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Abstract
Time series forecasting is a challenging task with applications in a wide range of domains. 
Auto-regression is one of the most common approaches to address these problems. Accord-
ingly, observations are modelled by multiple regression using their past lags as predictor 
variables. We investigate the extension of auto-regressive processes using statistics which 
summarise the recent past dynamics of time series. The result of our research is a novel 
framework called VEST, designed to perform feature engineering using univariate and 
numeric time series automatically. The proposed approach works in three main steps. First, 
recent observations are mapped onto different representations. Second, each representa-
tion is summarised by statistical functions. Finally, a filter is applied for feature selection. 
We discovered that combining the features generated by VEST with auto-regression sig-
nificantly improves forecasting performance in a database composed by 90 time series with 
high sampling frequency. However, we also found that there are no improvements when 
the framework is applied for multi-step forecasting or in time series with low sample size. 
VEST is publicly available online.
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1 Introduction

Analysing and learning from time series is one of the most active topics in scientific 
research. One of the tasks related to this topic is forecasting, which denotes the process of 
predicting the value of future observations given some historical data. This task is relevant 
to organisations across a wide range of domains of application. In many of these organisa-
tions, forecasting processes can have a significant financial impact (Kahn, 2003).

In the machine learning literature, it is widely accepted that the feature set used to rep-
resent a data set is a crucial component for building accurate predictive models (Guyon 
& Elisseeff, 2006). Hence, feature engineering is regarded as a critical step in machine 
learning projects. However, feature engineering is often an ad-hoc process. Practitioners 
design new features based on their domain knowledge and expertise. The limitations of 
current approaches to feature engineering are particularly relevant in time series forecast-
ing, where, although evidence exists that it improves forecasting performance (Oliveira & 
Torgo, 2014), it is often overlooked.

Time series forecasting tasks are typically formalised using an auto-regressive approach. 
Accordingly, observations are modelled using multiple regression; the future observations 
we want to predict represent the target variable, and the past lags of these observations are 
used as explanatory variables. Auto-regression is at the core of many forecasting models in 
the literature, such as, for example, Auto-Regressive Integrated Moving Average (ARIMA) 
(Box et al., 2015). This approach presents an opportunity to approach feature engineering 
in a systematic way. Statistical features can be extracted from recent observations of time 
series. These features can help summarise the dynamics of the data and enrich its repre-
sentation. For example, a simple feature such as the average of the past recent observations 
can help capture the overall level of the time series in a given point in time. If the process 
is adequately done, new features will lead to more accurate predictive models and better 
forecasting performance.

1.1  Our approach and paper organisation

Despite having domain expertise, professionals often lack proper time series analysis skills 
(Taylor & Letham, 2018). Getting the most out of state of the art time series forecasting 
methods requires significant experience, and it is a complex and time-consuming task. In 
this context, developing a framework for automatically extracting an optimal representation 
from an input time series is beneficial for practitioners with minimal technical expertise.

This paper presents and describes an automatic feature engineering approach called 
VEST (Vector of Statistics from Time series). VEST is specifically designed to address 
forecasting problems.
VEST works according to the following three main steps:

• Transformation: We transform the time series into several distinct representations. This 
process may be beneficial for describing from different perspectives the underlying pro-
cess causing the time series. For example, a simple moving average transformation can 
be useful to remove the spurious behaviour of time series;

• Summarisation: Each representation is summarised using statistics (e.g. mean, standard 
deviation);
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• Selection: The first two steps can lead to a high dimensional problem. We apply a fea-
ture selection procedure to cope with this issue. The final set of features is concatenated 
with the original representation (before any transformation) to learn a regression model 
for forecasting.

In this paper, we show significant forecasting performance gains when applying VEST, 
based on a case study comprised of 90 univariate time series from several domains of appli-
cation. These improvements are evidenced for predicting the next point of the time series 
using two different learning algorithms: a variant of the model tree (Quinlan, 1993), and 
lasso (Tibshirani, 1996). Following our experimental design, we found that the time series 
sample size is important for the improvements in performance. The approach is also lim-
ited when applied to multi-step forecasting. Specifically, a pure auto-regressive approach is 
more adequate for multi-step forecasting or for time series with low sample size.
VEST is available online at https ://githu b.com/vcerq ueira /vest. Additionally, the code 

necessary to reproduce the experimental evaluation presented in the paper is made avail-
able to encourage reproducible research.

The organisation of the paper is as follows. In Sect. 2, we formalise the time series fore-
casting problems as a predictive regression task. We present a literature review in Sect. 3, 
including topics related to the feature engineering process and its automation, feature 
selection, and time series representation and feature extraction. Section 4 presents VEST, 
formalising its main steps: transforming the original representation, summarisation using 
statistics, and feature selection. We show the usefulness of this framework using empirical 
evidence presented in Sect.  5. We present a discussion on the results from such experi-
ments, challenges, and future directions in Sect. 6. The paper is concluded in Sect. 7.

2  Problem definition

A univariate time series represents a temporal sequence of values Y = {y1, y2,… , yn} , 
where yi ∈ Y ⊂ ℝ is the value of Y at time i and n is the length of Y. Forecasting denotes 
the process of predicting the value of the upcoming observations of the time series, 
yn+1,… , yn+h , given the historical past observations, where h denotes the forecasting hori-
zon. In this work, we focus on h = 1 , which means we attempt to forecast the next value of 
the time series. We adopt an auto-regressive approach to address the problem of time series 
forecasting. Accordingly, observations of a time series are regressed on their past lags.

We start by reconstructing the time series as a geometric object by applying a time 
delay embedding using the Takens theorem (Takens, 1981). Then, the predictive task is 
framed as a multiple regression problem. We construct a set of observations of the form 
(X, y). In each observation, the value of yi is modelled based on the past p values before it: 
Xi = {yi−1, yi−2,… , yi−p} , where yi ∈ Y ⊂ ℝ , which represents the observation we want to 
predict, and Xi ∈ X ⊂ ℝ

p represents the i-th embedding vector. Effectively, the time series 
is transformed into the data set D(X, y) = {Xi, yi}

n
p+1

.
The learning objective is to build a regression model that provides an approximation 

to an unknown function f ∶ X → Y . The principle behind this approach is to model the 
conditional distribution of the i-th value of the time series given its p past values: f(yi|Xi).

https://github.com/vcerqueira/vest
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3  Related research

This section provides an overview of the literature related to the topic of this work. First, we 
describe the importance of feature engineering and outline automatic procedures to address 
this task (Sect. 3.1). Afterwards, we focus on time series data. We describe approaches for 
changing the representation of time series (Sect. 3.2). Finally, we overview approaches for 
extracting features from time series with the objective of predictive modelling (Sect. 3.3).

3.1  Feature engineering

The goal of feature engineering is to enrich the representation of a data set with additional 
explanatory variables. The expectation is that such new predictors contain useful informa-
tion and lead to more accurate predictive models (Guyon & Elisseeff, 2006).

In order to clarify the scope of our work, we split the generated variables through feature 
engineering into two classes: exogenous and endogenous. Exogenous variables are those 
derived from an external source. Consider an example of a time series representing the 
number of rooms occupied per day in a hotel. Forecasting the values of such a time series 
is interesting to the business for different reasons (e.g. pricing). In this scenario, a simple 
binary variable containing the information regarding whether or not the observation to be 
predicted occurs during the weekend may be useful to the predictive model. Since informa-
tion is not contained within the original observations (each y ∈ Y ) we call it exogenous.

Regarding endogenous variables, Xi represents the embedding vector (Sect. 2) of a time 
series in a given point in time i. We can try to derive more information from Xi by applying 
some transformations or summary statistics. For example, the average of the values of Xi in 
a specific period may be a useful indicator for describing the overall level of the time series 
at that point. As such, a new explanatory variable is generated based on the time series 
itself, i.e. an endogeneous feature.

In this work, we focus on the automatic discovery of endogenous features in numeric 
time series. The goal is to augment the representation of the embedding vectors and 
improve forecasting performance of predictive models.

3.1.1  Automatic feature engineering

Typically, feature engineering is an ad-hoc process (Guyon & Elisseeff, 2006; Pinto et al., 
2016). Practitioners design features based on their domain knowledge and expertise. How-
ever, this process is time-consuming, and requires both domain expertise and imagination.1

Recent approaches have been developed to systematise the feature engineering process. 
This research line is designated in the literature as automatic feature engineering. Exam-
ples include the following: Deep Feature Synthesis (Kanter & Veeramachaneni, 2015), 
ExploreKit (Katz et  al., 2016), AutoLearn (Kaul et  al., 2017), Cognito (Khurana et  al., 
2016), or OneBM (Lam et  al., 2017). These frameworks focus on discovering relevant 
features from data sets comprised of several attributes, which can be either categorical or 
numeric. Moreover, most of these focus solely on classification problems and i.i.d. data. In 
this work, we focus on univariate time series data and the problem of forecasting. As such, 

1 https ://www.kdnug gets.com/2019/03/why-autom l-wont-repla ce-data-scien tists .html.

https://www.kdnuggets.com/2019/03/why-automl-wont-replace-data-scientists.html
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many of the operations we develop to discover new relevant features intend to leverage the 
temporal dependency among the observations in the data set.

Deep learning methods can also be regarded as having an internal automatic feature 
engineering component. These approaches are able to learn higher-order representations 
based on the raw input data. Still, there are important factors which make standard feature 
engineering relevant. Deep learning models require a large amount of data, which is often 
not readily available. The internal representations of neural networks are opaque, while 
standard feature engineering is typically based on interpretable operations. This trans-
parency may be important in sensitive applications. Besides, the two approaches are not 
incompatible, as neural networks can potentially leverage standard feature engineering, for 
example, to improve their learning efficiency.

3.2  Time series representation

Sometimes, time series are analysed using a representation that is different from the origi-
nal one. Changing the representation of a time series can be beneficial for (1) reducing 
the dimensionality of the data, which leads to more efficient storage and processing; (2) 
implicit handling of noise; and (3) focusing on fundamental characteristics of the data 
(Esling & Agon, 2012). We refer to the work by Esling and Agon (2012) for a complete 
read on time series transformations.

Keogh et  al. (2004) splits time series representation methods into three main types: 
non-data adaptive, data-adaptive, and model-based. In non-data adaptive approaches, the 
parameters of the transformation are independent of the underlying data. Examples of this 
approach are the discrete wavelet transformation (Percival & Walden, 2006) or the sim-
ple moving average. Conversely, the parameters of data-adaptive methods depend to some 
extent on the time series. Symbolic aggregate approximation (Lin et al., 2003) is a well-
known approach of this sort.

Model-based approaches work on the assumption that some underlying model generates 
the time series. As such, parameters of the model represent the time series. Auto-regressive 
moving average (ARMA) (Chatfield, 2000) models are an example of this type.

3.3  Time series feature extraction

Extracting features from time series has been shown to improve performance in different 
tasks such as forecasting and classification (Prudêncio & Ludermir, 2004; Christ et  al., 
2016). We split the literature on this topic into two dimensions: sequence descriptions and 
sub-sequence descriptions. The former denotes approaches which summarise the complete 
set of observations available in a time series. The latter extract features from sub-sequences 
of time series, i.e. the embedding vectors.

3.3.1  Sequence descriptions

There are several approaches which extract features from the complete time series to 
improve forecasting performance. Examples of this are the works of Prudêncio and Luder-
mir (2004), Lemke and Gabrys (2010), Barandas et al. (2020), or Kang et al. (2017). Often, 
the goal of these approaches is to use meta-learning for model selection or combination. 
Essentially, they extract features from each time series in a given database. Then, a predic-
tive model is created which relates the features of a time series with the most appropriate 
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forecasting model in that data. In effect, for a new given time series, such a meta-learning 
model can make predictions regarding which model, or set of models, is more appropriate. 
Recently, Montero-Manso et al. (2020) applied this type of approach and ranked second in 
the well-known forecasting M4-competition.

In the context of time series classification, Christ et al. (2016) proposed the method 
FRESH for feature engineering. This method automatically extracts a large number of 
features from each time series in the database and selects the most relevant ones for 
building the classifier. Fulcher and Jones (2017) presented a feature extraction frame-
work called hctsa for time series analysis. This tool extracts over 7000 features. Lubba 
et al. (2019) selected a a subset of 22 hctsa features, leading to a 1000-fold reduction in 
computation time for feature extraction and only a small reduction in time series clas-
sification performance.

3.3.2  Sub‑sequence descriptions

Compared to feature extraction from complete time series, few works are leveraging 
these processes for time series sub-sequences. Paras et al. (2009) used a set of statistics, 
such as simple and exponential moving averages, to improve a neural network model 
for weather forecasting. Oliveira and Torgo (2014) show that the average and standard 
deviation of recent values improve the performance of a bagging ensemble. Cerqueira 
et al. (2017) later corroborated these results using heterogeneous ensembles. However, 
the potential of the systematic application of approaches deriving new features from 
sub-sequences of time series has never been explored.

We follow this research line and derive new features from sub-sequences of time 
series. To accomplish this, we develop VEST, a novel framework for automatic feature 
engineering using univariate time series. VEST extracts new features from embedding 
vectors representing a time series and selects the most important ones for combination 
with the original vector.

4  VEST: vector of statistics from time series

In this section, we propose and formalise VEST (for Vector of Statistics from Time 
series), an automatic feature engineering process for univariate and numeric time 
series. VEST is specifically designed for forecasting problems. Given a time series 
Y = {y1,… , yn} , the goal is to predict the value of the next observation, yn+1 . Follow-
ing the formalisation presented in Sect.  2, we address time series forecasting as an 
auto-regressive task. The i-th observation of a time series, yi , is modelled according 
to the i-th embedding vector Xi = {yi−1, yi−2,… , yi−p} , which represents the p previous 
observations.
VEST is based on the manipulation of the embedding vectors representing each 

observation of a time series. Particularly, the method contains three main steps, address-
ing feature generation (steps 1 and 2) and selection (3): 

1. Transforming each embedding vector X into different representations (Sect. 4.1.1);
2. Summarising each representation into features using statistical functions (Sect. 4.1.2);
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3. Selection of relevant features (Sect. 4.2).

We adopt an expand–reduce approach for feature engineering (do  Nascimento  Reis, 
2019). In the first two steps of the methodology, we expand the representation of the 
data with a large set of features. In the final step, we reduce this representation and keep 
only the most relevant variables.

In the next subsections, we formalise these steps in more detail. The workflow for a 
given instance Xi is exemplified in Fig. 1.

4.1  Feature generation

We base our feature generation process on the manipulation of each embedding vector 
X ∈ X  . In this sense, our approach is entirely endogenous. Exogenous features (e.g. hol-
iday information) can also be essential to improve forecasting performance. However, 
such analysis is out of the scope of this work.

Ti, 1

Si, 1

Ti, 2

Si, 2

Ti, m

Si, m

Si,{1,...,m} = {Si, 1; ... ; Si,m}

Zi

...

...

Transform

Summarise

Select

Fig. 1  Feature engineering workflow for a given embedding vector X
i
 . X

i
 is mapped into m different repre-

sentations, {T
i,1,… ,T

i,m} . Each representation is summarised into a set of statistics S
i,m . For example, S

i,1 
denotes a set of features constructed from the representation T

i,1 . Finally, feature selection is carried out, 
leading to the final set of features Z

i
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4.1.1  Transform operations

The first step of VEST is a transformation procedure. This procedure generates new 
representations from the original embedding vectors X. As we mentioned in Sect. 3.2, 
changing the representation of time series embedding vectors is beneficial for handling 
noise, and to focus on essential characteristics of the data (Esling & Agon, 2012). We 
hypothesize that different representations obtained by distinct transformation operations 
generate new, complementary information regarding the dynamics of the time series. 
Therefore, this combination of these new types of information can lead to improve-
ments in forecasting performance which cannot be obtained by using each one of them 
separately. Formally, a transform operation maps an embedding vector Xi into another 
q-dimensional vector T:

Essentially, Xi is mapped onto Ti,j , ∀ j ∈ {1,… ,m} . Hence, Ti,j is a vector which denotes 
the j-th representation of the i-th embedding vector.

An example of a possible transform operation is differencing, which means the dif-
ferences between consecutive observations. This transformation is often applied to time 
series to remove the trend component.

4.1.2  Summary operations

By applying distinct transform operations, an embedding vector has several representa-
tions (one for each such operation). The next step in the methodology is the application 
of summary operations. These operations compress each of the m representations of Xi 
( {Ti,1, Ti,2,… , Ti,m} ) into a set of features through the application of statistical functions. 
A summary operation can be defined as follows:

where Summaryk denotes the k-th summary operation, and si,j,k denotes the feature obtained 
when applying the k-th summary operation to the j-th representation of the i-th embedding 
vector. Each si,j,k is part of the set Si,j , which represents the features describing Ti,j.

Essentially, each summary operation compresses a numeric vector into a scalar which 
summarises the current state of the time series in some way. A simple example is the 
arithmetic mean, which describes the central tendency.

4.2  Feature selection

The feature generation process described above produces a large number of features. 
This procedure may lead to a problem of high dimensionality and, consequently, overfit-
ting. We introduce a feature selection procedure to cope with this issue.

Transformj ∶ ℝ
p
→ ℝ

q

Xi ↦ Ti,j

Summaryk ∶ ℝ
q
→ ℝ

Ti,j ↦ si,j,k
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Depending on the nature of the time series, the features extracted may have three 
problems: (1) they may not be applicable, which leads to missing values; (2) they may 
not vary enough across the observations and do not provide any information for forecast-
ing; or (3) they may be highly correlated with each other. Concerning the first problem, 
we remove any feature with more than a certain percentage of missing values, na_perc . 
Features with a lower percentage of missing values are imputed using the median func-
tion. The second issue is dealt with by removing features with a low number of unique 
values. Specifically, we remove any feature whose number of unique values relative to 
the total number of observations is below u_perc . Finally, we apply a filter for removing 
correlated features. If a pair of features shows a level of correlation above corr_perc , 
one of them is discarded.

This process leads to the final set of features, Zi . We concatenate this set with the 
original embedding vector Xi.

5  Experiments

This section presents the empirical experiments carried out to validate the proposed 
approach. First, we detail the transform and summary operations used in the feature gen-
eration process of VEST (Sect. 5.1). Then, we present the experimental setup (Sect. 5.2), 
describing the research question, case study, methods and respective hyper-parameters, and 
evaluation approach. We compare the proposed approach with state of the art approaches 
in Sect. 5.3. We perform a feature important analysis in Sect. 5.4. Finally, we analyse the 
impact of sample size in the results obtained (Sect. 5.5).

Table 1  Transform operations used in VEST 

Operation Description

I The Identity transformation, in which each X is mapped onto itself
SMA We apply a one-sided simple moving average which can be beneficial to smooth out spurious 

fluctuations and highlight the general trend. The number of periods is equal to the square root 
of the length of X, rounded to the nearest unit

DIFF First differences are applied to transform the original embedding vector into one without trend. 
This transformation can help with the modelling of time series with a strong trend component

DIFF2 Second differences, which is equivalent to applying the DIFF operation twice to X
i
 . This trans-

formation is useful for describing the curvature of the data
BC Box-Cox transformation, for stabilising the variance of the time series. The transformation 

parameter is optimised using all the available observations according to Guerrero (1993) 
(minimizing the coefficient of variation)

SIN Sine terms of order 1 of the Fourier series. This transformation captures the seasonality of the 
time series. We remark that the frequency of the time series must be available to compute 
these terms

COS Similar and complementary to SIN, COS captures the cosine terms of order 1 of the Fourier 
series.

DWT We apply a 1-level discrete wavelet transform using the Daubechies wavelet (Percival & Wal-
den, 2006), and retrieve the coefficients of the respective detail signal
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5.1  VEST setup

Table 2  Summary operations used in VEST 

Operation Description

MEAN Arithmetic mean, which is used to estimate the average level of the vector
MDN Median: similar to the mean, but more robust to outliers
SD Standard deviation, as a measure of the overall dispersion in the vector
VAR Variance of the vector, which also measures dispersion
IQR Inter-quartile range, which is another measure of dispersion of the data, but more 

robust to outliers
RD Relative Dispersion, which is estimated according to the ratio between the standard 

deviation of the vector and the standard deviation of the differenced vector (Wang 
et al., 2006)

MIN Minimum value of the vector
MAX Maximum value of the vector
LP Last known point of the vector
SK Skewness of the distribution of the vector, which is a measure of its asymmetry 

(Wang et al., 2006)
KRT Kurtosis for describing the flatness of the data with respect to a normal distribution 

(Wang et al., 2006)
P05, P95 The 5th and 95th percentiles of the vector
ACC_1, ACC_2 Average (ACC_1) and standard deviation (ACC_2) of the acceleration of the vec-

tor, estimated according to the ratio between the simple moving average and the 
exponential moving average of equal period. In our experiments, the period for 
computing the moving averages was set to the squared root of the length of the 
vector, rounded to units

BP Level of auto-correlation, which is estimated using a Box-Pierce test statistic (Box & 
Pierce, 1970; Wang et al., 2006)

PACF Average value of the partial auto-correlation function of the vector up to 10 lags
ACF Average value of the auto-correlation function of the vector up to 10 lags
LRD1 LRD2 Long-range dependence, estimated using the Hurst exponent approach with wavelet 

transform with 1 (LRD1) and 2 moments (LRD2) (Wang et al., 2006)
SLP Slope of the vector which describes its overall steepness (Prudêncio & Ludermir, 

2004)
NORM Euclidean norm of the vector, which captures its total energy
NO Number of outliers, estimated according to the number of observations above or 

below 1.5 times the inter-quartile range
AMP Average amplitude of the fast Fourier transform of the vector
STEP Binary random variable which denotes the presence of a step change (Lemke & 

Gabrys, 2010). This statistic detects structural breaks in the data
PEAK_I, PEAK_D Number of local maxima (PEAK_I) and local minima (PEAK_D) in the vector 

(Lemke & Gabrys, 2010). These statistics describe the level of oscillation of the 
data

OD Overall direction of the vector, estimated by the difference between the number of 
times the vector increases and the number of times the vector decreases

PV_ST, PV_LT Short-term and long-term variability, respectively, estimated using the Poincaré plot 
(Brennan et al., 2001)

MLE Maximum Lyapunov exponent, which quantifies the chaotic level of a time series 
(Wang et al., 2006)
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5.1.1  Transform and summary operations

The transform operations applied to each embedding vector Xi are described in Table 1 and 
the summary operations applied to each representation Ti,j are described in Table 2.

The set of transform operations used try to capture the dynamics of the time series from 
distinct perspectives. Moreover, the list of summary operations contains several statistics 
which try to capture different components; from centrality and dispersion to chaos and sto-
chastic randomness.

Overall, we apply eight different transformations and 32 different summary operations, 
leading to 256 different features before feature selection. Henceforth, we will employ the 
following notation to refer to a feature generated by VEST: TransformFunction.Summary-
Function. For example DIFF.MEAN represents the average value of the embedding vector 
representation when transformed with the differencing operation.

Setup. We set the na_perc value to 70. As such, we remove features which have more 
than 70% of its values missing. Also, we set the u_perc threshold to 1. Therefore, we 
remove features where the percentage of unique values is below 1% of the total number of 
observations. The feature correlation threshold ( corr_perc ) was set to 95.

5.2  Experimental design

The main research question addressed in this paper is the following:
Does VEST, an automatic feature engineering procedure, improve forecasting perfor-

mance relative to a pure auto-regressive approach?
Our experiments to answer this question can be split into the following items:

• RQ1: Effect of VEST on the predictive performance of the state of the art pure auto-
regressive approach. We assess the significance of results according to Bayesian meth-
ods;

• RQ2: Comparison of the forecasting performance relative to state of the art approaches, 
such as ARIMA and exponential smoothing;

• RQ3: Sensitivity to different learning algorithms;
• RQ4: Analysis of the different feature selection approaches;
• RQ5: Analysis of the importance scores of each transformation and summary opera-

tions (Sect. 5.1);
• RQ6: Sensitivity to different time series sample size.

5.2.1  Data

We used time series from two sources. From the tsdl benchmark library (Hyndman & 
Yang, 2019), we selected all the univariate time series with at least 1000 observations and 
which have no missing values. This represents 55 time series. These show a varying sam-
pling frequency (e.g. daily) and are from different domains of application. For a complete 
description of these time series, we refer to the their source (Hyndman & Yang, 2019). We 
also included 35 time series used by Cerqueira et al. (2019). Essentially, from the set of 
62 series used by the authors, we selected those with at least 1000 observations and that 
were not originally from the tsdl database (since these were already retrieved as described 
above). We refer to the work by Cerqueira et  al. (2019) for a description of those time 
series.
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5.2.2  Parameter setting

For each time series, we optimise the embedding dimension using validation data, testing 
values from 10 to 30. The chosen embedding dimension p is the one minimising the error 
(Sect. 5.2.4 describes the evaluation metric). In this analysis, we train a model according 
to pure auto-regressive forecasting models (i.e., no feature engineering is involved at this 
point). We set the minimum value for searching the embedding dimension to 10 to guaran-
tee a reasonable number of observations for computing the transform and summary opera-
tions of VEST.

We focus on two learning algorithms. One is the cubist method (Kuhn et  al., 2014), 
which is a variant of the model tree proposed by Quinlan (1993); This method is competi-
tive in time-dependent data (Ikonomovska et al., 2011; Cerqueira et al., 2019). We also use 
the lasso (Tibshirani 1996) regression algorithm. Each one of the methods was optimised 
according to a grid search using validation data.

We will present results that quantify the importance of each feature across the 90 prob-
lems. We resort to the RReliefF (Robnik-Šikonja & Kononenko, 1997) method for this 
task. RReliefF (for Regressional ReliefF) extends ReliefF for numerical prediction prob-
lems. It estimates the importance of each feature in a data set by measuring the variability 
of the values of the features in the neighbourhood the observations. This method has been 
shown to have a connection to impurity measures (Robnik-Šikonja & Kononenko, 1997).

5.2.3  Methods

The learning algorithms indicated above were trained according to the following 
procedures:

– AR: A pure auto-regressive process, where the value of the next set of observations is 
predicted according to the most recent p values. This is the typical approach to tackle 
time series forecasting problems;

– AR+VEST: The proposed approach – the combination of AR with the features obtained 
with VEST;

– VEST: A baseline which discards the AR component and models the future behaviour 
of the time series using only the features obtained with VEST;

– AR+BT: Variant of AR+VEST, in which the feature selection approach is different: 
We use the feature from only a single representation. For each time series, we pick 
the transformation which maximizes feature importance (according to RReliefF). The 
importance scores are average across the available summary operations. In other words, 
this variant contains all the summary operations detailed on Table 2, but are computed 
only for the best estimated transformation;

– AR+BF: Another variant of AR+VEST, in which we select a single transformation for 
summary operation. This is similar to the variant AR+BT described above. The differ-
ence is that, in this case, the single transformation is picked for each summary opera-
tion. This selection is also based on feature importance. To be precise, for each time 
series and for each summary operation, we select the transformation that maximizes 
feature importance.

Additionally, we also include ARIMA, ETS, and TBATS in the experimental setup. 
These methods are state-of-the-art approaches for time series forecasting. They establish a 
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reference to assess whether the results obtained here are acceptable or not. We resort to the 
implementations provided by the forecast R package (Hyndman, 2014), which automati-
cally tunes these methods to an optimal parameter setting.

5.2.4  Evaluation

We use a holdout repeated in multiple testing periods as the estimation method according 
to Cerqueira et al. (2019). We perform 10 repetitions of this procedure. The training size 
in each repetition was set to 60% of the total number of observations, while the subse-
quent 10% of observations are used for testing. In each repetition, part of the training data 
(also 10% of it) was used as a validation set to optimise parameters, such as the embedding 
dimension or the parameters of the learning algorithms.

Regarding the evaluation metric, we use the mean absolute scaled error (MASE), which 
is a typical measure of forecasting performance (Hyndman, 2006). We average the loss of 
each method across the repetitions of the holdout procedure described above. We evaluate 
the statistical significance of the results according to a Bayesian analysis (Benavoli et al., 
2017). In particular, we applied the Bayes sign test to compare pairs of methods across 
multiple problems. In the next section, we specify the setup of the test. For a thorough read 
on Bayesian analysis for comparing predictive models, we refer to the work by Benavoli 
et al. (2017).

5.3  Results

In order to have a commensurable metric across data sets, we compute the percentage dif-
ference between the MASE of each approach and a benchmark model. We use AR+VEST 
as the benchmark as it represents the proposed approach that combines auto-regression 
with automatic feature engineering. We formalise the percentage of difference computation 
as follows:
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Fig. 2  The average rank, and respective standard deviation, of each method across the 90 time series when 
using cubist as learning algorithm
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where L
��+���� and La represent the loss of the model AR+VEST and the loss of model a 

(the one is under comparison), respectively. We perform a Bayesian analysis of the results 
using the Bayes sign test (Benavoli et al., 2017). We define the region of practical equiva-
lence (Benavoli et al., 2017) (ROPE) to be the interval [ −2.5, 2.5 ]. Essentially, this means 
that the performance level of these two methods are nearly indistinguishable if the percent-
age difference in predictive performance between them falls within this interval.

We start by analysing the average rank, and respective standard deviation, of each 
method. This is reported in Fig. 2 using cubist as learning algorithm. A method with rank 1 
in a task means that it was the best performing one in that task. The average rank describes 
the average position of each method relative to the remaining ones. AR+VEST shows the 
best average rank score, which shows the usefulness of the proposed approach.

In terms of significance analysis, Fig.  3 shows the probability that the respective 
method wins, draws (result within the ROPE), or loses significantly, against the pro-
posed model (AR+VEST) also when using the cubist learning algorithm. AR+VEST 
significantly outperforms the standard auto-regressive model (AR) with around 30% 
probability (RQ1). The opposite scenario occurs with around 17% probability. In the 
remaining cases, the results are within the ROPE, which means the approaches are sta-
tistically equivalent. AR+VEST is also significantly better relative to state of the art 
forecasting approaches, including ARIMA, TBATS, and ETS (RQ2). This corroborates 
previous experiments shown by Cerqueira et al. (2019).

These results show important evidence that feature-based forecasting is worthwhile, 
and may be important to improve forecasting performance.

Figures 4 and 5 are similar to Figs. 2 and 3, but the analysis is carried out using the 
lasso learning algorithm. Although not identical, the illustration shows that performance 
gains are also obtained when using this method (RQ3).

(1)
La − L

��+����

L
��+����

∗ 100

0.00

0.25

0.50

0.75

1.00

AR VEST AR+BS AR+BT ARIMA ETS TBATS

P
ro

po
rti

on
 o

f p
ro

ba
bi

lit
y

Result AR+VEST loses draw AR+VEST wins

Fig. 3  Probability of each method winning, drawing, or losing significantly against AR+VEST (the pro-
posed method) according to the Bayes sign test. Results shown for the cubist method
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Besides state of the art forecasting approaches, the results also indicate that 
AR+VEST outperforms three variants: VEST, AR+BT and AR+BS. VEST denotes the 
approach that discards the auto-regressive attributes and uses only the features derived 
from the proposed framework to forecast the next value of the time series. However, 
the results show that combining AR with VEST is critical to the performance obtained. 
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Fig. 4  The average rank, and respective standard deviation, of each method across the 90 time series
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Fig. 5  Probability of each method winning, drawing, or losing significantly against AR+VEST (the pro-
posed method) according to the Bayes sign test. Results show for the lasso method
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By itself, VEST shows a competitive performance, but does not provide a consistent 
advantage.

Regarding AR+BT and AR+BS, these variants provide a different approach for selecting 
the features from VEST. We devised AR+BT (the approach which selects a single transfor-
mation for each time series) to show the usefulness of multiple representations in a given 
problem. On the other hand, by outperforming AR+BS (the approach that uses a single 
transformation per summary operation), we show that multiple transformations are use-
ful for a given summary operation even within the same problem. We dealt with even-
tual redundancies with a simple correlation filter, as described in the experimental design 
(RQ4).

5.4  Feature importance

In the previous section, we presented significant empirical evidence that the use of 
VEST can significantly improve forecasting performance. In this section, we dive 
deeper into this matter by analysing the importance of the features used in the develop-
ment of models. This covers research question RQ5.

5.4.1  Rank distributions

We start by analysing the distribution of the rank of the feature importance across the 90 
time series. We proceed as follows. 

1. We measure the RReliefF of each feature. This score is averaged across the repetitions 
of the repeated holdout procedure;

2. We compute the rank of each feature according to its score of importance across the 90 
time series. A feature with rank 1 in a given time series has the best score of importance 
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in that problem. We split the computation of ranks into three parts according to the fol-
lowing criteria:

• All operations: We compute the rank of all features irrespective of the underlying 
representation;

• Representation: We compute the rank of each transformation. Specifically, we aver-
age the score of the importance of the features for each representation. For example, 
the average importance of all features using the DIFF representation. In this analy-
sis, we include the importance of the past lags of the series (denoted as LAG vari-
ables);

• Summary function: We also compute the rank of each summary operation. Simi-
larly as above, we average the score of importance across summary operation to 
obtain the overall importance of the respective function.

Overall rank Figure 6 shows the results of the overall rank as a set of boxplots (one for 
each feature), which are ordered by median importance rank (lower values are better). The 
names of the features (x-axis) follows the convention described before. In the interest of 
conciseness, we only show the top and bottom 30 features in terms of median rank.

The feature with the best median rank is LAG.1, which represents the last known value 
of the time series in a given point in time. Figure 6 clearly shows the advantage of methods 
to systematically generate large numbers of new features, when compared to, typically, a 
few features generated manually, based on domain knowledge. We observe that, overall, 
there is a great dispersion in the rank importance, showing that different features are more 
important in different time series. In fact, even those features with high median rank are 
among the most important in some of the problems.

Rank by representation Figure 7 provides a similar analysis as Fig. 6, but combines the 
results by representation, as explained above. The boxplots provide additional evidence 
for two observations made previously. Firstly, it shows that, although the obtained features 
from VEST improve predictive performance, the previous points of the time series (LAG 
features) provide useful information. In fact, they obtain the best median rank. Secondly, 
the high dispersion of the rank distributions shows that there is no particular representation 
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which is the most appropriate for all time series. This provides additional evidence of the 
usefulness and complementarity of the different representations, as observed earlier.

Rank by summary operation Figure  8 shows a similar analysis but referring to each 
summary operation. Again, the boxplots show high dispersion suggesting that different sta-
tistics are more valuable in different tasks. The statistic with the best median rank is LP, 
which denotes the last point of the respective transformation.

5.5  Impact of sample size

We focused the experimental setup on high frequency time series. This type of data sets is 
increasingly relevant in many practical applications due to the widespread adoption of sen-
sors. High frequency time series are typically associated with larger sample sizes relative 
to lower frequency ones. We hypothesise that the sample size is important when perform-
ing feature engineering with a method such as VEST. In a small data set additional attrib-
ute variables may lead to over-fitting issues due to the curse of dimensionality. Therefore, it 
is important to collect a reasonable amount of observations for feature engineering.

We test the hypothesis above by repeating the experiments with increasing sample size 
values, similarly to Cerqueira et al. (2019) (RQ6). To be more precise, we start by truncat-
ing the sample size of the time series to 3000 observations. Only 42 of the 90 time series 
had enough sample size, and we focus this analysis on that subset of problems. Afterwards, 
we repeated the experiments (as described in Sect. 5.2) in 30 different samples sizes from 
100 to 3000 in steps of 100 observations ( {100, 200,… , 3000} ). We remark that, in this 
particular experiment, we focus on a simple holdout estimation method in which 80% 
of the initial observations are used for training and the subsequent 20% data points are 
used for testing. Accordingly, we evaluate the performance of AR+VEST relative to other 
approaches which do not use VEST. In this experiment, we remove the variants of the pro-
posed method, and keep only AR, ETS, TBATS, and ARIMA. The performance is evalu-
ated as follows: for each problem as for each sample size we compute the MASE error 
of each approach. Then, each method is ranked according to this error (lower error gives 
lower rank). We average the rank of each method across the 42 time series in each sample 
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size experiment. This allows us to describe how the average rank of each method evolves as 
the sample size increases. We remark that we resort to the rank, as opposed to the MASE 
loss, because it is non-parametric and robust to outliers. Finally, we remark that we focus 
on the cubist learning algorithm for this analysis in the interest of conciseness. The results 
are similar when using the lasso algorithm.

The results are presented in Fig. 9, which shows the average rank of each method across 
the 42 time series with an increasing sample size. The results show that, when the sample 
size is small, AR+VEST shows worse results than all other methods, including AR and the 
state of the art forecasting methods ARIMA, ETS, and TBATS. However, as the sample size 
increases, AR+VEST becomes the approach with best average rank. We remark that the 
average rank scores may be slightly different from the analysis shown previously as there 
are only 42 time series under analysis in this scenario.

6  Discussion

The experiments carried out in the previous section show the benefits of using VEST for 
time series forecasting tasks. In this section, we discuss the results obtained and point 
future directions of research.

6.1  Main results

VEST is a framework for automatically extracting relevant features from the embedding 
vectors representing the time series. We showed the usefulness of VEST to tackle time 
series forecasting tasks based on an extensive set of experiments. When the features gener-
ated by VEST are combined with a state of the art auto-regressive model (AR), forecasting 
performance significantly improves relative to only using AR.
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We explored these results from different perspectives. Particularly, we presented an 
analysis which suggests that there is no specific representation or summary statistics which 
is more appropriate for all time series problems. Even within a single time series, the 
results suggest that applying summary operations to different representations is important 
for forecasting performance. This outcome shows the potential benefit of using an auto-
matic approach to extract meaningful features for this type of data. Rather than finding a 
single feature that improves results across multiple problems, VEST obtains a set of fea-
tures, each one of which is very important for a small, particular subset of the problems, 
although not very relevant on the remaining ones.

We believe our work is relevant for automated machine learning frameworks, especially 
to enable professional with low technical skill to develop accurate forecasting models effi-
ciently (Taylor & Letham, 2018).

6.2  Points for improvement

Despite significant gains in forecasting performance, we believe it is possible to improve 
the proposed feature engineering process.
VEST is designed as a brute force approach. It works by testing different representa-

tions, which are then summarised using different statistics. Those with low feature impor-
tance are removed using a feature selection filter. The key factor for the gains in perfor-
mance is the predictive quality of the features that are tested. In this context, a potentially 
interesting research line is to develop a method for selecting apriori which transform 
and summary operations should be computed. For example, do Nascimento Reis (2019) 
attempts to use meta-learning to predict whether a given feature is going to improve predic-
tive performance. A similar approach could be developed for extending VEST. Other pos-
sible interesting solutions are landmarkers (Pfahringer & Giraud-Carrier, 2000) or bayesian 
optimisation (Rasmussen, 2003). Notwithstanding, we remark that, in the proposed frame-
work, the different transform operations are independent of each other, and so are summary 
ones. Therefore, the processes within each step can run in parallel.

Another point of improvement for VEST is long-term analysis. VEST focuses on extract-
ing information from the past p lags. In other words, feature extraction is self-contained 
within each embedding vector. In future work, we plan to extend the approach to include a 
longer-term analysis and extract information across embedding vectors. Such analysis ena-
bles a more long-term perspective on the dynamics of the time series. An example of a 
long-term feature is one attempting to capture a “number of observations since an outlier 
occurred”.

Although the pool of operations applied cover many properties of time series, the set 
of transform and summary operations can be increased. Other transformations could be 
carried out, for example, seasonal adjustment or discrete cosine transform. One could also 
combine available transform operations, e.g. a transformation which applies the operations 
BC (Box-Cox transformation) and DIFF (first differences transformation) sequentially (c.f. 
Sect. 5.1.1).

As we mentioned previously, VEST is designed to extract endogenous features from 
time series. Notwithstanding, external information may be crucial for building accurate 
predictive models. With additional time series as explanatory variables, the number of 
operations to be carried out may be too high for a brute force approach. Thus, the ideas 
outlined in the second paragraph of this section may be important in these scenarios.
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Our experiments are based on 90 time series with a high sampling frequency (daily or 
higher). Research is still necessary to show the impact of feature engineering in time series 
with lower sampling frequency. In Sect.  5.5, we showed that time series sample size is 
important for the proposed feature engineering solution.

Another point for improvement for VEST is multi-step forecasting. During our experi-
ments, we did not find enough evidence that VEST may be better than AR for multi-step 
forecasting. We intend to explore this topic in future research.

Finally, another interesting research line is that of global forecasting models (Salinas 
et al., 2020). These approaches pool multiple time series and fit a single predictive model 
with them. This research direction may be helpful to overcome the low sample size issue 
of VEST.

7  Summary

Time series forecasting is a relevant predictive task in many domains of application. Data-
driven organisations rely on forecasting systems to cope with future uncertainty and sup-
port their decision-making process.

One of the most important tasks in machine learning is feature engineering. However, 
this task still requires considerable manual effort and expertise from practitioners (Kaul 
et  al., 2017). This lead to increasing demand for approaches that automate this part of 
machine learning projects.

In this work, we present a novel automatic procedure for feature engineering using time 
series data. The proposed approach, called VEST, is specifically designed to tackle time 
series forecasting problems. VEST is based on the manipulation of the embedding vec-
tors, which represent the past recent observations used to predict the future ones. It works 
by transforming time series sub-sequences into distinct representations. Describing a time 
series using multiple representations may be useful for capturing its dynamics from differ-
ent perspectives. Each representation is summarised using statistical functions, such as the 
mean. After a feature selection process, the final set of features across the available repre-
sentations is coupled with an auto-regressive model.

We validated the proposed approach using an extensive set of experiments, comprised 
of 90 time series from several domains of application. The results show that the features 
provided by VEST, along with auto-regression, lead to significant gains in forecasting 
performance.

In future work, we will extend the approach to other forecasting scenarios, for example, 
multivariate time series or multi-step forecasting. VEST is publicly available online.
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