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Abstract
Machine learning models built on behavioral and textual data can result in highly accurate 
prediction models, but are often very difficult to interpret. Linear models require investi-
gating thousands of coefficients, while the opaqueness of nonlinear models makes things 
worse. Rule-extraction techniques have been proposed to combine the desired predictive 
accuracy of complex “black-box” models with global explainability. However, rule-extrac-
tion in the context of high-dimensional, sparse data, where many features are relevant to 
the predictions, can be challenging, as replacing the black-box model by many rules leaves 
the user again with an incomprehensible explanation. To address this problem, we develop 
and test a rule-extraction methodology based on higher-level, less-sparse “metafeatures”. 
We empirically validate the quality of the explanation rules in terms of fidelity, stability, 
and accuracy over a collection of data sets, and benchmark their performance against rules 
extracted using the fine-grained behavioral and textual features. A key finding of our anal-
ysis is that metafeatures-based explanations are better at mimicking the behavior of the 
black-box prediction model, as measured by the fidelity of explanations.

Keywords Explainable artificial intelligence · Interpretable machine learning · 
Metafeatures · Comprehensibility · Global explanations · Rule-extraction · Classification · 
Big behavioral data · Textual data

1 Introduction

Technological advances have allowed storage and analysis of large amounts of data and 
have given industry and government the opportunity to gain insights from thousands 
of digital records collected about individuals each day (Matz and Netzer, 2017). These 
“big behavioral data”—characterized by large volume, variety, velocity and veracity, 
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and defined as data that capture human behavior through the actions and interactions of 
people (Shmueli, 2010)—have led to predictive modeling applications in areas such as 
fraud detection (Vanhoeyveld et al., 2019), financial credit scoring (Martens et al., 2007; 
De Cnudde et al., 2018; Tobback and Martens, 2019), marketing (Verbeke, 2011; Matz 
and Netzer, 2017; Chen et al., 2017) and political science (Praet et al., 2018). Sources 
of behavioral data include, but are not limited to, transaction records, search query data, 
web browsing histories, social media profiles, online reviews, and smartphone sensor 
data (e.g., GPS location data). Textual data are also increasingly available and used. 
Example text-based applications are automatic identification of spam emails (Attenberg 
et al., 2009), objectionable web content detection (Martens and Provost, 2014) and legal 
document classification (Chhatwal et al., 2019), just to name a few examples.

Behavioral and textual data are very high-dimensional compared to traditional 
data, which are primarily structured in a numeric format and are relatively low-dimen-
sional (Moeyersoms et al., 2016; Matz and Netzer, 2017; De Cnudde et al., 2020). Con-
sider the following example to illustrate these characteristics: the prediction of personal-
ity traits of users based on the Facebook pages they have “liked” (Kosinski et al., 2013; 
Matz and Netzer, 2017). A user is represented by a binary feature for each unique Face-
book page that exists, with a 1 if that page was liked by the user and 0 otherwise, which 
results in an enormous feature space. However, each user only liked a relatively small 
number of pages, which results in an extremely sparse data matrix (almost all elements 
are zero). In the literature, because of their specific nature, behavioral and textual data 
are often referred to as “fine-grained” (Martens and Provost, 2014; Martens et al., 2016; 
De Cnudde et  al., 2020). For this reason, in this article we mathematically represent 
behavioral and textual data as XFG ⊂ ℝn×m , where FG stands for “fine-grained”, and n 
and m refer to the number of instances and features respectively. These features can be 
binary (e.g., someone “liked” a Facebook page or not) or numerical (e.g., tf-idf vectori-
zation for text documents).

Learning from behavioral and textual data can result in highly accurate prediction mod-
els  (Junqué de Fortuny et  al., 2013; De Cnudde et  al., 2020). A drawback of prediction 
models trained on these types of data, however, is that they can become very complex. The 
complexity arises from either the learning technique (e.g., deep learning) or the data, or 
both. It is essentially impossible to interpret classifications of nonlinear techniques such as 
Random Forests or deep neural networks without using interpretation techniques like rule-
extraction—on which the solution proposed in this article is based—or feature importance 
methods (e.g., LIME (Ribeiro et al., 2016) or TreeSHAP (Lundberg and Lee, 2017)). For 
linear models or decision trees, the most common approach to understand the model is to 
examine the estimated coefficients or to inspect the paths from root to leaf nodes. In the 
context of behavioral and textual data, however, even linear models are not straightforward 
to interpret because of the large number (thousands to millions) of features each with their 
corresponding weight  (Martens and Provost, 2014; Moeyersoms et al., 2016). Moreover, 
one may question the comprehensibility of decision trees with thousands of leaf nodes. 
Alternatively, for linear models, we could inspect only the features with the highest esti-
mated weights. But for sparse data, this means that only a small fraction of the classified 
instances are actually explained by these features, because of the low coverage of the top-
weighted features (Martens and Provost, 2014; Moeyersoms et al., 2016). Kosinski et al. 
(2013), for example, explain models that predict personal traits using over 50,000 Face-
book “likes” by listing the pages that are most related to extreme frequencies of the tar-
get classes. For example, the best predictors for high intelligence include Facebook pages 
“The Colbert Report”, “Science” and “Curly Fries” (Kosinski et al., 2013). Because of the 
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extreme sparsity of the data (users liked on average 170 out of 55,814 possible pages), 
these pages are only relevant to a small fraction of users predicted as “highly intelligent”, 
which questions the practicality of this approach for better understanding (global) model 
behavior.

It is important to note that the high-dimensional, sparse nature of behavioral and textual 
data alone does not necessarily lead to complex prediction models. If many behavioral or 
textual features are irrelevant for the prediction task, applying dimensionality reduction or 
feature input selection prior to modeling, or using strong model regularization can result 
in models having high predictive performance, while still being interpretable. However, 
previous research shows that all of these techniques result in worse predictive performance 
compared to models that exploit the full set of behavioral or textual features for making 
predictions  (Joachims, 1998; Junqué de Fortuny et  al., 2013; Clark and Provost, 2015; 
Martens et al., 2016; De Cnudde et al., 2020). By means of a learning curve analysis on a 
benchmark of 41 behavioral data sets, De Cnudde et al. (2019) demonstrate that, when min-
ing text or behavior, many features contribute to the predictions. Similar results have been 
found by Clark and Provost (2015) and Junqué de Fortuny et al. (2013) for behavioral data, 
and by Joachims (1998) for the analysis of textual data. In other words, the dimensionality 
and sparsity of the data combined with many relevant features drive the “black-box” nature 
of any model trained on behavioral and textual data. We represent a classification model 
trained on behavioral or textual data XFG as CBB , where BB stands for “black-box”.

Explainability has emerged recently as a key business and regulatory challenge for 
machine learning adoption. The relevance of global interpretability of classification models 
is well-argued in the literature (Andrews and Diederich, 1995; Diederich, 2008; Martens 
et al., 2007; Junqué de Fortuny and Martens, 2015).1 In the process of extracting knowl-
edge from data, the predictive performance of classification models alone is not sufficient 
as human users need to understand the models to trust, accept and improve them (Van Ass-
che and Blockeel, 2007). Both the United States and the European Union are currently 
pushing towards a regulatory framework for trustworthy Articial Intelligence, and global 
organizations such as the OECD and the G20 aim for a human-centric approach  (Euro-
pean Comission, 2020). In high-stake application domains, explanations are often legally 
required. In the credit scoring domain, for example, legislation such as the Equal Credit 
Opportunity Act in US Federal Law  (US Federal Trade Commission, 2003) prohibits 
creditors from discrimination and requires reasons for rejected loan applications. Also in 
lower-stakes applications, such as (psychologically) targeted advertising (Matz and Netzer, 
2017; Moeyersoms et  al., 2016) or churn prediction  (Verbeke et  al., 2012), explanations 
are managerially relevant. Global interpretability allows to verify the knowledge that is 
encoded in the underlying models  (Andrews and Diederich, 1995; Huysmans et al., 2006). 
Models trained on big data may learn incorrect trends, overfit the data or perpetuate social 
biases (Chen et al., 2017). Furthermore, explanations might give users more control of their 
virtual footprint.  Matz et  al. (2020) argue that insight into what data is being collected 
and the inferences that can be drawn from it, allow users to make more informed privacy 

1 Explanations for model predictions vary in scope: a method either generates global or instance-level 
explanations (Martens and Provost, 2014; Ramon et al., 2020). We focus on global explanations that give 
insight in the model’s behavior over all possible feature values and for all instances. Instance-level explana-
tions, on the other hand, explain a single model decision. For example, when mining behavior or text, an 
Evidence Counterfactual is an instance-level explanation that shows a minimal set of features such that, 
when changing their feature values to zero, the predicted class changes (Martens and Provost, 2014; Ramon 
et al. 2020).
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decisions  (Matz et  al., 2020). Moreover, global model explainability can help to induce 
new insights or generate hypotheses (Andrews and Diederich, 1995; Shmueli, 2010).

Rule-extraction has been proposed in the literature to generate global explanations by 
distilling a comprehensible set of rules (hereafter referred to as “explanation rules”) from 
complex classifiers CBB . The complexity of the set of rules is largely restricted so that the 
resulting explanation is understandable to humans. Rule-extraction in the context of big 
behavioral and textual data can be challenging, and, to our knowledge, has thus far received 
scant attention. Because of the data characteristics, rule-extraction might fail in their pri-
mary task (providing insight on the black-box model) as the complex model needs to be 
replaced by a set of hundreds or even thousands of explanation rules  (Huysmans et  al., 
2006; Sushil et al., 2018).

This article addresses the challenge of using rule-extraction to globally explain classifi-
cation models on behavioral and textual data. Instead of focusing on rule-extraction tech-
niques themselves2, this article leverages an alternative higher-level feature representation 
XMF ⊂ ℝn×k , where MF stands for “metafeatures” and k represents the number of metafea-
tures. Metafeatures are expected to improve the fidelity (approximation of the black-box 
classification model), explanation stability (same explanations for slightly different training 
sessions—a concept we introduce, which we will be calling just stability) and accuracy 
(correct predictions of the original instances) of the extracted explanation rules. For sim-
plicity, we only focus on classification problems. Our main claim is that metafeatures are 
more appropriate, in specific ways we discuss, for extracting explanation rules than the 
original behavioral and textual features that are used to train the model.

This article’s main contributions are threefold: (1) we propose a novel methodology for 
rule-extraction by exploring how higher-level feature representations (metafeatures) can 
be used to increase global understanding of classification models trained on fine-grained 
behavioral or textual data; (2) we define a set of quantitative criteria to assess the quality 
of explanation rules in terms of fidelity, stability, and accuracy; and empirically study the 
trade-offs between these; and lastly, (3) we perform an in-depth empirical evaluation of the 
quality of explanations with metafeatures using nine data sets, and benchmark their perfor-
mance against the explanation rules extracted with the behavioral or textual features. We 
aim to answer the following empirical questions:

• How do explanation rules extracted with metafeatures compare against rules extracted 
with the fine-grained behavioral and textual features across different evaluation criteria 
(fidelity, stability, accuracy)?

• How does the fidelity3 of explanation rules vary for different complexity settings?
• To what extent do the fidelity and stability of explanation rules extracted with metafea-

tures depend on a key parameter of our metafeatures-based rule-extraction methodol-
ogy, that is the parameter k that represents the number of metafeatures?

2 In this article, we use the decision tree algorithm CART as the rule-extraction algorithm. We leave the 
comparison of different rule-extraction techniques (Ripper (Cohen,1995), C4.5 (Quinlan, 1993), and so on) 
as well as more advanced variants like active learning-based rule-extraction (Junqué de Fortuny and Mar-
tens, 2015; Craven and Shavlik, 1999) to future research. Our main focus is on empirically assessing the 
value of using metafeatures for extracting explanation rules.
3 As the main goal of rule-extraction is to mimic the behavior of black-box models with a set of rules, we 
focus on fidelity instead of, say, accuracy, as discussed in Sect. 4.4. Our methodology and analysis can be 
adapted to also study the accuracy of explanations.
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2  Related work

2.1  Rule‑extraction

In the Explainable Artificial Intelligence (XAI) literature, rule-extraction falls within the 
class of post-hoc explanation methods that use “surrogate models” to gain understanding 
of the learned relationships captured by the trained model (Martens et al., 2007; Murdoch 
et al., 2019). The idea of surrogate modeling is to train a comprehensible surrogate model 
(the white-box CWB ) to mimic the predictions of a more complex, underlying black-box 
model4 CBB  (Diederich, 2008). We define a black-box model as a complex model from 
which it is not straightforward for a human interpreter to understand how predictions are 
made. In this article, we consider any classification model (linear, rule-based or nonlin-
ear) utilising a large number of features as a black-box (because of the specific nature of 
the data described in the Introduction, a large number of features are typically used in the 
final models); which is different from previous research that only considers highly-nonlin-
ear models as black-boxes (Andrews and Diederich, 1995; Martens et al., 2007; Diederich, 
2008; Martens et al., 2009).

In the machine learning literature, small decision trees and rule-based models with few 
rules have been argued to yield the most comprehensible classification models (Van Ass-
che and Blockeel, 2007; Freitas, 2013), making them good candidates to use as white-box 
models CWB to extract a set of explanation rules (known as “rule-extraction”).5 It is impor-
tant to note that the complexity of the rules needs to be restricted so that the resulting 
explanation is comprehensible to humans (Martens et al., 2007, 2009).

Rule-extraction can be used for two purposes. First and foremost, one may be interested 
in knowing the rationale behind decisions made by a classification model CBB and verify 
whether the results make sense in practice. The goal is to extract comprehensible rules that 
closely mimic the black-box, that is measured by what is called “fidelity”. Alternatively, 
the goal can be to improve the “accuracy”, namely, the generalization performance of a 
white-box model (e.g., a small decision tree or a concise set of rules) by approximating 
the black-box   (Martens et  al., 2009; Huysmans et  al., 2006). In this article, we discuss 
most results in terms of fidelity instead of accuracy as our focus is on developing global 
explanations that “best mimic the black-box”—but all our analyses can also be done using 
accuracy as the main metric.

Rule-extraction methods use the mapping of the data to the predicted labels, i.e., the 
input-output mapping defined by the model CBB  (Andrews and Diederich, 1995; Martens 
et al., 2007; Huysmans et al., 2006). The idea behind this approach is that the similarity 
between the black-box and white-box model (the fidelity) can be substantially improved by 
presenting the labels predicted by the black-box model �̂ ={ŷi}ni=1 to the white-box model, 
instead of the ground-truth labels � ={yi}ni=1 (Martens et al., 2009; Junqué de Fortuny and 
Martens, 2015).

4 We will interchangeably refer to this model as the black-box model or the underlying model that we want 
to interpret globally.
5 Note that, in the literature, also linear models with a small number of features have been proposed as sur-
rogate models to approximate a prediction model’s behavior (Ribeiro et al., 2016). In this article, we focus 
on rule-based models as surrogates.
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2.2  Challenges of rule‑extraction for high‑dimensional data

The vast majority of the rule-extraction literature has focused on improving the fidelity and 
scalability of rule-learning algorithms. However, despite some very impressive and prom-
ising work  (Andrews and Diederich, 1995; Martens et  al., 2007, 2009; Diederich, 2008; 
Junqué de Fortuny and Martens, 2015), the rule-extraction techniques are mostly validated 
on low-dimensional, dense data, such as the widely used set of benchmark data from the 
UCI Machine Learning repository  (Bache and Lichman, 2020). These data have feature 
dimensions going up to 50 features. We identify at least three challenges in regard to rule-
extraction to explain classifiers on fine-grained behavioral and textual data: 

1. Complexity of the explanation rules. In the context of high-dimensional data with many 
relevant features, rule-extraction might fail to provide insight on the black-box model as 
the black-box model needs to be replaced by a large set of rules (Martens et al., 2007, 2009; 
Huysmans et al., 2006). Sushil et al. (2018) applied rule-extraction on (real-world) textual 
data and show that rule learners can closely approximate the underlying model, but at the 
cost of being very complex (hundreds of rules). A related challenge that stems from rule-
based learners not being very adept at handling high dimensionality, is their high variance 
profile that can result in overfitting (Kotsiantis et al., 2006; De Cnudde et al., 2020).

2. Computational complexity. It is not straightforward for every existing rule-learning 
algorithm to be used for high-dimensional data, because the learning task can become 
computationally too demanding (Andrews and Diederich, 1995; Sushil et al., 2018). 
Some algorithms, such as Ripper (Cohen, 1995), are not able to computationally deal 
with problem instances having large-scale feature spaces (Sushil et al., 2018).

3. Fine-grained feature comprehensibility. Diederich (2008) questions the usefulness of 
rules extracted from models trained on behavioral or textual data. For example, when 
rules are learned from a model initially trained on a “bag–of–words” representation of 
text documents, the antecedents in a rule include individual words taken out of their 
context. This can reduce the semantic comprehensibility of the explanations. Likewise, 
for digital trace data, we can question the comprehensibility of a single action (e.g., a 
single credit card transaction, a single Facebook “like”) taken out of its context, that is, 
the collection of all behaviors of an individual.

Because of the above challenges, it is questionable whether fine-grained behavioral 
and textual features are the best representation for extracting global explanation rules 
to achieve the best explanation quality in terms of fidelity, stability, and accuracy. This 
motivates our approach to use a metafeatures representation instead. It is not clear a priori 
whether such a representation will improve the quality of explanations of models on behav-
ioral and textual data, making this a key empirical question that we study in this article.

3  Metafeatures

3.1  Motivation

As previously introduced, behavioral and textual data suffer from high dimensionality 
and sparsity. For this reason, the features individually may exhibit little discriminatory 
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power to explain the black-box model. Because of the low coverage that characterizes 
such sparse features, a single feature is not expected to “explain” much of the classifi-
cations of the underlying model. The feature will only be active (nonzero) for a small 
fraction of all data instances, and therefore, the coverage of an explanation rule with a 
single behavioral or textual feature is likely to be low (Sommr, 1995; Martens and Prov-
ost, 2014; Chen et al., 2016; Sushil et al., 2018).6

We address the data sparsity by mapping the fine-grained, sparse features XFG ⊂ ℝn×m 
onto a higher-level, less-sparse feature representation XMF ⊂ ℝn×k (to which we refer as 
“metafeatures”), where m and k respectively represent the dimensionality of the origi-
nal features and metafeatures. Existing research has experimented with the idea of using 
higher-level features other than the actual features used by the model to extract explana-
tions  (Ribeiro et al., 2016; Chen et al., 2016; Kim et al., 2018; Lee et al., 2019). In the 
field of image recognition, for example, the input pixels are not straightforward to interpret, 
hence researchers have proposed to use a patch of similar pixels (super-pixels) for generat-
ing explanations of image classifications (Ribeiro et al., 2016; Wei et al., 2018). Another 
example stems from the field of natural language processing, where Chen et al. (2016) cope 
with data sparsity by clustering similar features by their frequency in large data sets. All of 
these approaches have, however, not been used before in the context of rule-extraction for 
models on big behavioral and textual data.

3.2  Desired properties

We propose the following set of properties for engineering metafeatures: 

1. Low dimensionality. We want the dimensionality k of the metafeatures to be smaller 
than the dimensionality m of the original feature space: k << m . A lower feature dimen-
sion may lead to more stable explanation rules (Alvarez-Melis and Jaakkola, 2018). 
Moreover, the computational burden for extracting rules with metafeatures is likely to 
be much lower compared to rule-extraction with high-dimensional data (Andrews and 
Diederich, 1995; Sushil et al., 2018).

2. High density. This property relates to the coverage of a metafeature, which we want to 
be higher compared to the coverage of fine-grained features (Chen et al., 2016). In other 
words, there should be more instances for which a metafeature is active (nonzero) com-
pared to the fine-grained features. The higher density (lower sparsity) of the metafeatures 
is expected to increase the fidelity and accuracy of explanation rules resulting from 
the higher coverage of rules predicting the non-default target class (often the “class of 
interest”).

3. Faithful to the original feature representation. This property is in line with prior research 
suggesting that the representation of the original data instances in terms of metafea-
tures should preserve relevant information to discriminate between the predicted labels 
�̂ (Alvarez-Melis and Jaakkola, 2018). The metafeatures should preserve the predictive 
information of the original features as the black-box model is trained on the latter. It is 
important that the extracted rules using metafeatures can reach a high level of discrimi-

6 The coverage of a feature is defined as the number of data instances that have a nonzero value for this fea-
ture, whereas the coverage of a rule is defined as the number of instances that are classified by this rule. For 
sparse data, both feature and rule coverage tend to be low.
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natory power in regard to the true predictions being made, because this will result in 
a better approximation of the underlying model as measured by fidelity. In the experi-
ments, we use the test fidelity of the explanations as a proxy to measure the faithfulness 
of the metafeatures XMF to the original features XFG . In addition, we use the Gini index 
to measure the predictive information captured by each metafeature.7

4. Semantic comprehensibility. Metafeatures should have a human-comprehensible inter-
pretation (Alvarez-Melis and Jaakkola, 2018). For example, Facebook “likes” can be 
grouped into semantically meaningful categories (e.g., “Entrepreneurship”) and GPS 
location data can be categorized into venue types (e.g., “Concert halls”). This property 
is subjective in nature and depends on the application domain and the expectations of 
users who interact with the model (explanations) (Wood, 1986; Campbell, 1988; Huys-
mans et al., 2006; Huysmans et al., 2011). We do not explicitly measure the compre-
hensibility of explanations with (meta)features, as this would require experimentation 
with people, an important research direction to explore if indeed metafeatures improve 
the quality of explanations in the other dimensions we study here (fidelity, stability, 
accuracy). In this article, we make the assumption that the resulting metafeatures are 
semantically meaningful. In Sect. 4.5, we demonstrate how metafeatures generated with 
a data-driven method (e.g., Non-negative Matrix Factorization) can be interpreted, based 
on common practices described in the literature (Wang and Blei, 2011; O’Callaghan 
et al., 2015; Contreras-Pina and Sebastián, 2016; Kulkarni et al., 2018; De Cnudde 
et al., 2019). Note that the metafeatures that are manually crafted (the “domain-based” 
metafeatures described in Sect. 4.2) are, by design, comprehensible to humans.

4  Metafeatures‑based explanation rules

We introduce and validate a methodology to extract explanation rules from a complex 
model CBB trained on behavioral and textual data XFG . The steps of the proposed methodol-
ogy are summarized in Fig. 1 and discussed below.

4.1  Model building and predicting labels

From the behavioral and textual data XFG (having n instances and m features) we train and 
test the black-box model CBB . The model is trained on a subset of � × � × n instances (the 
training set XFG,train with corresponding labels �train ) and hyperparameters are optimized 
using a holdout set of � × (1 − �) × n instances (the validation set XFG,val with labels �val ). 
Finally, the generalization performance of the black-box model is evaluated on an unseen 
part of the data (the test set XFG,test with labels �test ) that contains (1 − �) × n instances.8 
The trained black-box model is used to make predictions �̂ for all instances in the data set 
(training, validation and test data), which will thereafter be used to train, fine tune and test 
our white-box model CWB (the explanation rules).

8 For classification models that do not require hyperparameter tuning, � equals 1. In the experiments in 
Sect. 6, we set � and � to 0.8. Moreover, we use five-fold cross-validation (CV) to evaluate the generaliza-
tion performance of the black-box model C

BB
 and to measure fidelity and accuracy of the explanation rules 

C
WB

 on the test data.

7 The Gini index is the splitting criterion of the CART decision tree algorithm that we use in this article to 
extract explanation rules.



4253Machine Learning (2024) 113:4245–4284 

1 3

4.2  Generating metafeatures X
MF

We need to specify a feature transformation process to group behavioral and textual fea-
tures XFG with similar properties together in metafeatures XMF (Chen et al., 2016). There 
are various approaches for generating metafeatures from the original features, either by 
manually crafting them using domain knowledge (Murdoch et al., 2019) or by automati-
cally obtaining them by means of data-driven feature engineering techniques, such as (un)
supervised dimensionality reduction. In the following, we use DomainMF and DDMF as 
abbreviations for domain-based metafeatures and data-driven metafeatures respectively.

4.2.1  Domain‑based metafeatures

One way of generating metafeatures from the original features is to group features together 
in domain-based categories that are manually crafted by experts  (Murdoch et  al., 2019; 
Alvarez-Melis and Jaakkola, 2018). For example, for the Facebook “like” data, individual 
Facebook pages can be grouped together in predetermined categories, for example, pages 
related to “Machine Learning”. This human-selected set of metafeatures can then be used 
to extract simple rules to explain model predictions, which represent the relative impor-
tance of these domain-based metafeatures in the prediction model. In this article, we math-
ematically denote the domain-based metafeatures as XDomainMF ⊂ ℝn×k.

4.2.2  Data‑driven metafeatures

Alternatively, metafeatures can be generated via a data-driven approach, such as matrix 
factorization-based dimensionality reduction.9 The idea is to increase density by represent-
ing the data in a lower dimensional space without too much loss of information. The origi-
nal data matrix XFG with n unique instances and m unique features is split into two matrices 
Ln×k and Rk×m such that: XFG ≈ L R . The k columns of L represent the metafeatures, and 
each instance will have a representation in the new k-dimensional space. The matrix R, 

Fig. 1  Proposed rule-extraction methodology using metafeatures

9 Note that there exist many other techniques that can be explored to generate the metafeatures representa-
tion, such as supervised dimensionality reduction (e.g., see De Cnudde et al. (2020)), embedding techniques 
(e.g., word2vec (Mikolov et al., 2013) or Fasttext (Joulin et al., 2016)) or language representation models 
(e.g., BERT  (Devlin et  al., 2019)). Although different methods exist, we do not aim to do a comparison 
among them in this work. Our focus is to first answer whether metafeatures can help for the problem we 
study. A positive answer would indicate that it is promising to study other metafeatures methods for this 
problem in the future. Moreover, if other approaches generate better results, that would only further support 
our findings about the value of metafeatures for explainability for behavioral and textual data, rendering our 
results more conservative.
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represents the relationship between the new metafeatures and the original features (Clark 
and Provost, 2015).

Metafeatures group together related features. The quality of the metafeatures depends 
on the number of extracted metafeatures k: a value of k that is set too high results in many 
highly-similar categories, whereas a low value of k tends to generate overly-broad metafea-
tures. The intended goal of generating metafeatures in this article is to use them for rule-
extraction, and consequently, we optimize the number of k such that the out-of-sample 
fidelity of the rules is maximal (we use a validation set to fine tune the value of k). We 
consider values of k from 10 up to 1000 (Clark and Provost, 2015). Note that we should not 
be concerned with generating too many metafeatures because we only need to interpret the 
ones that are part of the final explanation rules (this is demonstrated in Sect. 4.5).

For generating metafeatures based on matrix-factorization-based dimensionality reduction, 
we first approximate the original training data XFG by two matrices L and R for a given num-
ber of metafeatures k (step 1 in Fig. 13 in “Appendix 1”). Matrix R maps each metafeature to 
the original fine-grained features. We ensure mutual exclusivity by transforming matrix R into 
a binary matrix R

binary
 , where 1 represents the maximum element for each column (fine-grained 

feature) of R and all other elements are 0 (step 2 in Fig. 13). In other words, each feature only 
belongs to one metafeature. Next, we map the original matrix XFG to X′ by multiplying XFG with 
the transposed binary matrix RT

binary
 (step 3 in Fig. 13). Finally, matrix X′ is normalized over the 

number of active (fine-grained) features per instance (e.g., total number of behaviors or words) 
to become matrix X

DDMF−k
 that represents the metafeatures per instance (step 4 in Fig. 13). We 

found that the normalized matrix X
DDMF−k

 produced better results (as measured by test fidelity of 
the explanations) than utilizing the original matrix X′ or even a binary matrix derived from X′ . 
We apply the binarization of matrix R to make the resulting explanation rules more interpretable 
and semantically meaningful. For example, for the Facebook data, the explanation rules with 
the metafeatures can be interpreted in terms of the percentage of “liked” pages of a category 
(see Fig. 4). If we would immediately use the matrix L to represent instances in the metafeatures 
space, and ignore the binarization and normalization steps, the explanation rules would contain 
logical statements that are not immediately comprehensible. For example, it would be difficult to 
interpret a rule that says something like, “if the value of this metafeature is higher than 0.3, then 
the model predicts the person as Female”, when the metafeature is not expressed in terms of an 
actual unit of measurement.10

In this article, we experimented with two well-established dimensionality reduction 
methods based on matrix factorization: Non-negative Matrix Factorization (NMF) and Sin-
gular Value Decomposition (SVD). NMF is applied in multiple domains to decompose a 
non-negative matrix into two non-negative matrices (Lee and Seung, 2001). In most real-
life applications, negative components or subtractive combinations in the representation 
are physically meaningless. Incorporating the non-negativity constraint thus facilitates 
the interpretation of the extracted metafeatures in terms of the original data (Wang and 
Zhang, 2012; Kulkarni et al., 2018; Clark and Provost, 2015). SVD is a popular technique 
for matrix factorization across a wide variety of domains such as text classification (Hus-
bands et al., 2001) and image recognition (Turk and Pentland, 1991). SVD is computed by 

10 We also experimented with using the continuous data matrix L, without doing binarization or normaliza-
tion, to extract explanation rules. The difference in fidelity of the rules using this continuous metafeatures 
representation compared to using metafeatures with binarization and normalization, was marginal—given 
that the fidelity of explanations with the binarized metafeatures was already higher than explanations with 
the original data (see Sect. 6).
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optimizing a convex objective function and the solution is equivalent to the eigenvectors of 
the data matrix. We implemented these dimensionality reduction techniques using Python’s 
Scikit-learn package (Pedregosa et al., 2011).

An important assumption we make is that the resulting data-driven metafeatures are 
semantically meaningful. While the obtained metafeatures are not always guaranteed to 
be interpretable, especially NMF has been shown to provide interpretable results for fine-
grained data applications (Contreras-Pina and Sebastián, 2016; Lee and Seung, 1999), as 
compared to other techniques like SVD. Usually, metafeatures are interpreted by looking 
at the top-weighted features (Wang and Blei, 2011; O’Callaghan et al., 2015; Contreras-
Pina and Sebastián, 2016; Kulkarni et al., 2018; De Cnudde et al., 2019). It is important 
to note that only the metafeatures that are part of the final explanation rules need to be 
interpreted.11

4.3  Extracting explanation rules

Both rule and decision tree learning algorithms can be used for rule-extraction. Since trees 
can be converted to rules, we also use tree algorithms for rule-extraction (Martens et al., 
2007; Huysmans et al., 2011; Martens, 2008). A full review of these techniques is beyond 
the scope of this article, but we will shortly describe CART 12, as this is the technique used 
in our experiments.

CART can be used for both classification and regression problems and it uses the Gini 
index as a splitting criterion, which measures the impurity of nodes. The best split is the 
one that reduces the impurity the most. We apply CART to the data where the target vari-
able is changed to the black-box predicted class label �̂ instead of the ground-truth labels � 
(see Sect. 2.1).

The number of extracted explanation rules can be used as a proxy for human com-
prehensibility.13 Restricting the complexity of the rule set is also motivated by research 
on how people make decisions: based on relatively simple rules to avoid excess cogni-
tive effort  (Gigerenzer and Goldstein, 2016; Hauser et  al., 2009) due to cognitive limi-
tations (Sweller, 1988). In the context of consumer decision-making for example, Hauser 
et al. (2009) argue that decision rules should incorporate “cognitive simplicity”: Rule sets 
should consist of a limited number of rules, each with a small number of antecedents. 
Finally, it is important to note that the concept of comprehensibility in the context of expla-
nation rules comprises many different aspects, such as the size of the explanation, but also 
the specific application context and subjective opinion and expectations of the end user, 
which makes it difficult to measure comprehensbility in a generic way (Huysmans et al., 
2011; Campbell, 1988; Wood, 1986). In line with cognitive simplicity arguments (Hauser 
et al., 2009; Sweller, 1988), in the experiments in Sect. 6, we restrict the complexity of the 
explanations to at most 32 rules each consisting of at most five antecedents (this is equiva-
lent to a tree depth of at most five).

11 We will demonstrate in Sect. 4.5 how to interpret metafeatures that are part of the explanation by looking 
at the top-weighted features per metafeature.
12 CART is readily available from the Scikit-learn library in Python.
13 A general assumption in the literature is that linear models with few parameters or rule-based models 
with few rules are more comprehensible than linear models with many parameters or rule sets with many 
different rules (Freitas, 2013; Hauser et al., 2009; Huysmans et al., 2011).
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4.4  Evaluating explanation rules

4.4.1  Fidelity

First and foremost, the explanation rules are evaluated on how well they approximate the 
classification behavior of the underlying model. Fidelity measures the ability of the rules 
to mimic the model’s classification behavior from which they are extracted. Let { �i,yi}ni=1 
represent the labeled data instances and ��� and �̂ respectively the white-box and black-
box predicted labels. Fidelity is expressed as the fraction of instances for which the label 
predicted by the explanation rules (the white-box predicted label) equals the black-box pre-
dicted label (Craven and Shavlik, 1999; Huysmans et al., 2006):

While most of our analysis is based on fidelity, we can extend the fidelity to “f-score fidel-
ity” (f-fidelity). The f-fidelity is defined as the harmonic mean between precision and recall 
of the white-box predictions (w.r.t. the predicted labels �̂ rather than the true labels � ). 
More precisely, the formula of f-fidelity is 2⋅precision⋅recall

precision+recall
 , where the precision of the classi-

fier is the fraction of positively-predicted instances that is correctly classified and the recall 
refers to the fraction of positive instances that is correctly classified as a positive. Note that 
f-fidelity is less intuitive than fidelity, but we use it in the experiments as an additional met-
ric to measure to what extent the explanation rules reflect the black-box model, that is espe-
cially interesting for imbalanced problems, i.e., prediction tasks where the distribution of 
the target variable is skewed (e.g., the 20news data in the experiments14).

4.4.2  Stability

A second important factor is explanation stability—which we will call stability from here 
on. Users, businesses, or regulators may have a hard time accepting explanations that are 
unstable (meaning small changes in the data lead to large changes in explanations of the 
black-box model), even if the explanation has shown to have high fidelity and comprehen-
sibility (Van Assche and Blockeel, 2007).  Turney (1995) distinguishes two types of stabil-
ity: syntactic and semantic stability. Semantic stability is often measured by estimating the 
probability that two models learned on different training sets, will give the same prediction 
to an instance. On the other hand, syntactic stability measures how similar two explana-
tions are (e.g., the overlap of features in two different explanations), and is more specific 
to a particular explanation representation (Turney, 1995). We argue that syntactic stability 
is the most relevant type of stability in the context of explaining classification models. To 
the best of our knowledge, it remains an open question how to measure syntactic stability 
for different explanation representations, such as rules and trees. We propose a procedure 
based on the Jaccard coefficient to measure syntactic stability of explanation rules. More 
specifically, by measuring the overlap of features that are part of the explanations extracted 

(1)fidelityWB =
|{ŷi = yWB

i
|�i}

n
i=1

|

N

14 For this data set and prediction task, predicting all news posts as positive (related to “atheism”) using 
one explanation rule would already result in a fidelity of approximately 96%, whereas f-fidelity would give 
a better idea of the actual explanatory power of the explanation rules w.r.t. the classification model.
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from slightly different subsets of training data.15 To compute the stability of explanation 
rules extracted using different data representations ∀ X ∈{XFG , XDDMF−k , XDomainMF } and 
the black-box predicted labels �̂ , we propose the following procedure:

• Step 1 Generate B samples { XtrainBS,j}B
j=1

 from the training data Xtrain using bootstrap-
ping.16

• Step 2 Extract explanation rules CWB,j from each bootstrap training sample XtrainBS,j (this 
can be the fine-grained or metafeature representation) and the corresponding labels 
�̂trainBS,j predicted by the black-box model. It is important to note that the data-driven 
metafeatures XDDMF−k need to be computed again for each bootstrap training sample. 
Obtain B explanations and keep track of the features that are part of the explanations in 
B sets of features { Fj}B

j=1
.

• Step 3 Make B!

2!(B−2)!
 pairwise comparisons of the extracted explanations using the Jac-

card coefficient. For two sets of features Fv and Fw (respectively representing the fea-
tures in explanations CWB,v and CWB,w ), the Jaccard coefficient is defined as: 
J(Fv,Fw) = |Fv ∩ Fw|∕|Fv ∪ Fw| . The Jaccard coefficient equals 1 if the sets are equal 
(the explanations have perfect overlap of features) and 0 if they are disjoint (the expla-
nations are completely different). For the data-driven metafeatures, two metafeatures 
are considered to have the same interpretation when the Jaccard coefficient computed 
for two metafeatures, as measured over the top features with the highest weight, exceeds 
a cut-off value of c.17

• Step 4 Compute the average (pairwise) Jaccard coefficient over B!

2!(B−2)!
 comparisons.

Prior research has shown that explanations that rely on high-dimensional data tend to 
be less robust compared to methods that operate on higher-level features  (Alvarez-Melis 
and Jaakkola, 2018). For this reason, we expect that the extracted explanation rules with 
metafeatures will be more stable over different training sessions compared to the rules with 
the original behavioral and textual features. It is important to note, however, that for the 
metafeatures generated with a data-driven approach ( XDDMF−k ), the computed stability of 
the explanations also depends on the metafeature generation method (e.g, NMF). For each 
bootstrap sample, the data-driven metafeatures are computed again. For the domain-based 
metafeatures XDomainMF and the original features XFG , the features do not have to be com-
puted for each bootstrap sample, making this part of the rule-extraction process relatively 
more stable.

4.4.3  Accuracy

Rule-extraction has also been used to increase the generalization performance of white-box 
models CWB , as measured by accuracy. Martens et al. (2009) show that rules that mimic the 
behavior of an underlying, better-performing model can become more accurate compared 

17 How many top-features to compare between metafeatures and the cut-off value c, are parameter values 
that need to be set in advance. We consider looking at the top-20 features in a metafeature and a cut-off 
value of c = 0.5 as suitable choices based on the literature on interpreting factors obtained from dimension-
ality reduction (De Cnudde et al. 2020).

15 The procedure is based on the work of Fletcher and Islam (2018) who compare sets of patterns using the 
Jaccard coefficient.
16 In the experiments, we set the number of bootstrap samples B to 10.
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to the rules learned from the original data and the corresponding ground-truth labels � . 
Accuracy is defined as the fraction of correctly classified instances by the explanation 
rules (Huysmans et al., 2006):

4.5  Examples of explanation rules

In this subsection, we show examples of the explanation rules extracted from classification 
models ( �2-regularized Logistic Regression18) that predict gender from Facebook “like” 
data (Praet et al., 2018) and movie viewing data (Harper and Konstan, 2015), and predict 
whether a news post is about “atheism” (Lang, 1995). Moreover, for the explanation rules 
based on data-driven metafeatures, we demonstrate how to interpret metafeatures that are 
part of the explanation. For the other data in the experiments (see Sect. 5.1), the semantic 
meaning of the features is not publicly available, and for this reason, we do not include 
examples for these prediction models.  

Explanations of the gender prediction model on Facebook data with the fine-grained 
features (Facebook pages), the domain-based metafeatures (the manually crafted catego-
ries) and the data-driven metafeatures are respectively shown in Figs. 2, 3 and 4. Table 4 in 
“Appendix 2” shows the data-driven metafeatures part of the explanation in Fig. 4, and the 
top-20 Facebook pages with the highest weights for each. The cluster names at the bottom 
show our interpretation of each metafeature. There are four metafeatures that group simi-
lar Facebook pages like “Female media” and “Interior design”. Note that the process of 
interpreting metafeatures might require domain-specific knowledge, but we mainly aim to 
demonstrate how the interpretation of metafeatures is usually done  (Wang and Blei, 2011; 
O’Callaghan et  al., 2015; Contreras-Pina and Sebastián, 2016; Kulkarni et  al., 2018; De 
Cnudde et al., 2019).  

Explanation rules for the Logistic Regression model on the 20news data to predict the 
topic “atheism” are shown in Figs. 5 and 6 (explanations respectively with the words in a 
news post and with data-driven metafeatures). Table 5 in “Appendix 3” shows the top-20 
words with the highest weight per metafeature (only those part of the explanation in Fig. 6 
are shown). For example, there are five metafeatures that group similar words into subtop-
ics like the “Israeli-Palestinian conflict”. Interestingly, the explanation with the data-driven 
metafeatures shown in Fig. 6 reveals a problem with the model: it is overfitting on the posts 
from Bob Beauchaine and his signature quote containing words like “Manhattan” and the 
“Bronx” (Metafeature 1 in Table  5). Figure  7 shows an example news post from Beau-
chaine. When we generate an explanation with the words in the news posts (see Fig. 5), 
we are not able to diagnose the overfitting on the posts of Beauchaine so easily. This 
nicely illustrates a specific use case of metafeatures-based explanations of models trained 
on behavior or text that goes beyond the question whether DDMF-based explanations are 
more suitable for these models. It shows how DDMF-based explanations can serve as a 
“tool” for improving the model or gaining insight from it, that is a complement to, and not 
necessarily a replacement of, FG-based explanations.

(2)accuracyWB =
|{yi = yWB

i
|�i}

n
i=1

|

N

18 In the literature, Logistic Regression with �2-regularization has shown to be the best-performing classifi-
cation model for behavioral and textual data (De Cnudde et al., 2020).
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Fig. 2  Example of explanation rules using the fine-grained Facebook pages X
FG

 to explain predictions of 
the �2-LR model for Facebook data. The global explanation tells us, for example, that the �2-LR model 
tends to predict Facebook users as “Female” when they like the magazine “Flair”, “Lou Reed”, and “Angus 
and Julia Stone”

Fig. 3  Example of explanation rules using the domain-based metafeatures X
DomainMF

 to explain predictions 
of the �2-LR model for Facebook data. The explanation tells us, for example, that the �2-LR model tends to 
predict Facebook users as “Female” when more than 2% of their likes belong to the category “Fashion” and 
more than 2% of their likes are about “Food”

Fig. 4  Example of explanation rules using the data-driven metafeatures X
DDMF−k (k=70) to explain predic-

tions of the �2-LR model for Facebook data. The explanation tells us, for example, that the �2-LR model 
tends to predict Facebook users as “Female” when less than 2% of their likes belong to the metafeature 
“Female media”, less than 6% of their likes are about “Cooking” and more than 11% of their likes are 
related to “Interior Design”
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Fig. 5  Example of explanation rules using the fine-grained words X
FG

 to explain predictions of the �2-LR 
model for 20news data. The explanation tells us, for example, that the �2-LR model tends to predict news 
posts as “Atheism” when the tf-idf values of “atheism”, “atheists” and “morality” are respectively less than 
0.01, less than 0.11 and more than 0.09

Fig. 6  Example of explanation rules using the data-driven metafeatures X
DDMF−k (k=30) to explain predic-

tions of the �2-LR model for 20news data. The explanation tells us, for example, that the �2-LR model tends 
to predict the topic of news posts as “atheism” when the values of the metafeatures “Posts from Bob Beau-
chaine”, “Afterlife”, and “Israeli-Palestinian conflict” are respectively more than 0.09, more than 0.1 and 
less than 0.035

Fig. 7  News post from the 20news data with ground-truth topic “atheism”. 7.29% of the posts about “athe-
ism” are from Beauchaine and contain the same quote “They said that Queens could stay, they blew the 
Bronx away, and sank Manhattan out at sea”. The words in Metafeature 1 in Table  5 are related to the 
posts of Beauchaine and clearly represent words of the quote. The model overfitted on the posts of Beau-
chaine, more specifically, on his name and signature quote, as the explanation in Fig. 6 shows, that contains 
Metafeature 1
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In "Appendix 4", the explanations of a �2-LR model on movie viewing data (Mov-
ielens1m) to predict gender are shown. The explanation with data-driven metafeatures 
tells us that the LR model predicts users as “Female” when at least 2% of the movies they 
watched has female (lead) characters and at least 3% are drama movies (see Fig. 15). The 
interpretation of the data-driven metafeatures is shown in Table 6.

5  Experimental setup

The experiments in this article explore the performance of explanation rules with metafea-
tures versus the original features on which the model is trained. We make a distinction 
between domain-based metafeatures ( XDomainMF ) and metafeatures generated with a data-
driven method ( XDDMF−k ). The dimensionality reduction parameter k determines the 
number of metafeatures. The parameter k is fixed for the domain-based, but a hyperpa-
rameter for the data-driven metafeatures. We evaluate the performance on a suite of clas-
sification tasks using nine behavioral and textual data sets. Figure  16 in "Appendix 5" 
summarizes the experimental procedure for evaluating the fidelity, f-fidelity and accuracy 
of explanations using five-fold cross-validation (CV), and the explanation stability using 
bootstrapping.

5.1  Data sets and models

Our experimental data comprise seven behavioral and two textual data sets. The data sets 
are summarized in Table  1. The Movielens100 and Movielens1m  (Harper and Konstan, 
2015) data sets contain movie viewing data from the MovieLens website. We focus on the 
task of predicting the gender of these users. The Airline data19 contains Twitter data about 
American airlines, and the task is to predict (positive) sentiment. The Facebook “like” data 
collected by Praet et  al. (2018) (Facebook) contains likes from over 6000 individuals in 
Flanders (Belgium) and is used to predict gender. The Yahoomovies data20 also contains 
movie viewing behavior, from which we predict gender. The Tafeng data (Hsu et al., 2004) 
consists of fine-grained supermarket transactions, where we predict the age of customers 
(younger or older than 30) from the products they have purchased. The 20news data (Lang, 
1995) contains about 20,000 news posts. For this data, the task is to predict whether a post 
belongs to the topic “atheism”, based on the words of the post. Another behavioral data 
set is the Libimseti data (Brozovsky and Petricek, 2007), which contains data about profile 
ratings from users of the Czech social network Libimseti.cz. The prediction task is, again, 
the gender of the users. Lastly, the Flickr data (Cha et al., 2009) contains millions of Flickr 
pictures and the target variable is the popularity of a picture (the number of comments it 
has).

All data have a high-dimensional feature space with up to hundreds of thousands of fea-
tures. Movielens1m, Movielens100 and Airline have lower-dimensional feature spaces com-
pared to the other data sets. The large sparsity values � for all data indicate that the number 
of active features is very small compared to the total number of features.

19 Crowdflower (https:// data. world/ crowd flower/ airli ne- twitt er- senti ment).
20 Yahoo Webscope Program (https:// websc ope. sandb ox. yahoo. com/).

https://data.world/crowdflower/airline-twitter-sentiment
https://webscope.sandbox.yahoo.com/
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We train Logistic Regression models with l2-regularization ( �2-LR)21 and Random 
Forest (RF) models with the Scikit-learn library (Python). For training the classification 
models, we use 80% of the data, and the remaining 20% of the data is used for testing the 
models. For fine tuning hyperparameters of the model, we use a validation set (20% of the 
training data). More specifically, the regularization parameter C of the �2-LR model and 
the number of trees in the RF model are selected based on the accuracy on the validation 
set. For preprocessing the text data, we remove stopwords and lemmatize tokens using the 
NLTK package in Python, and then use tf-idf22 vectorization (Joachims, 1998; Martens and 
Provost, 2014).

Measuring accuracy in practice requires discrete class label predictions, which we 
obtain by comparing the predicted probabilities to a threshold value t and assigning 
instances with a predicted probability that exceeds this threshold a positive predicted label. 
In practice, the choice of the threshold value t depends on the costs associated with false 
positives and false negatives. In this article, the exact misclassification cost are unknown, 
and for this reason we compute the threshold value t such that the fraction of instances that 
are classified as positive equals the fraction of positives in the training data (Lessman et al., 
2015). Table 2 indicates the generalization performance of all models for each data set over 
five folds. In addition to the accuracy, we also report the f-score, precision and recall.

To extract explanation rules with the CART algorithm, we use the DecisionTree model 
of the Scikit-learn library. For controlling the complexity of the extracted rules, or equiva-
lently the depth of the tree, we change the value of the max_depth parameter. We let the 
depth of the tree vary from 1 to 5 such that the explanations are cognitively simple (which 
we motivated in Sect. 4.3).

We extract explanation rules with the original features XFG (on which the classification 
models are trained) and the metafeatures XMF , and the predicted black-box labels �̂ . In the 
experiments, we generate data-driven metafeatures XDDMF−k based on two approaches (see 
Sect. 4.2): NMF and SVD. In the experimental results, we mainly discuss the explanations 
with DDMF generated via NMF (simply denoted by DDMF), that showed the best (fidel-
ity) results. For the Facebook and Movielens1m data, we also extract explanations with 
domain-based metafeatures.

6  Experimental results

We compare explanation rules for black-box models extracted with metafeatures against 
those extracted with fine-grained features, across different classification tasks, data sets and 
evaluation criteria. As mentioned, our main goal is to better understand how metafeatures 
affect these different criteria and their trade-offs.

6.1  Are metafeatures better than the original features for explaining models 
on behavioral and textual data with cognitively simple explanation rules?

Table  3 shows the performance of explanation rules with FG features and metafeatures 
for the LR models. One of the first key questions related to the performance of the rules 
is “what is the fidelity”, as we want our explanations to mimic the black-box as closely 
as possible. Overall, the results indicate that the fidelity is higher for DDMF than for the 
21 In the literature, Logistic Regression with �2-regularization has shown to be the best-performing classifi-
cation model for behavioral and textual data (De Cnudde et al., 2020).
22 Tf-idf is short for term frequency and inverse document frequency.
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FG-based rules (on average, across all data sets, 6.05%). The rules with DDMF achieve a 
higher number of wins for both the fidelity and f-fidelity (8 wins versus 1). We use a one-
tailed Wilcoxon signed-rank test (Demsar, 2006) to make a statistical comparison between 
the fidelity of rules with DDMF vs FG features. The test is performed with a sample size 
of 9 data sets. We find a test statistic T  = 2 (which is smaller than the critical value Tc = 3 ), 
hence the difference in fidelity between DDMF and FG is statistically significant at a 1% 
significance level. The difference in f-fidelity is statistically significant at a 5% level (test 
statistic of T  = 5 compared to a critical value of Tc = 8).

One notable exception is the 20news data: the FG-based rules outperform the DDMF-
based rules, and the fidelity values are very high while the f-fidelity results are comparably 
low. This is likely because of the severe (predicted) class imbalance ( b = 4.24% in Table 1) 
compared to the other data. For this reason, the fidelity criterion might be less suitable for 
this specific data set. Instead, we could have optimized the depth of the tree and the k of the 
DDMF on the f-fidelity as measured on the validation set.23

Another prominent observation that is, at least at first sight, unexpected is that the opti-
mal tree depth (explanation complexity) does not always reach the maximum of 5. For 
example, for the Flickr data, the optimal complexity of FG-based explanations is a depth 
of 3. For the FG-based explanations of at most 32 rules, we observe only very small dif-
ferences in fidelity when varying the complexity (see Fig. 8). However, when we let the 
complexity of the explanations grow (very large), the fidelity also increases. This is in line 
with what we would expect: because of the data sparsity and many features being relevant 
in the model, more complex explanations (larger rule sets) explain a larger fraction of the 
predictions, resulting in a higher fidelity as shown for the Flickr data in Fig. 8.

In order to better understand what drives some of the differences in the performance of 
explanations with FG features and DDMF, we conjecture this relates to the information 

Table 1  Characteristics of the data sets: data type (Type: behavioral(B)/textual(T)), classification task (Tar-
get), number of instances (Instances), number of features (Features), number of domain-based metafeatures 
(DomainMF), balance of the target b (fraction of instances with a positive class label), and sparsity of the 
data � (fraction of zero feature values in the data X

FG
)

The data is sorted by increasing number of features m

Data set Type Target Instances n Features m DomainMF b (%) � (%)

Movielens100 B Gender 943 1682 n.a. 71.05 93.69
Movielens1m B Gender 6040 3883 18 28.29 95.76
Airline T Sentiment 14,640 5183 n.a. 16.14 99.82
Facebook B Gender 6733 5357 50 32.42 98.19
Yahoomovies B Gender 7642 11,915 n.a. 71.13 99.76
Tafeng B Age 31,640 23,719 n.a. 45.23 99.90
20news T Topic 18,846 41,356 n.a. 4.24 99.87
Libimseti B Gender 137,806 166,353 n.a. 44.53 99.93
Flickr B Comments 100,000 190,991 n.a. 36.91 99.99

23 However, for simplicity, we only used fidelity for all data sets.
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held at and the coverage of the most predictive features24. We look at the Gini impurity 
reduction (used by the CART algorithm) for different features25, which we plot in Figs. 17 
and 18 in “Appendix 6”. The results (visually) indicate that the ratio in Gini impurity reduc-
tion of the top-ranked metafeatures and the FG features relate to the difference in fidelity 
between rules using FG and DDMF features. For example, consider again the Flickr data, 
for which the explanation rules with metafeatures achieve a fidelity of 20.46% higher com-
pared to the FG rules. From Fig.  18c we observe that the top-DDMF holds much more 
information (larger Gini impurity reduction) than the top-FG feature, which might explain 
the large fidelity difference between the explanations. Indeed, the correlation coefficient 
between this ratio (impurity reduction of top-ranked DDMF vs top-ranked FG) and the dif-
ference in fidelity between explanations with DDMF vs FG (from Table 3) is 0.81.

Secondly, moving to the stability of the explanations, we observe from Table 3 that the 
rules with DDMF are similar in stability compared to the FG features (5 wins versus 4). 
The difference in stability is not statistically significant. It is important to note that for the 
DDMF-based explanations, there are two sources of instability: computing metafeatures 
from different bootstrap samples, and extracting explanation rules for different bootstrap 
samples. When we would “fix” the data-driven metafeatures, and not compute them for 
different bootstrap samples, the stability of the DDMF-based explanations increases, and 
is comparable to the DomainMF-based explanations. Furthermore, the stability results can 
be closely tied to the parameter k. When the optimal dimensionality k of the DDMF is low 
(for example Movielens1m and Tafeng), the same DDMF are likely to appear in the global 
explanation, resulting in more stable explanations over the bootstrap samples. When the 
selected value of k is higher (for example 20news and Airline), the stability of the explana-
tions with DDMF decreases.

Thirdly, when we compare the accuracy between the rules with DDMF and FG, we 
observe that the metafeatures-based explanations result in more accurate predictions in 
regard to the true labels � (7 wins versus 2). However, using a Wilcoxon signed-rank test, 
we find that the difference in accuracy is not significant at a 5% level. One data set that 
stands out is Libimseti. For this data set, the fidelity and accuracy for DDMF-based expla-
nations as compared to FG-based explanations is respectively better and worse. Stronger 
even: the accuracies of the explanations with FG, DDMF and DDMF-SVD (94.38%, 
87.94% and 99.63%) are better compared to the accuracy of the black-box model (82.71% 
in Table 2). Despite the sparsity of this data, there are features that have a large coverage 
and that are very predictive in regard to the (predicted) target values. For Libimseti, there 
exists a prediction model that has a small number of features (e.g., tree-based model with a 
depth of 5) that is more accurate compared to models on the full set of behavioral features. 
As a consequence, this seems not to be a problem instance that requires post-hoc explana-
tions using rule-extraction. This example illustrates that one should always carefully verify 
first that there are black-box models on the full behavioral or textual data that, indeed, out-
perform intrinsically-interpretable models (e.g., small decision trees or linear models with 
a small number of features). If not, it may not help to use a black-box model and then 
compute post-hoc explanations from it (Rudin, 2019). Leaving out the Libimseti data and 
performing the Wilcoxon test on the eight remaining data sets, we find that the differences 

24 The features are either the fine-grained behavioral or textual features, or the metafeatures. With “predic-
tive” we mean predictive in regard to the predicted labels of the black-box model.
25 We compute the average Gini impurity of the top-FG features and top-MF over five folds.
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in fidelity and accuracy between DDMF and FG explanations are statistically significant at 
a 5% level.

Instead of generating metafeatures using a data-driven method, we can also rely on 
domain-based metafeatures, crafted by experts. The prominent advantage of this approach 
is that the resulting metafeatures are (by design) comprehensible. However, they may not 
always be available. For example, we have such metafeatures for only two of the nine data 
sets: Facebook and Movielens1m. When comparing DDMF with domain-based metafea-
tures for these two data sets, we see again that the fidelity is higher for the DDMF com-
pared to the DomainMF (Table  3 shows that the rules with domain-based metafeatures 
achieve, at best, test fidelities of 77.66% for Facebook and 71.47% for Movielens1m), pro-
viding further support for using DDMF when developing global explanations for black-
boxes. However, when a straightforward semantic meaning of the metafeatures is key, one 
might still prefer to use DomainMF if they can also increase the fidelity relative to the 
explanation with FG features (for example for the Facebook data).

Finally, we also generate explanations for Random Forest models, for which the perfor-
mance results are shown in Table 7 in “Appendix 7”. We find similar results when explain-
ing RF models compared to explaining LR models, which increases the generalizability of 
our experimental findings, and further supports using metafeatures to explain models on 
behavioral and textual data. In the experiments, we also compute explanations with data-
driven metafeatures based on the SVD approach. For both the LR models and RF models, 
the results in Tables 3 and 7 indicate that, overall, the explanations with DDMF-SVD also 
have a higher fidelity and accuracy than FG-based explanations, but the differences are 
slightly less prominent compared to the DDMF-based explanations using NMF.

Table 2  Average performance of black-box classification models ( �2-LR and RF) on the test data using 
five-fold CV

Data set Accuracy (%) f-score (%) Precision (%) Recall (%)

Movielens100 �2-LR 72.75 80.87 80.69 81.08
RF 73.17 81.19 80.89 81.52

Movielens1m �2-LR 78.79 62.60 62.58 63.08
RF 77.10 59.64 59.56 60.15

Airline �2-LR 89.28 66.62 68.07 70.42
RF 88.05 62.83 64.16 66.37

Facebook �2-LR 85.22 77.07 77.53 76.83
RF 84.79 76.42 76.82 76.25

Yahoomovies �2-LR 76.78 83.51 82.70 84.33
RF 76.54 83.46 83.71 83.24

Tafeng �2-LR 67.69 64.98 67.59 62.55
RF 62.07 57.95 58.19 57.93

20news �2-LR 96.59 59.83 59.84 60.03
RF 96.58 59.70 59.69 59.92

Libimseti �2-LR 82.71 82.89 85.61 89.05
RF 79.29 81.78 84.62 89.31

Flickr �2-LR 82.28 76.00 76.02 76.15
RF 81.17 74.50 74.59 74.61
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Table 3  Evaluation of explanation rules for ��-LR model using fine-grained features (FG) and data-driven 
metafeatures (DDMF) with optimal dimensionality reduction parameter k in parentheses

The best performance values (FG vs DDMF) are indicated in bold. The average fidelity, f-fidelity and accu-
racy on the test data are reported over five-fold CV. The stability is measured over 10 bootstrap samples. 
The optimal complexity (tree depth) is shown in the last column. We also report the results for explanations 
with DDMF generated via SVD (DDMF-SVD). For Facebook and Movielens1m, we also report results for 
the domain-based metafeatures (DomainMF)

Data set Representation Complexity: tree depth ≤ 5

Fidelity(%) f-fidelity(%) Stability(%) Accuracy(%) Optimal depth

Movielens100 FG 72.43 81.99 5.91 68.93 3
DDMF (100) 75.29 84.06 5.52 72.00 4
DDMF-SVD 

(10)
72.54 82.47 65.38 70.09 5

Movielens1m FG 75.53 34.43 8.53 73.29 5
DDMF (10) 78.92 57.78 75.18 74.24 4
DDMF-SVD 

(30)
77.89 54.12 30.81 73.08 4

DomainMF 71.47 21.06 46.01 70.29 3
Airline FG 90.53 64.04 33.13 87.43 4

DDMF (700) 90.79 65.53 17.66 88.03 5
DDMF-SVD 

(700)
89.62 57.88 17.66 87.08 5

Facebook FG 75.08 41.36 11.71 74.83 5
DDMF (70) 81.73 67.99 18.81 79.65 5
DDMF-SVD 

(10)
78.30 63.74 65.32 75.91 5

DomainMF 77.66 59.38 50.44 76.04 5
Yahoomovies FG 77.32 85.59 22.62 72.85 5

DDMF (100) 80.41 86.81 18.91 74.05 5
DDMF-SVD 

(50)
77.48 85.25 25.88 72.43 5

Tafeng FG 68.72 58.27 20.43 57.43 5
DDMF (10) 69.39 62.15 76.62 58.70 5
DDMF-SVD 

(300)
69.19 62.07 14.28 57.75 5

20news FG 96.38 32.68 26.48 96.12 3
DDMF (70) 96.11 27.67 15.78 95.75 3
DDMF-SVD 

(700)
95.90 20.62 4.01 95.74 4

Libimseti FG 77.18 76.72 24.34 94.38 5
DDMF (10) 94.52 94.11 65.39 87.94 5
DDMF-SVD 

(10)
93.12 92.59 68.03 99.63 5

Flickr FG 63.23 0.84 38.36 63.20 3
DDMF (30) 83.69 78.09 38.69 79.74 5
DDMF-SVD 

(30)
83.87 78.12 32.43 78.87 5

# wins DDMF 
vs FG

8 − 1 8 − 1 5 − 4 7 − 2

Mean difference 
DDMF vs FG 
( �)

6.05 (7.18) 16.47 (23.87) 8.82 (37.65) 2.40 (5.77)
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6.2  How does the fidelity of explanation rules vary for different complexity 
settings?

Figure 9 plots the difference in average test fidelity between rules with DDMF and rules 
with FG features against the maximum allowed explanation complexity (equivalent to the 
tree depth). Points above the horizontal line are data sets for which the rules with DDMF 
perform better. The graph clearly shows that for the majority of data, and for varying com-
plexity settings, the DDMF representation performs better than the FG (differences larger 
than 0). Only for the Tafeng, Airline and 20news data, the differences are sometimes not 
positive, indicating that for these complexity settings, the average test fidelity for the rules 
with FG features is best. In general, from this plot, we can conclude that the findings of 
Table 3 hold for varying complexity settings, and that the fidelity is generally higher for 
explanations with the DDMF representation compared to the FG representation.

Figure 10 plots the average test fidelity against the maximal allowed explanation com-
plexity for FG (10a) and DDMF (10b) explanation rules. We observe that, as one would 

Fig. 8  Fidelity on validation set of explanation rules for varying complexity settings (tree depths ranging 
from 1 to 200) when explaining the LR model on the Flickr data

Fig. 9  Difference in average test 
fidelity of rules with DDMF and 
FG features in percentage points 
for varying complexity settings 
(tree depths from 1 to 5)
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expect, for all data sets, there is generally an increasing fidelity when we increase the depth 
of the decision tree, or equivalently, the complexity of the explanation rules. Interestingly, 
for some data sets, this fidelity-complexity trade-off is less severe. For example, for the 
20news and Movielens100 data, the slopes of the curves are relatively flat. These results 
also indicate that in some cases, there may not be much to gain by using a relatively “more 
complex” explanation. Therefore, once one is willing to trade-off fidelity for complex-
ity, in some cases, one might as well choose an “extremely” simple explanation. For the 
20news data, we already pointed at the f-fidelity being a more suitable measure than fidel-
ity because of the class imbalance, which explains the marginal increase in fidelity when 
increasing complexity.

6.3  How does the number of generated data‑driven metafeatures (dimensionality 
reduction parameter k) impact fidelity and stability?

A key parameter in our metafeatures-based rule-extraction methodology is the dimen-
sionality reduction parameter k. For DomainMF, this k is fixed. For DDMF, we have been 
selecting the value of k that maximizes the fidelity of the explanation rules on the valida-
tion data. As this k may be an important parameter that defines the dimensionality of the 
space where rule-extraction methods operate (and their performance), we also investigate 
to what extent the quality—both fidelity and stability—of rules extracted using DDMF 
depends on this parameter.26 Although fidelity can be considered the most important evalu-
ation metric, in practice, one may wish to tune parameters such as k on a desired combina-
tion of fidelity, stability and accuracy27 depending on the context.

Fig. 10  Average test fidelity of rules with (a) FG features and (b) DDMF for varying complexity settings 
(tree depths from 1 to 5)

26 One can do such an analysis for other parameters, too, in general.
27 As mentioned earlier, we focus on fidelity—namely how well we can mimic the black-box—instead of 
accuracy. All analyses can be done for either of the two—or for both—although trade-off decisions become 
more complex when one uses many criteria.
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Figures  11 and  12 show the average fidelity and the stability for varying values of k 
used and explanation complexities. Firstly, looking at the figures depicted on the left, we 
observe that, for most data, the fidelity increases with a higher number of metafeatures up 
until a certain point, after which fidelity decreases again. This turnover point varies per 
data set, and also depends on the complexity of the explanation (the tree depth). Therefore, 
an important implication is to select the optimal number of metafeatures on a separate vali-
dation set, as we also do. Interestingly, fidelity behaves similarly to how (out-of-sample) 
accuracy typically does as complexity increases: for both measures there is some sort of 
“overfitting” to the black-box training data in case of including too many metafeatures.

On the other hand, for stability (all figures shown on the right), we observe that, over-
all, the stability of the extracted rules decreases with a higher number of k, especially 
when allowing for a larger explanation complexity. For example, the stability of rules with 
DDMF with k = 10 is generally larger than the stability with DDMF with k = 700 . For a 
lower value of k, the dimensionality and sparsity of the metafeatures are lower, making 
the same metafeature more likely to appear in explanations from different bootstrap sam-
ples (as also explained in Sect. 6.1). Interestingly, these figures also show that there is a 
fidelity-stability trade-off. While fidelity generally increases (at first) with the number of 
metafeatures and the explanation complexity, stability does not. This may also impact the 
“optimal” number of generated metafeatures k, or any parameter selection for any explana-
tion methodology.

7  Conclusion

The fine-grained level of the features that are typically observed in behavioral and 
textual data sets are of great value for predictive modeling. Feature selection meth-
ods or dimensionality reduction techniques to come to a reduced set of “metafeatures” 
have been shown in the literature to lead to lower accuracies (Junqué de Fortuny et al., 
2013; Clark and Provost, 2015; De Cnudde et al., 2019) for models mining these types 
of data. On the other hand, we have shown empirically using a number of data sets, and 
for Logistic Regression and Random Forest models as black-boxes, that these metafea-
tures are of great value to explain the complex prediction models built on the fine-
grained features. The results indicate that explanation rules extracted with data-driven 
metafeatures are better able to mimic the black-box models than those extracted using 
the behavioral or textual features on which the model was trained. As such, metafea-
tures help to improve the fidelity: concise rule sets that explain a large(r) percentage of 
the black-box’s predictions (higher fidelity) can be obtained.

Exploring when our solution of metafeatures-based rule extraction works best, our 
empirical results show a strong indication that the relative gain of using metafeatures 
to extract explanations is positively related to the sparsity of the most important fine-
grained predictors in the model. When the black-box model is not characterized by the 
problems we try to address (high dimensionality, sparsity, and many relevant predic-
tors for the classification task at hand), explanation rules with metafeatures will be as 
good as or worse than explanations with the original features. However, they can still 
provide the user with different types of insights on the model’s behavior, that would 
not (as easily) be identified when looking at rules extracted with the original data, ren-
dering them also valuable in this context.
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Fig. 11  Average test fidelity and stability for rules with DDMF for varying values of k (number of metafea-
tures) and complexities for data sets Movielens100, Movielens1m, Airline, Facebook, and Yahoomovies 
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Our empirical results also show important trade-offs between the quality measures 
of the explanation rules that we considered. For example, more complex explanations 

Fig. 12  Average test fidelity and stability for rules with DDMF for varying values of k (number of metafea-
tures) and complexities for data sets Tafeng, 20news, Libimseti and Flickr 
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(larger rule sets) tend to lead to higher fidelity but lower stability. An interesting impli-
cation of our empirical findings is that one should carefully fine tune any parameter of 
their explainability method, such as the number of generated metafeatures in our meth-
odology, in order to obtain the desired trade-offs. In our case, increasing the number 
of generated metafeatures has shown to result in lower stability of the extracted rules, 
whereas the impact on fidelity is not straightforward and depends on the data set and 
the complexity setting.

In this article, we mainly focused on the fidelity of explanation rules in regard to 
the black-box model. For future research, there are some other important directions to 
explore for evaluating post-hoc explanations of prediction models: the computational 
cost to achieve the explanations, the cost of having an explanation rule set with an 
accuracy that is lower than the black-box model, or the issue of presenting only one 
rule set as explanation, while other rule sets with similar fidelity and accuracy might 
exist. Although these aspects are implicitly addressed in our article, a more qualita-
tive study on how these “costs” are perceived by users can be another interesting issue 
for future research. On a methodological level, this study could spur future research 
on the use of other feature engineering techniques such as embeddings to be used in 
metafeatures-based explanation rules. One interesting approach is to include the fidel-
ity, stability, accuracy, and complexity measures explicitly when constructing the 
metafeatures.

Finally, our metafeatures-based explanation approach for high-dimensional, sparse 
behavioral and textual data has important practical implications for any setting where 
such data is available and explainability is an important requirement, be it for model 
acceptance, validation, insight, or improvement. This article could therefore poten-
tially lead to a wider use of valuable behavioral and textual data in different domains, 
among others, marketing and fraud detection.

Appendix

Appendix 1: Procedure for generating data‑driven metafeatures

See Fig. 13.
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Fig. 13  Procedure for generating DDMF using dimensionality reduction with matrix factorization. Note 
that X

FG
 can also contain numerical features
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Appendix 2: Explaining the �
2
‑LR model on Facebook data to predict gender using 

fine‑grained features and metafeatures

See Table 4.

Table 4  Interpretation of data-driven metafeatures ( k = 70 ) of Facebook data by investigating top-20 fea-
tures with highest coefficient. We only interpret the metafeatures that are part of the explanation for the �2

-LR model to predict gender (see Fig. 4). The “cluster names” at the bottom show our interpretation of the 
metafeatures based on the Facebook pages with the highest coefficient

Metafeature 1 Metafeature 2 Metafeature 3 Metafeature 4

H&M Dagelijkse kost Coolblue IKEA
Flair Standaard Uitgeverij Microsoft Decovry.com
Gossip Girl Lidl Belgium Samsung Eva Mouton
Adele Lekker van bij ons Windows Tasty
Humans of New York ZOO Planckendael Telenet Espoo.design store
Ed Sheeran Libelle.be Mobile Vikings Brussels Airlines
Tasty Alpro bol.com MADE.com
De Slimste Mens ter Wereld bol.com OnePlus Furnified
ZARA Radio 2 Takeaway.com newplacestobe.com
Jamie’s World Vente-Exclusive.com Google LILY—Life’s Little 

Luxuries
The fault in our stars Gezondheid.be Netflix Knack Weekend
ELLE België Jobat.be PlayStation België Bloovi
Bokken voor bij het blokken Ish Ait Hamou Proximus Sandra Bekkari
Ellie Goulding Vlaanderen Vakantieland BMW Belgium VakantiePiraten.nl
Loïc IKEA Telenet vaste klanten Charlie
The Notebook Zin in meer iBOOD.be Belmodo
Pretty Little Liars Bose Smartmat ELLE België
VIJF She.be Audi MONOQI
Awkward UiTinVlaanderen Game Mania Ugly Belgian Houses
Belgian Red Devils Uitgeverij Lannoo Volvo Car BeLux Woonblog
Female media Cooking Tech companies Interior Design
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Appendix 3: Explaining the �
2
‑LR model on 20news data to predict the topic 

“atheism” using fine‑grained features and metafeatures

See Table 5.

Appendix 4: Explaining the �
2
‑LR model on Movielens1m data to predict gender 

using fine‑grained features and metafeatures

See Figs. 14, 15 and Table 6.

Table 5  Interpretation of data-driven metafeatures ( k = 30 ) of 20news data by investigating top-20 features 
with highest coefficients. We only interpret the metafeatures that are part of the explanation for the �2-LR 
model (see Fig. 6). The “cluster names” at the bottom show our interpretation of the generated metafeatures 
based on the words with the highest coefficient

Metafeature 1 Metafeature 2 Metafeature 3 Metafeature 4 Metafeature 5

Could God Christian Israel System
Find Faith Book Jews Moral
Said Sin True Israeli Morality
Give Bell Christians Arab Systems
Away Angels Evidence Jewish Running
Tell Lord Faith Arabs Operating
Bobbe Existence Read Israelis Objective
Ico Bible Christianity Palestinians Memory
Someone Heaven Even Peace Ini
Beauchaine Man Life Lebanon Duo
Queens Love Bible Lebanese Change
Bronx Eternal Truth Palestinian Necessary
Tek Must Word State Based
Sank Belief Find Land Information
Manhattan Believe Kent Adam Ram
Com Exists Love Gaza Gateaway
Nlew Exist Cheers Palestine Ranking
Bob Christ Meaning War Control
Vice Satan Claim Killed Ntfs
Stay Word Quite Anti Dialing
Posts from Bob 

Beauchaine
Afterlife Christianity Israeli-Palestinian conflict Morality
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Fig. 14  Example of explanation 
rules using the movies X

FG
 to 

explain predictions of the �2-LR 
model for Movielens1m data. The 
explanation tells us, for example, 
that the �2-LR model likely 
predicts users as “Female” when 
they watched the movie “Four 
rooms” but they didn’t watch 
“Silence of the lambs”

Fig. 15  Example of explanation rules using the data-driven metafeatures X
DDMF

 to explain predictions of 
the �2-LR model for Movielens1m data. The explanation tells us, for example, that the �2-LR model likely 
predicts users as “Female” when at least 2% of the movies they watched have female lead characters and at 
least 3% are drama movies
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Table 6  Interpretation of data-driven metafeatures ( k = 70 ) of Movielens1m data by investigating top-20 
features with highest coefficients. We only interpret the metafeatures that are part of the explanation for 
the �2-LR model (see Fig. 15). The “cluster names” at the bottom show our interpretation of the generated 
metafeatures based on the movies with the highest coefficient

Metafeature 1 Metafeature 2 Metafeature 3

My fair lady l’enfer So I married an axe murderer
Four rooms The untouchables The harmonists
All about eve Outbreak The wooden man’s bride
An affair to remember Cross of iron The kindred
The rescuers down under Chariots of fire My own private idaho
The amityville horror The sexual life of the belgians The baby-sitters club
Deadly friend Ghost dog: the way of the samurai Evita
Rebecca Little buddha I love trouble
Anna October sky Tough and deadly
The manchurian candidate The ghost of frankenstein Dracula: dead and loving it
The women Homeward bound 2 Muppet treasure island
The apple dumpling gang rides Castle freak Sphere
Heathers Disclosure It could happen to you
Twisted Love! valour! compassion! An American werewolf in Paris
Charade Seven days in may Nil by mouth
Naked Titanic A goofy movie
The adventures of robin hood White man’s burden Tom and Huck
It could happen to you Selena The good, the bad and the ugly
Army of darkness A league of their own Mouth to mouth
The alarmist Seven When a man loves a woman
Female (lead) characters Crime Drama
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Fig. 16  Experimental procedure of evaluating fidelity, f-fidelity and accuracy of explanation rules C
WB

 with 
five-fold CV, and stability using bootstrap samples, using fine-grained features (FG), data-driven metafea-
tures (DDMF) and domain-based metafeatures (DomainMF), and varying complexity settings for explana-
tions (this is equivalent to the tree depth)

Appendix 5: Experimental procedure for evaluating fidelity, f‑fidelity, accuracy, 
and stability of explanation rules

See Fig. 16.
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Fig. 17  Top-ranked features with highest Gini impurity reduction for each data representation for the �2-LR 
model as the black-box model. The reductions are averaged over five folds

Appendix 6: Gini impurity reductions

See Figs. 17 and 18. 
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Fig. 18  Top-ranked features with highest Gini impurity reduction for each data representation for the �2-LR 
model as the black-box model. The reductions are averaged over five folds
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Table 7  Evaluation of explanation rules for RF model using fine-grained features (FG) and data-driven 
metafeatures (DDMF) with optimal dimensionality reduction parameter k in parentheses

The best performance values (FG vs DDMF) are indicated in bold. The average fidelity, f-fidelity and accu-
racy on the test data are reported over five-fold CV. The stability is measured over 10 bootstrap samples. 
The optimal complexity (tree depth) is shown in the last column. We also report the results for explanations 
with DDMF generated via SVD (DDMF-SVD). For Facebook and Movielens1m, we also report results for 
the domain-based metafeatures (DomainMF)

Data set Representation Complexity: tree depth ≤ 5

Fidelity(%) f-fidelity(%) Stability(%) Accuracy(%) Optimal 
depth

Movielens100 FG 71.05 82.43 3.74 70.31 4
DDMF (70) ��.�� ��.�� ��.05 ��.�� 4
DDMF-SVD (10) 71.79 81.78 18.29 69.78 2

Movielens1m FG 78.05 46.49 8.83 73.49 5
DDMF (10) ��.16 ��.66 ��.07 ��.62 3
DDMF-SVD (10) 78.06 48.03 54.16 73.77 4
DomainMF 72.35 8.89 46.61 71.77 3

Airline FG 91.67 67.91 ��.49 87.47 5
DDMF (700) ��.�� ��.�� 16.53 ��.�� 5
DDMF-SVD (700) 90.25 60.79 17.59 86.81 5

Facebook FG 77.29 47.02 ��.38 75.09 5
DDMF (300) ��.40 ��.67 5.44 ��.85 5
DDMF-SVD (10) 78.87 64.54 65.77 76.19 5
DomainMF 78.91 60.51 43.69 76.44 3

Yahoomovies FG 78.57 86.43 ��.03 73.27 5
DDMF (100) ��.85 ��.88 14.76 ��.39 5
DDMF-SVD (300) 76.98 85.34 9.29 72.78 5

Tafeng FG 60.74 37.36 19.04 57.00 5
DDMF (50) ��.19 ��.�� ��.51 ��.45 5
DDMF-SVD (50) 64.52 54.68 25.68 58.25 5

20news FG 96.17 29.11 ��.11 ��.�� 5
DDMF (500) ��.24 ��.22 4.69 95.89 5
DDMF-SVD (70) 95.89 18.69 14.05 95.64 4

Libimseti FG 73.74 75.84 14.45 ��.33 5
DDMF (10) ��.15 ��.36 ��.20 87.93 5
DDMF-SVD (10) 91.06 92.27 66.58 87.85 5

Flickr FG 63.12 0.18 ��.67 63.05 1
DDMF (30) ��.�� ��.�� 40.69 ��.�� 5
DDMF-SVD (30) 80.91 75.36 34.34 79.33 5
# wins DDMF 

vs FG
9 − 0 9 − 0 4 − 5 7 − 2

Mean difference 
DDMF-FG ( �)

5.84 (6.62) 16.55 
(21.79)

6.58 
(21.06)

2.25 (5.88)

Appendix 7: Experimental results of explanations for the Random Forest models

See Table 7.
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