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Abstract
Learning large-scale data sets with high dimensionality is a main concern in research areas 
including machine learning, visual recognition, information retrieval, to name a few. In 
many practical uses such as images, video, audio, and text processing, we have to face with 
high-dimension and large-sample data problems. The trace-ratio problem is a key prob-
lem for feature extraction and dimensionality reduction to circumvent the high dimensional 
space. However, it has been long believed that this problem has no closed-form solution, 
and one has to solve it by using some inner-outer iterative algorithms that are very time 
consuming. Therefore, efficient algorithms for high-dimension and large-sample trace-ratio 
problems are still lacking, especially for dense data problems. In this work, we present 
a closed-form solution for the trace-ratio problem, and propose two algorithms to solve 
it. Based on the formula and the randomized singular value decomposition, we first pro-
pose a randomized algorithm for solving high-dimension and large-sample dense trace-
ratio problems. For high-dimension and large-sample sparse trace-ratio problems, we 
then propose an algorithm based on the closed-form solution and solving some consistent 
under-determined linear systems. Theoretical results are established to show the rationality 
and efficiency of the proposed methods. Numerical experiments are performed on some 
real-world data sets, which illustrate the superiority of the proposed algorithms over many 
state-of-the-art algorithms for high-dimension and large-sample dimensionality reduction 
problems.
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1  Introduction

Feature engineering is the process of using domain knowledge of the data to create fea-
tures that make machine learning algorithms work. It is a super-set of activities which 
include feature extraction, feature construction and feature selection, all of the them 
are important steps in feature engineering. Nowadays, a lot of practical applications 
of machine learning, visual recognition, text retrieval and bioinformatics need to deal 
with high-dimension and large-sample data efficiently (Alzubi and Abuarqoub 2020; 
Andras 2018; Chen et al. 2020; Liu et al. 2020; Vishwakarma and Singh 2019; Zhang 
et al. 2017). To effectively manipulate and analyze massive data, feature extraction and 
dimensionality reduction seem imperative in feature engineering (Eldén 2005; Fukun-
aga 1991; Gado et al. 2016; Hastie et al. 2001; Kokiopoulou et al. 2010; Liu et al. 2020; 
Park and Park 2008; Zhang et al. 2010).

Linear Discriminant Analysis (LDA) is a popular method for feature extraction, whose 
goal is to find a suitable linear transformation such that each high dimensional sample vec-
tor is projected into a low dimension vector, while maintaining the original cluster struc-
ture and achieving maximum class separability as much as possible (Fukunaga 1991; 
Hastie et al. 2001). In essence, it is also a process of dimensionality reduction. Trace-ratio 
problem is an important optimization problem involved in dimensionality reduction tech-
niques such as Fisher linear discriminant analysis (LDA) (Belhumeur et  al. 1997; Fuku-
naga 1991). More precisely, let X = [�1, �2,… , �n] ∈ ℝ

d×n be a set of n training samples 
in a d-dimensional feature space. Assume that the data matrix is partitioned into k classes 
as X = [X1,… ,Xk] , where Xj is the j-th set with nj being the number of samples. Denote 
by �j the centroid vector of Xj , and by � the global centroid vector of the training data. Let 
�j = [1, 1,… , 1]T ∈ ℝ

j , then the within-class scatter matrix is defined as

where HW = [X1 − �1�
T
1
,… ,Xk − �k�

T
k
] ∈ ℝ

d×n . The between-class scatter matrix is 
defined as

where HB = [
√
n1(�1 − �),

√
n2(�2 − �),… ,

√
nk(�k − �)] ∈ ℝ

d×k . The total scatter matrix 
is defined as

where HT = [�1 − �, �2 − �,… , �n − �] ∈ ℝ
d×n , moreover, it is well-known that (Park and 

Park 2008)

The LDA method resorts to maximizing the between-class scatter distance while minimiz-
ing the within-class scatter distance. This gives the following trace-ratio problem (Fuku-
naga 1991; Kokiopoulou et al. 2010; Kramer et al. 2018; Ngo et al. 2012)

SW =

k∑
j=1

∑
�i∈Xj

(�i − �j)(�i − �j)
T = HWH

T
W
,

SB =

k∑
j=1

nj(�j − �)(�j − �)T = HBH
T
B
,

ST =

n∑
j=1

(�j − �)(�j − �)T = HTH
T
T
,

ST = SW + SB.
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where tr(⋅) denotes the trace of a matrix, and s ≪ d is the reducing dimension. However, 
this problem is difficult to solve (Fukunaga 1991; Park and Park 2008), and in general a 
simpler ratio-trace problem is solved instead

whose solution can be obtained from solving the following generalized eigenvalue problem

Indeed, the trace-ratio problem and the ratio-trace problem are not mathematically equiva-
lent (Park and Park 2008), and the trace-ratio problem (1.1) has regained great concerns in 
recent years (Guo et al. 2003; Jia et al. 2009; Jiang et al. 2017; Ngo et al. 2012; Nie et al. 
2008; Wang et al. 2007; Zhang et al. 2010; Zhao et al. 2013). One reason is that the trace-
ratio model (1.1) can yield markedly improved recognition results for supervised learn-
ing tasks compared to (1.2). However, it has been long believed that there is no explicit 
solution for the trace-ratio problem, and some commonly used techniques are inner-outer 
iterative algorithms (Jia et al. 2009; Ngo et al. 2012; Wang et al. 2007; Zhao et al. 2013). 
That is, inner iterations for solving eigenvectors and outer iterations for computing the 
trace-ratio value. More precisely, in the j-th outer iteration, we compute Vj from solving the 
eigenproblem with respect to A − �jB for given �j , where A = SB , B = SW (or ST ), and then 
we compute �j+1 by using Vj . The value of �j+1 is determined by different ways in different 
methods. For instance, the Newton-Lanczos algorithm (Ngo et al. 2012) and the method 
proposed by Wang et al. (2007) make use of the trace-ratio value tr(VT

j
AVj)∕tr(V

T
j
BVj) as 

�j+1 . The GFST algorithm uses the bisection method to choose �j+1 (Guo et al. 2003), while 
the DNM algorithm searches �j+1 by calculating the first order expansion of the A − �jB 
(Jia et al. 2009). However, in high-dimension and large-sample problems, both the dimen-
sion and the number of the samples are very large, and the overhead of all these algorithms 
canbe prohibitive.

For high-dimension and large-sample data, there are many algorithms available to the 
ratio-trace problem. For instance, by using spectral graph analysis, the SRDA method casts 
discriminant analysis into a regression framework that facilitates both efficient compu-
tation and the use of regularization techniques (Cai et al. 2008). The LDADL method is 
designed for a new batch LDA model formulated as a regularized least squares (RLS) prob-
lem with multiple columns on the right-hand side (Zhang et al. 2017). The Rayleigh-Ritz 
discriminant analysis (RRDA) method is a gradient-type method based on the Rayleigh-
Ritz framework for the generalized eigenvalue problem of LDA (Zhu and Huang 2014). 
There are also some randomized algorithms have been investigated, such as RFDA/RP (Ye 
et al. 2017) and FastLDA (Gado et al. 2016). However, all of the above algorithms are only 
designed for the ratio-trace problem (1.2) rather than the trace-ratio problem (1.1), and all 
of them are parameter-dependent. It is well-known that the optimal parameter is difficult to 
choose in practice, if there is no other information available in advance (Gui et al. 2014). 
Therefore, how to solve high-dimension and large-sample trace-ratio problem is an inter-
esting topic that deserves further investigation (Jia et al. 2009; Ngo et al. 2012).

(1.1)
�̂∗ = max

V ∈ ℝ
d×s

VTV = I

tr(VTSBV)

tr(VTSWV)
,

(1.2)
�̃∗ = max

V ∈ ℝ
d×s

VTV = I

tr
(
(VTSWV)

−1(VTSBV)
)
,

(1.3)SB� = �SW�.
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In this paper, we pay special attention to solving the high-dimension and large-sample 
trace-ratio problem efficiently. In Sect. 2, we provide an alternative way for (1.1), which 
does not rely on the inner-outer iterative framework. In Sect. 3, we provide a closed-form 
formula for this problem. Based on the formula and the randomized singular value decom-
position (RSVD) (Halko et al. 2011), we propose a randomized algorithm for high-dimen-
sion and large-sample dense data problems. However, for large sparse data sets, RSVD will 
destroy the sparse structure of the original data. Thus, a method based on solving (con-
sistent) under-determined systems is proposed for high-dimension and large-sample sparse 
data problems. Theoretical results are established to show the rationality and feasibility of 
the proposed methods. In Sect. 4, we perform some numerical experiments on some real-
world data sets to illustrate the numerical behavior of our proposed algorithms. Concluding 
remarks are given in Sect. 5.

Throughout this paper, we suppose that the high-dimension and large-sample dense data 
matrix X ∈ ℝ

d×n is of full column rank. In this work, by high-dimension and large-sample 
data, we mean that both the dimensionality d and the number of samples n are very large 
and even in the same order, but with the assumption that d ≥ n . Some notations used in this 
paper are listed in Table 1.

Table 1   Some notations used in this paper

Notations Description

X Training samples in a d-dimensional feature space
d, k The data dimension and number of classes
s Reducing dimension
N, n Number of the total samples and number of training samples
�, Ii Zero matrix or vector, and identity matrix with dimension i
�i The vector of all ones with dimension i
rank(A), tr(A) Rank and trace of the matrix A
dim(W) Dimension of the subspace W
AT ,AH ,A† Transpose, conjugate transpose and Moore-Penrose inverse of A
span{W} Space spanned by the columns of W
N(A),R(A) Null space and range of the matrix A
N

⟂(A) The orthogonal complement space of N(A)

‖ ⋅ ‖2, ‖ ⋅ ‖F 2-norm and F-norm of a vector or matrix
N(A) ⧵N(B) The subspace in N(A) but not in N(B)

PA The orthogonal projector on the subspace span{A}

sin∠(V, Ṽ) Sine of the angle between the subspaces V = span{V} and Ṽ = span{Ṽ}

�2(A) The 2-norm condition number of A
Z ∈ W Let W be a basis of the subspace W  , there is a matrix S, s.t., Z = WS
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2 � An alternative way to solve the trace‑ratio problem

In this section, we present an alternative way for solving the trace-ratio problem to take the 
place of the inner-outer iterative framework. Let W  be a subspace and let W be a basis of it. 
If Z is a matrix, in this paper, by Z ∈ W  , we mean there is a matrix S of appropriate size such 
that Z = WS.

We rewrite (1.1) as

 It is seen that (1.1) and (2.1) are mathematically equivalent as ST = SW + SB (Guo et al. 
2003). Denote by Z1 an orthogonal basis for N⟂(ST ) , and by Z2 an orthonormal basis for 
N(ST ) , respectively. Then Z = [Z1, Z2] is unitary, and for any matrix V ∈ ℝ

d×s , there are 
matrices W1, W2 such that

where V11 = Z1W1 ∈ N
⟂(ST ) = R(ST ) as ST is symmetric, and V22 = Z2W2 ∈ N(ST ) . 

Therefore,

where we use the property that Z2 is also in the null space of SB . Indeed, as ST = SB + SW 
and all the three matrices SB, SW and ST are symmetric positive semi-definite, the 
null space of ST are in the intersection of the null spaces of SB and SW . Thus, we have 
VTSBV = VT

11
SBV11 , and

Similarly, we can prove that

By (2.2) and (2.3),

which implies the information in N(ST ) has no contribution to the trace-ratio value at all. 
This coincides with the assertion that there is no useful information in N(ST ) for recogni-
tion (Park and Park 2008).

In view of (2.4), we focus on the following optimization problem in this work:

If the data matrix X ∈ ℝ
d×n is of full column rank, then 

dim(N⟂(ST )) = dim(R(ST )) = n − 1 and dim(R(SW )) = n − k (Park and Park 2008). Thus, 

(2.1)
�∗ = max

V ∈ ℝ
d×s

VTV = I

tr(VTSBV)

tr(VTSTV)
.

V = Z1W1 + Z2W2 = V11 + V22,

SBV = SBZ1W1 + SBZ2W2 = SBZ1W1 = SBV11,

(2.2)tr(VTSBV) = tr(VT
11
SBV11).

(2.3)tr(VTSTV) = tr(VT
11
STV11).

(2.4)
�∗ = max

V ∈ ℝ
d×s

VTV = I

tr(VTSBV)

tr(VTSTV)
= max

V ∈ ℝ
d×s,VTV = I

V ∈ N
⟂(ST )

tr(VTSBV)

tr(VTSTV)
,

(2.5)
V∗ = arg max

V ∈ ℝ
d×s,VTV = I

V ∈ N
⟂(ST )

tr(VTSBV)

tr(VTSTV)
.
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dim(N⟂(ST )) + dim(N(SW )) = d + k − 1 > d . That is, N⟂(ST ) and N(SW ) have non-trivial 
intersection whose dimension is (at least) k − 1.

For any d-by-s orthonormal matrix V ∈ N
⟂(ST ) , there holds

and the equality holds if and only if tr(VTSWV) = 0 and tr(VTSBV) ≠ 0 , which can 
be attained as N⟂(ST ) and N(SW ) have non-trivial intersection. In other words, the 
orthonormal matrix V∗ ∈ ℝ

d×s is a solution to (2.5) if V∗ ∈ N(SW ) ∩N
⟂(ST ) , i.e., 

V∗ ∈ N(SW ) ⧵N(ST ) . In conclusion, we have the following theorem for the solution of the 
trace-ratio problem (2.5).

Theorem 2.1  The subspace N(SW ) ⧵N(ST ) is the solution space of the trace-ratio problem 
(2.5). Let s be the reducing dimension, if dim(N(SW ) ⧵N(ST )) ≥ s , then any orthonormal 
basis for an s-dimensional subspace of N(SW ) ⧵N(ST ) is a solution to (2.5).

Remark 2.1  Theorem 2.1 indicates that the trace-ratio problem does admit a simple solu-
tion when the dimension of the data points d is greater than or equal to the number of data 
points n. Note that the condition d ≥ n is general and can be satisfied in many real applica-
tions such as image, video, audio, and microarray data, and so on (Alzubi and Abuarqoub 
2020; Andras 2018; Cai et al. 2008; Chen et al. 2020; Gado et al. 2016; Liu et al. 2020; 
Vishwakarma and Singh 2019; Zhang et al. 2017; Zhu and Huang 2014). Indeed, in big 
data era, the dimensionality or feature of the data points is huge, and it is often larger than 
the number of samples. Note that our strategy works when both d and n are very large and 
even in the same order.

Theorem 2.1 also reveals that our method is related to the null space method (Chen et al. 
2000; Chu and Thye 2010; Huang et al. 2002; Lu and Wang 2012; Wu and Feng 2015). 
Indeed, the null space method tries to seek a solution V in the null space of SW while maxi-
mizing tr(VTSBV) . The authors in Zhao et al. (2012) mentioned that the solution of the null 
space method and that of the trace-ratio LDA method are equivalent for singularity prob-
lem. We point out that our result is different from the one given in Zhao et al. (2012). First, 
due to (2.4), we exploit the model (2.5) as an alternative to (2.1). Second, the solution of 
the null space method is also in N(SW ) ⧵N(ST ) , so the conclusion in Zhao et al. (2012) is 
just a special case of our conclusion.

When both the dimension d and the number of training samples n are large, however, 
computing the null spaces of SW and ST directly is prohibitive in practice. Consequently, a 
direct application of the null space method to high-dimension and large-sample dense data 
sets is impractical. Based on Theorem 2.1, we aim to seek an efficient algorithm to solve 
(2.5) in the following work.

tr(VTSBV)

tr(VTSTV)
=

tr(VTSBV)

tr(VTSBV) + tr(VTSWV)
≤ 1,
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3 � New algorithms for solving the trace‑ratio problem 
on high‑dimension and large‑sample data sets

In large-scale discriminant analysis, the number of samples can be very large and even in 
the order of the data dimension d (Cai et al. 2008; Gado et al. 2016; Zhu and Huang 2014). 
In this situation, both the rows and the columns of the data matrix are very large, and a 
direct decomposition to the data matrix is infeasible. In this section, we give insight into 
fast implementations on Theorem 2.1 for large data matrices.

3.1 � A closed‑form solution

Consider the centered data matrix X = X(In − �n�
T
n
∕n) = XLT , where LT = In − �n�

T
n
∕n . 

Define W as the following n × n block diagonal matrix

then we have SB = XWX
T
 and ST = XX

T
 (Cai et al. 2008). Thus, SB and ST can be rewritten 

as

where we use the fact that L2
T
= LT . Moreover, from W�n = �n and LT�n = � , we obtain

In view of Theorem 2.1, the framework of our method is composed of two steps:
(i) First, we compute a basis for a k-dimensional subspace of N(SW ).

Theorem 3.1  Denote by Y the following n × k matrix

where �ni is the one vector of size ni . If X is of full column rank, then F = (XT )†Y  is a basis 
for a k-dimension subspace of N(SW ) , where (XT )† denotes the Moore-Penrose inverse of 
XT.

Proof  As X and Y are of full column rank, F = (XT )†Y  is also of full column rank. Moreo-
ver, we obtain from (3.3) that W�i = �i, i = 1, 2,… , k . By (3.2),

which completes the proof.  	�  ◻

(ii) Second, we remove some information in N(ST ) from span{F}.

W =

⎡⎢⎢⎢⎢⎣

1

n1
�n1�

T
n1

� ⋯ �

�
1

n2
�n2�

T
n2

⋯ �

⋮ ⋮ ⋱ ⋮

� � ⋯
1

nk
�nk�

T
nk

⎤⎥⎥⎥⎥⎦
,

(3.1)SB = XLTWLTX
T , ST = XLTLTX

T = XLTX
T ,

(3.2)SW = ST − SB = X(LT − LTWLT )X
T = X(In −W)XT .

(3.3)Y = [�1, �2,… , �k] ≡

⎡⎢⎢⎢⎣

�n1 � ⋯ �

� �n2 ⋯ �

⋮ ⋮ ⋱ ⋮

� � ⋯ �nk

⎤⎥⎥⎥⎦
∈ ℝ

n×k,

(3.4)SWF = X(In −W)XT
(
(XT )†Y

)
= X(In −W)Y = �,
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Theorem  3.2  Let Y = (In − �n�
T
n
)Y  , and let Y ∈ ℝ

n×(k−1) be an orthonormal basis of 
span{Y} , then

Specifically, if FQ ∈ ℝ
d×(k−1) is the Q-factor of the economized QR factorization of F , then 

FQ is a solution to (2.5).

Proof  On one hand, as (XT )† = X(XTX)−1 and W�n = �n , we obtain from (3.4) that

i.e., (XT )†Y  is in the null space of SW . On the other hand, as LT�n = � , we get

Since N(LT ) = span{�n} , it follows from (3.3) that LT�i ≠ � and XLT�i ≠ �, i = 1,… , k . 
Thus, ST

(
(XT )†Y

)
≠ � , and it follows that

Further, as Y  is an orthonormal basis for span{Y} , we have (XT )†Y ∈ span{(XT )†Y} , and 
thus the d-by-(k − 1) matrix F = (XT )†Y ∈ N(SW ) ⧵N(ST ) . Since FQ is the Q-factor of the 
economized QR factorization of F , by Theorem 2.1, it is a solution to (2.5). 	�  ◻

Remark 3.1  From Sect.  2, if the data matrix X ∈ ℝ
d×n is of full column rank, we have 

dim(N(SW ) ⧵N(ST )) ≥ k − 1 . Thus, without loss of generality, we usually set the reducing 
dimension s = k − 1 . If the reducing dimension s < k − 1 , then any s columns of FQ is a 
solution to (2.5). For instance, we can choose the first s columns of FQ , i.e., FQ(∶, 1 ∶ s) as 
a solution.

3.2 � A randomized algorithm for the trace‑ratio problem on high‑dimension 
and large‑sample dense data sets

In this paper, we assume that the data matrix X has full column rank, however, it may be 
ill-conditioned in practice, and a direct computation on (3.5) is inadvisable. To deal with 
this problem and make the solution less sensitive to perturbations, the technique of trun-
cated singular value decomposition (TSVD) is often utilized (Eldén 2005; Golub and Van 
Loan 2013). However, for high-dimension and large-sample data, both d and n are very 
large, thus the overhead for truncated singular value decomposition will still be prohibitive.

(3.5)F = (XT )†Y ∈ N(SW ) ⧵N(ST ).

SW
(
(XT )†Y

)
= X(In −W)XT

(
(XT )†Y

)

= X(In −W)(XTX)(XTX)−1(In − �n�
T
n
)Y

= X(In −W)Y − X(In −W)�n�
T
n
Y

= �,

ST
(
(XT )†Y

)
= XLTX

T
(
(XT )†Y

)

= XLT (X
TX)(XTX)−1(In − �n�

T
n
)Y

= XLTY − XLT�n�
T
n
Y

= XLTY .

(XT )†Y ∈ N(SW ) ⧵N(ST ).
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To overcome this difficulty, we make use of the randomized singular value algorithm 
(RSVD) (Gu 2015; Halko et al. 2011; Martinsson et al. 2011; Woodruff 2014) to produce 
a low-rank approximation X̃T to XT , and then compute an approximation to F . Now we 
briefly introduce the randomized singular value decomposition, for more details on its 
implementation and theoretical background, we refer to Gu (2015), Halko et  al. (2011). 
Notice that the integer r in the algorithm is a user-provided parameter whose choice is 
problem-dependent.

Let X̃T be the approximation to XT obtained from Algorithm 1, the idea is to compute an 
approximation to F by solving the following optimization problem:

Thus, we propose the following randomized algorithm for solving the high-dimension and 
large-sample trace-ratio problem (2.5). The main overhead in Algorithm 2 is to compute 
Ũr, Ṽr and �̃r by using Algorithm 1, which needs about O((d + n)r2) flops, and the main 
storage requirement is to store a d × r matrix (Halko et al. 2011).

Remark 3.2  We stress that Theorems 2.1, 3.1 and 3.2 hold for a general data matrix X, 
whether it is dense or not, and Algorithm  2 applies to both dense and sparse data sets. 
However, when the data matrix X is sparse, RSVD will destroy the sparse structure of the 
original data. Thus, Algorithm 2 is more appropriate to dense data sets.

We note that the key step in Algorithm 2 is to compute an approximation X̃T to XT by 
using Algorithm 1. Indeed, X̃T (with rank-r) can be viewed as an approximation of XT

r
 , i.e., 

the truncated SVD (TSVD) of XT with rank-r. Indeed, let XT
r
 be the best rank-r approxima-

tion to XT in terms of 2-norm or Frobenius norm (Golub and Van Loan 2013), then (XT
r
)†Y  

is a reasonable choice to approximate (XT )†Y  . The key problems are: 

(3.6)F̃ = arg min
F∈ℝd×(k−1)

‖X̃TF − Y‖F .
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(a)	 How large is the distance between the approximation (X̃T )†Y  from (3.6) and (XT
r
)†Y  

from truncated SVD (TSVD)?
(b)	 Why the proposed randomized algorithm still works even if the solution is “inexact”?

To answer these questions, we consider the distance between the subspace spanned by 
(X̃T )†Y  and that by (XT

r
)†Y  . Along the line of Algorithm 2, we will divide our analysis into 

two procedures.
(i) First, we establish the relationship between XT

r
 and the approximation X̃T.

Let PG be the orthogonal projector onto the subspace span{G} . In (Halko et  al. 
2011, pp.275), Halko et al. derived the following deviation bound for the randomized SVD 
algorithm without power scheme (i.e., with q = 0 ): for all u, t ≥ 1 , there holds

with failure probability at most 2t−p + e−u
2∕2 . Here 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎n > 0 are the (nonzero) 

singular values of X. For more bounds on the approximation obtained from the randomized 
power method, we refer to Gu (2015), Musco and Musco (2015), Woodruff (2014).

Based on (3.7), we will give a deviation bound for the approximation obtained from the 
randomized SVD accelerated by power iteration with q ≥ 1 . Let

then it follows from Algorithm 1 that Q1Q
T
1
 is the orthogonal projector onto the subspace 

span{G} . By (3.7),

with failure probability at most 2t−p + e−u
2∕2 , where �̃1 ≥ �̃2 ≥ ⋯ ≥ �̃n are the singular val-

ues of L. Let XT = U�PT be the economized singular value decomposition of XT , where 
� = diag(�1, �2,… , �n) ∈ ℝ

n×n with 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎n > 0 , and U ∈ ℝ
n×n , P ∈ ℝ

d×n are 
two orthonormal matrices. Then we have L = P�2q+1UT and �̃i = �

2q+1

i
 , i = 1, 2,… , n . 

Moreover, it was shown that (Halko et al. 2011, pp.270)

As a result, for all u, t ≥ 1 and p ≥ 4 , we have

with failure probability at most 2t−p + e−u
2∕2.

Further, according to Steps 4–5 of Algorithm  1, we have XTQ1Q
T
1
= U2�1V

T
1

 , with 
X̃T ≡ Ũr�̃rṼ

T
r

 being its rank-r approximation. Let �r+1(XTQ1Q
T
1
) be the (r + 1)-th largest 

singular value of XTQ1Q
T
1
 , according to the interlacing theorem for singular values (Golub 

(3.7)

‖(I − PG)X‖2 ≤
�
1 + t

�
3r
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e
√
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�
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e
√
r + p
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��
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j

�1∕2

, p ≥ 4,

L = (XXT )qX, and G = L�,

‖(I − Q1Q
T
1
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�
1 + t

�
3r

p + 1
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e
√
r + p

p + 1

�
�𝜎r+1 + t

e
√
r + p
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�𝜎2
j

�1∕2

, p ≥ 4,

‖(I − Q1Q
T
1
)X‖2 ≤ ‖(I − Q1Q

T
1
)L‖1∕(2q+1)

2
.

(3.8)

‖XT − XTQ1Q
T
1
‖2 = ‖(I − Q1Q

T
1
)X‖2

≤

⎡⎢⎢⎣

�
1 + t

�
3r
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e
√
r + p

p + 1

�
𝜎
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and Van Loan 2013), we have �r+1(XTQ1Q
T
1
) ≤ �r+1 , where �r+1 is the (r + 1)-th largest 

singular value of XT . Thus, from Steps 4–5 of Algorithm 1, we have

According to (3.8) and (3.9), we get

 with failure probability at most 2t−p + e−u
2∕2 . Denote

 if we take t = e , u =
√
2p , then (3.10) reduces to

with failure probability at most 3e−p , where � = �∕�r+1 . Note that the value of � depends 
on the choice of q and could be in the order of O(1).

Recall that XT = U�PT is the economized singular value decomposition of XT , if we par-

tition U = [Ur, U−] , � =

(
�r �

� �−

)
 , and P = [Pr, P−] , where Ur ∈ ℝ

n×r , �r ∈ ℝ
r×r , and 

Pr ∈ ℝ
d×r , then

Notice that XT
r
= Ur�rP

T
r
 , we have (XT

r
)† = Pr�

−1
r
UT

r
 , moreover,

By (3.12) and (3.13),

(ii) Second, we consider the angle between the subspaces X̃ = span{(X̃T )†Y} and 
X = span{(XT

r
)†Y}.

Assume that (X̃T )†Y and (XT
r
)†Y are of full column rank, then

and we have from Wedin (1973) and (3.14) that

(3.9)‖XT − XTQ1Q
T
1
‖ = ‖U2�1V

T
1
− Ũr�̃rṼ

T
r
‖2 = �r+1(X

TQ1Q
T
1
) ≤ �r+1.

(3.10)
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�𝛴r
�VT
r
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T
1
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T
1
− �Ur
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≤
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�
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(3.12)‖XT − X̃T‖2 ≤ � = ��r+1 = O(�r+1),

(XT )† = P�†UT = [Pr,P−]

(
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r
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� �−1
−
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UT
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UT
−

)
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r
UT

r
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.

(3.13)‖(XT
r
)†‖2 = 1

�r
, and ‖XT − XT

r
‖2 = �r+1.

(3.14)‖XT
r
− X̃T‖2 ≤ ‖XT − XT

r
‖2 + ‖XT − X̃T‖2 ≤ (1 + �)�r+1.

rank
(
(X̃T )†Y

)
= rank

(
(XT

r
)†Y

)
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where we use the fact that Y  is orthonormal. On the other hand,

Then from Sun (1984), (3.15) and (3.16), we have

where P
(XT

r
)†Y

 and P
(X̃T )†Y

 are the orthogonal projectors onto the subspace span{(XT
r
)†Y} and 

span{(X̃T )†Y} , respectively.
In summary, we have the following theorem for Algorithm 2. Let FQ be the Q-factor 

of the economized QR factorization of (XT
r
)†Y  , it provides a bound between the distance 

between the subspaces spanned by the “truncated” solution FQ and the “approximate” 
solution F̃Q:

Theorem 3.3  Let X = span{(XT
r
)†Y} = span{FQ} and X̃ = span{(X̃T )†Y} = span{F̃Q} . If 

(XT
r
)†Y  and (X̃T )†Y  are of full column rank, then under the above notations, we have

with failure probability at most 3e−p , where p ≥ 4.

Remark 3.3  Recall that X̃T is an approximation to XT
r
 , as (XT

r
)†Y  is of full column rank, the 

assumption that rank((X̃T )†Y) = rank((XT
r
)†Y) is not strict, moreover, we have that 

‖(X̃T )†‖2 = O
1

�r
) . As a result, Theorem 3.3 indicates that the distance between the “trun-

cated” solution space span{(XT
r
)†Y} and the “approximate” solution space span{(X̃T )†Y} is 

in the order of O
(
�2(Xr)

�r+1

�r

)
.

On the other hand, we point out that the upper bound given in (3.18) may be pessimistic 
in practice and even much larger than one. Our contribution is to indicate that the differ-
ence between the two subspaces X  and X̃  is closely related to the condition number �(Xr) 
and the gap �r+1

�r
 between singular values. If the singular values of X decay quickly and Xr is 

not too ill-conditioned, the distance between X  and X̃  will be small.

Finally, we briefly interpret why our randomized algorithm works for recognition. 
Let �̂i be a sample from the training set, and let �̂j be a sample from the testing set. 

(3.15)

‖(XT
r
)†Y − (X̃T )†Y‖2 ≤

�‖(XT
r
)† − (X̃T )†‖2
‖(XT

r
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�
‖(XT

r
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≤
√
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r
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r
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≤
√
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�r
,

(3.16)‖[(XT
r
)†Y]†‖2 = 1
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T
r
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≤
1

�min((X
T
r
)†)

= �max(X
T
r
) = �1.

(3.17)

sin∠(X, X̃) = ‖P
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r
)†Y

− P
(X̃T )†Y

‖2
≤ min{‖[(XT

r
)†Y]†‖2, ‖[(X̃T )†Y]†‖2}‖(XT

r
)†Y − (X̃T )†Y‖2

≤ ‖[(XT
r
)†Y]†‖2‖(XT

r
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≤
√
2(1 + �)‖(X̃T )†‖2(�1∕�r) ⋅ �r+1,

(3.18)sin∠(X, X̃) ≤
�√

2(1 + �)�(Xr)‖(X̃T )†‖2
�
⋅ �r+1
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In the widely used nearest neighbour classifier (NN) (Cover and Hart 1967), the class 
membership is from investigating the Euclidean distance as follows:

Along the line of (Wu et al. 2017, Theorem 6), we can establish the following relationship 
between the Euclidean distances obtained from FQ and F̃Q.

Theorem 3.4  Let FQ, F̃Q ∈ ℝ
d×s be orthonormal matrices whose columns span the “trun-

cated” solution space X  and the “approximate” solution space X̃  of (2.5), respectively. 
Denote by dij = ‖FT

Q
(�̂i − �̂j)‖2 and by d̃ij = ‖F̃T

Q
(�̂i − �̂j)‖2 the “truncated” and the 

“approximate” Euclidean distances, respectively. If ‖�̂i‖2, ‖̂�j‖2 = 1 and cos∠(X, X̃) ≠ 0 , 
then

Remark 3.4  Theorem 3.4 shows that if sin∠(X, X̃) is not large, then the distances {dij}�s 
and {d̃ij}�s will be close to each other. Consequently, the recognition rates obtained from 
the “truncated” solution and the “approximate” solution will be about the same; see (Wu 
et al. 2017) for more details.

3.3 � An iterative algorithm for the trace‑ratio problem on high‑dimension 
and large‑sample sparse data sets

In many high-dimension data processing tasks such as text processing, the data matrix is 
often large and sparse (Cai et al. 2008; Tavernier et al. 2017; Zhu and Huang 2014). In this 
situation, applying the randomized SVD to X are unfavorable because it will destroy the 
sparse structure of the original data. Thus, it is necessary to propose new technologies for 
solving the trace-ratio problem on large and sparse data sets. It follows from Theorem 3.2 
that F = (XT )†Y  is in the solution space N(SW ) ⧵N(ST ) . As X is of full column rank, we 
have

Thus, the idea is to solve the underdetermined (consistent) block system (3.20) for F , with 
no need to form (XT )† explicitly. This avoids destroying the sparse structure of the original 
data matrix. We are ready to present the following algorithm for the large sparse trace-ratio 
problem.

dij = ‖FQF
T

Q
(�̂i − �̂j)‖2 = ‖FT

Q
(�̂i − �̂j)‖2.

(3.19)
d̃ij − 2 sin∠(X, X̃)

cos∠(X, X̃)
≤ dij ≤ d̃ij cos∠(X, X̃) + 2 sin∠(X, X̃).

(3.20)XTF = XT (XT )†Y = Y .
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Remark 3.5  Unlike the methods given in Jia et al. (2009), Ngo et al. (2012), Wang et al. 
(2007), Zhao et al. (2013) for the trace-ratio problem, Algorithm 3 is not an inner-outer 
iterative method, so it is much simpler than those conventional methods. The main over-
head of this algorithm is in Step 1, where we have to solve k − 1 least squares problems 
iteratively. We can use the lsrq package provided by Cai et  al. (2008) to solve (3.21), 
which is a modification to the LSQR algorithm due to Paige and Saunders (1982). Thus, 
Algorithm 3 can preserve the sparse structure of X, and the main storage requirement is to 
store the matrix F̃Q of size d × (k − 1).

The following theorem gives an error bound on solving (3.20) iteratively by 
Algorithm 3.

Theorem 3.5  Let F be the exact solution to (3.20), and let F̃ be the computed solution of 
(3.21) satisfying ‖XTF̃ − Y‖F∕‖Y‖F ≤ tol , where tol is the convergence tolerance used in 
Algorithm 3. Denote by F = span{F} and by F̃ = span{F̃} , if F̃ and F are of full column 
rank, and the columns of F̃ − F are not in N(XT ) , then

Proof  Since XTF = Y  with Y  being orthonormal, we have

where we used the convergence criterion ‖XTF̃ − Y‖F∕‖Y‖F ≤ tol in Algorithm 3, as well 
as the fact that ‖Y‖F =

√
k − 1.

If the columns of F̃ − F are not in N(XT ) , then

where �min(X
T ) = �min(X) is the smallest nonzero singular value of XT . So it follows that

On the other hand, �min(F) = �min((X
T )†Y) ≥ �min((X

T )†) = 1∕�max(X) , where we used the 
fact that Y  is orthonormal. Thus,

(3.22)sin∠(F, F̃) ≤
√
k − 1�2(X) ⋅ tol.

‖XT (F̃ − F)‖F = ‖XTF̃ − Y‖F ≤ ‖Y‖F ⋅ tol ≤
√
k − 1 ⋅ tol,

‖XT (F̃ − F)‖2
F
≥ �2

min
(XT )‖F̃ − F‖2

F
,

(3.23)‖F̃ − F‖2 ≤ ‖F̃ − F‖F ≤
√
k − 1 ⋅

tol

�min(X)
.
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Assume that F̃ and F are of full column rank, then we have from (Sun 1984), (3.23) and 
(3.24) that

where PF̃
 and P

F
 is the orthogonal projector onto span{F̃} and span{F} , respectively.     	

� ◻

Remark 3.6  As the exact solution F = (XT )†Y  is not in N(XT ) and F̃ is an approximation 
to F , the assumption that the columns of F̃ − F are not in N(XT ) is trivial. Although the 
upper bound given in (3.22) can be pessimistic and even much larger than one as k is not 
small and the matrix X is ill-conditioned, Theorem 3.5 reveals that the distance between 
the computed solution and exact solution is closely related to the product �2(X) ⋅ tol , where 
�2(X) is the 2-norm condition number of X and tol is a user-described convergence thresh-
old used in Algorithm 3. In other words, the distance will be close to zero as X is not too 
ill-conditioned and tol is small.

Spectral regression discriminant analysis (SRDA) (Cai et al. 2008) is a popular method 
for large and sparse discriminant analysis. This method combines spectral graph analysis 
and regression to provide an efficient approach for discriminant analysis. The main task of 
SRDA is to solve a set of regularized least squares problems, and there is no eigenvector 
computation involved. However, SRDA aims to solve the ratio-trace problem (1.2) rather 
than the trace-ratio problem (1.1).

Let X̂ = [XT , �n]
T , it was shown that the solution of SRDA satisfies (Cai et  al. 

2008, pp.7)

where � is a regularized parameter. The following theorem establishes the relationship 
between (3.5) and (3.25), i.e., the solution of (2.5) and that of SRDA. It indicates that our 
method is different from that of SRDA in essence.

Theorem 3.6  Let F̂ be defined in (3.25), and denote by F = (XT )†Y  the exact solution of 
(2.5). If X has full column rank, we have

where � = 1 + �T
n
(XTX)−1�n , and � = (XT )†�n.

Proof  We notice that

(3.24)‖F†‖2 = 1

�min(F)
≤ �max(X).

sin∠(F, F̃) = ‖PF̃ − P
F
‖2

≤ min{‖F̃†‖2, ‖F
†‖2}‖F̃ − F‖2

≤ ‖F†‖2‖F̃ − F‖2
≤
√
k − 1�2(X) ⋅ tol,

(3.25)F̂ = X̂(X̂T X̂ + �In)
−1Y , � → 0,

F̂ =

(
Id −

1

�
��T

1

�
�T

)
F, � → 0,
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is a rank-1 modification to the matrix XTX . Let � = 1 + �T
n
(XTX + �In)

−1�n and note that 
X†X = I . From the Shermam-Morrison-Woodbury formula (Golub and Van Loan 2013), 
we obtain

As � → 0 , we see that X(XTX + �In)
−1

→ X(XTX)−1 = (XT )†, X(XTX + �In)
−1Y → F and 

� → 1 + �T
n
(XTX)−1�n = � . In conclusion,

So we complete the proof. 	�  ◻

In Zhang et al. (2017), an incremental regularized least squares (LDADL) method was pro-
posed by Zhang et al.. With the help of Theorem 3.6 and (Zhang et al. 2017, Lemma 4.3), we 
can also establish the relationship between our proposed method and LDADL. We point out 
that Algorithm 3 is different from SRDA and LDADL in essence. First, the three methods 
Algorithm 3, LDADL and SRDA are designed for different problems. More precisely, Algo-
rithm 3 is for the trace-ratio problem (1.1) while SRDA and LDADL are for the ratio-trace 
problem (1.2). Second, the left-hand sides of the least-squares problems involved in LDADL 
and SRDA are same, while the right-hand sides are different. Indeed, the right-hand sides 
involved in the former have one more column than the latter, refer to Zhang et al. (2017). As 
a comparison, the right-hand sides involved in our method and SRDA are the same, while the 
left-hand sides are different. More precisely, the left-hand sides involved in SRDA have one 
more row than the proposed method. Third, Algorithm 3 is parameter-free while both SRDA 
and LDADL involve regularization parameters. It is well-known that the optimal parameter is 
difficult to choose in practice if there is no other information available in advance (Gui et al. 
2014), so our method is preferable.

X̂T X̂ =
(
XT �n

)( X

�T
n

)
= XTX + �n�

T
n

F̂ = X̂(X̂T X̂ + �In)
−1Y

=

(
X

�T
n

)
(XTX + �n�

T
n
+ �In)

−1Y

=

(
X

�T
n

)[
(XTX + �In)

−1 −
1

�
(XTX + �In)

−1�n�
T
n
(XTX + �In)

−1

]
Y

=

(
X(XTX + �In)

−1Y −
1

�
X(XTX + �In)

−1�n�
T
n
(XTX + �In)

−1Y

�T
n
(XTX + �In)

−1Y −
1

�
�T
n
(XTX + �In)

−1�n�
T
n
(XTX + �In)

−1Y

)

=

(
X(XTX + �In)

−1Y −
1

�
X(XTX + �In)

−1 ⋅ �n�
T
n
X† ⋅

(
X(XTX + �In)

−1Y
)

(
1 −

1

�
�T
n
(XTX + �In)

−1�n
)
⋅ �T

n
X† ⋅

(
X(XTX + �In)

−1Y
)

)
.

F̂ →

(
F −

1

�
(XT )†�n�

T
n
X†F
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X†F
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=
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�
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4 � Numerical experiments

In this section, we perform some numerical experiments on some real-world high-dimen-
sion and large-sample data dimensionality reduction problems. In Sect. 4.1, we describe 
the databases and some benchmark algorithms used in the experiments. In Sect. 4.2, we 
compare our proposed algorithms with some state-of-the-art algorithms to show the merits 
of the new algorithms.

4.1 � Datasets, benchmark algorithms and experiment settings

Seven real-world databases, including video data, text documents, face images, audio data, 
are used in our experiment. The details of these data bases, such as dimensionality, the 
number of total samples, the background and data type are summarized in Table 2.

•	 The Color FERET dataset1 was collected in 15 sessions between August 1993 and 
July 1996. The database contains 1564 sets of images for a total of 14126 images 
that includes 1199 individuals and 365 duplicate sets of images ranging from frontal 
to left and right profiles. In our experiment, a part of the FERET program contain-
ing N = 3528 images of k = 269 different people was utilized. We crop and scale the 
images to 192 × 128 pixels, and set the reducing dimension s = 200.

•	 The AR database2 contains over 4000 color images corresponding to 126 people’s 
faces (70 men and 56 women). Images feature frontal view these faces with different 
facial expressions, illumination conditions, and occlusions (e.g., sun glasses and scarf). 
The pictures were taken at the CVC under strictly controlled conditions. No restric-
tions on wear (clothes, glasses, etc.), make-up, hair style were imposed to participants. 
Each person participated in two sessions, separated by two weeks time. The same pic-
tures were taken in both sessions. A subset of k = 100 with 26 images of per people, 
i.e., N = 2600 images are used in our experiment. We crop and scale the images to 
120 × 165 pixels, and the reducing dimension s is set to be 99.

Table 2   Details of the databases: dimensionality (d), the number of total samples (N), the background and 
data type (sparse or dense)

Database Dimensionality (d) Number of total 
samples (N)

Background Type

Color FERET 24576 3528 Face images dense
AR 19800 2600 Face images dense
Extended YaleB 10000 2432 Face images dense
CAS-PEAL 172800 21840 Face images dense
YouTube 102400 124819 Video data dense
TDT2 36771 9394 Audio data sparse
Reuters 18933 8213 Text document sparse

1  https​://www.face-rec.org/datab​ases/.
2  http://www2.ece.ohio-state​.edu/~~aleix​/ARdat​abase​.html.

https://www.face-rec.org/databases/
http://www2.ece.ohio-state.edu/%7e%7ealeix/ARdatabase.html


3906	 Machine Learning (2024) 113:3889–3916

1 3

•	 The Extended YaleB3 data set contains 5760 single light source images of 10 sub-
jects, each seen under 576 viewing conditions (9 different poses and 64 illumination 
conditions of each person). The images have normal, sleepy, sad and surprising expres-
sions. A subset of k = 38 persons with 64 images of per people, i.e., N = 2432 images 
are used in the example. We crop and scale the images to 100 × 100 pixels in our exper-
iment, and set the reduced dimension s = k − 1 = 37.

•	 The CAS-PEAL face database (Gao et al. 2008) was constructed under the sponsors 
of National Hi-Tech Program and ISVISION, by the Face Recognition Group of JDL, 
ICT, and CAS. It contains 99594 images of 1040 individuals (595 males and 445 
females) with varying pose, expression, accessory, and lighting (PEAL). For each sub-
ject, 9 cameras spaced equally in a horizontal semicircular shelf are setup to simulta-
neously capture images across different poses in one shot. Each subject is also asked 
to look up and down to capture 18 images in another two shots. We also considered 5 
kinds of expressions, 6 kinds accessories (3 glasses, and 3 caps), and 15 lighting direc-
tions. This face database is now partly made available. A subset named by CAS-PEAL-
R1, contains N = 21840 images of 1040 subjects, and each subject across 21 different 
poses without any other variations are included for research purpose. We crop and scale 
the images to 360 × 480 pixels, and set the reduced dimension s = 400.

•	 The Youtube dataset (Wolf et al. 2011) is a large-scale video classification database. 
It contains 80 million YouTube video links, which are labeled as 4800 knowledge 
graph entities. Here we provide a links of 5020 videos with 1595 persons labels. All 
images have been downloaded from YouTube. In our experiments we have employed 
up to 90 samples of each class, resulting to a dataset of N = 124819 feature samples 
data and k = 1595 classes.

•	 The Reuters dataset4 contains 21578 documents in 135 categories. The documents 
with multiple category labels are discarded. It left us with N = 8213 documents in 
k = 65 categories. After preprocessing, this corpus contains d = 18933 distinct terms.

•	 The original TDT2 (Nist Topic Detection and Tracking) corpus5 collects during the first 
half of 1998 and taken from 6 sources, including 2 newswires (APW, NYT), 2 radio 
programs (VOA, PRI) and 2 television programs (CNN, ABC). It consists of 11201 on-
topic documents which are classified into 96 semantic categories. In this subset, those 
documents appearing in two or more categories were removed, and only the largest 
k = 30 categories were kept, thus leaving us with N = 9394 documents in total.

As the PCA+Newton-Lanczos method (PCA+NL) (Ngo et al. 2012) is a popular algo-
rithm for the trace-ratio problem, and SRDA is a state-of-the-art algorithm for large-scale 
discriminant analysis (Cai et al. 2008), we take them and the proposed Algorithm 2 as the 
benchmark algorithms in all the experiments. The details of the PCA+Newton Lanczos 
method and SRDA are listed as follows:

•	 PCA+NL (Ngo et  al. 2012): The PCA+Newton Lanczos method, in which the PCA 
stage is performed before running the Newton Lanczos method. Here we preserve 99% 
energy in the PCA stage. We find that infinite trace-ratio values may occur in this algo-

4  http://www.cad.zju.edu.cn/home/dengc​ai/.
5  http://www.cad.zju.edu.cn/home/dengc​ai/.

3  http://cvc.yale.edu/proje​cts/yalef​acesB​/yalef​acesB​.html.

http://www.cad.zju.edu.cn/home/dengcai/
http://www.cad.zju.edu.cn/home/dengcai/
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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rithm during outer iterations. In order to deal with this problem, let V (j), V (j+1) be the 
orthnormalized eigenvectors obtained from the j-th and the (j + 1)-th iteration, respec-
tively, we use the sine of the angle between the subspaces span{V (j)} and span{V (j+1)} as 
the stopping criterion in this algorithm. As was suggested in Ngo et al. (2012), we use 
the MATLAB built-in function eigs.m for the eigenvalue problems involved, with the 
stopping criterion tol = 10−4.

•	 SRDA (Cai et al. 2008): The spectral regression discriminant analysis method based 
on solving regularized least squares problem. This method is one of the state-of-
the art algorithms for large-scale and sparse discriminant analysis problems, and it 
is required to solve s dense least squares problems of size (d + 1)-by-n. The lsrq 
package provided by Cai et al. is used to compute the regularized least squares prob-
lem involved, and the algorithm is stopped as soon as the residual norm is below 
tol = 10−6 or the number of iterations reaches 20. The the regularized parameter is 
chosen as � = 10−2.

•	 In Algorithm  2, we set q = 2 and the over-sampling parameter p = 20 . The target 
rank r is chosen in the following way: we set r = 100 if the number of training sam-
ple n is less than 1000, and set r = 200 if the number of training sample is in the 
interval (1000, 3500]; otherwise, we set r = 400.

All the experiments are run on a Hp workstation with 16 cores double Intel(R) Xeon(R) 
Platinum 8253 processors, and with CPU 2.20 GHz and RAM 256 GB. The operation 
system is 64-bit Windows 10. All the numerical results are obtained from running the 
MATLAB R2018b software.

In the examples, we randomly pick some, say, n = 60%N, 70%N and 80%N samples 
as the training set, and the remaining samples are used as the testing set, where N is the 
total number of samples. More precisely, we rearrange the original N samples data by 
using the MATLAB command randperm(N), which returns a row vector containing a 
random permutation of the integers from 1 to N, then we select the samples correspond-
ing to the first n elements of the row vector as the training set. We make use of the near-
est neighbor classifier (NN) (Cover and Hart 1967) for classification in the experiments. 
Each experiment will be repeated 10 for times, and all the numerical results, i.e., the 
CPU time in seconds, the recognition rate and the standard deviation (Std-Dev), are the 
mean from the 10 runs.

4.2 � Numerical experiments

In this subsection, we perform some numerical experiments to show the superiority of 
our randomized method Algorithm 2 and the iterative method Algorithm 3 over some 
state-of-the-art algorithms for high-dimension and large-sample data dimensionality 
reduction problems. As Algorithm 3 is proposed for solving high-dimension and large-
sample sparse trace-ratio problem, we only run it on large sparse data sets.

Example 1  In this example, we compare Algorithm 2 with some state-of-the-art algorithms 
for large-scale trace-ratio problem. The test set is the color FERET database. Besides the 
three benchmark algorithms Algorithm 2, PCA+NL and SRDA, we also run the following 
four state-of-the-art trace-ratio algorithms for this problem:
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•	 PCA+DNM (Jia et  al. 2009): The trace-ratio linear discriminant method presented by 
Jia et al, whose MATLAB code is available from http://www.escie​nce.cn/peopl​e/fpnie​/
paper​s.html. Here we preserve 99% energy in the PCA stage.

•	 PCA+iITR (Zhao et al. 2013): A trace-ratio linear discriminant method proposed by 
Zhao et al., in which we preserve 99% energy in the PCA stage.

•	 FastITR (Zhang et al. 2010): An algorithm advocated by Zhang et al.6 for the trace-
ratio problem. The MATLAB built-in function eigs.m is used for computing the 
eigenvalue problems involved. In this method, a regularized parameter is required 
to ensure the positive definiteness of the total scatter matrix. We set the regularized 
parameter to be 10−2 in the experiment.

•	 WangITR (Wang et al. 2007): An algorithm proposed by Wang et al. for the trace-ratio 
problem. As this algorithm solves the trace difference problem by using the eigenvalue 
decomposition method in each outer iteration (Wang et  al. 2007, Algorithm  1), we 
exploit the MATLAB build-in function eig.m for the eigenvalue problems involved. 
The numerical results are list in Table 3.

We see from Table 3 that Algorithm 2 outperforms all the compared algorithms both in 
terms of CPU time and recognition accuracy. More precisely, it not only runs faster than 
the two benchmark algorithms PCA+NL and SRDA, but also beats all the algorithms for 
solving the trace-ratio problem. For example, Algorithm  2 is about 90 times faster than 
SRDA and is about 30 faster than PCA+NL. Moreover, one finds that WangITR fails to 
converge within 1000 seconds for this problem. This is because we have to solve trace dif-
ference problem by using eigenvalue decomposition during each outer iteration, whose cost 
is prohibitively large for large-scale problems.

On the other hand, it is observed that the recognition rates of Algorithm 2 are much 
higher than those of the other algorithms. In fact, the approximation X̃ got from the ran-
domized algorithm is a low-rank approximation to the training sample data X, and this 
process has the effect of denoising. Although the PCA processing can also filter noise in 

Table 3   Example 1: numerical results on the Color FERET database, d = 24576, N = 3528 , s = 200

Here 99% energy is preserved in the PCA-preprocessed methods, and “–” stands that the algorithm fails to 
converge with in 1000 seconds

Algorithms CPU Time / s ( Recognition rate ± Std-Dev% )

(Methods) n = 60%N n = 70%N n = 80%N

PCA+NL 28.6 (23.20±0.90%) 43.9 (22.79±2.06%) 66.4 (22.75±1.60%)
SRDA 91.5 (27.05±1.08%) 105.5 (29.60±1.23%) 119.8 (32.68±1.59%)
Algorithm 2 1.17 (47.00±1.50%) 1.25 (49.87±0.92%) 1.37 (53.44±1.17%)
PCA+DNM 5.40 (25.44±0.84%) 6.80 (24.49±1.12%) 8.21 (23.78±1.31%)
FastITR 100.5 (25.74±2.37%) 171.1 (25.73±2.69%) 271.9 (26.30±2.87%)
PCA+iITR 6.54 (23.01±0.94%) 8.66 (22.34±1.20%) 11.7 (22.27±1.50%)
WangITR – – –

6  We thank Prof. Leihong Zhang for providing us with the MATLAB codes of this algorithm.

http://www.escience.cn/people/fpnie/papers.html
http://www.escience.cn/people/fpnie/papers.html
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some sense, however, preserving 99% energy in this stage may not denoise effectively for 
this problem.

Example 2  As was discussed in Sect.  2, Algorithm 2 is closely related to the null space 
method. In this example, we compare Algorithm 2 with some null space methods includ-
ing NLDAfast (Lu and Wang 2012), NLDAS (Huang et al. 2002) and NLDA (Chen et al. 
2000). The test set is the AR database. Table 4 lists the numerical results.

Again, we observe from Table  4 that Algorithm  2 performs much better than the 
other algorithms. For example, it is about eight times faster than NLDAS, NLDAfast and 
PCA+NL, and is about 50 times faster than NLDA and SRDA. On the other hand, the rec-
ognition rates and the standard derivations obtained from Algorithm 2 and the null space 
algorithms are about the same. This because all of them seek solutions in the subspace 
N(SW ) ⧵N(ST ) , see Sect. 3.1, and our proposed algorithm runs much faster than the null 
space methods. Moreover, we notice that the recognition rates of the three algorithms are 
a little lower than those of SRDA, and are a little higher than those of PCA+NL. Indeed, 
which one is the best according to recognition rate is often problem-dependent.

Example 3  In this example, we compare Algorithm  2 with two randomized algorithms 
including FastLDA and RFDA/RP for large-scale discriminant analysis. The test set is the 
Extended YaleB database.

•	 FastLDA (Gado et  al. 2016): A fast LDA algorithm that uses a feature extrac-
tion method based on random projection to reduce the dimensionality, and then per-
forms LDA in the reduced space. In essence, this algorithm can be understood as a 
RSVD+LDA method. In this algorithm, the regularized parameter is set to be 10−2 , and 
the size of Gaussian matrix for sampling is chosen as d × 160 , where d is the dimension 
of the data.

•	 RFDA/RP (Ye et al. 2017): A fast LDA algorithm based on random projection. In this 
algorithm, the random projection matrix is determined by Theorem 3 of Ye et al. (2017), 
and the number of columns is chosen as rank(XLT )−log(1∕�)

�−2
 , where LT = In − �n�

T
n
∕n , 

� = 0.1 is the regularized parameter, and � = 10−2 is related to the desired failure prob-
ability. Table 5 lists the numerical results of the five algorithms.

Table 4   Example 2: Numerical results on the AR database, d = 19800, N = 2600 , s = 99

In the PCA+NL algorithm, we preserve both 99% energy in the PCA stage

Algorithms CPU Time/s ( Recognition rate ± Std-Dev% )

(Methods) n = 60%N n = 70%N n = 80%N

PCA+NL 6.15 (93.72±1.51%) 7.08 (95.03±1.93%) 7.98 (94.46±2.56%)
SRDA 31.9 (97.86±0.34%) 36.9 (98.44±0.35%) 42.0 (98.48±0.48%)
Algorithm 2 0.63 (95.77±0.44%) 0.69 (96.70±0.30%) 0.74 (97.15±0.59%)
NLDAS 4.99 (95.82±0.55%) 6.48 (96.41±0.72%) 8.06 (96.88±0.49%)
NLDAfast 3.99 (94.54±1.51%) 5.67 (95.49±1.35%) 9.10 (96.10±1.27%)
NLDA 31.8 (95.87±0.57%) 35.7 (96.35±0.72%) 40.8 (96.98±0.54%)
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We see from Table 5 that the three randomized algorithms FastLDA, RFDA/RP, and 
Algorithm 2 run much faster than PCA+NL and SRDA, while our proposed randomized 
algorithm is about two times faster than FastLDA and five times faster than RFDA/RP. On 
the other hand, for this problem, the recognition rates of the three randomized algorithms 
are (a little) lower than those of SRDA and PCA+NL, while those of our proposed algo-
rithm are the highest among the three randomized algorithms. Specifically, we find that the 
recognition rates of RFDA/RP are (much) lower and the standard deviations are (much) 
higher than those of the others, especially when n is relatively small. In fact, the success 
of RFDA/RP greatly relies on the random projection matrix used. However, the projection 
matrix requires two parameters, one is to avoid the singularity problem, and the other is to 
determine the success probability of a low-rank approximation. How to choose the optimal 
values of two parameters is a difficult problem.

Example 4  In this example, we show the superiority of Algorithm 2 over many state-of-
the-art algorithms for high-dimension and large-sample dense data dimensionality reduc-
tion problem. The test sets are two high-dimension and large-sample dense databases 
CAS-PEAL and YouTube. As the number of total samples are very large in the YouTube 
database, we randomly pick some n = 40%N, 50%N and 60%N samples as the training 
set, and the remaining samples are used as the testing set, where N is the total number 
of samples. We compare Algorithm  2 with the above trace-ratio algorithms, two popu-
lar large-scale discriminant analysis methods SRDA (Cai et al. 2008) and LDADL (Zhang 
et al. 2017), two randomized algorithms FastLDA (Gado et al. 2016) and RFDA/RP (Ye 
et al. 2017), as well as three null space methods NLDAfast (Lu and Wang 2012), NLDAS 
(Huang et al. 2002) and NLDA (Chen et al. 2000).

In the experiments, we set the size of the Gaussian matrix for sampling in FastLDA 
to be d × 400 . For the PCA plus algorithms, we preserve both 99% and 95% energy on 
the PCA stage, respectively. In LDADL, we exploit the lsrq package provided by Cai 
et al. (2008) to solve the regularized least squares problem, and the algorithm is stopped as 
soon as the residual norm is below tol = 10−6 or the number of iterations reaches 20. The 
numerical results are listed in Tables 6 and 7.

We observe from Table 6 that for the CAS-PEAL database, most of the algorithms fail 
to converge within 1000 seconds or suffer from heavy storage requirement. Some trace-
ratio algorithms such as PCA+DNM and PCA+iITR do not work at all if we preserve 

Table 5   Example 3: Numerical results on the Extended YaleB database, d = 10000, N = 2432 , s = 37

In the PCA+NL algorithm, we preserve 99% energy in the PCA stage

Algorithms CPU Time/s ( Recognition rate ± Std-Dev% )

(Methods) n=60%N n=70%N n=80%N

PCA+NL 2.22 (98.82±0.26%) 2.58 (99.05±0.38%) 2.98 (99.32±0.47%)
SRDA 5.82 (99.17±0.33%) 6.79 (99.30±0.28%) 6.60 (99.59±0.33%)
Algorithm 2 0.32 (97.06±0.38%) 0.35 (97.41±0.47%) 0.38 (97.95±0.47%)
RFDA/RP 1.23 (92.77±3.89%) 1.48 (93.25±3.05%) 1.74 (96.69±3.41%)
FastLDA 0.71 (96.45±0.47%) 0.85 (97.08±0.49%) 0.93 (97.60±0.93%)
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99% energy in the PCA process, as the recognition rates are only about 4%. However, if 
we preserve 95% energy in the PCA process, the recognition rates raise to about 50%. 
The reason is that the PCA plus methods may be unstable for dimensionality reduction 
(Shi et al. XXX). Furthermore, Algorithm 2 is about 10 times faster than PCA+DNM and 
PCA+iITR.

It is seen that the recognition rates of FastLDA are the highest for the CAS-PEAL data-
base. For this problem, the recognition rates of Algorithm  2 are about 20% higher than 
RFDA/RP, but are about 10% lower than those of FastLDA. On the other hand, Algo-
rithm 2 is about 2-3 times faster than FastLDA, and is about ten times faster than RFDA/
RP.

Table 7 demonstrates the advantage of randomized algorithms for high-dimension and 
large-sample dense data sets. More precisely, except for Algorithm  2 and FastLDA, all 
the algorithms fail to converge with in 1000 seconds or suffer from the difficulty of out 
of memory. Compared with FastLDA, Algorithm 2 is about 3 times faster than FastLDA, 
however, the recognition rates of our proposed algorithm are about 6% lower than those 
of FastLDA. This is similar to the numerical results given in Table 6 for the CAS-PEAL 
database. Therefore, for high-dimension and large-sample dense data sets, Algorithm 2 is 
a good choice if speed is more important, and it is a competitive candidate for high-dimen-
sion and large-sample dense data dimensionality reduction problem.

Example 5  In this example, we show the efficiency of Algorithm 2 and Algorithm 3 for 
high-dimension and large-sample sparse data dimensionality reduction problem. To this 

Table 6   Example 4: Numerical results on the CAS-PEAL database, d = 172800, N = 21840 , s = 400

Here “O.M.” implies that the algorithm suffers from “out of memory”, and “–” denotes the CPU time 
exceeds 1000 seconds. In the PCA plus algorithms, we preserve both 99% and 95% energy in the PCA 
stage, respectively

Algorithms CPU Time / s ( Recognition rate ± Std-Dev% )

(Methods) n=60%N n=70%N n=80%N

Algorithm 2 61.39 (53.83±0.79%) 67.58 (57.55±0.63%) 83.14 (58.85±0.82%)

SRDA – – –
LDADL – – –
PCA+NL(99%) – – –
PCA+NL(95%) – – –
PCA+DNM(99%) 513.3 (4.10±0.23%) 667.1 (3.81±0.23%) 893.9 (3.69±0.32%)
PCA+DNM(95%) 417.3 (52.20±0.65%) 540.8 (52.77±0.67%) 728.1 (53.78±0.67%)
PCA+iITR(99%) 981.0 (3.57±0.20%) – –
PCA+iITR(95%) 415.9 (52.23±0.67%) 541.0 (52.95±0.61%) 721.8 (53.95±0.69%)
FastITR – – –
WangITR O.M. O.M. O.M.
NLDAS – – –
NLDA – – –
NLDAfast – – –
FastLDA 125.2 (64.05±0.63%) 185.1 (65.58±0.52%) 212.0 (67.00±0.77%)
PFDA/RP 564.4 (31.06±0.72%) 756.3 (32.54±0.53%) 990.8 (34.80±0.57%)
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aim, we compare Algorithm 2 and Algorithm 3 with all the algorithms run before. The 
test sets are two high-dimension and large-sample sparse databases TDT2 and Reuters. In 
the experiments, we set the size of the Gaussian matrix for sampling in FastLDA to be 
d × 400 . For the PCA plus algorithms, we preserve both 99% energy on the PCA stage. In 
LDADL, we exploit the lsrq package provided by Cai et al. (2008) to solve the regular-
ized least squares problem, and the algorithm is stopped as soon as the residual norm is 
below tol = 10−6 or the number of iterations reaches 20. The numerical results are listed in 
Tables 8 and 9.

Some comments are given. First, as both the row and the column of the training set 
are very large, the conventional trace-ratio algorithms PCA+NL, PCA+DNM, PCA+iITR, 
FastITR and WangITR are very slow or even fail to converge for these two data sets. It is 
obvious to see that Algorithm 2 and Algorithm 3 run much faster than these trace-ratio 
algorithms. These illustrate the superiority of Algorithm  2 and Algorithm  3 for high-
dimension and large-sample trace-ratio problems.

Second, Algorithm  2 and Algorithm  3 runs much faster than the three null space 
methods and the two randomized algorithms, moreover, the recognition rates of the two 
proposed algorithms are much higher than the five algorithms. Third, the numerical per-
formance of the two proposed algorithms is comparable to SRDA and LDADL for large 
sparse data sets. Although Algorithm 2 runs a little slower than Algorithm 3, SRDA and 
LDADL, the CPU time and recognition rates of Algorithm 2 and Algorithm 3 are com-
parable to those of SRDA and LDADL. The reason is that the sparse structure of the data 

Table 7   Example 4: Numerical results on the YouTube database, d = 102400, N = 124819 , s = 400

Here “O.M.” implies that the algorithm suffers from “out of memory”, and “–” denotes the CPU time 
exceeds 1000 seconds. In the PCA plus algorithms, we preserve both 99% and 95% energy in the PCA 
stage, respectively

Algorithms CPU Time / s ( Recognition rate ± Std-Dev% )

(Methods) n=30%N n=40%N n=50%N

Algorithm 2 107.6 (92.52±0.08%) 185.4 (93.02±0.21%) 270.9 (93.30±0.12%)

SRDA – – O.M.
LDADL – – O.M.
PCA+NL(99%) – – O.M.
PCA+NL(95%) – – –
PCA+DNM(99%) – O.M. O.M.
PCA+DNM(95%) – – –
PCA+iITR(99%) – – O.M.
PCA+iITR(95%) – – –
FastITR O.M. O.M. O.M.
WangITR O.M. O.M. O.M.
NLDAS O.M. O.M. O.M.
NLDA O.M. O.M. O.M.
NLDAfast O.M. O.M. O.M.
FastLDA 395.1 (98.30±0.05%) 589.1 (98.36±0.06%) 893.5 (98.46±0.07%)
PFDA/RP 805.8 (91.32±0.30%) – –
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samples is not preserved in randomized algorithms. As a result, Algorithm 2 is more suit-
able to high-dimension and large-sample dense data, while Algorithm 3 is a competitive 
candidate for high-dimension and large-sample sparse data.

Table 8   Example 5: Numerical results on the TDT2 database, d = 36771, N = 9394 , s = 29

Here “O.M.” implies that the algorithm suffers from “out of memory”, and ’–’ stands for the CPU time 
exceeds 1000 seconds. In the PCA plus algorithms, we preserve 99% energy in the PCA stage

Algorithms CPU Time / s ( Recognition Rate ± Std-Dev% )

(Methods) n=60%N n=70%N n=80%N

Algorithm 2 2.826 (96.89±0.26%) 3.093 (96.88±0.38%) 3.344 (97.10±0.26%)
Algorithm 3 1.236 (96.69±0.26%) 1.327 (96.84±0.35%) 1.458 (97.06±0.52%)
SRDA 1.259 (96.73±0.25%) 1.351 (96.87±0.38%) 1.486 (97.06±0.50%)
LDADL 1.286 (96.67±0.27%) 1.380 (96.80±0.33%) 1.529 (97.04±0.53%)
PCA+NL – – –
PCA+DNM – – –
FastITR – – –
PCA+iITR – – –
WangITR O.M. O.M. O.M.
NLDAS 128.7 (89.38±6.79%) 192.9 (86.90±7.80%) 276.5 (80.44±10.2%)
NLDA 230.8 (88.79±6.84%) 273.2 (86.24±7.73%) 323.1 (79.62±10.4%)
NLDAfast 97.99 (80.55±5.05%) 129.6 (80.25±5.42%) 167.5 (75.38±6.28%)
FastLDA 5.610 (95.86±0.34%) 6.349 (95.81±0.54%) 6.623 (95.94±0.40%)
PFDA/RP 10.29 (93.44±1.08%) 13.72 (92.86±1.31%) 16.18 (92.26±1.05%)

Table 9   Example 5: Numerical results on the Reuters database, d = 18933, N = 8213 , s = 64 

Here “O.M.” implies that the algorithm suffers from “out of memory”, and ’–’ stands for the CPU time 
exceeds 1000 seconds. In the PCA plus algorithms, we preserve 99% energy in the PCA stage

Algorithms CPU Time / s ( Recognition Rate ± Std-Dev% )

(Methods) n=60%N n=70%N n=80%N

Algorithm 2 1.254 (91.53±0.58%) 1.356 (91.69±0.50%) 1.489 (91.74±0.55%)
Algorithm 3 1.145 (92.12±0.46%) 1.257(92.49±0.59%) 1.335 (93.09±0.65%)
LDADL 1.176 (92.22±0.45%) 1.288 (92.65±0.56%) 1.361 (93.11±0.54%)
SRDA 1.160 (92.28±0.53%) 1.263 (92.62±0.61%) 1.345 (93.24±0.64%)
PCA+NL 957.6 (92.30±0.45%) – –
PCA+DNM 870.4 (92.15±0.44%) – –
PCA+iITR – – –
FastITR – – –
WangITR O.M. O.M. O.M.
NLDAS 66.80 (69.92±13.9%) 103.3 (63.26±13.7%) 151.0 (56.05±11.6%)
NLDA 65.23 (69.07±14.7%) 80.26 (65.62±12.6%) 103.2 (59.66±11.1%)
NLDAfast 39.38 (63.92±11.4%) 51.32 (60.10±10.7%) 65.28 (54.12±9.85%)
FastLDA 2.653 (89.02±0.59%) 2.967 (88.91±0.53%) 3.346 (89.07±0.74%)
PFDA/RP 7.471 (87.40±4.16%) 8.501 (88.16±2.27%) 9.712 (88.57±1.75%)
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5 � Concluding remarks

The trace-ratio problem is crucial in high dimensionality reduction and machine learning. 
However, it has been long believed that this problem does not have a known explicit solu-
tion in general. A goal of this paper is to provide alternative and ideally faster algorithms 
for this problem. We show that the trace-ratio problem does admit a close-form solution 
when the dimension of the data points d is greater than or equal to the number of training 
samples n.

To the best of our knowledge, most of the algorithms for trace-ratio problem are based 
on inner-outer iterations, which are complicated and even may be prohibitive for high-
dimension and large-sample data sets. Therefore, efficient algorithms for high-dimension 
and large-sample trace-ratio problem are still lacking, especially for dense data sets.

In this work, we pay special attention to high-dimension and large-sample trace-ratio 
problem, and propose two non-inner-outer iteration methods to solve it. With the help of 
the close-form solution and randomized singular decomposition, we first propose a rand-
omized algorithm (i.e., Algorithm 2) for dense data sets. Theoretical results are given to 
show how to choose the target rank in randomized SVD, and why an inexact solution still 
works for recognition.

For high-dimension and large-dense sample sparse trace-ratio problem, we propose an 
iterative algorithm (i.e., Algorithm 3) based on the close-form solution. Similar to SRDA 
and LDADL, it does not destroy the sparse structure of the original data matrix. An advan-
tage of the new algorithm over SRDA and LDADL is that it is parameter-free, and one only 
needs to solve some (consistent) under-determined linear systems rather than regularized 
least-squares problems. The difference and the theoretical relation between SRDA and our 
new method is given, and the distance between the computed solution and the exact solu-
tion is established.

Numerical experiments illustrate the numerical behavior of our proposed algorithms, 
and show the effectiveness of the theoretical results. They show that Algorithm 2 is supe-
rior to many state-of-the-art algorithms for dimensionality reduction on high-dimension 
and large-sample dense data sets, while Algorithm 3 is more suitable to high-dimension 
and large-sample sparse data sets. Specifically, Algorithm 2 is the best one among all the 
compared algorithms in overall consideration, especially when both d and n are very large 
and even in the same order.
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