to the best Silhouette score achieved within 50 different executions (y-axis) on different data sets mod-
els (x-axis) and initialized with different stochastic methods (only the cases where significant difference was
present are shown). Purity for best Silhouette score was averaged over the 40 data sets for each model (gap,
weighted gap and Brodinova). The errorbars are showing the standard deviation across the 40 data sets.
Solid lines on any two bars underline the level of significant difference between the corresponding methods
(only cases with significant difference are showed). The accompanying Table below the figure shows a sum-
mary of the comparisons through all the K-Means variations (Hartigan–Wong’s K-Means (HW), Lloyd’s
K-Means (Ll) and K-Medians (KMed)) where there is a significant performance difference between the
compared methods

1995Machine Learning (2021) 110:1975–2003

1 3

4.5 Average number of runs for which stochastic methods reach or surpass
deterministic methods

In the aforementioned experiments we considered 50 executions of the clustering algorithm
using stochastic methods. On average deterministic methods provide better results than sto-
chastic methods but overall stochastic methods may lead to a better clustering solution.
We would therefore like to quantify how often this happens. To estimate this, we divide
the number of total repetitions (50) by the number of cases where the stochastic method
performed better than the deterministic. Table 6 summarises the results of this analysis
on selected data sets based on their size, dimensionality and number of clusters among
two stochastic (Random and K-Means++) and two deterministic methods (DK-Means++
and ROBIN(D)). Based on the results the number of repetitions required for the clustering
method using K-Means++ in order to match or surpass the performance of DK-Means++
and ROBIN(D) are less compared with Random. This was expected given the performance
comparison of Random and K-Means++ but an important result is the following: there are
cases (Yeast, A-sets 2 and A-sets 3) where these stochastic methods fail to match or sur-
pass the performance of deterministic methods under 50 runs. We also observe that when
the size of the data set surpasses the 1000 data points the number of required repetitions is
significantly high. Finally we should mention that these performance differences are minor,
in the order of 10−3 (purity) on average.

4.6 Execution time analysis

Finally, we performed an execution time analysis on the initialisation methods using a
selection of the data sets depending on their size, dimensionality and number of clusters;
data sets with equivalent properties were omitted. The analysis was performed as follows:

Table 5 Best performance comparison on K-Means variations using different initialisation methods

 Each row compares two K-Means variations (Hartigan–Wong’s K-Means: HW, Lloyd’s K-Means: Ll and
K-Medians: KMed) initialised with the same method on 26 occasions (10 gap and weighted gap, 12 Bro-
dinova and 4 mixed models). The comparison is based on the times that there was significant difference
between the two methods on their maximum performance based on the purity for the best Silhouette score

Initialization method Total number of
instances

Significantly better maximum performance

HW vs Ll HW vs KMed Ll vs KMed

Random 26 4 vs 1 3 vs 7 1 vs 7
K-Means++ 26 5 vs 1 2 vs 7 1 vs 4
ROBIN(S) 26 4 vs 0 1 vs 3 1 vs 7
Maximin(S) 26 2 vs 1 3 vs 5 2 vs 3
Total 104 15 vs 3 9 vs 22 5 vs 21
Kaufman 26 1 vs 1 2 vs 6 1 vs 6
DK-Means++ 26 1 vs 0 2 vs 4 1 vs 5
ROBIN(D) 26 6 vs 0 2 vs 2 1 vs 6
Maximin(D) 26 7 vs 0 2 vs 2 1 vs 6
Total 104 15 vs 1 8 vs 14 4 vs 23

1996 Machine Learning (2021) 110:1975–2003

1 3

each initialisation methods followed by K-Means clustering (Lloyd’s K-Means) was exe-
cuted 50 times and the average running time was taken into consideration.

• The benchmarking was exclusively performed on a personal laptop with the following
properties: Dell G7; Intel i7-9750H processor; 16 GB RAM; Windows 10 Pro edition.

• All the algorithms were written in MATLAB but the LOF score for ROBIN was com-
puted using R code (specifically the dbscan package Hahsler et al., 2019) because we
found that the MATLAB implementation was very slow.

• The running time recording includes the initialisation method and the clustering algo-
rithm. For ROBIN the computation of LOF was included in the execution duration as
well as the computation of � for the DK-Means++.

Table 6 Average number of runs for which stochastic initialisations achieve equivalent or better perfor-
mance than deterministic initialisations

 Each column shows a comparison between clustering initialised with stochastic and deterministic methods
(Rand = Random, DKM++ = DK-Means++, KM++ = K-Means++). Each cell value corresponds to the
number of executions of the K-Means clustering initialised with the stochastic method to reach or surpass
its performance if it was initialised with the deterministic method and executed once. N/A values mean
that in these occasions the stochastic clustering was not able to match or surpass the performance of the
deterministic clustering under 50 executions. Values higher than 10 are marked in bold. The data sets are
arranged based on their size, dimensionality and number of clusters (see info on last column; numbers in
italics correspond to the average number of elements should the model generated data sets of different sizes

Rand DKM++ Rand ROBIN(D) KM++ DKM++ KM++
ROBIN(D)

Size, dimensions,
number of clusters

gap 2 5 5 4 4 100, 2, 3
wgap 2 6 6 4 4 115, 2, 2
wgap 4 6 6 5 5 200, 2, 2
wgap 3 3 3 3 3 200, 2, 4
gap 5 4 2 4 2 200, 3, 2
wgap 6 8 8 7 6 300, 2, 6
gap 3 5 5 4 4 143, 3, 4
gap 4 10 10 6 6 158, 10, 2
wgap 1 7 7 6 6 227, 2, 6
wgap 5 14 14 6 6 141, 10, 2
brod 1 4 4 5 5 120, 20, 3
brod 2 18 17 17 17 400, 20, 3
Iris 7 7 3 3 150, 4, 3
Wine 3 3 2 2 178, 13, 3
Glass 7 7 6 6 214, 9, 6
Ionosphere 3 3 2 2 351, 34, 2
Breast cancer 12 12 7 7 683, 9, 2
Yeast N/A 16 27 14 1484, 8, 10
A-sets 1 28 26 26 16 3000, 2, 15
S-Sets 1 34 34 26 15 5000, 2 ,15
A-sets 2 N/A N/A 34 33 5250, 2, 35
A-sets 3 N/A N/A N/A N/A 7500, 2, 50

1997Machine Learning (2021) 110:1975–2003

1 3

Fig. 7 Execution time analysis. a Each line shows the execution duration of an initialisation method on dif-
ferent data sets selected based on size, dimensions and number of clusters. We average the execution time
for 50 repetitions and, in case of models, across the 40 data sets of each model. The data sets are arranged
based on their size, dimensionality and number of clusters (see info on top, underlined numbers means that
for these models generate data sets of different sizes). b Each bar shows the summed execution time across
all data sets of a

Fig. 8 Execution time until stochastic methods reach or surpass the performance of deterministic meth-
ods. Each bar shows the running time requirements of the clustering algorithm initialised with a stochastic
method to reach or surpass the performance of the same algorithm initialised with a deterministic method.
The time requirements of the clustering algorithm using a deterministic method are shown as lines for com-
parison. Cases where bars are not shown mean that, up to 50 runs, the clustering algorithm using a stochas-
tic method was unable to surpass the performance of the deterministic method

1998 Machine Learning (2021) 110:1975–2003

1 3

Based on the results in Fig. 7 Kaufman is the worst method in terms of execution dura-
tion and it is affected both by the size, dimensionality and number of clusters. Random
and K-Means++ are the fastest methods followed by Maximin(S). DK-Means++ is almost
always better than ROBIN(D) in terms of speed for our implementation.

Furthermore, and based on the results of Table 6 we performed an analysis on the time
requirements of the stochastic methods to reach or surpass the performance of determin-
istic methods with multiple executions of the clustering algorithm using different seeds.
In Fig. 8 we show the single run execution time of the stochastic initialisation (plus the
clustering overhead) multiplied by the number of iterations required to surpass the deter-
ministic methods (see Table 6). Based on the results shown in Fig. 8 we observe that in
many occasions running DK-Means++ once is better in terms of execution time than
repeated runs of the clustering with a stochastic method. Equivalent conclusions can also
be obtained from the Maximin(S) initialisation method (supplementary material).

We also investigated the number of iterations required for the clustering algorithm to
reach convergence using stochastic and deterministic methods. We find that stochas-
tic methods overall provide worst initial conditions (with the exception of ROBIN(S) vs
Maximin(D)), and as a consequence the clustering algorithm requires more iterations to
converge, which adds to the overhead of the stochastic initialisation methods (for results
refer to the supplementary material).

5 Discussion

K-Means clustering remains one of the most common clustering techniques in many dif-
ferent research fields and frequently it is used as a component of more complex algorithms
(e.g. hierarchical clustering Jain, 2010). Following similar benchmark studies on K-Means
(Celebi et al., 2013; Fränti & Sieranoja, 2018, 2019), in this study we compare stochastic
and deterministic initialisation methods on K-Means variations. We particularly investi-
gated the methods of ROBIN and DK-Means++ since to the best of our knowledge they
have not been studied as extensively as other initialisation methods. Experimentally we
showed:

• More sophisticated initialisation methods can lead, on average, to better cluster-
ing regardless of the K-Means variation (see Table 4). From the stochastic meth-
ods, ROBIN(S) can achieve the best average performance compared with Random,
K-Means++ and Maximin(S) (see Fig. 2). From the deterministic methods, DK-
Means++ can achieve the best performance compared with Kaufman, Maximin(D)
and ROBIN(D) (see Fig. 3). In addition, DK-Means++ can achieve better performance
from the average performance of stochastic methods (see Fig. 4). Overall, determinis-
tic methods have on average less performance variability across the data sets of each
model we tested and lead to more stable solutions than stochastic methods (see supple-
mentary material) and can surpass the performance of stochastic methods (see Fig. 4).

• When executed multiple times stochastic methods can achieve better performance than
deterministic methods. Opposite to the first point, in that case, less sophisticated meth-
ods (such as Random and K-Means++ as opposed to ROBIN(S)) can achieve better
performance (see Fig. 6). K-Means++ with 50 executions achieved the best perfor-
mance followed by Random (see Fig. 5). The only deterministic method that can still

1999Machine Learning (2021) 110:1975–2003

1 3

compete to an extent is DK-Means++ (see supplementary material where we provide a
full list of all comparisons among all the initialisation methods).

• We found (see Table 5) that as indicated by Slonim et al. (2013) Hartigan–Wong
K-Means is better than Lloyd’s K-Means and as shown by Brusco et al. (2017) (only
for one K-Means variant) K-Medians is better than both Hartigan–Wong and Lloyd’s
K-Means. However these differences add up to performance difference of only 1.5% as
measured by the purity index.

• Regarding execution time requirements, Random and K-Means++ are fastest perform-
ers in terms of single runs while Kaufman the slowest (see Fig. 7). Maximin(S) is
slightly slower than K-Means++. Nevertheless these methods require multiple execu-
tions in order to reach the performance of determinsitic methods (refer to Table 6) espe-
cially with bigger data sets (number of elements to thousands). Multiple executions of
these methods have almost similar requirements as a single run of deterministic meth-
ods DK-Means++ and ROBIN(D) (refer to Fig. 8). This is due to the fact that the clus-
tering algorithm requires more iterations to reach converge when stochastic methods
are used (refer to the supplementary material). Between DK-Means++ and ROBIN(D)
the former is faster than the latter.

Overall, and from a practical point of view, the stochastic Random and the deterministic
Kaufman methods are not advisable. The first method despite being the simplest and the
fastest can be replaced with K-Means++ that has better probability of achieving superior
performance. The latter method is extremely slow and there are better alternatives such
as the DK-Means++ that has both better performance and execution time. Maximin(D)
and ROBIN(S) are not advisable either since the former is relatively fast and multiple
executions of Maximin(S) can be performed instead while the latter has much more time
requirements, small variability on its solutions and when an approximate clustering is
required ROBIN(D) can be used instead. DK-Means++ is a good option when determin-
ism is required since with a single run it can achieve better performance compared with
other deterministic methods and comparable performance to multiple executions of sto-
chastic methods that would require the same or more running time. In applications where
exhausted search of optimal initial centroids needs to be performed K-Means++ should
be considered (the study of Celebi et al. (2013) has also benchmarked a greedy version of
this method which is also recommended). In these cases, if time requirements are flexible,
a strategy would be to perform first DK-Means++ which would give an indication about
the clustering capabilities of the data set and then multiple executions of K-Means++. We
should add that in the mixed model 4, ROBIN(S) and ROBIN(D) performed significantly
low compared with other cases because both where placing two initial centroids on the
sides of the most elongated cluster while DK-Means++ were placing correctly a centroid
almost in the middle of the cluster. This indicates that the DK-Means++’s heuristic might
be more robust to applications than the LOF score of ROBIN for clusters detection. It
should be noted that more complex techniques like DK-Means++ can be considered as
clustering algorithms themselves since they produce good initial clusters. This observation
was mentioned in the study of Celebi et al. (2013) and we also performed a study (refer
to the supplementary material) on the number of iterations until the K-Means algorithm
reaches convergence when it is initialized with different methods. Based on the results
deterministic methods cause K-Means to converge faster than when it is initialized with
stochastic methods. As expected, ROBIN(S) and DK-Means++ were again the best sto-
chastic and deterministic methods on that account.

2000 Machine Learning (2021) 110:1975–2003

1 3

These conclusions were based on extensive benchmarking considering many different
clustering models from other studies: Gaussian, high-dimensional (10 dimensions), elon-
gated, unbalanced, non-Gaussian from the studies of Tibshirani et al. (2001) and Yan and
Ye (2007); high-dimensional (20 dimensions) containing informative and uninformative
features and higher-dimensional (1000 and 1500 dimensions) with varying number of clus-
ters (3, 10, 50 clusters) and cluster sizes (50–100 points) Brodinová et al. (2017). We also
used our own models which contain clusters with different properties (unbalanced, elon-
gated and Gaussian; unbalanced Gaussian and non-Gaussian; unbalanced, Gaussian with
different variability among their dimensions).

With the use of synthetic data set generators we had the ability to generate multiple data
sets and run hypothesis testing to further strengthen our conclusions but we also consid-
ered standalone data sets. The “clustering data sets” S-sets (Fränti & Virmajoki, 2006) and
A-sets (Kärkkäinen & Fränti, 2002) were selected from the studies of Fränti and Sieranoja
(2018), Fränti and Sieranoja (2019) because both are containing more clusters and data
points than the generated ones and also because in the case of the S-sets the clusters are
having different overlap degrees. The conclusions we obtained from the data set generators
match with the conclusions of the standalone S-sets and A-sets data sets. Specifically for
our higher dimensional data sets (1000, 1500 dimensions) generated using the Brodinova
generator (Brodinová et al., 2017) (see Table 2) we selected to have small clusters due to
the Kaufman initialization method which requires significant amount of time to be exe-
cuted. However, we also generated data sets with larger clusters (approximately five times
bigger) and we tested the ROBIN(D) and DK-Means++ methods on them. The results (not
shown) and conclusions were similar to the ones reported already.

Based on the previous studies (Fränti & Sieranoja, 2018, 2019) the authors have clearly
demonstrated that K-Means performs worse when there is large number of clusters and that
dimensionality does not have a direct effect on the performance of the algorithm. In our
experiments using the Brodinova models (see Figs. 3, 6 brod 1 to brod 12) we observe that
indeed the performance of all the methods drops when the number of clusters is increased
regardless of the dimensionality, especially in the case of Brodinova brod10 model where
we generate data sets having 50 clusters. Apart from the last extreme case, we observed
that multiple executions of stochastic methods improve the performance of K-Means. It
should also be noted that the deterministic DK-Means++ method achieves (similar to
multiple executions of stochastic methods i.e. Random, K-Means++, Maximin(S) and
ROBIN(S)) the highest performance on the clustering basic benchmark (Fränti & Sier-
anoja, 2018, 2019) in all the cases (see the supplementary material) even though these data
sets have high number of clusters (A-sets: 20, 30, 50; S-sets: 15). The same authors (Fränti
& Sieranoja, 2018, 2019) also demonstrated that strong cluster unbalances affect negatively
the K-Means clustering. In our experiments and specifically for the weighted gap 2 model
we observed that data sets with unbalanced clusters do not cause any particular issues to
the maximum performances of the algorithms. For the performance between K-Means and
K-Medians, similar to the results of Brusco et al. (2017), we found that K-Medians outper-
forms K-Means on synthetic data set models but on a small difference of 1% of purity and
on standalone data sets (both synthetic and real-world) any particular differences among
the K-Means variations couldn’t be clearly detected.

In order to show application to “real world problems” previous studies have chosen to
use standard classification data sets as benchmarks for clustering. While this approach is
commonly used, in these data the mapping from classes to clusters is somehow forced: it
is possible that data from one class belong to different clusters, and assuming that number
of clusters equals number of classes is likely to underestimate the true number of clusters.

2001Machine Learning (2021) 110:1975–2003

1 3

This can be seen from the low value of the Silhouette index especially in the cases of Iono-
sphere and Yeast data sets. For this we base our conclusions mostly on the benchmark
models that allows us to generate multiple samples and evaluate the statistical significance
of the results. In fact, we considered a broad combination of different clusters, in terms of
normality (Gaussian, non-Gaussian), shape (spherical, elongated) and size (clusters with
different number of data points) including high dimensional data, as found in real world
applications such as bioinformatics (Wang et al., 2008).

It should also be noted that many clustering frameworks designed to deal with complex
data sets (e.g. sub-clustering Biswas & Jacobs, 2014, or sparse clustering Witten & Tib-
shirani, 2010; Kondo et al., 2016; Brodinová et al., 2017) are using the K-Means or some
variant of it and are dependent on good clustering initialisation. Our experimental work
revealed that there are deterministic methods (DK-Means++ Nidheesh et al., 2017) that
lead to a good clustering solution with a single execution of the K-Means algorithm.

A limitation of the current study is that the execution time analysis is subject to the
machine that executed it. More powerful machines or code optimisation of the algorithms
and initialisation methods can change time analysis results. Nevertheless the rest of the
analysis including the number of different seeds for stochastic methods to reach the per-
formance of deterministic is, on average, reproducible. Statistics on average performance
comparison are representative since, the analysis of Sects. 4.1–4.3 had been also per-
formed on 25 instances of the various data sets models instead of 50 and led to the same
conclusions.

Supplementary Information The online version contains supplementary material available at https:// doi.
org/ 10. 1007/ s10994- 021- 06021-7.

Acknowledgements This research was funded by the Numerical Algorithms Group (NAG). We would also
like to thank the reviewers for their detailed and constructive comments especially on the execution time
considerations and on the inclusion of both a supervised and unsupervised benchmarking comparison.

Authors contribution AV performed the experiments and wrote the manuscript. EV contributed to the sta-
tistical and algorithmic analysis, provided feedback and edited the manuscript. SL oversaw the benchmark-
ing process, provided feedback on the results presentation and the manuscript. MC contributed to the litera-
ture review and the discussion and performed the final proofreading.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Al Hasan, M., Chaoji, V., Salem, S., & Zaki, M. J. (2009). Robust partitional clustering by outlier and
density insensitive seeding. Pattern Recognition Letters, 30(11), 994–1002.

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for industrial and
applied mathematics (pp. 1027–1035)

Asuncion, A., & Newman, D. (2007). Uci machine learning repository.

https://doi.org/10.1007/s10994-021-06021-7
https://doi.org/10.1007/s10994-021-06021-7
http://creativecommons.org/licenses/by/4.0/

2002 Machine Learning (2021) 110:1975–2003

1 3

Bilenko, M., Basu, S., & Mooney, R. J. (2004). Integrating constraints and metric learning in semi-
supervised clustering. In Proceedings of the twenty-first international conference on Machine
learning (p 11). ACM.

Biswas, A., & Jacobs, D. (2014). Active subclustering. Computer Vision and Image Understanding, 125,
72–84.

Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). Lof: identifying density-based local outli-
ers. ACM Sigmod Record, 29, 93–104.

Brodinová, Š., Filzmoser, P., Ortner, T., Breiteneder, C., & Rohm, M. (2017). Robust and sparse k-means
clustering for high-dimensional data. Advances in Data Analysis and Classification, 1–28.

Brusco, M. J., Shireman, E., & Steinley, D. (2017). A comparison of latent class, k-means, and k-median
methods for clustering dichotomous data. Psychological Methods, 22(3), 563.

Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1), 200–210.

Charu, C. A., & Chandan, K. R. (2013). Data clustering: Algorithms and applications.
Feldman, D., & Schulman, L. J. (2012). Data reduction for weighted and outlier-resistant clustering. In

Proceedings of the twenty-third annual ACM-SIAM symposium on discrete algorithms. Society for
industrial and applied mathematics (pp. 1343–1354).

Fränti, P., & Sieranoja, S. (2018). K-means properties on six clustering benchmark datasets. Applied
Intelligence, 48(12), 4743–4759.

Fränti, P., & Sieranoja, S. (2019). How much can k-means be improved by using better initialization and
repeats? Pattern Recognition, 93, 95–112.

Fränti, P., & Virmajoki, O. (2006). Iterative shrinking method for clustering problems. Pattern Recogni-
tion, 39(5), 761–765. https:// doi. org/ 10. 1016/j. patcog. 2005. 09. 012.

Gehring, T. V., Luksys, G., Sandi, C., & Vasilaki, E. (2015). Detailed classification of swimming paths
in the morris water maze: Multiple strategies within one trial. Scientific Reports, 5, 14562.

Gonzalez, T. F. (1985). Clustering to minimize the maximum intercluster distance. Theoretical Com-
puter Science, 38, 293–306.

Hahsler, M., Piekenbrock, M., Arya, S., & Mount, D. (2019). dbscan: Density based clustering of appli-
cations with noise (DBSCAN) and related algorithms. https:// github. com/ mhahs ler/ dbscan.

Hartigan, J. A. (1975). Clustering algorithms.
Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of

the Royal Statistical Society Series C (Applied Statistics), 28(1), 100–108.
Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8),

651–666.
Jancey, R. (1966). Multidimensional group analysis. Australian Journal of Botany, 14(1), 127–130.
Kärkkäinen, I., & Fränti, P. (2002). Dynamic local search algorithm for the clustering problem. Techni-

cal Report. A-2002-6, Department of Computer Science, University of Joensuu, Joensuu, Finland.
Katsavounidis, I., Kuo, C. C. J., & Zhang, Z. (1994). A new initialization technique for generalized lloyd

iteration. IEEE Signal Processing Letters, 1(10), 144–146.
Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis,

(Vol. 344). John Wiley & Sons.
Kondo, Y., Salibian-Barrera, M., & Zamar, R. (2016). Rskc: An r package for a robust and sparse

k-means clustering algorithm. Journal of Statistical Software, 72(5), 1–26.
Lan, X., Li, Q., & Zheng, Y. (2015). Density k-means: A new algorithm for centers initialization for

k-means. In 2015 6th IEEE international conference on software engineering and service science
(ICSESS) (pp. 958–961). IEEE.

Lopuhaa, H. P., & Rousseeuw, P. J. (1991). Breakdown points of affine equivariant estimators of multi-
variate location and covariance matrices. The Annals of Statistics, 19(1), 229–248.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Pro-
ceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp.
281–297). Oakland, CA, USA

MATLAB. (2019). version 9.6.0 (R2019a). The MathWorks Inc., Natick, Massachusetts
Moret, B. M., & Shapiro, H. D. (1992). An empirical assessment of algorithms for constructing a mini-

mum spanning tree. Computational Support for Discrete Mathematics, 15, 99–117.
Nidheesh, N., Nazeer, K. A., & Ameer, P. (2017). An enhanced deterministic k-means clustering algo-

rithm for cancer subtype prediction from gene expression data. Computers in Biology and Medi-
cine, 91, 213–221.

Numerical Algorithms Group (NAG). (2019). The NAG Toolbox for MATLAB®. https:// www. nag. com/
Pena, J. M., Lozano, J. A., & Larranaga, P. (1999). An empirical comparison of four initialization meth-

ods for the k-means algorithm. Pattern Recognition Letters, 20(10), 1027–1040.

https://doi.org/10.1016/j.patcog.2005.09.012
https://github.com/mhahsler/dbscan
https://www.nag.com/

2003Machine Learning (2021) 110:1975–2003

1 3

R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statis-
tical Computing, Vienna, Austria, http:// www.R- proje ct. org/

Rendón, E., Abundez, I., Arizmendi, A., & Quiroz, E. M. (2011). Internal versus external cluster valida-
tion indexes. International Journal of Computers and Communications, 5(1), 27–34.

Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks. Science,
344(6191), 1492–1496.

van Rossum, G. (1995). Python tutorial. Technical Report CS-R9526. Centrum voor Wiskunde en Infor-
matica (CWI), Amsterdam.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analy-
sis. Journal of Computational and Applied Mathematics, 20, 53–65.

Slonim, N., Aharoni, E., & Crammer, K. (2013). Hartigan’s k-means versus lloyd’s k-means-is it time for
a change? In IJCAI (pp. 1677–1684).

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the
gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2),
411–423.

Vouros, A., & Vasilaki, E. (2021). A semi-supervised sparse k-means algorithm. Pattern Recognition
Letters, 142, 65–71.

Wang, Y., Miller, D., & Clarke, R. (2008). Approaches to working in high-dimensional data spaces: gene
expression microarrays. British Journal of Cancer, 98(6), 1023.

Whelan, C., Harrell, G., & Wang, J. (2015). Understanding the k-medians problem. In Proceedings of
the international conference on scientific computing (CSC). The Steering Committee of The World
Congress in Computer Science, Computer (p. 219).

Witten, D. M., & Tibshirani, R. (2010). A framework for feature selection in clustering. Journal of the
American Statistical Association, 105(490), 713–726.

Yan, M., & Ye, K. (2007). Determining the number of clusters using the weighted gap statistic. Biometrics,
63(4), 1031–1037.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://www.R-project.org/

	An empirical comparison between stochastic and deterministic centroid initialisation for K-means variations
	Abstract
	1 Introduction
	2 Material and method
	2.1 The K-means algorithm
	2.1.1 Lloyd’s K-means
	2.1.2 Hartigan–Wong’s K-means
	2.1.3 The K-medians algorithm

	2.2 K-means initialisation methods
	2.2.1 Random
	2.2.2 K-means++
	2.2.3 Maximin
	2.2.4 Kaufman
	2.2.5 Robust initialisation (ROBIN)
	2.2.6 Density K-means++ (DK-means++)

	2.3 Clustering evaluation
	2.3.1 Purity
	2.3.2 Silhouette index

	3 Benchmarks
	4 Results
	4.1 Comparison on the average performance among stochastic and among deterministic methods
	4.2 Comparison of the average performance between stochastic and deterministic methods
	4.3 Comparison of the maximum performance across multiple runs of stochastic and deterministic methods
	4.4 Standalone synthetic and real-world data sets
	4.5 Average number of runs for which stochastic methods reach or surpass deterministic methods
	4.6 Execution time analysis

	5 Discussion
	Acknowledgements
	References

